cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

vmx.h (17140B)


      1/* SPDX-License-Identifier: GPL-2.0 */
      2#ifndef __KVM_X86_VMX_H
      3#define __KVM_X86_VMX_H
      4
      5#include <linux/kvm_host.h>
      6
      7#include <asm/kvm.h>
      8#include <asm/intel_pt.h>
      9
     10#include "capabilities.h"
     11#include "kvm_cache_regs.h"
     12#include "posted_intr.h"
     13#include "vmcs.h"
     14#include "vmx_ops.h"
     15#include "cpuid.h"
     16
     17#define MSR_TYPE_R	1
     18#define MSR_TYPE_W	2
     19#define MSR_TYPE_RW	3
     20
     21#define X2APIC_MSR(r) (APIC_BASE_MSR + ((r) >> 4))
     22
     23#ifdef CONFIG_X86_64
     24#define MAX_NR_USER_RETURN_MSRS	7
     25#else
     26#define MAX_NR_USER_RETURN_MSRS	4
     27#endif
     28
     29#define MAX_NR_LOADSTORE_MSRS	8
     30
     31struct vmx_msrs {
     32	unsigned int		nr;
     33	struct vmx_msr_entry	val[MAX_NR_LOADSTORE_MSRS];
     34};
     35
     36struct vmx_uret_msr {
     37	bool load_into_hardware;
     38	u64 data;
     39	u64 mask;
     40};
     41
     42enum segment_cache_field {
     43	SEG_FIELD_SEL = 0,
     44	SEG_FIELD_BASE = 1,
     45	SEG_FIELD_LIMIT = 2,
     46	SEG_FIELD_AR = 3,
     47
     48	SEG_FIELD_NR = 4
     49};
     50
     51#define RTIT_ADDR_RANGE		4
     52
     53struct pt_ctx {
     54	u64 ctl;
     55	u64 status;
     56	u64 output_base;
     57	u64 output_mask;
     58	u64 cr3_match;
     59	u64 addr_a[RTIT_ADDR_RANGE];
     60	u64 addr_b[RTIT_ADDR_RANGE];
     61};
     62
     63struct pt_desc {
     64	u64 ctl_bitmask;
     65	u32 num_address_ranges;
     66	u32 caps[PT_CPUID_REGS_NUM * PT_CPUID_LEAVES];
     67	struct pt_ctx host;
     68	struct pt_ctx guest;
     69};
     70
     71union vmx_exit_reason {
     72	struct {
     73		u32	basic			: 16;
     74		u32	reserved16		: 1;
     75		u32	reserved17		: 1;
     76		u32	reserved18		: 1;
     77		u32	reserved19		: 1;
     78		u32	reserved20		: 1;
     79		u32	reserved21		: 1;
     80		u32	reserved22		: 1;
     81		u32	reserved23		: 1;
     82		u32	reserved24		: 1;
     83		u32	reserved25		: 1;
     84		u32	bus_lock_detected	: 1;
     85		u32	enclave_mode		: 1;
     86		u32	smi_pending_mtf		: 1;
     87		u32	smi_from_vmx_root	: 1;
     88		u32	reserved30		: 1;
     89		u32	failed_vmentry		: 1;
     90	};
     91	u32 full;
     92};
     93
     94#define vcpu_to_lbr_desc(vcpu) (&to_vmx(vcpu)->lbr_desc)
     95#define vcpu_to_lbr_records(vcpu) (&to_vmx(vcpu)->lbr_desc.records)
     96
     97bool intel_pmu_lbr_is_compatible(struct kvm_vcpu *vcpu);
     98bool intel_pmu_lbr_is_enabled(struct kvm_vcpu *vcpu);
     99
    100int intel_pmu_create_guest_lbr_event(struct kvm_vcpu *vcpu);
    101void vmx_passthrough_lbr_msrs(struct kvm_vcpu *vcpu);
    102
    103struct lbr_desc {
    104	/* Basic info about guest LBR records. */
    105	struct x86_pmu_lbr records;
    106
    107	/*
    108	 * Emulate LBR feature via passthrough LBR registers when the
    109	 * per-vcpu guest LBR event is scheduled on the current pcpu.
    110	 *
    111	 * The records may be inaccurate if the host reclaims the LBR.
    112	 */
    113	struct perf_event *event;
    114
    115	/* True if LBRs are marked as not intercepted in the MSR bitmap */
    116	bool msr_passthrough;
    117};
    118
    119/*
    120 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
    121 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
    122 */
    123struct nested_vmx {
    124	/* Has the level1 guest done vmxon? */
    125	bool vmxon;
    126	gpa_t vmxon_ptr;
    127	bool pml_full;
    128
    129	/* The guest-physical address of the current VMCS L1 keeps for L2 */
    130	gpa_t current_vmptr;
    131	/*
    132	 * Cache of the guest's VMCS, existing outside of guest memory.
    133	 * Loaded from guest memory during VMPTRLD. Flushed to guest
    134	 * memory during VMCLEAR and VMPTRLD.
    135	 */
    136	struct vmcs12 *cached_vmcs12;
    137	/*
    138	 * Cache of the guest's shadow VMCS, existing outside of guest
    139	 * memory. Loaded from guest memory during VM entry. Flushed
    140	 * to guest memory during VM exit.
    141	 */
    142	struct vmcs12 *cached_shadow_vmcs12;
    143
    144	/*
    145	 * GPA to HVA cache for accessing vmcs12->vmcs_link_pointer
    146	 */
    147	struct gfn_to_hva_cache shadow_vmcs12_cache;
    148
    149	/*
    150	 * GPA to HVA cache for VMCS12
    151	 */
    152	struct gfn_to_hva_cache vmcs12_cache;
    153
    154	/*
    155	 * Indicates if the shadow vmcs or enlightened vmcs must be updated
    156	 * with the data held by struct vmcs12.
    157	 */
    158	bool need_vmcs12_to_shadow_sync;
    159	bool dirty_vmcs12;
    160
    161	/*
    162	 * Indicates whether MSR bitmap for L2 needs to be rebuilt due to
    163	 * changes in MSR bitmap for L1 or switching to a different L2. Note,
    164	 * this flag can only be used reliably in conjunction with a paravirt L1
    165	 * which informs L0 whether any changes to MSR bitmap for L2 were done
    166	 * on its side.
    167	 */
    168	bool force_msr_bitmap_recalc;
    169
    170	/*
    171	 * Indicates lazily loaded guest state has not yet been decached from
    172	 * vmcs02.
    173	 */
    174	bool need_sync_vmcs02_to_vmcs12_rare;
    175
    176	/*
    177	 * vmcs02 has been initialized, i.e. state that is constant for
    178	 * vmcs02 has been written to the backing VMCS.  Initialization
    179	 * is delayed until L1 actually attempts to run a nested VM.
    180	 */
    181	bool vmcs02_initialized;
    182
    183	bool change_vmcs01_virtual_apic_mode;
    184	bool reload_vmcs01_apic_access_page;
    185	bool update_vmcs01_cpu_dirty_logging;
    186	bool update_vmcs01_apicv_status;
    187
    188	/*
    189	 * Enlightened VMCS has been enabled. It does not mean that L1 has to
    190	 * use it. However, VMX features available to L1 will be limited based
    191	 * on what the enlightened VMCS supports.
    192	 */
    193	bool enlightened_vmcs_enabled;
    194
    195	/* L2 must run next, and mustn't decide to exit to L1. */
    196	bool nested_run_pending;
    197
    198	/* Pending MTF VM-exit into L1.  */
    199	bool mtf_pending;
    200
    201	struct loaded_vmcs vmcs02;
    202
    203	/*
    204	 * Guest pages referred to in the vmcs02 with host-physical
    205	 * pointers, so we must keep them pinned while L2 runs.
    206	 */
    207	struct page *apic_access_page;
    208	struct kvm_host_map virtual_apic_map;
    209	struct kvm_host_map pi_desc_map;
    210
    211	struct kvm_host_map msr_bitmap_map;
    212
    213	struct pi_desc *pi_desc;
    214	bool pi_pending;
    215	u16 posted_intr_nv;
    216
    217	struct hrtimer preemption_timer;
    218	u64 preemption_timer_deadline;
    219	bool has_preemption_timer_deadline;
    220	bool preemption_timer_expired;
    221
    222	/* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
    223	u64 vmcs01_debugctl;
    224	u64 vmcs01_guest_bndcfgs;
    225
    226	/* to migrate it to L1 if L2 writes to L1's CR8 directly */
    227	int l1_tpr_threshold;
    228
    229	u16 vpid02;
    230	u16 last_vpid;
    231
    232	struct nested_vmx_msrs msrs;
    233
    234	/* SMM related state */
    235	struct {
    236		/* in VMX operation on SMM entry? */
    237		bool vmxon;
    238		/* in guest mode on SMM entry? */
    239		bool guest_mode;
    240	} smm;
    241
    242	gpa_t hv_evmcs_vmptr;
    243	struct kvm_host_map hv_evmcs_map;
    244	struct hv_enlightened_vmcs *hv_evmcs;
    245};
    246
    247struct vcpu_vmx {
    248	struct kvm_vcpu       vcpu;
    249	u8                    fail;
    250	u8		      x2apic_msr_bitmap_mode;
    251
    252	/*
    253	 * If true, host state has been stored in vmx->loaded_vmcs for
    254	 * the CPU registers that only need to be switched when transitioning
    255	 * to/from the kernel, and the registers have been loaded with guest
    256	 * values.  If false, host state is loaded in the CPU registers
    257	 * and vmx->loaded_vmcs->host_state is invalid.
    258	 */
    259	bool		      guest_state_loaded;
    260
    261	unsigned long         exit_qualification;
    262	u32                   exit_intr_info;
    263	u32                   idt_vectoring_info;
    264	ulong                 rflags;
    265
    266	/*
    267	 * User return MSRs are always emulated when enabled in the guest, but
    268	 * only loaded into hardware when necessary, e.g. SYSCALL #UDs outside
    269	 * of 64-bit mode or if EFER.SCE=1, thus the SYSCALL MSRs don't need to
    270	 * be loaded into hardware if those conditions aren't met.
    271	 */
    272	struct vmx_uret_msr   guest_uret_msrs[MAX_NR_USER_RETURN_MSRS];
    273	bool                  guest_uret_msrs_loaded;
    274#ifdef CONFIG_X86_64
    275	u64		      msr_host_kernel_gs_base;
    276	u64		      msr_guest_kernel_gs_base;
    277#endif
    278
    279	u64		      spec_ctrl;
    280	u32		      msr_ia32_umwait_control;
    281
    282	/*
    283	 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
    284	 * non-nested (L1) guest, it always points to vmcs01. For a nested
    285	 * guest (L2), it points to a different VMCS.
    286	 */
    287	struct loaded_vmcs    vmcs01;
    288	struct loaded_vmcs   *loaded_vmcs;
    289
    290	struct msr_autoload {
    291		struct vmx_msrs guest;
    292		struct vmx_msrs host;
    293	} msr_autoload;
    294
    295	struct msr_autostore {
    296		struct vmx_msrs guest;
    297	} msr_autostore;
    298
    299	struct {
    300		int vm86_active;
    301		ulong save_rflags;
    302		struct kvm_segment segs[8];
    303	} rmode;
    304	struct {
    305		u32 bitmask; /* 4 bits per segment (1 bit per field) */
    306		struct kvm_save_segment {
    307			u16 selector;
    308			unsigned long base;
    309			u32 limit;
    310			u32 ar;
    311		} seg[8];
    312	} segment_cache;
    313	int vpid;
    314	bool emulation_required;
    315
    316	union vmx_exit_reason exit_reason;
    317
    318	/* Posted interrupt descriptor */
    319	struct pi_desc pi_desc;
    320
    321	/* Used if this vCPU is waiting for PI notification wakeup. */
    322	struct list_head pi_wakeup_list;
    323
    324	/* Support for a guest hypervisor (nested VMX) */
    325	struct nested_vmx nested;
    326
    327	/* Dynamic PLE window. */
    328	unsigned int ple_window;
    329	bool ple_window_dirty;
    330
    331	bool req_immediate_exit;
    332
    333	/* Support for PML */
    334#define PML_ENTITY_NUM		512
    335	struct page *pml_pg;
    336
    337	/* apic deadline value in host tsc */
    338	u64 hv_deadline_tsc;
    339
    340	unsigned long host_debugctlmsr;
    341
    342	/*
    343	 * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
    344	 * msr_ia32_feature_control. FEAT_CTL_LOCKED is always included
    345	 * in msr_ia32_feature_control_valid_bits.
    346	 */
    347	u64 msr_ia32_feature_control;
    348	u64 msr_ia32_feature_control_valid_bits;
    349	/* SGX Launch Control public key hash */
    350	u64 msr_ia32_sgxlepubkeyhash[4];
    351	u64 msr_ia32_mcu_opt_ctrl;
    352	bool disable_fb_clear;
    353
    354	struct pt_desc pt_desc;
    355	struct lbr_desc lbr_desc;
    356
    357	/* Save desired MSR intercept (read: pass-through) state */
    358#define MAX_POSSIBLE_PASSTHROUGH_MSRS	15
    359	struct {
    360		DECLARE_BITMAP(read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
    361		DECLARE_BITMAP(write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
    362	} shadow_msr_intercept;
    363};
    364
    365struct kvm_vmx {
    366	struct kvm kvm;
    367
    368	unsigned int tss_addr;
    369	bool ept_identity_pagetable_done;
    370	gpa_t ept_identity_map_addr;
    371};
    372
    373bool nested_vmx_allowed(struct kvm_vcpu *vcpu);
    374void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
    375			struct loaded_vmcs *buddy);
    376int allocate_vpid(void);
    377void free_vpid(int vpid);
    378void vmx_set_constant_host_state(struct vcpu_vmx *vmx);
    379void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu);
    380void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
    381			unsigned long fs_base, unsigned long gs_base);
    382int vmx_get_cpl(struct kvm_vcpu *vcpu);
    383bool vmx_emulation_required(struct kvm_vcpu *vcpu);
    384unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu);
    385void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
    386u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu);
    387void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask);
    388int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer);
    389void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
    390void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
    391void set_cr4_guest_host_mask(struct vcpu_vmx *vmx);
    392void ept_save_pdptrs(struct kvm_vcpu *vcpu);
    393void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
    394void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
    395u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level);
    396
    397bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu);
    398void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu);
    399bool vmx_nmi_blocked(struct kvm_vcpu *vcpu);
    400bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu);
    401bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu);
    402void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked);
    403void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu);
    404struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr);
    405void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu);
    406void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp);
    407bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs, bool launched);
    408int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr);
    409void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu);
    410
    411void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type);
    412void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type);
    413
    414u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu);
    415u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu);
    416
    417static inline void vmx_set_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr,
    418					     int type, bool value)
    419{
    420	if (value)
    421		vmx_enable_intercept_for_msr(vcpu, msr, type);
    422	else
    423		vmx_disable_intercept_for_msr(vcpu, msr, type);
    424}
    425
    426void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu);
    427
    428/*
    429 * Note, early Intel manuals have the write-low and read-high bitmap offsets
    430 * the wrong way round.  The bitmaps control MSRs 0x00000000-0x00001fff and
    431 * 0xc0000000-0xc0001fff.  The former (low) uses bytes 0-0x3ff for reads and
    432 * 0x800-0xbff for writes.  The latter (high) uses 0x400-0x7ff for reads and
    433 * 0xc00-0xfff for writes.  MSRs not covered by either of the ranges always
    434 * VM-Exit.
    435 */
    436#define __BUILD_VMX_MSR_BITMAP_HELPER(rtype, action, bitop, access, base)      \
    437static inline rtype vmx_##action##_msr_bitmap_##access(unsigned long *bitmap,  \
    438						       u32 msr)		       \
    439{									       \
    440	int f = sizeof(unsigned long);					       \
    441									       \
    442	if (msr <= 0x1fff)						       \
    443		return bitop##_bit(msr, bitmap + base / f);		       \
    444	else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))		       \
    445		return bitop##_bit(msr & 0x1fff, bitmap + (base + 0x400) / f); \
    446	return (rtype)true;						       \
    447}
    448#define BUILD_VMX_MSR_BITMAP_HELPERS(ret_type, action, bitop)		       \
    449	__BUILD_VMX_MSR_BITMAP_HELPER(ret_type, action, bitop, read,  0x0)     \
    450	__BUILD_VMX_MSR_BITMAP_HELPER(ret_type, action, bitop, write, 0x800)
    451
    452BUILD_VMX_MSR_BITMAP_HELPERS(bool, test, test)
    453BUILD_VMX_MSR_BITMAP_HELPERS(void, clear, __clear)
    454BUILD_VMX_MSR_BITMAP_HELPERS(void, set, __set)
    455
    456static inline u8 vmx_get_rvi(void)
    457{
    458	return vmcs_read16(GUEST_INTR_STATUS) & 0xff;
    459}
    460
    461#define BUILD_CONTROLS_SHADOW(lname, uname)				    \
    462static inline void lname##_controls_set(struct vcpu_vmx *vmx, u32 val)	    \
    463{									    \
    464	if (vmx->loaded_vmcs->controls_shadow.lname != val) {		    \
    465		vmcs_write32(uname, val);				    \
    466		vmx->loaded_vmcs->controls_shadow.lname = val;		    \
    467	}								    \
    468}									    \
    469static inline u32 __##lname##_controls_get(struct loaded_vmcs *vmcs)	    \
    470{									    \
    471	return vmcs->controls_shadow.lname;				    \
    472}									    \
    473static inline u32 lname##_controls_get(struct vcpu_vmx *vmx)		    \
    474{									    \
    475	return __##lname##_controls_get(vmx->loaded_vmcs);		    \
    476}									    \
    477static inline void lname##_controls_setbit(struct vcpu_vmx *vmx, u32 val)   \
    478{									    \
    479	lname##_controls_set(vmx, lname##_controls_get(vmx) | val);	    \
    480}									    \
    481static inline void lname##_controls_clearbit(struct vcpu_vmx *vmx, u32 val) \
    482{									    \
    483	lname##_controls_set(vmx, lname##_controls_get(vmx) & ~val);	    \
    484}
    485BUILD_CONTROLS_SHADOW(vm_entry, VM_ENTRY_CONTROLS)
    486BUILD_CONTROLS_SHADOW(vm_exit, VM_EXIT_CONTROLS)
    487BUILD_CONTROLS_SHADOW(pin, PIN_BASED_VM_EXEC_CONTROL)
    488BUILD_CONTROLS_SHADOW(exec, CPU_BASED_VM_EXEC_CONTROL)
    489BUILD_CONTROLS_SHADOW(secondary_exec, SECONDARY_VM_EXEC_CONTROL)
    490
    491/*
    492 * VMX_REGS_LAZY_LOAD_SET - The set of registers that will be updated in the
    493 * cache on demand.  Other registers not listed here are synced to
    494 * the cache immediately after VM-Exit.
    495 */
    496#define VMX_REGS_LAZY_LOAD_SET	((1 << VCPU_REGS_RIP) |         \
    497				(1 << VCPU_REGS_RSP) |          \
    498				(1 << VCPU_EXREG_RFLAGS) |      \
    499				(1 << VCPU_EXREG_PDPTR) |       \
    500				(1 << VCPU_EXREG_SEGMENTS) |    \
    501				(1 << VCPU_EXREG_CR0) |         \
    502				(1 << VCPU_EXREG_CR3) |         \
    503				(1 << VCPU_EXREG_CR4) |         \
    504				(1 << VCPU_EXREG_EXIT_INFO_1) | \
    505				(1 << VCPU_EXREG_EXIT_INFO_2))
    506
    507static inline struct kvm_vmx *to_kvm_vmx(struct kvm *kvm)
    508{
    509	return container_of(kvm, struct kvm_vmx, kvm);
    510}
    511
    512static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
    513{
    514	return container_of(vcpu, struct vcpu_vmx, vcpu);
    515}
    516
    517static inline unsigned long vmx_get_exit_qual(struct kvm_vcpu *vcpu)
    518{
    519	struct vcpu_vmx *vmx = to_vmx(vcpu);
    520
    521	if (!kvm_register_is_available(vcpu, VCPU_EXREG_EXIT_INFO_1)) {
    522		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1);
    523		vmx->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
    524	}
    525	return vmx->exit_qualification;
    526}
    527
    528static inline u32 vmx_get_intr_info(struct kvm_vcpu *vcpu)
    529{
    530	struct vcpu_vmx *vmx = to_vmx(vcpu);
    531
    532	if (!kvm_register_is_available(vcpu, VCPU_EXREG_EXIT_INFO_2)) {
    533		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2);
    534		vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
    535	}
    536	return vmx->exit_intr_info;
    537}
    538
    539struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags);
    540void free_vmcs(struct vmcs *vmcs);
    541int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs);
    542void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs);
    543void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs);
    544
    545static inline struct vmcs *alloc_vmcs(bool shadow)
    546{
    547	return alloc_vmcs_cpu(shadow, raw_smp_processor_id(),
    548			      GFP_KERNEL_ACCOUNT);
    549}
    550
    551static inline bool vmx_has_waitpkg(struct vcpu_vmx *vmx)
    552{
    553	return secondary_exec_controls_get(vmx) &
    554		SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
    555}
    556
    557static inline bool vmx_need_pf_intercept(struct kvm_vcpu *vcpu)
    558{
    559	if (!enable_ept)
    560		return true;
    561
    562	return allow_smaller_maxphyaddr && cpuid_maxphyaddr(vcpu) < boot_cpu_data.x86_phys_bits;
    563}
    564
    565static inline bool is_unrestricted_guest(struct kvm_vcpu *vcpu)
    566{
    567	return enable_unrestricted_guest && (!is_guest_mode(vcpu) ||
    568	    (secondary_exec_controls_get(to_vmx(vcpu)) &
    569	    SECONDARY_EXEC_UNRESTRICTED_GUEST));
    570}
    571
    572bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu);
    573static inline bool vmx_guest_state_valid(struct kvm_vcpu *vcpu)
    574{
    575	return is_unrestricted_guest(vcpu) || __vmx_guest_state_valid(vcpu);
    576}
    577
    578void dump_vmcs(struct kvm_vcpu *vcpu);
    579
    580static inline int vmx_get_instr_info_reg2(u32 vmx_instr_info)
    581{
    582	return (vmx_instr_info >> 28) & 0xf;
    583}
    584
    585#endif /* __KVM_X86_VMX_H */