x86.c (352891B)
1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * derived from drivers/kvm/kvm_main.c 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright (C) 2008 Qumranet, Inc. 9 * Copyright IBM Corporation, 2008 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * 12 * Authors: 13 * Avi Kivity <avi@qumranet.com> 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Amit Shah <amit.shah@qumranet.com> 16 * Ben-Ami Yassour <benami@il.ibm.com> 17 */ 18 19#include <linux/kvm_host.h> 20#include "irq.h" 21#include "ioapic.h" 22#include "mmu.h" 23#include "i8254.h" 24#include "tss.h" 25#include "kvm_cache_regs.h" 26#include "kvm_emulate.h" 27#include "x86.h" 28#include "cpuid.h" 29#include "pmu.h" 30#include "hyperv.h" 31#include "lapic.h" 32#include "xen.h" 33 34#include <linux/clocksource.h> 35#include <linux/interrupt.h> 36#include <linux/kvm.h> 37#include <linux/fs.h> 38#include <linux/vmalloc.h> 39#include <linux/export.h> 40#include <linux/moduleparam.h> 41#include <linux/mman.h> 42#include <linux/highmem.h> 43#include <linux/iommu.h> 44#include <linux/intel-iommu.h> 45#include <linux/cpufreq.h> 46#include <linux/user-return-notifier.h> 47#include <linux/srcu.h> 48#include <linux/slab.h> 49#include <linux/perf_event.h> 50#include <linux/uaccess.h> 51#include <linux/hash.h> 52#include <linux/pci.h> 53#include <linux/timekeeper_internal.h> 54#include <linux/pvclock_gtod.h> 55#include <linux/kvm_irqfd.h> 56#include <linux/irqbypass.h> 57#include <linux/sched/stat.h> 58#include <linux/sched/isolation.h> 59#include <linux/mem_encrypt.h> 60#include <linux/entry-kvm.h> 61#include <linux/suspend.h> 62 63#include <trace/events/kvm.h> 64 65#include <asm/debugreg.h> 66#include <asm/msr.h> 67#include <asm/desc.h> 68#include <asm/mce.h> 69#include <asm/pkru.h> 70#include <linux/kernel_stat.h> 71#include <asm/fpu/api.h> 72#include <asm/fpu/xcr.h> 73#include <asm/fpu/xstate.h> 74#include <asm/pvclock.h> 75#include <asm/div64.h> 76#include <asm/irq_remapping.h> 77#include <asm/mshyperv.h> 78#include <asm/hypervisor.h> 79#include <asm/tlbflush.h> 80#include <asm/intel_pt.h> 81#include <asm/emulate_prefix.h> 82#include <asm/sgx.h> 83#include <clocksource/hyperv_timer.h> 84 85#include "cachepc/cachepc.h" 86#include "cachepc/event.h" 87#include "cachepc/track.h" 88 89#define CREATE_TRACE_POINTS 90#include "trace.h" 91 92#define MAX_IO_MSRS 256 93#define KVM_MAX_MCE_BANKS 32 94u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P; 95EXPORT_SYMBOL_GPL(kvm_mce_cap_supported); 96 97#define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e)) 98 99#define emul_to_vcpu(ctxt) \ 100 ((struct kvm_vcpu *)(ctxt)->vcpu) 101 102/* EFER defaults: 103 * - enable syscall per default because its emulated by KVM 104 * - enable LME and LMA per default on 64 bit KVM 105 */ 106#ifdef CONFIG_X86_64 107static 108u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 109#else 110static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 111#endif 112 113static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS; 114 115#define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE) 116 117#define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE 118 119#define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 120 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 121 122static void update_cr8_intercept(struct kvm_vcpu *vcpu); 123static void process_nmi(struct kvm_vcpu *vcpu); 124static void process_smi(struct kvm_vcpu *vcpu); 125static void enter_smm(struct kvm_vcpu *vcpu); 126static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 127static void store_regs(struct kvm_vcpu *vcpu); 128static int sync_regs(struct kvm_vcpu *vcpu); 129static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu); 130 131static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 132static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); 133 134struct kvm_x86_ops kvm_x86_ops __read_mostly; 135 136#define KVM_X86_OP(func) \ 137 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \ 138 *(((struct kvm_x86_ops *)0)->func)); 139#define KVM_X86_OP_OPTIONAL KVM_X86_OP 140#define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP 141#include <asm/kvm-x86-ops.h> 142EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits); 143EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg); 144 145static bool __read_mostly ignore_msrs = 0; 146module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 147 148bool __read_mostly report_ignored_msrs = true; 149module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR); 150EXPORT_SYMBOL_GPL(report_ignored_msrs); 151 152unsigned int min_timer_period_us = 200; 153module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); 154 155static bool __read_mostly kvmclock_periodic_sync = true; 156module_param(kvmclock_periodic_sync, bool, S_IRUGO); 157 158bool __read_mostly kvm_has_tsc_control; 159EXPORT_SYMBOL_GPL(kvm_has_tsc_control); 160u32 __read_mostly kvm_max_guest_tsc_khz; 161EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz); 162u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits; 163EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits); 164u64 __read_mostly kvm_max_tsc_scaling_ratio; 165EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio); 166u64 __read_mostly kvm_default_tsc_scaling_ratio; 167EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio); 168bool __read_mostly kvm_has_bus_lock_exit; 169EXPORT_SYMBOL_GPL(kvm_has_bus_lock_exit); 170 171/* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 172static u32 __read_mostly tsc_tolerance_ppm = 250; 173module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 174 175/* 176 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables 177 * adaptive tuning starting from default advancement of 1000ns. '0' disables 178 * advancement entirely. Any other value is used as-is and disables adaptive 179 * tuning, i.e. allows privileged userspace to set an exact advancement time. 180 */ 181static int __read_mostly lapic_timer_advance_ns = -1; 182module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR); 183 184static bool __read_mostly vector_hashing = true; 185module_param(vector_hashing, bool, S_IRUGO); 186 187bool __read_mostly enable_vmware_backdoor = false; 188module_param(enable_vmware_backdoor, bool, S_IRUGO); 189EXPORT_SYMBOL_GPL(enable_vmware_backdoor); 190 191static bool __read_mostly force_emulation_prefix = false; 192module_param(force_emulation_prefix, bool, S_IRUGO); 193 194int __read_mostly pi_inject_timer = -1; 195module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR); 196 197/* Enable/disable PMU virtualization */ 198bool __read_mostly enable_pmu = true; 199EXPORT_SYMBOL_GPL(enable_pmu); 200module_param(enable_pmu, bool, 0444); 201 202bool __read_mostly eager_page_split = true; 203module_param(eager_page_split, bool, 0644); 204 205/* 206 * Restoring the host value for MSRs that are only consumed when running in 207 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU 208 * returns to userspace, i.e. the kernel can run with the guest's value. 209 */ 210#define KVM_MAX_NR_USER_RETURN_MSRS 16 211 212struct kvm_user_return_msrs { 213 struct user_return_notifier urn; 214 bool registered; 215 struct kvm_user_return_msr_values { 216 u64 host; 217 u64 curr; 218 } values[KVM_MAX_NR_USER_RETURN_MSRS]; 219}; 220 221u32 __read_mostly kvm_nr_uret_msrs; 222EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs); 223static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS]; 224static struct kvm_user_return_msrs __percpu *user_return_msrs; 225 226#define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \ 227 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \ 228 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \ 229 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE) 230 231u64 __read_mostly host_efer; 232EXPORT_SYMBOL_GPL(host_efer); 233 234bool __read_mostly allow_smaller_maxphyaddr = 0; 235EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr); 236 237bool __read_mostly enable_apicv = true; 238EXPORT_SYMBOL_GPL(enable_apicv); 239 240u64 __read_mostly host_xss; 241EXPORT_SYMBOL_GPL(host_xss); 242u64 __read_mostly supported_xss; 243EXPORT_SYMBOL_GPL(supported_xss); 244 245const struct _kvm_stats_desc kvm_vm_stats_desc[] = { 246 KVM_GENERIC_VM_STATS(), 247 STATS_DESC_COUNTER(VM, mmu_shadow_zapped), 248 STATS_DESC_COUNTER(VM, mmu_pte_write), 249 STATS_DESC_COUNTER(VM, mmu_pde_zapped), 250 STATS_DESC_COUNTER(VM, mmu_flooded), 251 STATS_DESC_COUNTER(VM, mmu_recycled), 252 STATS_DESC_COUNTER(VM, mmu_cache_miss), 253 STATS_DESC_ICOUNTER(VM, mmu_unsync), 254 STATS_DESC_ICOUNTER(VM, pages_4k), 255 STATS_DESC_ICOUNTER(VM, pages_2m), 256 STATS_DESC_ICOUNTER(VM, pages_1g), 257 STATS_DESC_ICOUNTER(VM, nx_lpage_splits), 258 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size), 259 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions) 260}; 261 262const struct kvm_stats_header kvm_vm_stats_header = { 263 .name_size = KVM_STATS_NAME_SIZE, 264 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), 265 .id_offset = sizeof(struct kvm_stats_header), 266 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 267 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 268 sizeof(kvm_vm_stats_desc), 269}; 270 271const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { 272 KVM_GENERIC_VCPU_STATS(), 273 STATS_DESC_COUNTER(VCPU, pf_taken), 274 STATS_DESC_COUNTER(VCPU, pf_fixed), 275 STATS_DESC_COUNTER(VCPU, pf_emulate), 276 STATS_DESC_COUNTER(VCPU, pf_spurious), 277 STATS_DESC_COUNTER(VCPU, pf_fast), 278 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created), 279 STATS_DESC_COUNTER(VCPU, pf_guest), 280 STATS_DESC_COUNTER(VCPU, tlb_flush), 281 STATS_DESC_COUNTER(VCPU, invlpg), 282 STATS_DESC_COUNTER(VCPU, exits), 283 STATS_DESC_COUNTER(VCPU, io_exits), 284 STATS_DESC_COUNTER(VCPU, mmio_exits), 285 STATS_DESC_COUNTER(VCPU, signal_exits), 286 STATS_DESC_COUNTER(VCPU, irq_window_exits), 287 STATS_DESC_COUNTER(VCPU, nmi_window_exits), 288 STATS_DESC_COUNTER(VCPU, l1d_flush), 289 STATS_DESC_COUNTER(VCPU, halt_exits), 290 STATS_DESC_COUNTER(VCPU, request_irq_exits), 291 STATS_DESC_COUNTER(VCPU, irq_exits), 292 STATS_DESC_COUNTER(VCPU, host_state_reload), 293 STATS_DESC_COUNTER(VCPU, fpu_reload), 294 STATS_DESC_COUNTER(VCPU, insn_emulation), 295 STATS_DESC_COUNTER(VCPU, insn_emulation_fail), 296 STATS_DESC_COUNTER(VCPU, hypercalls), 297 STATS_DESC_COUNTER(VCPU, irq_injections), 298 STATS_DESC_COUNTER(VCPU, nmi_injections), 299 STATS_DESC_COUNTER(VCPU, req_event), 300 STATS_DESC_COUNTER(VCPU, nested_run), 301 STATS_DESC_COUNTER(VCPU, directed_yield_attempted), 302 STATS_DESC_COUNTER(VCPU, directed_yield_successful), 303 STATS_DESC_COUNTER(VCPU, preemption_reported), 304 STATS_DESC_COUNTER(VCPU, preemption_other), 305 STATS_DESC_ICOUNTER(VCPU, guest_mode) 306}; 307 308const struct kvm_stats_header kvm_vcpu_stats_header = { 309 .name_size = KVM_STATS_NAME_SIZE, 310 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), 311 .id_offset = sizeof(struct kvm_stats_header), 312 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, 313 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + 314 sizeof(kvm_vcpu_stats_desc), 315}; 316 317u64 __read_mostly host_xcr0; 318u64 __read_mostly supported_xcr0; 319EXPORT_SYMBOL_GPL(supported_xcr0); 320 321static struct kmem_cache *x86_emulator_cache; 322 323/* 324 * When called, it means the previous get/set msr reached an invalid msr. 325 * Return true if we want to ignore/silent this failed msr access. 326 */ 327static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write) 328{ 329 const char *op = write ? "wrmsr" : "rdmsr"; 330 331 if (ignore_msrs) { 332 if (report_ignored_msrs) 333 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", 334 op, msr, data); 335 /* Mask the error */ 336 return true; 337 } else { 338 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n", 339 op, msr, data); 340 return false; 341 } 342} 343 344static struct kmem_cache *kvm_alloc_emulator_cache(void) 345{ 346 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src); 347 unsigned int size = sizeof(struct x86_emulate_ctxt); 348 349 return kmem_cache_create_usercopy("x86_emulator", size, 350 __alignof__(struct x86_emulate_ctxt), 351 SLAB_ACCOUNT, useroffset, 352 size - useroffset, NULL); 353} 354 355static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 356 357static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 358{ 359 int i; 360 for (i = 0; i < ASYNC_PF_PER_VCPU; i++) 361 vcpu->arch.apf.gfns[i] = ~0; 362} 363 364static void kvm_on_user_return(struct user_return_notifier *urn) 365{ 366 unsigned slot; 367 struct kvm_user_return_msrs *msrs 368 = container_of(urn, struct kvm_user_return_msrs, urn); 369 struct kvm_user_return_msr_values *values; 370 unsigned long flags; 371 372 /* 373 * Disabling irqs at this point since the following code could be 374 * interrupted and executed through kvm_arch_hardware_disable() 375 */ 376 local_irq_save(flags); 377 if (msrs->registered) { 378 msrs->registered = false; 379 user_return_notifier_unregister(urn); 380 } 381 local_irq_restore(flags); 382 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) { 383 values = &msrs->values[slot]; 384 if (values->host != values->curr) { 385 wrmsrl(kvm_uret_msrs_list[slot], values->host); 386 values->curr = values->host; 387 } 388 } 389} 390 391static int kvm_probe_user_return_msr(u32 msr) 392{ 393 u64 val; 394 int ret; 395 396 preempt_disable(); 397 ret = rdmsrl_safe(msr, &val); 398 if (ret) 399 goto out; 400 ret = wrmsrl_safe(msr, val); 401out: 402 preempt_enable(); 403 return ret; 404} 405 406int kvm_add_user_return_msr(u32 msr) 407{ 408 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS); 409 410 if (kvm_probe_user_return_msr(msr)) 411 return -1; 412 413 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr; 414 return kvm_nr_uret_msrs++; 415} 416EXPORT_SYMBOL_GPL(kvm_add_user_return_msr); 417 418int kvm_find_user_return_msr(u32 msr) 419{ 420 int i; 421 422 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 423 if (kvm_uret_msrs_list[i] == msr) 424 return i; 425 } 426 return -1; 427} 428EXPORT_SYMBOL_GPL(kvm_find_user_return_msr); 429 430static void kvm_user_return_msr_cpu_online(void) 431{ 432 unsigned int cpu = smp_processor_id(); 433 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 434 u64 value; 435 int i; 436 437 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 438 rdmsrl_safe(kvm_uret_msrs_list[i], &value); 439 msrs->values[i].host = value; 440 msrs->values[i].curr = value; 441 } 442} 443 444int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask) 445{ 446 unsigned int cpu = smp_processor_id(); 447 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 448 int err; 449 450 value = (value & mask) | (msrs->values[slot].host & ~mask); 451 if (value == msrs->values[slot].curr) 452 return 0; 453 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value); 454 if (err) 455 return 1; 456 457 msrs->values[slot].curr = value; 458 if (!msrs->registered) { 459 msrs->urn.on_user_return = kvm_on_user_return; 460 user_return_notifier_register(&msrs->urn); 461 msrs->registered = true; 462 } 463 return 0; 464} 465EXPORT_SYMBOL_GPL(kvm_set_user_return_msr); 466 467static void drop_user_return_notifiers(void) 468{ 469 unsigned int cpu = smp_processor_id(); 470 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu); 471 472 if (msrs->registered) 473 kvm_on_user_return(&msrs->urn); 474} 475 476u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 477{ 478 return vcpu->arch.apic_base; 479} 480EXPORT_SYMBOL_GPL(kvm_get_apic_base); 481 482enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu) 483{ 484 return kvm_apic_mode(kvm_get_apic_base(vcpu)); 485} 486EXPORT_SYMBOL_GPL(kvm_get_apic_mode); 487 488int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 489{ 490 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu); 491 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data); 492 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff | 493 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 494 495 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID) 496 return 1; 497 if (!msr_info->host_initiated) { 498 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC) 499 return 1; 500 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC) 501 return 1; 502 } 503 504 kvm_lapic_set_base(vcpu, msr_info->data); 505 kvm_recalculate_apic_map(vcpu->kvm); 506 return 0; 507} 508EXPORT_SYMBOL_GPL(kvm_set_apic_base); 509 510/* 511 * Handle a fault on a hardware virtualization (VMX or SVM) instruction. 512 * 513 * Hardware virtualization extension instructions may fault if a reboot turns 514 * off virtualization while processes are running. Usually after catching the 515 * fault we just panic; during reboot instead the instruction is ignored. 516 */ 517noinstr void kvm_spurious_fault(void) 518{ 519 /* Fault while not rebooting. We want the trace. */ 520 BUG_ON(!kvm_rebooting); 521} 522EXPORT_SYMBOL_GPL(kvm_spurious_fault); 523 524#define EXCPT_BENIGN 0 525#define EXCPT_CONTRIBUTORY 1 526#define EXCPT_PF 2 527 528static int exception_class(int vector) 529{ 530 switch (vector) { 531 case PF_VECTOR: 532 return EXCPT_PF; 533 case DE_VECTOR: 534 case TS_VECTOR: 535 case NP_VECTOR: 536 case SS_VECTOR: 537 case GP_VECTOR: 538 return EXCPT_CONTRIBUTORY; 539 default: 540 break; 541 } 542 return EXCPT_BENIGN; 543} 544 545#define EXCPT_FAULT 0 546#define EXCPT_TRAP 1 547#define EXCPT_ABORT 2 548#define EXCPT_INTERRUPT 3 549 550static int exception_type(int vector) 551{ 552 unsigned int mask; 553 554 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 555 return EXCPT_INTERRUPT; 556 557 mask = 1 << vector; 558 559 /* #DB is trap, as instruction watchpoints are handled elsewhere */ 560 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR))) 561 return EXCPT_TRAP; 562 563 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 564 return EXCPT_ABORT; 565 566 /* Reserved exceptions will result in fault */ 567 return EXCPT_FAULT; 568} 569 570void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu) 571{ 572 unsigned nr = vcpu->arch.exception.nr; 573 bool has_payload = vcpu->arch.exception.has_payload; 574 unsigned long payload = vcpu->arch.exception.payload; 575 576 if (!has_payload) 577 return; 578 579 switch (nr) { 580 case DB_VECTOR: 581 /* 582 * "Certain debug exceptions may clear bit 0-3. The 583 * remaining contents of the DR6 register are never 584 * cleared by the processor". 585 */ 586 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 587 /* 588 * In order to reflect the #DB exception payload in guest 589 * dr6, three components need to be considered: active low 590 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD, 591 * DR6_BS and DR6_BT) 592 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits. 593 * In the target guest dr6: 594 * FIXED_1 bits should always be set. 595 * Active low bits should be cleared if 1-setting in payload. 596 * Active high bits should be set if 1-setting in payload. 597 * 598 * Note, the payload is compatible with the pending debug 599 * exceptions/exit qualification under VMX, that active_low bits 600 * are active high in payload. 601 * So they need to be flipped for DR6. 602 */ 603 vcpu->arch.dr6 |= DR6_ACTIVE_LOW; 604 vcpu->arch.dr6 |= payload; 605 vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW; 606 607 /* 608 * The #DB payload is defined as compatible with the 'pending 609 * debug exceptions' field under VMX, not DR6. While bit 12 is 610 * defined in the 'pending debug exceptions' field (enabled 611 * breakpoint), it is reserved and must be zero in DR6. 612 */ 613 vcpu->arch.dr6 &= ~BIT(12); 614 break; 615 case PF_VECTOR: 616 vcpu->arch.cr2 = payload; 617 break; 618 } 619 620 vcpu->arch.exception.has_payload = false; 621 vcpu->arch.exception.payload = 0; 622} 623EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); 624 625static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 626 unsigned nr, bool has_error, u32 error_code, 627 bool has_payload, unsigned long payload, bool reinject) 628{ 629 u32 prev_nr; 630 int class1, class2; 631 632 kvm_make_request(KVM_REQ_EVENT, vcpu); 633 634 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 635 queue: 636 if (reinject) { 637 /* 638 * On vmentry, vcpu->arch.exception.pending is only 639 * true if an event injection was blocked by 640 * nested_run_pending. In that case, however, 641 * vcpu_enter_guest requests an immediate exit, 642 * and the guest shouldn't proceed far enough to 643 * need reinjection. 644 */ 645 WARN_ON_ONCE(vcpu->arch.exception.pending); 646 vcpu->arch.exception.injected = true; 647 if (WARN_ON_ONCE(has_payload)) { 648 /* 649 * A reinjected event has already 650 * delivered its payload. 651 */ 652 has_payload = false; 653 payload = 0; 654 } 655 } else { 656 vcpu->arch.exception.pending = true; 657 vcpu->arch.exception.injected = false; 658 } 659 vcpu->arch.exception.has_error_code = has_error; 660 vcpu->arch.exception.nr = nr; 661 vcpu->arch.exception.error_code = error_code; 662 vcpu->arch.exception.has_payload = has_payload; 663 vcpu->arch.exception.payload = payload; 664 if (!is_guest_mode(vcpu)) 665 kvm_deliver_exception_payload(vcpu); 666 return; 667 } 668 669 /* to check exception */ 670 prev_nr = vcpu->arch.exception.nr; 671 if (prev_nr == DF_VECTOR) { 672 /* triple fault -> shutdown */ 673 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 674 return; 675 } 676 class1 = exception_class(prev_nr); 677 class2 = exception_class(nr); 678 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) 679 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 680 /* 681 * Generate double fault per SDM Table 5-5. Set 682 * exception.pending = true so that the double fault 683 * can trigger a nested vmexit. 684 */ 685 vcpu->arch.exception.pending = true; 686 vcpu->arch.exception.injected = false; 687 vcpu->arch.exception.has_error_code = true; 688 vcpu->arch.exception.nr = DF_VECTOR; 689 vcpu->arch.exception.error_code = 0; 690 vcpu->arch.exception.has_payload = false; 691 vcpu->arch.exception.payload = 0; 692 } else 693 /* replace previous exception with a new one in a hope 694 that instruction re-execution will regenerate lost 695 exception */ 696 goto queue; 697} 698 699void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 700{ 701 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false); 702} 703EXPORT_SYMBOL_GPL(kvm_queue_exception); 704 705void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 706{ 707 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true); 708} 709EXPORT_SYMBOL_GPL(kvm_requeue_exception); 710 711void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, 712 unsigned long payload) 713{ 714 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false); 715} 716EXPORT_SYMBOL_GPL(kvm_queue_exception_p); 717 718static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, 719 u32 error_code, unsigned long payload) 720{ 721 kvm_multiple_exception(vcpu, nr, true, error_code, 722 true, payload, false); 723} 724 725int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 726{ 727 if (err) 728 kvm_inject_gp(vcpu, 0); 729 else 730 return kvm_skip_emulated_instruction(vcpu); 731 732 return 1; 733} 734EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 735 736static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err) 737{ 738 if (err) { 739 kvm_inject_gp(vcpu, 0); 740 return 1; 741 } 742 743 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP | 744 EMULTYPE_COMPLETE_USER_EXIT); 745} 746 747void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 748{ 749 ++vcpu->stat.pf_guest; 750 vcpu->arch.exception.nested_apf = 751 is_guest_mode(vcpu) && fault->async_page_fault; 752 if (vcpu->arch.exception.nested_apf) { 753 vcpu->arch.apf.nested_apf_token = fault->address; 754 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code); 755 } else { 756 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, 757 fault->address); 758 } 759} 760EXPORT_SYMBOL_GPL(kvm_inject_page_fault); 761 762/* Returns true if the page fault was immediately morphed into a VM-Exit. */ 763bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, 764 struct x86_exception *fault) 765{ 766 struct kvm_mmu *fault_mmu; 767 WARN_ON_ONCE(fault->vector != PF_VECTOR); 768 769 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu : 770 vcpu->arch.walk_mmu; 771 772 /* 773 * Invalidate the TLB entry for the faulting address, if it exists, 774 * else the access will fault indefinitely (and to emulate hardware). 775 */ 776 if ((fault->error_code & PFERR_PRESENT_MASK) && 777 !(fault->error_code & PFERR_RSVD_MASK)) 778 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address, 779 fault_mmu->root.hpa); 780 781 /* 782 * A workaround for KVM's bad exception handling. If KVM injected an 783 * exception into L2, and L2 encountered a #PF while vectoring the 784 * injected exception, manually check to see if L1 wants to intercept 785 * #PF, otherwise queuing the #PF will lead to #DF or a lost exception. 786 * In all other cases, defer the check to nested_ops->check_events(), 787 * which will correctly handle priority (this does not). Note, other 788 * exceptions, e.g. #GP, are theoretically affected, #PF is simply the 789 * most problematic, e.g. when L0 and L1 are both intercepting #PF for 790 * shadow paging. 791 * 792 * TODO: Rewrite exception handling to track injected and pending 793 * (VM-Exit) exceptions separately. 794 */ 795 if (unlikely(vcpu->arch.exception.injected && is_guest_mode(vcpu)) && 796 kvm_x86_ops.nested_ops->handle_page_fault_workaround(vcpu, fault)) 797 return true; 798 799 fault_mmu->inject_page_fault(vcpu, fault); 800 return false; 801} 802EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault); 803 804void kvm_inject_nmi(struct kvm_vcpu *vcpu) 805{ 806 atomic_inc(&vcpu->arch.nmi_queued); 807 kvm_make_request(KVM_REQ_NMI, vcpu); 808} 809EXPORT_SYMBOL_GPL(kvm_inject_nmi); 810 811void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 812{ 813 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false); 814} 815EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 816 817void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 818{ 819 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true); 820} 821EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 822 823/* 824 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 825 * a #GP and return false. 826 */ 827bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 828{ 829 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl) 830 return true; 831 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 832 return false; 833} 834EXPORT_SYMBOL_GPL(kvm_require_cpl); 835 836bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 837{ 838 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 839 return true; 840 841 kvm_queue_exception(vcpu, UD_VECTOR); 842 return false; 843} 844EXPORT_SYMBOL_GPL(kvm_require_dr); 845 846static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu) 847{ 848 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2); 849} 850 851/* 852 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise. 853 */ 854int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3) 855{ 856 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 857 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 858 gpa_t real_gpa; 859 int i; 860 int ret; 861 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 862 863 /* 864 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated 865 * to an L1 GPA. 866 */ 867 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn), 868 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL); 869 if (real_gpa == UNMAPPED_GVA) 870 return 0; 871 872 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */ 873 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte, 874 cr3 & GENMASK(11, 5), sizeof(pdpte)); 875 if (ret < 0) 876 return 0; 877 878 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 879 if ((pdpte[i] & PT_PRESENT_MASK) && 880 (pdpte[i] & pdptr_rsvd_bits(vcpu))) { 881 return 0; 882 } 883 } 884 885 /* 886 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled. 887 * Shadow page roots need to be reconstructed instead. 888 */ 889 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs))) 890 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT); 891 892 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 893 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 894 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 895 vcpu->arch.pdptrs_from_userspace = false; 896 897 return 1; 898} 899EXPORT_SYMBOL_GPL(load_pdptrs); 900 901void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0) 902{ 903 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 904 kvm_clear_async_pf_completion_queue(vcpu); 905 kvm_async_pf_hash_reset(vcpu); 906 907 /* 908 * Clearing CR0.PG is defined to flush the TLB from the guest's 909 * perspective. 910 */ 911 if (!(cr0 & X86_CR0_PG)) 912 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 913 } 914 915 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS) 916 kvm_mmu_reset_context(vcpu); 917 918 if (((cr0 ^ old_cr0) & X86_CR0_CD) && 919 kvm_arch_has_noncoherent_dma(vcpu->kvm) && 920 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 921 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); 922} 923EXPORT_SYMBOL_GPL(kvm_post_set_cr0); 924 925int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 926{ 927 unsigned long old_cr0 = kvm_read_cr0(vcpu); 928 929 cr0 |= X86_CR0_ET; 930 931#ifdef CONFIG_X86_64 932 if (cr0 & 0xffffffff00000000UL) 933 return 1; 934#endif 935 936 cr0 &= ~CR0_RESERVED_BITS; 937 938 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 939 return 1; 940 941 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 942 return 1; 943 944#ifdef CONFIG_X86_64 945 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) && 946 (cr0 & X86_CR0_PG)) { 947 int cs_db, cs_l; 948 949 if (!is_pae(vcpu)) 950 return 1; 951 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 952 if (cs_l) 953 return 1; 954 } 955#endif 956 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) && 957 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) && 958 !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 959 return 1; 960 961 if (!(cr0 & X86_CR0_PG) && 962 (is_64_bit_mode(vcpu) || kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))) 963 return 1; 964 965 static_call(kvm_x86_set_cr0)(vcpu, cr0); 966 967 kvm_post_set_cr0(vcpu, old_cr0, cr0); 968 969 return 0; 970} 971EXPORT_SYMBOL_GPL(kvm_set_cr0); 972 973void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 974{ 975 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 976} 977EXPORT_SYMBOL_GPL(kvm_lmsw); 978 979void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) 980{ 981 if (vcpu->arch.guest_state_protected) 982 return; 983 984 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 985 986 if (vcpu->arch.xcr0 != host_xcr0) 987 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 988 989 if (vcpu->arch.xsaves_enabled && 990 vcpu->arch.ia32_xss != host_xss) 991 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss); 992 } 993 994#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 995 if (static_cpu_has(X86_FEATURE_PKU) && 996 vcpu->arch.pkru != vcpu->arch.host_pkru && 997 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 998 kvm_read_cr4_bits(vcpu, X86_CR4_PKE))) 999 write_pkru(vcpu->arch.pkru); 1000#endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */ 1001} 1002EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state); 1003 1004void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) 1005{ 1006 if (vcpu->arch.guest_state_protected) 1007 return; 1008 1009#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 1010 if (static_cpu_has(X86_FEATURE_PKU) && 1011 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || 1012 kvm_read_cr4_bits(vcpu, X86_CR4_PKE))) { 1013 vcpu->arch.pkru = rdpkru(); 1014 if (vcpu->arch.pkru != vcpu->arch.host_pkru) 1015 write_pkru(vcpu->arch.host_pkru); 1016 } 1017#endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */ 1018 1019 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) { 1020 1021 if (vcpu->arch.xcr0 != host_xcr0) 1022 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 1023 1024 if (vcpu->arch.xsaves_enabled && 1025 vcpu->arch.ia32_xss != host_xss) 1026 wrmsrl(MSR_IA32_XSS, host_xss); 1027 } 1028 1029} 1030EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state); 1031 1032static inline u64 kvm_guest_supported_xcr0(struct kvm_vcpu *vcpu) 1033{ 1034 return vcpu->arch.guest_fpu.fpstate->user_xfeatures; 1035} 1036 1037#ifdef CONFIG_X86_64 1038static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu) 1039{ 1040 return kvm_guest_supported_xcr0(vcpu) & XFEATURE_MASK_USER_DYNAMIC; 1041} 1042#endif 1043 1044static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 1045{ 1046 u64 xcr0 = xcr; 1047 u64 old_xcr0 = vcpu->arch.xcr0; 1048 u64 valid_bits; 1049 1050 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 1051 if (index != XCR_XFEATURE_ENABLED_MASK) 1052 return 1; 1053 if (!(xcr0 & XFEATURE_MASK_FP)) 1054 return 1; 1055 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 1056 return 1; 1057 1058 /* 1059 * Do not allow the guest to set bits that we do not support 1060 * saving. However, xcr0 bit 0 is always set, even if the 1061 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()). 1062 */ 1063 valid_bits = kvm_guest_supported_xcr0(vcpu) | XFEATURE_MASK_FP; 1064 if (xcr0 & ~valid_bits) 1065 return 1; 1066 1067 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 1068 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 1069 return 1; 1070 1071 if (xcr0 & XFEATURE_MASK_AVX512) { 1072 if (!(xcr0 & XFEATURE_MASK_YMM)) 1073 return 1; 1074 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 1075 return 1; 1076 } 1077 1078 if ((xcr0 & XFEATURE_MASK_XTILE) && 1079 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE)) 1080 return 1; 1081 1082 vcpu->arch.xcr0 = xcr0; 1083 1084 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 1085 kvm_update_cpuid_runtime(vcpu); 1086 return 0; 1087} 1088 1089int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu) 1090{ 1091 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 || 1092 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) { 1093 kvm_inject_gp(vcpu, 0); 1094 return 1; 1095 } 1096 1097 return kvm_skip_emulated_instruction(vcpu); 1098} 1099EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv); 1100 1101bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1102{ 1103 if (cr4 & cr4_reserved_bits) 1104 return false; 1105 1106 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits) 1107 return false; 1108 1109 return static_call(kvm_x86_is_valid_cr4)(vcpu, cr4); 1110} 1111EXPORT_SYMBOL_GPL(kvm_is_valid_cr4); 1112 1113void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4) 1114{ 1115 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) 1116 kvm_mmu_reset_context(vcpu); 1117 1118 /* 1119 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB 1120 * according to the SDM; however, stale prev_roots could be reused 1121 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we 1122 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST 1123 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed, 1124 * so fall through. 1125 */ 1126 if (!tdp_enabled && 1127 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) 1128 kvm_mmu_unload(vcpu); 1129 1130 /* 1131 * The TLB has to be flushed for all PCIDs if any of the following 1132 * (architecturally required) changes happen: 1133 * - CR4.PCIDE is changed from 1 to 0 1134 * - CR4.PGE is toggled 1135 * 1136 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT. 1137 */ 1138 if (((cr4 ^ old_cr4) & X86_CR4_PGE) || 1139 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 1140 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1141 1142 /* 1143 * The TLB has to be flushed for the current PCID if any of the 1144 * following (architecturally required) changes happen: 1145 * - CR4.SMEP is changed from 0 to 1 1146 * - CR4.PAE is toggled 1147 */ 1148 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) || 1149 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP))) 1150 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1151 1152} 1153EXPORT_SYMBOL_GPL(kvm_post_set_cr4); 1154 1155int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 1156{ 1157 unsigned long old_cr4 = kvm_read_cr4(vcpu); 1158 1159 if (!kvm_is_valid_cr4(vcpu, cr4)) 1160 return 1; 1161 1162 if (is_long_mode(vcpu)) { 1163 if (!(cr4 & X86_CR4_PAE)) 1164 return 1; 1165 if ((cr4 ^ old_cr4) & X86_CR4_LA57) 1166 return 1; 1167 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 1168 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS) 1169 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) 1170 return 1; 1171 1172 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 1173 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID)) 1174 return 1; 1175 1176 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 1177 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 1178 return 1; 1179 } 1180 1181 static_call(kvm_x86_set_cr4)(vcpu, cr4); 1182 1183 kvm_post_set_cr4(vcpu, old_cr4, cr4); 1184 1185 return 0; 1186} 1187EXPORT_SYMBOL_GPL(kvm_set_cr4); 1188 1189static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid) 1190{ 1191 struct kvm_mmu *mmu = vcpu->arch.mmu; 1192 unsigned long roots_to_free = 0; 1193 int i; 1194 1195 /* 1196 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but 1197 * this is reachable when running EPT=1 and unrestricted_guest=0, and 1198 * also via the emulator. KVM's TDP page tables are not in the scope of 1199 * the invalidation, but the guest's TLB entries need to be flushed as 1200 * the CPU may have cached entries in its TLB for the target PCID. 1201 */ 1202 if (unlikely(tdp_enabled)) { 1203 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 1204 return; 1205 } 1206 1207 /* 1208 * If neither the current CR3 nor any of the prev_roots use the given 1209 * PCID, then nothing needs to be done here because a resync will 1210 * happen anyway before switching to any other CR3. 1211 */ 1212 if (kvm_get_active_pcid(vcpu) == pcid) { 1213 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 1214 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1215 } 1216 1217 /* 1218 * If PCID is disabled, there is no need to free prev_roots even if the 1219 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB 1220 * with PCIDE=0. 1221 */ 1222 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) 1223 return; 1224 1225 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 1226 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid) 1227 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 1228 1229 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free); 1230} 1231 1232int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 1233{ 1234 bool skip_tlb_flush = false; 1235 unsigned long pcid = 0; 1236#ifdef CONFIG_X86_64 1237 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 1238 1239 if (pcid_enabled) { 1240 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; 1241 cr3 &= ~X86_CR3_PCID_NOFLUSH; 1242 pcid = cr3 & X86_CR3_PCID_MASK; 1243 } 1244#endif 1245 1246 /* PDPTRs are always reloaded for PAE paging. */ 1247 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu)) 1248 goto handle_tlb_flush; 1249 1250 /* 1251 * Do not condition the GPA check on long mode, this helper is used to 1252 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that 1253 * the current vCPU mode is accurate. 1254 */ 1255 if (kvm_vcpu_is_illegal_gpa(vcpu, cr3)) 1256 return 1; 1257 1258 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3)) 1259 return 1; 1260 1261 if (cr3 != kvm_read_cr3(vcpu)) 1262 kvm_mmu_new_pgd(vcpu, cr3); 1263 1264 vcpu->arch.cr3 = cr3; 1265 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 1266 /* Do not call post_set_cr3, we do not get here for confidential guests. */ 1267 1268handle_tlb_flush: 1269 /* 1270 * A load of CR3 that flushes the TLB flushes only the current PCID, 1271 * even if PCID is disabled, in which case PCID=0 is flushed. It's a 1272 * moot point in the end because _disabling_ PCID will flush all PCIDs, 1273 * and it's impossible to use a non-zero PCID when PCID is disabled, 1274 * i.e. only PCID=0 can be relevant. 1275 */ 1276 if (!skip_tlb_flush) 1277 kvm_invalidate_pcid(vcpu, pcid); 1278 1279 return 0; 1280} 1281EXPORT_SYMBOL_GPL(kvm_set_cr3); 1282 1283int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 1284{ 1285 if (cr8 & CR8_RESERVED_BITS) 1286 return 1; 1287 if (lapic_in_kernel(vcpu)) 1288 kvm_lapic_set_tpr(vcpu, cr8); 1289 else 1290 vcpu->arch.cr8 = cr8; 1291 return 0; 1292} 1293EXPORT_SYMBOL_GPL(kvm_set_cr8); 1294 1295unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 1296{ 1297 if (lapic_in_kernel(vcpu)) 1298 return kvm_lapic_get_cr8(vcpu); 1299 else 1300 return vcpu->arch.cr8; 1301} 1302EXPORT_SYMBOL_GPL(kvm_get_cr8); 1303 1304static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 1305{ 1306 int i; 1307 1308 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 1309 for (i = 0; i < KVM_NR_DB_REGS; i++) 1310 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 1311 } 1312} 1313 1314void kvm_update_dr7(struct kvm_vcpu *vcpu) 1315{ 1316 unsigned long dr7; 1317 1318 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 1319 dr7 = vcpu->arch.guest_debug_dr7; 1320 else 1321 dr7 = vcpu->arch.dr7; 1322 static_call(kvm_x86_set_dr7)(vcpu, dr7); 1323 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 1324 if (dr7 & DR7_BP_EN_MASK) 1325 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 1326} 1327EXPORT_SYMBOL_GPL(kvm_update_dr7); 1328 1329static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 1330{ 1331 u64 fixed = DR6_FIXED_1; 1332 1333 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) 1334 fixed |= DR6_RTM; 1335 1336 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)) 1337 fixed |= DR6_BUS_LOCK; 1338 return fixed; 1339} 1340 1341int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 1342{ 1343 size_t size = ARRAY_SIZE(vcpu->arch.db); 1344 1345 switch (dr) { 1346 case 0 ... 3: 1347 vcpu->arch.db[array_index_nospec(dr, size)] = val; 1348 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 1349 vcpu->arch.eff_db[dr] = val; 1350 break; 1351 case 4: 1352 case 6: 1353 if (!kvm_dr6_valid(val)) 1354 return 1; /* #GP */ 1355 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 1356 break; 1357 case 5: 1358 default: /* 7 */ 1359 if (!kvm_dr7_valid(val)) 1360 return 1; /* #GP */ 1361 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 1362 kvm_update_dr7(vcpu); 1363 break; 1364 } 1365 1366 return 0; 1367} 1368EXPORT_SYMBOL_GPL(kvm_set_dr); 1369 1370void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 1371{ 1372 size_t size = ARRAY_SIZE(vcpu->arch.db); 1373 1374 switch (dr) { 1375 case 0 ... 3: 1376 *val = vcpu->arch.db[array_index_nospec(dr, size)]; 1377 break; 1378 case 4: 1379 case 6: 1380 *val = vcpu->arch.dr6; 1381 break; 1382 case 5: 1383 default: /* 7 */ 1384 *val = vcpu->arch.dr7; 1385 break; 1386 } 1387} 1388EXPORT_SYMBOL_GPL(kvm_get_dr); 1389 1390int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu) 1391{ 1392 u32 ecx = kvm_rcx_read(vcpu); 1393 u64 data; 1394 1395 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) { 1396 kvm_inject_gp(vcpu, 0); 1397 return 1; 1398 } 1399 1400 kvm_rax_write(vcpu, (u32)data); 1401 kvm_rdx_write(vcpu, data >> 32); 1402 return kvm_skip_emulated_instruction(vcpu); 1403} 1404EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc); 1405 1406/* 1407 * List of msr numbers which we expose to userspace through KVM_GET_MSRS 1408 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. 1409 * 1410 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) 1411 * extract the supported MSRs from the related const lists. 1412 * msrs_to_save is selected from the msrs_to_save_all to reflect the 1413 * capabilities of the host cpu. This capabilities test skips MSRs that are 1414 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs 1415 * may depend on host virtualization features rather than host cpu features. 1416 */ 1417 1418static const u32 msrs_to_save_all[] = { 1419 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 1420 MSR_STAR, 1421#ifdef CONFIG_X86_64 1422 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 1423#endif 1424 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 1425 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 1426 MSR_IA32_SPEC_CTRL, 1427 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, 1428 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, 1429 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, 1430 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, 1431 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, 1432 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, 1433 MSR_IA32_UMWAIT_CONTROL, 1434 1435 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1, 1436 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, 1437 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS, 1438 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 1439 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1, 1440 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3, 1441 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5, 1442 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7, 1443 MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9, 1444 MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11, 1445 MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13, 1446 MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15, 1447 MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17, 1448 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1, 1449 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3, 1450 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5, 1451 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7, 1452 MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9, 1453 MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11, 1454 MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13, 1455 MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15, 1456 MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17, 1457 1458 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3, 1459 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3, 1460 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2, 1461 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5, 1462 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2, 1463 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5, 1464 MSR_IA32_XFD, MSR_IA32_XFD_ERR, 1465}; 1466 1467static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)]; 1468static unsigned num_msrs_to_save; 1469 1470static const u32 emulated_msrs_all[] = { 1471 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 1472 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 1473 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 1474 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 1475 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 1476 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 1477 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 1478 HV_X64_MSR_RESET, 1479 HV_X64_MSR_VP_INDEX, 1480 HV_X64_MSR_VP_RUNTIME, 1481 HV_X64_MSR_SCONTROL, 1482 HV_X64_MSR_STIMER0_CONFIG, 1483 HV_X64_MSR_VP_ASSIST_PAGE, 1484 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, 1485 HV_X64_MSR_TSC_EMULATION_STATUS, 1486 HV_X64_MSR_SYNDBG_OPTIONS, 1487 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS, 1488 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER, 1489 HV_X64_MSR_SYNDBG_PENDING_BUFFER, 1490 1491 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 1492 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK, 1493 1494 MSR_IA32_TSC_ADJUST, 1495 MSR_IA32_TSC_DEADLINE, 1496 MSR_IA32_ARCH_CAPABILITIES, 1497 MSR_IA32_PERF_CAPABILITIES, 1498 MSR_IA32_MISC_ENABLE, 1499 MSR_IA32_MCG_STATUS, 1500 MSR_IA32_MCG_CTL, 1501 MSR_IA32_MCG_EXT_CTL, 1502 MSR_IA32_SMBASE, 1503 MSR_SMI_COUNT, 1504 MSR_PLATFORM_INFO, 1505 MSR_MISC_FEATURES_ENABLES, 1506 MSR_AMD64_VIRT_SPEC_CTRL, 1507 MSR_AMD64_TSC_RATIO, 1508 MSR_IA32_POWER_CTL, 1509 MSR_IA32_UCODE_REV, 1510 1511 /* 1512 * The following list leaves out MSRs whose values are determined 1513 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs. 1514 * We always support the "true" VMX control MSRs, even if the host 1515 * processor does not, so I am putting these registers here rather 1516 * than in msrs_to_save_all. 1517 */ 1518 MSR_IA32_VMX_BASIC, 1519 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1520 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1521 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1522 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1523 MSR_IA32_VMX_MISC, 1524 MSR_IA32_VMX_CR0_FIXED0, 1525 MSR_IA32_VMX_CR4_FIXED0, 1526 MSR_IA32_VMX_VMCS_ENUM, 1527 MSR_IA32_VMX_PROCBASED_CTLS2, 1528 MSR_IA32_VMX_EPT_VPID_CAP, 1529 MSR_IA32_VMX_VMFUNC, 1530 1531 MSR_K7_HWCR, 1532 MSR_KVM_POLL_CONTROL, 1533}; 1534 1535static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)]; 1536static unsigned num_emulated_msrs; 1537 1538/* 1539 * List of msr numbers which are used to expose MSR-based features that 1540 * can be used by a hypervisor to validate requested CPU features. 1541 */ 1542static const u32 msr_based_features_all[] = { 1543 MSR_IA32_VMX_BASIC, 1544 MSR_IA32_VMX_TRUE_PINBASED_CTLS, 1545 MSR_IA32_VMX_PINBASED_CTLS, 1546 MSR_IA32_VMX_TRUE_PROCBASED_CTLS, 1547 MSR_IA32_VMX_PROCBASED_CTLS, 1548 MSR_IA32_VMX_TRUE_EXIT_CTLS, 1549 MSR_IA32_VMX_EXIT_CTLS, 1550 MSR_IA32_VMX_TRUE_ENTRY_CTLS, 1551 MSR_IA32_VMX_ENTRY_CTLS, 1552 MSR_IA32_VMX_MISC, 1553 MSR_IA32_VMX_CR0_FIXED0, 1554 MSR_IA32_VMX_CR0_FIXED1, 1555 MSR_IA32_VMX_CR4_FIXED0, 1556 MSR_IA32_VMX_CR4_FIXED1, 1557 MSR_IA32_VMX_VMCS_ENUM, 1558 MSR_IA32_VMX_PROCBASED_CTLS2, 1559 MSR_IA32_VMX_EPT_VPID_CAP, 1560 MSR_IA32_VMX_VMFUNC, 1561 1562 MSR_F10H_DECFG, 1563 MSR_IA32_UCODE_REV, 1564 MSR_IA32_ARCH_CAPABILITIES, 1565 MSR_IA32_PERF_CAPABILITIES, 1566}; 1567 1568static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)]; 1569static unsigned int num_msr_based_features; 1570 1571static u64 kvm_get_arch_capabilities(void) 1572{ 1573 u64 data = 0; 1574 1575 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) 1576 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data); 1577 1578 /* 1579 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that 1580 * the nested hypervisor runs with NX huge pages. If it is not, 1581 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other 1582 * L1 guests, so it need not worry about its own (L2) guests. 1583 */ 1584 data |= ARCH_CAP_PSCHANGE_MC_NO; 1585 1586 /* 1587 * If we're doing cache flushes (either "always" or "cond") 1588 * we will do one whenever the guest does a vmlaunch/vmresume. 1589 * If an outer hypervisor is doing the cache flush for us 1590 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that 1591 * capability to the guest too, and if EPT is disabled we're not 1592 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will 1593 * require a nested hypervisor to do a flush of its own. 1594 */ 1595 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) 1596 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; 1597 1598 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) 1599 data |= ARCH_CAP_RDCL_NO; 1600 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) 1601 data |= ARCH_CAP_SSB_NO; 1602 if (!boot_cpu_has_bug(X86_BUG_MDS)) 1603 data |= ARCH_CAP_MDS_NO; 1604 1605 if (!boot_cpu_has(X86_FEATURE_RTM)) { 1606 /* 1607 * If RTM=0 because the kernel has disabled TSX, the host might 1608 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0 1609 * and therefore knows that there cannot be TAA) but keep 1610 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts, 1611 * and we want to allow migrating those guests to tsx=off hosts. 1612 */ 1613 data &= ~ARCH_CAP_TAA_NO; 1614 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) { 1615 data |= ARCH_CAP_TAA_NO; 1616 } else { 1617 /* 1618 * Nothing to do here; we emulate TSX_CTRL if present on the 1619 * host so the guest can choose between disabling TSX or 1620 * using VERW to clear CPU buffers. 1621 */ 1622 } 1623 1624 /* Guests don't need to know "Fill buffer clear control" exists */ 1625 data &= ~ARCH_CAP_FB_CLEAR_CTRL; 1626 1627 return data; 1628} 1629 1630static int kvm_get_msr_feature(struct kvm_msr_entry *msr) 1631{ 1632 switch (msr->index) { 1633 case MSR_IA32_ARCH_CAPABILITIES: 1634 msr->data = kvm_get_arch_capabilities(); 1635 break; 1636 case MSR_IA32_UCODE_REV: 1637 rdmsrl_safe(msr->index, &msr->data); 1638 break; 1639 default: 1640 return static_call(kvm_x86_get_msr_feature)(msr); 1641 } 1642 return 0; 1643} 1644 1645static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1646{ 1647 struct kvm_msr_entry msr; 1648 int r; 1649 1650 msr.index = index; 1651 r = kvm_get_msr_feature(&msr); 1652 1653 if (r == KVM_MSR_RET_INVALID) { 1654 /* Unconditionally clear the output for simplicity */ 1655 *data = 0; 1656 if (kvm_msr_ignored_check(index, 0, false)) 1657 r = 0; 1658 } 1659 1660 if (r) 1661 return r; 1662 1663 *data = msr.data; 1664 1665 return 0; 1666} 1667 1668static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1669{ 1670 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) 1671 return false; 1672 1673 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 1674 return false; 1675 1676 if (efer & (EFER_LME | EFER_LMA) && 1677 !guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1678 return false; 1679 1680 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX)) 1681 return false; 1682 1683 return true; 1684 1685} 1686bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1687{ 1688 if (efer & efer_reserved_bits) 1689 return false; 1690 1691 return __kvm_valid_efer(vcpu, efer); 1692} 1693EXPORT_SYMBOL_GPL(kvm_valid_efer); 1694 1695static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1696{ 1697 u64 old_efer = vcpu->arch.efer; 1698 u64 efer = msr_info->data; 1699 int r; 1700 1701 if (efer & efer_reserved_bits) 1702 return 1; 1703 1704 if (!msr_info->host_initiated) { 1705 if (!__kvm_valid_efer(vcpu, efer)) 1706 return 1; 1707 1708 if (is_paging(vcpu) && 1709 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1710 return 1; 1711 } 1712 1713 efer &= ~EFER_LMA; 1714 efer |= vcpu->arch.efer & EFER_LMA; 1715 1716 r = static_call(kvm_x86_set_efer)(vcpu, efer); 1717 if (r) { 1718 WARN_ON(r > 0); 1719 return r; 1720 } 1721 1722 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS) 1723 kvm_mmu_reset_context(vcpu); 1724 1725 return 0; 1726} 1727 1728void kvm_enable_efer_bits(u64 mask) 1729{ 1730 efer_reserved_bits &= ~mask; 1731} 1732EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1733 1734bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type) 1735{ 1736 struct kvm_x86_msr_filter *msr_filter; 1737 struct msr_bitmap_range *ranges; 1738 struct kvm *kvm = vcpu->kvm; 1739 bool allowed; 1740 int idx; 1741 u32 i; 1742 1743 /* x2APIC MSRs do not support filtering. */ 1744 if (index >= 0x800 && index <= 0x8ff) 1745 return true; 1746 1747 idx = srcu_read_lock(&kvm->srcu); 1748 1749 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu); 1750 if (!msr_filter) { 1751 allowed = true; 1752 goto out; 1753 } 1754 1755 allowed = msr_filter->default_allow; 1756 ranges = msr_filter->ranges; 1757 1758 for (i = 0; i < msr_filter->count; i++) { 1759 u32 start = ranges[i].base; 1760 u32 end = start + ranges[i].nmsrs; 1761 u32 flags = ranges[i].flags; 1762 unsigned long *bitmap = ranges[i].bitmap; 1763 1764 if ((index >= start) && (index < end) && (flags & type)) { 1765 allowed = !!test_bit(index - start, bitmap); 1766 break; 1767 } 1768 } 1769 1770out: 1771 srcu_read_unlock(&kvm->srcu, idx); 1772 1773 return allowed; 1774} 1775EXPORT_SYMBOL_GPL(kvm_msr_allowed); 1776 1777/* 1778 * Write @data into the MSR specified by @index. Select MSR specific fault 1779 * checks are bypassed if @host_initiated is %true. 1780 * Returns 0 on success, non-0 otherwise. 1781 * Assumes vcpu_load() was already called. 1782 */ 1783static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, 1784 bool host_initiated) 1785{ 1786 struct msr_data msr; 1787 1788 switch (index) { 1789 case MSR_FS_BASE: 1790 case MSR_GS_BASE: 1791 case MSR_KERNEL_GS_BASE: 1792 case MSR_CSTAR: 1793 case MSR_LSTAR: 1794 if (is_noncanonical_address(data, vcpu)) 1795 return 1; 1796 break; 1797 case MSR_IA32_SYSENTER_EIP: 1798 case MSR_IA32_SYSENTER_ESP: 1799 /* 1800 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1801 * non-canonical address is written on Intel but not on 1802 * AMD (which ignores the top 32-bits, because it does 1803 * not implement 64-bit SYSENTER). 1804 * 1805 * 64-bit code should hence be able to write a non-canonical 1806 * value on AMD. Making the address canonical ensures that 1807 * vmentry does not fail on Intel after writing a non-canonical 1808 * value, and that something deterministic happens if the guest 1809 * invokes 64-bit SYSENTER. 1810 */ 1811 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu)); 1812 break; 1813 case MSR_TSC_AUX: 1814 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1815 return 1; 1816 1817 if (!host_initiated && 1818 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1819 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1820 return 1; 1821 1822 /* 1823 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has 1824 * incomplete and conflicting architectural behavior. Current 1825 * AMD CPUs completely ignore bits 63:32, i.e. they aren't 1826 * reserved and always read as zeros. Enforce Intel's reserved 1827 * bits check if and only if the guest CPU is Intel, and clear 1828 * the bits in all other cases. This ensures cross-vendor 1829 * migration will provide consistent behavior for the guest. 1830 */ 1831 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0) 1832 return 1; 1833 1834 data = (u32)data; 1835 break; 1836 } 1837 1838 msr.data = data; 1839 msr.index = index; 1840 msr.host_initiated = host_initiated; 1841 1842 return static_call(kvm_x86_set_msr)(vcpu, &msr); 1843} 1844 1845static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu, 1846 u32 index, u64 data, bool host_initiated) 1847{ 1848 int ret = __kvm_set_msr(vcpu, index, data, host_initiated); 1849 1850 if (ret == KVM_MSR_RET_INVALID) 1851 if (kvm_msr_ignored_check(index, data, true)) 1852 ret = 0; 1853 1854 return ret; 1855} 1856 1857/* 1858 * Read the MSR specified by @index into @data. Select MSR specific fault 1859 * checks are bypassed if @host_initiated is %true. 1860 * Returns 0 on success, non-0 otherwise. 1861 * Assumes vcpu_load() was already called. 1862 */ 1863int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, 1864 bool host_initiated) 1865{ 1866 struct msr_data msr; 1867 int ret; 1868 1869 switch (index) { 1870 case MSR_TSC_AUX: 1871 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) 1872 return 1; 1873 1874 if (!host_initiated && 1875 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) && 1876 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID)) 1877 return 1; 1878 break; 1879 } 1880 1881 msr.index = index; 1882 msr.host_initiated = host_initiated; 1883 1884 ret = static_call(kvm_x86_get_msr)(vcpu, &msr); 1885 if (!ret) 1886 *data = msr.data; 1887 return ret; 1888} 1889 1890static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu, 1891 u32 index, u64 *data, bool host_initiated) 1892{ 1893 int ret = __kvm_get_msr(vcpu, index, data, host_initiated); 1894 1895 if (ret == KVM_MSR_RET_INVALID) { 1896 /* Unconditionally clear *data for simplicity */ 1897 *data = 0; 1898 if (kvm_msr_ignored_check(index, 0, false)) 1899 ret = 0; 1900 } 1901 1902 return ret; 1903} 1904 1905static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1906{ 1907 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ)) 1908 return KVM_MSR_RET_FILTERED; 1909 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1910} 1911 1912static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data) 1913{ 1914 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE)) 1915 return KVM_MSR_RET_FILTERED; 1916 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1917} 1918 1919int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data) 1920{ 1921 return kvm_get_msr_ignored_check(vcpu, index, data, false); 1922} 1923EXPORT_SYMBOL_GPL(kvm_get_msr); 1924 1925int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data) 1926{ 1927 return kvm_set_msr_ignored_check(vcpu, index, data, false); 1928} 1929EXPORT_SYMBOL_GPL(kvm_set_msr); 1930 1931static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu) 1932{ 1933 if (!vcpu->run->msr.error) { 1934 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data); 1935 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32); 1936 } 1937} 1938 1939static int complete_emulated_msr_access(struct kvm_vcpu *vcpu) 1940{ 1941 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error); 1942} 1943 1944static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu) 1945{ 1946 complete_userspace_rdmsr(vcpu); 1947 return complete_emulated_msr_access(vcpu); 1948} 1949 1950static int complete_fast_msr_access(struct kvm_vcpu *vcpu) 1951{ 1952 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error); 1953} 1954 1955static int complete_fast_rdmsr(struct kvm_vcpu *vcpu) 1956{ 1957 complete_userspace_rdmsr(vcpu); 1958 return complete_fast_msr_access(vcpu); 1959} 1960 1961static u64 kvm_msr_reason(int r) 1962{ 1963 switch (r) { 1964 case KVM_MSR_RET_INVALID: 1965 return KVM_MSR_EXIT_REASON_UNKNOWN; 1966 case KVM_MSR_RET_FILTERED: 1967 return KVM_MSR_EXIT_REASON_FILTER; 1968 default: 1969 return KVM_MSR_EXIT_REASON_INVAL; 1970 } 1971} 1972 1973static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index, 1974 u32 exit_reason, u64 data, 1975 int (*completion)(struct kvm_vcpu *vcpu), 1976 int r) 1977{ 1978 u64 msr_reason = kvm_msr_reason(r); 1979 1980 /* Check if the user wanted to know about this MSR fault */ 1981 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason)) 1982 return 0; 1983 1984 vcpu->run->exit_reason = exit_reason; 1985 vcpu->run->msr.error = 0; 1986 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad)); 1987 vcpu->run->msr.reason = msr_reason; 1988 vcpu->run->msr.index = index; 1989 vcpu->run->msr.data = data; 1990 vcpu->arch.complete_userspace_io = completion; 1991 1992 return 1; 1993} 1994 1995int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) 1996{ 1997 u32 ecx = kvm_rcx_read(vcpu); 1998 u64 data; 1999 int r; 2000 2001 r = kvm_get_msr_with_filter(vcpu, ecx, &data); 2002 2003 if (!r) { 2004 trace_kvm_msr_read(ecx, data); 2005 2006 kvm_rax_write(vcpu, data & -1u); 2007 kvm_rdx_write(vcpu, (data >> 32) & -1u); 2008 } else { 2009 /* MSR read failed? See if we should ask user space */ 2010 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0, 2011 complete_fast_rdmsr, r)) 2012 return 0; 2013 trace_kvm_msr_read_ex(ecx); 2014 } 2015 2016 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2017} 2018EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr); 2019 2020int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) 2021{ 2022 u32 ecx = kvm_rcx_read(vcpu); 2023 u64 data = kvm_read_edx_eax(vcpu); 2024 int r; 2025 2026 r = kvm_set_msr_with_filter(vcpu, ecx, data); 2027 2028 if (!r) { 2029 trace_kvm_msr_write(ecx, data); 2030 } else { 2031 /* MSR write failed? See if we should ask user space */ 2032 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data, 2033 complete_fast_msr_access, r)) 2034 return 0; 2035 /* Signal all other negative errors to userspace */ 2036 if (r < 0) 2037 return r; 2038 trace_kvm_msr_write_ex(ecx, data); 2039 } 2040 2041 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r); 2042} 2043EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr); 2044 2045int kvm_emulate_as_nop(struct kvm_vcpu *vcpu) 2046{ 2047 return kvm_skip_emulated_instruction(vcpu); 2048} 2049EXPORT_SYMBOL_GPL(kvm_emulate_as_nop); 2050 2051int kvm_emulate_invd(struct kvm_vcpu *vcpu) 2052{ 2053 /* Treat an INVD instruction as a NOP and just skip it. */ 2054 return kvm_emulate_as_nop(vcpu); 2055} 2056EXPORT_SYMBOL_GPL(kvm_emulate_invd); 2057 2058int kvm_emulate_mwait(struct kvm_vcpu *vcpu) 2059{ 2060 pr_warn_once("kvm: MWAIT instruction emulated as NOP!\n"); 2061 return kvm_emulate_as_nop(vcpu); 2062} 2063EXPORT_SYMBOL_GPL(kvm_emulate_mwait); 2064 2065int kvm_handle_invalid_op(struct kvm_vcpu *vcpu) 2066{ 2067 kvm_queue_exception(vcpu, UD_VECTOR); 2068 return 1; 2069} 2070EXPORT_SYMBOL_GPL(kvm_handle_invalid_op); 2071 2072int kvm_emulate_monitor(struct kvm_vcpu *vcpu) 2073{ 2074 pr_warn_once("kvm: MONITOR instruction emulated as NOP!\n"); 2075 return kvm_emulate_as_nop(vcpu); 2076} 2077EXPORT_SYMBOL_GPL(kvm_emulate_monitor); 2078 2079static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu) 2080{ 2081 xfer_to_guest_mode_prepare(); 2082 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) || 2083 xfer_to_guest_mode_work_pending(); 2084} 2085 2086/* 2087 * The fast path for frequent and performance sensitive wrmsr emulation, 2088 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces 2089 * the latency of virtual IPI by avoiding the expensive bits of transitioning 2090 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the 2091 * other cases which must be called after interrupts are enabled on the host. 2092 */ 2093static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data) 2094{ 2095 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic)) 2096 return 1; 2097 2098 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) && 2099 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) && 2100 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) && 2101 ((u32)(data >> 32) != X2APIC_BROADCAST)) 2102 return kvm_x2apic_icr_write(vcpu->arch.apic, data); 2103 2104 return 1; 2105} 2106 2107static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data) 2108{ 2109 if (!kvm_can_use_hv_timer(vcpu)) 2110 return 1; 2111 2112 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2113 return 0; 2114} 2115 2116fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu) 2117{ 2118 u32 msr = kvm_rcx_read(vcpu); 2119 u64 data; 2120 fastpath_t ret = EXIT_FASTPATH_NONE; 2121 2122 switch (msr) { 2123 case APIC_BASE_MSR + (APIC_ICR >> 4): 2124 data = kvm_read_edx_eax(vcpu); 2125 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) { 2126 kvm_skip_emulated_instruction(vcpu); 2127 ret = EXIT_FASTPATH_EXIT_HANDLED; 2128 } 2129 break; 2130 case MSR_IA32_TSC_DEADLINE: 2131 data = kvm_read_edx_eax(vcpu); 2132 if (!handle_fastpath_set_tscdeadline(vcpu, data)) { 2133 kvm_skip_emulated_instruction(vcpu); 2134 ret = EXIT_FASTPATH_REENTER_GUEST; 2135 } 2136 break; 2137 default: 2138 break; 2139 } 2140 2141 if (ret != EXIT_FASTPATH_NONE) 2142 trace_kvm_msr_write(msr, data); 2143 2144 return ret; 2145} 2146EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff); 2147 2148/* 2149 * Adapt set_msr() to msr_io()'s calling convention 2150 */ 2151static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2152{ 2153 return kvm_get_msr_ignored_check(vcpu, index, data, true); 2154} 2155 2156static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 2157{ 2158 return kvm_set_msr_ignored_check(vcpu, index, *data, true); 2159} 2160 2161#ifdef CONFIG_X86_64 2162struct pvclock_clock { 2163 int vclock_mode; 2164 u64 cycle_last; 2165 u64 mask; 2166 u32 mult; 2167 u32 shift; 2168 u64 base_cycles; 2169 u64 offset; 2170}; 2171 2172struct pvclock_gtod_data { 2173 seqcount_t seq; 2174 2175 struct pvclock_clock clock; /* extract of a clocksource struct */ 2176 struct pvclock_clock raw_clock; /* extract of a clocksource struct */ 2177 2178 ktime_t offs_boot; 2179 u64 wall_time_sec; 2180}; 2181 2182static struct pvclock_gtod_data pvclock_gtod_data; 2183 2184static void update_pvclock_gtod(struct timekeeper *tk) 2185{ 2186 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 2187 2188 write_seqcount_begin(&vdata->seq); 2189 2190 /* copy pvclock gtod data */ 2191 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode; 2192 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 2193 vdata->clock.mask = tk->tkr_mono.mask; 2194 vdata->clock.mult = tk->tkr_mono.mult; 2195 vdata->clock.shift = tk->tkr_mono.shift; 2196 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec; 2197 vdata->clock.offset = tk->tkr_mono.base; 2198 2199 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode; 2200 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last; 2201 vdata->raw_clock.mask = tk->tkr_raw.mask; 2202 vdata->raw_clock.mult = tk->tkr_raw.mult; 2203 vdata->raw_clock.shift = tk->tkr_raw.shift; 2204 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec; 2205 vdata->raw_clock.offset = tk->tkr_raw.base; 2206 2207 vdata->wall_time_sec = tk->xtime_sec; 2208 2209 vdata->offs_boot = tk->offs_boot; 2210 2211 write_seqcount_end(&vdata->seq); 2212} 2213 2214static s64 get_kvmclock_base_ns(void) 2215{ 2216 /* Count up from boot time, but with the frequency of the raw clock. */ 2217 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot)); 2218} 2219#else 2220static s64 get_kvmclock_base_ns(void) 2221{ 2222 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */ 2223 return ktime_get_boottime_ns(); 2224} 2225#endif 2226 2227static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs) 2228{ 2229 int version; 2230 int r; 2231 struct pvclock_wall_clock wc; 2232 u32 wc_sec_hi; 2233 u64 wall_nsec; 2234 2235 if (!wall_clock) 2236 return; 2237 2238 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 2239 if (r) 2240 return; 2241 2242 if (version & 1) 2243 ++version; /* first time write, random junk */ 2244 2245 ++version; 2246 2247 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 2248 return; 2249 2250 /* 2251 * The guest calculates current wall clock time by adding 2252 * system time (updated by kvm_guest_time_update below) to the 2253 * wall clock specified here. We do the reverse here. 2254 */ 2255 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm); 2256 2257 wc.nsec = do_div(wall_nsec, 1000000000); 2258 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ 2259 wc.version = version; 2260 2261 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 2262 2263 if (sec_hi_ofs) { 2264 wc_sec_hi = wall_nsec >> 32; 2265 kvm_write_guest(kvm, wall_clock + sec_hi_ofs, 2266 &wc_sec_hi, sizeof(wc_sec_hi)); 2267 } 2268 2269 version++; 2270 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 2271} 2272 2273static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time, 2274 bool old_msr, bool host_initiated) 2275{ 2276 struct kvm_arch *ka = &vcpu->kvm->arch; 2277 2278 if (vcpu->vcpu_id == 0 && !host_initiated) { 2279 if (ka->boot_vcpu_runs_old_kvmclock != old_msr) 2280 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2281 2282 ka->boot_vcpu_runs_old_kvmclock = old_msr; 2283 } 2284 2285 vcpu->arch.time = system_time; 2286 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2287 2288 /* we verify if the enable bit is set... */ 2289 if (system_time & 1) { 2290 kvm_gfn_to_pfn_cache_init(vcpu->kvm, &vcpu->arch.pv_time, vcpu, 2291 KVM_HOST_USES_PFN, system_time & ~1ULL, 2292 sizeof(struct pvclock_vcpu_time_info)); 2293 } else { 2294 kvm_gfn_to_pfn_cache_destroy(vcpu->kvm, &vcpu->arch.pv_time); 2295 } 2296 2297 return; 2298} 2299 2300static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 2301{ 2302 do_shl32_div32(dividend, divisor); 2303 return dividend; 2304} 2305 2306static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 2307 s8 *pshift, u32 *pmultiplier) 2308{ 2309 uint64_t scaled64; 2310 int32_t shift = 0; 2311 uint64_t tps64; 2312 uint32_t tps32; 2313 2314 tps64 = base_hz; 2315 scaled64 = scaled_hz; 2316 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 2317 tps64 >>= 1; 2318 shift--; 2319 } 2320 2321 tps32 = (uint32_t)tps64; 2322 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 2323 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 2324 scaled64 >>= 1; 2325 else 2326 tps32 <<= 1; 2327 shift++; 2328 } 2329 2330 *pshift = shift; 2331 *pmultiplier = div_frac(scaled64, tps32); 2332} 2333 2334#ifdef CONFIG_X86_64 2335static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 2336#endif 2337 2338static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 2339static unsigned long max_tsc_khz; 2340 2341static u32 adjust_tsc_khz(u32 khz, s32 ppm) 2342{ 2343 u64 v = (u64)khz * (1000000 + ppm); 2344 do_div(v, 1000000); 2345 return v; 2346} 2347 2348static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier); 2349 2350static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 2351{ 2352 u64 ratio; 2353 2354 /* Guest TSC same frequency as host TSC? */ 2355 if (!scale) { 2356 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio); 2357 return 0; 2358 } 2359 2360 /* TSC scaling supported? */ 2361 if (!kvm_has_tsc_control) { 2362 if (user_tsc_khz > tsc_khz) { 2363 vcpu->arch.tsc_catchup = 1; 2364 vcpu->arch.tsc_always_catchup = 1; 2365 return 0; 2366 } else { 2367 pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); 2368 return -1; 2369 } 2370 } 2371 2372 /* TSC scaling required - calculate ratio */ 2373 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits, 2374 user_tsc_khz, tsc_khz); 2375 2376 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) { 2377 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 2378 user_tsc_khz); 2379 return -1; 2380 } 2381 2382 kvm_vcpu_write_tsc_multiplier(vcpu, ratio); 2383 return 0; 2384} 2385 2386static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 2387{ 2388 u32 thresh_lo, thresh_hi; 2389 int use_scaling = 0; 2390 2391 /* tsc_khz can be zero if TSC calibration fails */ 2392 if (user_tsc_khz == 0) { 2393 /* set tsc_scaling_ratio to a safe value */ 2394 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio); 2395 return -1; 2396 } 2397 2398 /* Compute a scale to convert nanoseconds in TSC cycles */ 2399 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 2400 &vcpu->arch.virtual_tsc_shift, 2401 &vcpu->arch.virtual_tsc_mult); 2402 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 2403 2404 /* 2405 * Compute the variation in TSC rate which is acceptable 2406 * within the range of tolerance and decide if the 2407 * rate being applied is within that bounds of the hardware 2408 * rate. If so, no scaling or compensation need be done. 2409 */ 2410 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 2411 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 2412 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 2413 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi); 2414 use_scaling = 1; 2415 } 2416 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 2417} 2418 2419static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 2420{ 2421 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 2422 vcpu->arch.virtual_tsc_mult, 2423 vcpu->arch.virtual_tsc_shift); 2424 tsc += vcpu->arch.this_tsc_write; 2425 return tsc; 2426} 2427 2428#ifdef CONFIG_X86_64 2429static inline int gtod_is_based_on_tsc(int mode) 2430{ 2431 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK; 2432} 2433#endif 2434 2435static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) 2436{ 2437#ifdef CONFIG_X86_64 2438 bool vcpus_matched; 2439 struct kvm_arch *ka = &vcpu->kvm->arch; 2440 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2441 2442 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2443 atomic_read(&vcpu->kvm->online_vcpus)); 2444 2445 /* 2446 * Once the masterclock is enabled, always perform request in 2447 * order to update it. 2448 * 2449 * In order to enable masterclock, the host clocksource must be TSC 2450 * and the vcpus need to have matched TSCs. When that happens, 2451 * perform request to enable masterclock. 2452 */ 2453 if (ka->use_master_clock || 2454 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched)) 2455 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2456 2457 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 2458 atomic_read(&vcpu->kvm->online_vcpus), 2459 ka->use_master_clock, gtod->clock.vclock_mode); 2460#endif 2461} 2462 2463/* 2464 * Multiply tsc by a fixed point number represented by ratio. 2465 * 2466 * The most significant 64-N bits (mult) of ratio represent the 2467 * integral part of the fixed point number; the remaining N bits 2468 * (frac) represent the fractional part, ie. ratio represents a fixed 2469 * point number (mult + frac * 2^(-N)). 2470 * 2471 * N equals to kvm_tsc_scaling_ratio_frac_bits. 2472 */ 2473static inline u64 __scale_tsc(u64 ratio, u64 tsc) 2474{ 2475 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits); 2476} 2477 2478u64 kvm_scale_tsc(u64 tsc, u64 ratio) 2479{ 2480 u64 _tsc = tsc; 2481 2482 if (ratio != kvm_default_tsc_scaling_ratio) 2483 _tsc = __scale_tsc(ratio, tsc); 2484 2485 return _tsc; 2486} 2487EXPORT_SYMBOL_GPL(kvm_scale_tsc); 2488 2489static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 2490{ 2491 u64 tsc; 2492 2493 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio); 2494 2495 return target_tsc - tsc; 2496} 2497 2498u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 2499{ 2500 return vcpu->arch.l1_tsc_offset + 2501 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio); 2502} 2503EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 2504 2505u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier) 2506{ 2507 u64 nested_offset; 2508 2509 if (l2_multiplier == kvm_default_tsc_scaling_ratio) 2510 nested_offset = l1_offset; 2511 else 2512 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier, 2513 kvm_tsc_scaling_ratio_frac_bits); 2514 2515 nested_offset += l2_offset; 2516 return nested_offset; 2517} 2518EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset); 2519 2520u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier) 2521{ 2522 if (l2_multiplier != kvm_default_tsc_scaling_ratio) 2523 return mul_u64_u64_shr(l1_multiplier, l2_multiplier, 2524 kvm_tsc_scaling_ratio_frac_bits); 2525 2526 return l1_multiplier; 2527} 2528EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier); 2529 2530static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset) 2531{ 2532 trace_kvm_write_tsc_offset(vcpu->vcpu_id, 2533 vcpu->arch.l1_tsc_offset, 2534 l1_offset); 2535 2536 vcpu->arch.l1_tsc_offset = l1_offset; 2537 2538 /* 2539 * If we are here because L1 chose not to trap WRMSR to TSC then 2540 * according to the spec this should set L1's TSC (as opposed to 2541 * setting L1's offset for L2). 2542 */ 2543 if (is_guest_mode(vcpu)) 2544 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset( 2545 l1_offset, 2546 static_call(kvm_x86_get_l2_tsc_offset)(vcpu), 2547 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2548 else 2549 vcpu->arch.tsc_offset = l1_offset; 2550 2551 static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset); 2552} 2553 2554static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier) 2555{ 2556 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier; 2557 2558 /* Userspace is changing the multiplier while L2 is active */ 2559 if (is_guest_mode(vcpu)) 2560 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier( 2561 l1_multiplier, 2562 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu)); 2563 else 2564 vcpu->arch.tsc_scaling_ratio = l1_multiplier; 2565 2566 if (kvm_has_tsc_control) 2567 static_call(kvm_x86_write_tsc_multiplier)( 2568 vcpu, vcpu->arch.tsc_scaling_ratio); 2569} 2570 2571static inline bool kvm_check_tsc_unstable(void) 2572{ 2573#ifdef CONFIG_X86_64 2574 /* 2575 * TSC is marked unstable when we're running on Hyper-V, 2576 * 'TSC page' clocksource is good. 2577 */ 2578 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK) 2579 return false; 2580#endif 2581 return check_tsc_unstable(); 2582} 2583 2584/* 2585 * Infers attempts to synchronize the guest's tsc from host writes. Sets the 2586 * offset for the vcpu and tracks the TSC matching generation that the vcpu 2587 * participates in. 2588 */ 2589static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc, 2590 u64 ns, bool matched) 2591{ 2592 struct kvm *kvm = vcpu->kvm; 2593 2594 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2595 2596 /* 2597 * We also track th most recent recorded KHZ, write and time to 2598 * allow the matching interval to be extended at each write. 2599 */ 2600 kvm->arch.last_tsc_nsec = ns; 2601 kvm->arch.last_tsc_write = tsc; 2602 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 2603 kvm->arch.last_tsc_offset = offset; 2604 2605 vcpu->arch.last_guest_tsc = tsc; 2606 2607 kvm_vcpu_write_tsc_offset(vcpu, offset); 2608 2609 if (!matched) { 2610 /* 2611 * We split periods of matched TSC writes into generations. 2612 * For each generation, we track the original measured 2613 * nanosecond time, offset, and write, so if TSCs are in 2614 * sync, we can match exact offset, and if not, we can match 2615 * exact software computation in compute_guest_tsc() 2616 * 2617 * These values are tracked in kvm->arch.cur_xxx variables. 2618 */ 2619 kvm->arch.cur_tsc_generation++; 2620 kvm->arch.cur_tsc_nsec = ns; 2621 kvm->arch.cur_tsc_write = tsc; 2622 kvm->arch.cur_tsc_offset = offset; 2623 kvm->arch.nr_vcpus_matched_tsc = 0; 2624 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) { 2625 kvm->arch.nr_vcpus_matched_tsc++; 2626 } 2627 2628 /* Keep track of which generation this VCPU has synchronized to */ 2629 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 2630 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 2631 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 2632 2633 kvm_track_tsc_matching(vcpu); 2634} 2635 2636static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data) 2637{ 2638 struct kvm *kvm = vcpu->kvm; 2639 u64 offset, ns, elapsed; 2640 unsigned long flags; 2641 bool matched = false; 2642 bool synchronizing = false; 2643 2644 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 2645 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2646 ns = get_kvmclock_base_ns(); 2647 elapsed = ns - kvm->arch.last_tsc_nsec; 2648 2649 if (vcpu->arch.virtual_tsc_khz) { 2650 if (data == 0) { 2651 /* 2652 * detection of vcpu initialization -- need to sync 2653 * with other vCPUs. This particularly helps to keep 2654 * kvm_clock stable after CPU hotplug 2655 */ 2656 synchronizing = true; 2657 } else { 2658 u64 tsc_exp = kvm->arch.last_tsc_write + 2659 nsec_to_cycles(vcpu, elapsed); 2660 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 2661 /* 2662 * Special case: TSC write with a small delta (1 second) 2663 * of virtual cycle time against real time is 2664 * interpreted as an attempt to synchronize the CPU. 2665 */ 2666 synchronizing = data < tsc_exp + tsc_hz && 2667 data + tsc_hz > tsc_exp; 2668 } 2669 } 2670 2671 /* 2672 * For a reliable TSC, we can match TSC offsets, and for an unstable 2673 * TSC, we add elapsed time in this computation. We could let the 2674 * compensation code attempt to catch up if we fall behind, but 2675 * it's better to try to match offsets from the beginning. 2676 */ 2677 if (synchronizing && 2678 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 2679 if (!kvm_check_tsc_unstable()) { 2680 offset = kvm->arch.cur_tsc_offset; 2681 } else { 2682 u64 delta = nsec_to_cycles(vcpu, elapsed); 2683 data += delta; 2684 offset = kvm_compute_l1_tsc_offset(vcpu, data); 2685 } 2686 matched = true; 2687 } 2688 2689 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched); 2690 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 2691} 2692 2693static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 2694 s64 adjustment) 2695{ 2696 u64 tsc_offset = vcpu->arch.l1_tsc_offset; 2697 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); 2698} 2699 2700static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 2701{ 2702 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio) 2703 WARN_ON(adjustment < 0); 2704 adjustment = kvm_scale_tsc((u64) adjustment, 2705 vcpu->arch.l1_tsc_scaling_ratio); 2706 adjust_tsc_offset_guest(vcpu, adjustment); 2707} 2708 2709#ifdef CONFIG_X86_64 2710 2711static u64 read_tsc(void) 2712{ 2713 u64 ret = (u64)rdtsc_ordered(); 2714 u64 last = pvclock_gtod_data.clock.cycle_last; 2715 2716 if (likely(ret >= last)) 2717 return ret; 2718 2719 /* 2720 * GCC likes to generate cmov here, but this branch is extremely 2721 * predictable (it's just a function of time and the likely is 2722 * very likely) and there's a data dependence, so force GCC 2723 * to generate a branch instead. I don't barrier() because 2724 * we don't actually need a barrier, and if this function 2725 * ever gets inlined it will generate worse code. 2726 */ 2727 asm volatile (""); 2728 return last; 2729} 2730 2731static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, 2732 int *mode) 2733{ 2734 long v; 2735 u64 tsc_pg_val; 2736 2737 switch (clock->vclock_mode) { 2738 case VDSO_CLOCKMODE_HVCLOCK: 2739 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(), 2740 tsc_timestamp); 2741 if (tsc_pg_val != U64_MAX) { 2742 /* TSC page valid */ 2743 *mode = VDSO_CLOCKMODE_HVCLOCK; 2744 v = (tsc_pg_val - clock->cycle_last) & 2745 clock->mask; 2746 } else { 2747 /* TSC page invalid */ 2748 *mode = VDSO_CLOCKMODE_NONE; 2749 } 2750 break; 2751 case VDSO_CLOCKMODE_TSC: 2752 *mode = VDSO_CLOCKMODE_TSC; 2753 *tsc_timestamp = read_tsc(); 2754 v = (*tsc_timestamp - clock->cycle_last) & 2755 clock->mask; 2756 break; 2757 default: 2758 *mode = VDSO_CLOCKMODE_NONE; 2759 } 2760 2761 if (*mode == VDSO_CLOCKMODE_NONE) 2762 *tsc_timestamp = v = 0; 2763 2764 return v * clock->mult; 2765} 2766 2767static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp) 2768{ 2769 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2770 unsigned long seq; 2771 int mode; 2772 u64 ns; 2773 2774 do { 2775 seq = read_seqcount_begin(>od->seq); 2776 ns = gtod->raw_clock.base_cycles; 2777 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode); 2778 ns >>= gtod->raw_clock.shift; 2779 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot)); 2780 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2781 *t = ns; 2782 2783 return mode; 2784} 2785 2786static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) 2787{ 2788 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 2789 unsigned long seq; 2790 int mode; 2791 u64 ns; 2792 2793 do { 2794 seq = read_seqcount_begin(>od->seq); 2795 ts->tv_sec = gtod->wall_time_sec; 2796 ns = gtod->clock.base_cycles; 2797 ns += vgettsc(>od->clock, tsc_timestamp, &mode); 2798 ns >>= gtod->clock.shift; 2799 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 2800 2801 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 2802 ts->tv_nsec = ns; 2803 2804 return mode; 2805} 2806 2807/* returns true if host is using TSC based clocksource */ 2808static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) 2809{ 2810 /* checked again under seqlock below */ 2811 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2812 return false; 2813 2814 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns, 2815 tsc_timestamp)); 2816} 2817 2818/* returns true if host is using TSC based clocksource */ 2819static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, 2820 u64 *tsc_timestamp) 2821{ 2822 /* checked again under seqlock below */ 2823 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) 2824 return false; 2825 2826 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); 2827} 2828#endif 2829 2830/* 2831 * 2832 * Assuming a stable TSC across physical CPUS, and a stable TSC 2833 * across virtual CPUs, the following condition is possible. 2834 * Each numbered line represents an event visible to both 2835 * CPUs at the next numbered event. 2836 * 2837 * "timespecX" represents host monotonic time. "tscX" represents 2838 * RDTSC value. 2839 * 2840 * VCPU0 on CPU0 | VCPU1 on CPU1 2841 * 2842 * 1. read timespec0,tsc0 2843 * 2. | timespec1 = timespec0 + N 2844 * | tsc1 = tsc0 + M 2845 * 3. transition to guest | transition to guest 2846 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 2847 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 2848 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 2849 * 2850 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 2851 * 2852 * - ret0 < ret1 2853 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 2854 * ... 2855 * - 0 < N - M => M < N 2856 * 2857 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 2858 * always the case (the difference between two distinct xtime instances 2859 * might be smaller then the difference between corresponding TSC reads, 2860 * when updating guest vcpus pvclock areas). 2861 * 2862 * To avoid that problem, do not allow visibility of distinct 2863 * system_timestamp/tsc_timestamp values simultaneously: use a master 2864 * copy of host monotonic time values. Update that master copy 2865 * in lockstep. 2866 * 2867 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 2868 * 2869 */ 2870 2871static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 2872{ 2873#ifdef CONFIG_X86_64 2874 struct kvm_arch *ka = &kvm->arch; 2875 int vclock_mode; 2876 bool host_tsc_clocksource, vcpus_matched; 2877 2878 lockdep_assert_held(&kvm->arch.tsc_write_lock); 2879 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 2880 atomic_read(&kvm->online_vcpus)); 2881 2882 /* 2883 * If the host uses TSC clock, then passthrough TSC as stable 2884 * to the guest. 2885 */ 2886 host_tsc_clocksource = kvm_get_time_and_clockread( 2887 &ka->master_kernel_ns, 2888 &ka->master_cycle_now); 2889 2890 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 2891 && !ka->backwards_tsc_observed 2892 && !ka->boot_vcpu_runs_old_kvmclock; 2893 2894 if (ka->use_master_clock) 2895 atomic_set(&kvm_guest_has_master_clock, 1); 2896 2897 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 2898 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 2899 vcpus_matched); 2900#endif 2901} 2902 2903static void kvm_make_mclock_inprogress_request(struct kvm *kvm) 2904{ 2905 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 2906} 2907 2908static void __kvm_start_pvclock_update(struct kvm *kvm) 2909{ 2910 raw_spin_lock_irq(&kvm->arch.tsc_write_lock); 2911 write_seqcount_begin(&kvm->arch.pvclock_sc); 2912} 2913 2914static void kvm_start_pvclock_update(struct kvm *kvm) 2915{ 2916 kvm_make_mclock_inprogress_request(kvm); 2917 2918 /* no guest entries from this point */ 2919 __kvm_start_pvclock_update(kvm); 2920} 2921 2922static void kvm_end_pvclock_update(struct kvm *kvm) 2923{ 2924 struct kvm_arch *ka = &kvm->arch; 2925 struct kvm_vcpu *vcpu; 2926 unsigned long i; 2927 2928 write_seqcount_end(&ka->pvclock_sc); 2929 raw_spin_unlock_irq(&ka->tsc_write_lock); 2930 kvm_for_each_vcpu(i, vcpu, kvm) 2931 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2932 2933 /* guest entries allowed */ 2934 kvm_for_each_vcpu(i, vcpu, kvm) 2935 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 2936} 2937 2938static void kvm_update_masterclock(struct kvm *kvm) 2939{ 2940 kvm_hv_request_tsc_page_update(kvm); 2941 kvm_start_pvclock_update(kvm); 2942 pvclock_update_vm_gtod_copy(kvm); 2943 kvm_end_pvclock_update(kvm); 2944} 2945 2946/* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */ 2947static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 2948{ 2949 struct kvm_arch *ka = &kvm->arch; 2950 struct pvclock_vcpu_time_info hv_clock; 2951 2952 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 2953 get_cpu(); 2954 2955 data->flags = 0; 2956 if (ka->use_master_clock && __this_cpu_read(cpu_tsc_khz)) { 2957#ifdef CONFIG_X86_64 2958 struct timespec64 ts; 2959 2960 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) { 2961 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec; 2962 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC; 2963 } else 2964#endif 2965 data->host_tsc = rdtsc(); 2966 2967 data->flags |= KVM_CLOCK_TSC_STABLE; 2968 hv_clock.tsc_timestamp = ka->master_cycle_now; 2969 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 2970 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL, 2971 &hv_clock.tsc_shift, 2972 &hv_clock.tsc_to_system_mul); 2973 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc); 2974 } else { 2975 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset; 2976 } 2977 2978 put_cpu(); 2979} 2980 2981static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) 2982{ 2983 struct kvm_arch *ka = &kvm->arch; 2984 unsigned seq; 2985 2986 do { 2987 seq = read_seqcount_begin(&ka->pvclock_sc); 2988 __get_kvmclock(kvm, data); 2989 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 2990} 2991 2992u64 get_kvmclock_ns(struct kvm *kvm) 2993{ 2994 struct kvm_clock_data data; 2995 2996 get_kvmclock(kvm, &data); 2997 return data.clock; 2998} 2999 3000static void kvm_setup_guest_pvclock(struct kvm_vcpu *v, 3001 struct gfn_to_pfn_cache *gpc, 3002 unsigned int offset) 3003{ 3004 struct kvm_vcpu_arch *vcpu = &v->arch; 3005 struct pvclock_vcpu_time_info *guest_hv_clock; 3006 unsigned long flags; 3007 3008 read_lock_irqsave(&gpc->lock, flags); 3009 while (!kvm_gfn_to_pfn_cache_check(v->kvm, gpc, gpc->gpa, 3010 offset + sizeof(*guest_hv_clock))) { 3011 read_unlock_irqrestore(&gpc->lock, flags); 3012 3013 if (kvm_gfn_to_pfn_cache_refresh(v->kvm, gpc, gpc->gpa, 3014 offset + sizeof(*guest_hv_clock))) 3015 return; 3016 3017 read_lock_irqsave(&gpc->lock, flags); 3018 } 3019 3020 guest_hv_clock = (void *)(gpc->khva + offset); 3021 3022 /* 3023 * This VCPU is paused, but it's legal for a guest to read another 3024 * VCPU's kvmclock, so we really have to follow the specification where 3025 * it says that version is odd if data is being modified, and even after 3026 * it is consistent. 3027 */ 3028 3029 guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1; 3030 smp_wmb(); 3031 3032 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 3033 vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED); 3034 3035 if (vcpu->pvclock_set_guest_stopped_request) { 3036 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 3037 vcpu->pvclock_set_guest_stopped_request = false; 3038 } 3039 3040 memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock)); 3041 smp_wmb(); 3042 3043 guest_hv_clock->version = ++vcpu->hv_clock.version; 3044 3045 mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT); 3046 read_unlock_irqrestore(&gpc->lock, flags); 3047 3048 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 3049} 3050 3051static int kvm_guest_time_update(struct kvm_vcpu *v) 3052{ 3053 unsigned long flags, tgt_tsc_khz; 3054 unsigned seq; 3055 struct kvm_vcpu_arch *vcpu = &v->arch; 3056 struct kvm_arch *ka = &v->kvm->arch; 3057 s64 kernel_ns; 3058 u64 tsc_timestamp, host_tsc; 3059 u8 pvclock_flags; 3060 bool use_master_clock; 3061 3062 kernel_ns = 0; 3063 host_tsc = 0; 3064 3065 /* 3066 * If the host uses TSC clock, then passthrough TSC as stable 3067 * to the guest. 3068 */ 3069 do { 3070 seq = read_seqcount_begin(&ka->pvclock_sc); 3071 use_master_clock = ka->use_master_clock; 3072 if (use_master_clock) { 3073 host_tsc = ka->master_cycle_now; 3074 kernel_ns = ka->master_kernel_ns; 3075 } 3076 } while (read_seqcount_retry(&ka->pvclock_sc, seq)); 3077 3078 /* Keep irq disabled to prevent changes to the clock */ 3079 local_irq_save(flags); 3080 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz); 3081 if (unlikely(tgt_tsc_khz == 0)) { 3082 local_irq_restore(flags); 3083 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3084 return 1; 3085 } 3086 if (!use_master_clock) { 3087 host_tsc = rdtsc(); 3088 kernel_ns = get_kvmclock_base_ns(); 3089 } 3090 3091 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 3092 3093 /* 3094 * We may have to catch up the TSC to match elapsed wall clock 3095 * time for two reasons, even if kvmclock is used. 3096 * 1) CPU could have been running below the maximum TSC rate 3097 * 2) Broken TSC compensation resets the base at each VCPU 3098 * entry to avoid unknown leaps of TSC even when running 3099 * again on the same CPU. This may cause apparent elapsed 3100 * time to disappear, and the guest to stand still or run 3101 * very slowly. 3102 */ 3103 if (vcpu->tsc_catchup) { 3104 u64 tsc = compute_guest_tsc(v, kernel_ns); 3105 if (tsc > tsc_timestamp) { 3106 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 3107 tsc_timestamp = tsc; 3108 } 3109 } 3110 3111 local_irq_restore(flags); 3112 3113 /* With all the info we got, fill in the values */ 3114 3115 if (kvm_has_tsc_control) 3116 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz, 3117 v->arch.l1_tsc_scaling_ratio); 3118 3119 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 3120 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 3121 &vcpu->hv_clock.tsc_shift, 3122 &vcpu->hv_clock.tsc_to_system_mul); 3123 vcpu->hw_tsc_khz = tgt_tsc_khz; 3124 } 3125 3126 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 3127 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 3128 vcpu->last_guest_tsc = tsc_timestamp; 3129 3130 /* If the host uses TSC clocksource, then it is stable */ 3131 pvclock_flags = 0; 3132 if (use_master_clock) 3133 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 3134 3135 vcpu->hv_clock.flags = pvclock_flags; 3136 3137 if (vcpu->pv_time.active) 3138 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0); 3139 if (vcpu->xen.vcpu_info_cache.active) 3140 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache, 3141 offsetof(struct compat_vcpu_info, time)); 3142 if (vcpu->xen.vcpu_time_info_cache.active) 3143 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0); 3144 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 3145 return 0; 3146} 3147 3148/* 3149 * kvmclock updates which are isolated to a given vcpu, such as 3150 * vcpu->cpu migration, should not allow system_timestamp from 3151 * the rest of the vcpus to remain static. Otherwise ntp frequency 3152 * correction applies to one vcpu's system_timestamp but not 3153 * the others. 3154 * 3155 * So in those cases, request a kvmclock update for all vcpus. 3156 * We need to rate-limit these requests though, as they can 3157 * considerably slow guests that have a large number of vcpus. 3158 * The time for a remote vcpu to update its kvmclock is bound 3159 * by the delay we use to rate-limit the updates. 3160 */ 3161 3162#define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 3163 3164static void kvmclock_update_fn(struct work_struct *work) 3165{ 3166 unsigned long i; 3167 struct delayed_work *dwork = to_delayed_work(work); 3168 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3169 kvmclock_update_work); 3170 struct kvm *kvm = container_of(ka, struct kvm, arch); 3171 struct kvm_vcpu *vcpu; 3172 3173 kvm_for_each_vcpu(i, vcpu, kvm) { 3174 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3175 kvm_vcpu_kick(vcpu); 3176 } 3177} 3178 3179static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 3180{ 3181 struct kvm *kvm = v->kvm; 3182 3183 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 3184 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 3185 KVMCLOCK_UPDATE_DELAY); 3186} 3187 3188#define KVMCLOCK_SYNC_PERIOD (300 * HZ) 3189 3190static void kvmclock_sync_fn(struct work_struct *work) 3191{ 3192 struct delayed_work *dwork = to_delayed_work(work); 3193 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 3194 kvmclock_sync_work); 3195 struct kvm *kvm = container_of(ka, struct kvm, arch); 3196 3197 if (!kvmclock_periodic_sync) 3198 return; 3199 3200 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 3201 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 3202 KVMCLOCK_SYNC_PERIOD); 3203} 3204 3205/* 3206 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. 3207 */ 3208static bool can_set_mci_status(struct kvm_vcpu *vcpu) 3209{ 3210 /* McStatusWrEn enabled? */ 3211 if (guest_cpuid_is_amd_or_hygon(vcpu)) 3212 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); 3213 3214 return false; 3215} 3216 3217static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3218{ 3219 u64 mcg_cap = vcpu->arch.mcg_cap; 3220 unsigned bank_num = mcg_cap & 0xff; 3221 u32 msr = msr_info->index; 3222 u64 data = msr_info->data; 3223 3224 switch (msr) { 3225 case MSR_IA32_MCG_STATUS: 3226 vcpu->arch.mcg_status = data; 3227 break; 3228 case MSR_IA32_MCG_CTL: 3229 if (!(mcg_cap & MCG_CTL_P) && 3230 (data || !msr_info->host_initiated)) 3231 return 1; 3232 if (data != 0 && data != ~(u64)0) 3233 return 1; 3234 vcpu->arch.mcg_ctl = data; 3235 break; 3236 default: 3237 if (msr >= MSR_IA32_MC0_CTL && 3238 msr < MSR_IA32_MCx_CTL(bank_num)) { 3239 u32 offset = array_index_nospec( 3240 msr - MSR_IA32_MC0_CTL, 3241 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL); 3242 3243 /* only 0 or all 1s can be written to IA32_MCi_CTL 3244 * some Linux kernels though clear bit 10 in bank 4 to 3245 * workaround a BIOS/GART TBL issue on AMD K8s, ignore 3246 * this to avoid an uncatched #GP in the guest 3247 */ 3248 if ((offset & 0x3) == 0 && 3249 data != 0 && (data | (1 << 10)) != ~(u64)0) 3250 return -1; 3251 3252 /* MCi_STATUS */ 3253 if (!msr_info->host_initiated && 3254 (offset & 0x3) == 1 && data != 0) { 3255 if (!can_set_mci_status(vcpu)) 3256 return -1; 3257 } 3258 3259 vcpu->arch.mce_banks[offset] = data; 3260 break; 3261 } 3262 return 1; 3263 } 3264 return 0; 3265} 3266 3267static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu) 3268{ 3269 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; 3270 3271 return (vcpu->arch.apf.msr_en_val & mask) == mask; 3272} 3273 3274static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 3275{ 3276 gpa_t gpa = data & ~0x3f; 3277 3278 /* Bits 4:5 are reserved, Should be zero */ 3279 if (data & 0x30) 3280 return 1; 3281 3282 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) && 3283 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT)) 3284 return 1; 3285 3286 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) && 3287 (data & KVM_ASYNC_PF_DELIVERY_AS_INT)) 3288 return 1; 3289 3290 if (!lapic_in_kernel(vcpu)) 3291 return data ? 1 : 0; 3292 3293 vcpu->arch.apf.msr_en_val = data; 3294 3295 if (!kvm_pv_async_pf_enabled(vcpu)) { 3296 kvm_clear_async_pf_completion_queue(vcpu); 3297 kvm_async_pf_hash_reset(vcpu); 3298 return 0; 3299 } 3300 3301 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 3302 sizeof(u64))) 3303 return 1; 3304 3305 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 3306 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 3307 3308 kvm_async_pf_wakeup_all(vcpu); 3309 3310 return 0; 3311} 3312 3313static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data) 3314{ 3315 /* Bits 8-63 are reserved */ 3316 if (data >> 8) 3317 return 1; 3318 3319 if (!lapic_in_kernel(vcpu)) 3320 return 1; 3321 3322 vcpu->arch.apf.msr_int_val = data; 3323 3324 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK; 3325 3326 return 0; 3327} 3328 3329static void kvmclock_reset(struct kvm_vcpu *vcpu) 3330{ 3331 kvm_gfn_to_pfn_cache_destroy(vcpu->kvm, &vcpu->arch.pv_time); 3332 vcpu->arch.time = 0; 3333} 3334 3335static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu) 3336{ 3337 ++vcpu->stat.tlb_flush; 3338 static_call(kvm_x86_flush_tlb_all)(vcpu); 3339} 3340 3341static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu) 3342{ 3343 ++vcpu->stat.tlb_flush; 3344 3345 if (!tdp_enabled) { 3346 /* 3347 * A TLB flush on behalf of the guest is equivalent to 3348 * INVPCID(all), toggling CR4.PGE, etc., which requires 3349 * a forced sync of the shadow page tables. Ensure all the 3350 * roots are synced and the guest TLB in hardware is clean. 3351 */ 3352 kvm_mmu_sync_roots(vcpu); 3353 kvm_mmu_sync_prev_roots(vcpu); 3354 } 3355 3356 static_call(kvm_x86_flush_tlb_guest)(vcpu); 3357} 3358 3359 3360static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu) 3361{ 3362 ++vcpu->stat.tlb_flush; 3363 static_call(kvm_x86_flush_tlb_current)(vcpu); 3364} 3365 3366/* 3367 * Service "local" TLB flush requests, which are specific to the current MMU 3368 * context. In addition to the generic event handling in vcpu_enter_guest(), 3369 * TLB flushes that are targeted at an MMU context also need to be serviced 3370 * prior before nested VM-Enter/VM-Exit. 3371 */ 3372void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu) 3373{ 3374 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu)) 3375 kvm_vcpu_flush_tlb_current(vcpu); 3376 3377 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu)) 3378 kvm_vcpu_flush_tlb_guest(vcpu); 3379} 3380EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests); 3381 3382static void record_steal_time(struct kvm_vcpu *vcpu) 3383{ 3384 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 3385 struct kvm_steal_time __user *st; 3386 struct kvm_memslots *slots; 3387 u64 steal; 3388 u32 version; 3389 3390 if (kvm_xen_msr_enabled(vcpu->kvm)) { 3391 kvm_xen_runstate_set_running(vcpu); 3392 return; 3393 } 3394 3395 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 3396 return; 3397 3398 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm)) 3399 return; 3400 3401 slots = kvm_memslots(vcpu->kvm); 3402 3403 if (unlikely(slots->generation != ghc->generation || 3404 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) { 3405 gfn_t gfn = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; 3406 3407 /* We rely on the fact that it fits in a single page. */ 3408 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS); 3409 3410 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gfn, sizeof(*st)) || 3411 kvm_is_error_hva(ghc->hva) || !ghc->memslot) 3412 return; 3413 } 3414 3415 st = (struct kvm_steal_time __user *)ghc->hva; 3416 /* 3417 * Doing a TLB flush here, on the guest's behalf, can avoid 3418 * expensive IPIs. 3419 */ 3420 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) { 3421 u8 st_preempted = 0; 3422 int err = -EFAULT; 3423 3424 if (!user_access_begin(st, sizeof(*st))) 3425 return; 3426 3427 asm volatile("1: xchgb %0, %2\n" 3428 "xor %1, %1\n" 3429 "2:\n" 3430 _ASM_EXTABLE_UA(1b, 2b) 3431 : "+q" (st_preempted), 3432 "+&r" (err), 3433 "+m" (st->preempted)); 3434 if (err) 3435 goto out; 3436 3437 user_access_end(); 3438 3439 vcpu->arch.st.preempted = 0; 3440 3441 trace_kvm_pv_tlb_flush(vcpu->vcpu_id, 3442 st_preempted & KVM_VCPU_FLUSH_TLB); 3443 if (st_preempted & KVM_VCPU_FLUSH_TLB) 3444 kvm_vcpu_flush_tlb_guest(vcpu); 3445 3446 if (!user_access_begin(st, sizeof(*st))) 3447 goto dirty; 3448 } else { 3449 if (!user_access_begin(st, sizeof(*st))) 3450 return; 3451 3452 unsafe_put_user(0, &st->preempted, out); 3453 vcpu->arch.st.preempted = 0; 3454 } 3455 3456 unsafe_get_user(version, &st->version, out); 3457 if (version & 1) 3458 version += 1; /* first time write, random junk */ 3459 3460 version += 1; 3461 unsafe_put_user(version, &st->version, out); 3462 3463 smp_wmb(); 3464 3465 unsafe_get_user(steal, &st->steal, out); 3466 steal += current->sched_info.run_delay - 3467 vcpu->arch.st.last_steal; 3468 vcpu->arch.st.last_steal = current->sched_info.run_delay; 3469 unsafe_put_user(steal, &st->steal, out); 3470 3471 version += 1; 3472 unsafe_put_user(version, &st->version, out); 3473 3474 out: 3475 user_access_end(); 3476 dirty: 3477 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 3478} 3479 3480int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3481{ 3482 bool pr = false; 3483 u32 msr = msr_info->index; 3484 u64 data = msr_info->data; 3485 3486 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr) 3487 return kvm_xen_write_hypercall_page(vcpu, data); 3488 3489 switch (msr) { 3490 case MSR_AMD64_NB_CFG: 3491 case MSR_IA32_UCODE_WRITE: 3492 case MSR_VM_HSAVE_PA: 3493 case MSR_AMD64_PATCH_LOADER: 3494 case MSR_AMD64_BU_CFG2: 3495 case MSR_AMD64_DC_CFG: 3496 case MSR_F15H_EX_CFG: 3497 break; 3498 3499 case MSR_IA32_UCODE_REV: 3500 if (msr_info->host_initiated) 3501 vcpu->arch.microcode_version = data; 3502 break; 3503 case MSR_IA32_ARCH_CAPABILITIES: 3504 if (!msr_info->host_initiated) 3505 return 1; 3506 vcpu->arch.arch_capabilities = data; 3507 break; 3508 case MSR_IA32_PERF_CAPABILITIES: { 3509 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0}; 3510 3511 if (!msr_info->host_initiated) 3512 return 1; 3513 if (kvm_get_msr_feature(&msr_ent)) 3514 return 1; 3515 if (data & ~msr_ent.data) 3516 return 1; 3517 3518 vcpu->arch.perf_capabilities = data; 3519 3520 return 0; 3521 } 3522 case MSR_EFER: 3523 return set_efer(vcpu, msr_info); 3524 case MSR_K7_HWCR: 3525 data &= ~(u64)0x40; /* ignore flush filter disable */ 3526 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 3527 data &= ~(u64)0x8; /* ignore TLB cache disable */ 3528 3529 /* Handle McStatusWrEn */ 3530 if (data == BIT_ULL(18)) { 3531 vcpu->arch.msr_hwcr = data; 3532 } else if (data != 0) { 3533 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", 3534 data); 3535 return 1; 3536 } 3537 break; 3538 case MSR_FAM10H_MMIO_CONF_BASE: 3539 if (data != 0) { 3540 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " 3541 "0x%llx\n", data); 3542 return 1; 3543 } 3544 break; 3545 case 0x200 ... 0x2ff: 3546 return kvm_mtrr_set_msr(vcpu, msr, data); 3547 case MSR_IA32_APICBASE: 3548 return kvm_set_apic_base(vcpu, msr_info); 3549 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3550 return kvm_x2apic_msr_write(vcpu, msr, data); 3551 case MSR_IA32_TSC_DEADLINE: 3552 kvm_set_lapic_tscdeadline_msr(vcpu, data); 3553 break; 3554 case MSR_IA32_TSC_ADJUST: 3555 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 3556 if (!msr_info->host_initiated) { 3557 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 3558 adjust_tsc_offset_guest(vcpu, adj); 3559 /* Before back to guest, tsc_timestamp must be adjusted 3560 * as well, otherwise guest's percpu pvclock time could jump. 3561 */ 3562 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3563 } 3564 vcpu->arch.ia32_tsc_adjust_msr = data; 3565 } 3566 break; 3567 case MSR_IA32_MISC_ENABLE: 3568 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && 3569 ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) { 3570 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3)) 3571 return 1; 3572 vcpu->arch.ia32_misc_enable_msr = data; 3573 kvm_update_cpuid_runtime(vcpu); 3574 } else { 3575 vcpu->arch.ia32_misc_enable_msr = data; 3576 } 3577 break; 3578 case MSR_IA32_SMBASE: 3579 if (!msr_info->host_initiated) 3580 return 1; 3581 vcpu->arch.smbase = data; 3582 break; 3583 case MSR_IA32_POWER_CTL: 3584 vcpu->arch.msr_ia32_power_ctl = data; 3585 break; 3586 case MSR_IA32_TSC: 3587 if (msr_info->host_initiated) { 3588 kvm_synchronize_tsc(vcpu, data); 3589 } else { 3590 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset; 3591 adjust_tsc_offset_guest(vcpu, adj); 3592 vcpu->arch.ia32_tsc_adjust_msr += adj; 3593 } 3594 break; 3595 case MSR_IA32_XSS: 3596 if (!msr_info->host_initiated && 3597 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 3598 return 1; 3599 /* 3600 * KVM supports exposing PT to the guest, but does not support 3601 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than 3602 * XSAVES/XRSTORS to save/restore PT MSRs. 3603 */ 3604 if (data & ~supported_xss) 3605 return 1; 3606 vcpu->arch.ia32_xss = data; 3607 kvm_update_cpuid_runtime(vcpu); 3608 break; 3609 case MSR_SMI_COUNT: 3610 if (!msr_info->host_initiated) 3611 return 1; 3612 vcpu->arch.smi_count = data; 3613 break; 3614 case MSR_KVM_WALL_CLOCK_NEW: 3615 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3616 return 1; 3617 3618 vcpu->kvm->arch.wall_clock = data; 3619 kvm_write_wall_clock(vcpu->kvm, data, 0); 3620 break; 3621 case MSR_KVM_WALL_CLOCK: 3622 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3623 return 1; 3624 3625 vcpu->kvm->arch.wall_clock = data; 3626 kvm_write_wall_clock(vcpu->kvm, data, 0); 3627 break; 3628 case MSR_KVM_SYSTEM_TIME_NEW: 3629 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3630 return 1; 3631 3632 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated); 3633 break; 3634 case MSR_KVM_SYSTEM_TIME: 3635 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3636 return 1; 3637 3638 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated); 3639 break; 3640 case MSR_KVM_ASYNC_PF_EN: 3641 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 3642 return 1; 3643 3644 if (kvm_pv_enable_async_pf(vcpu, data)) 3645 return 1; 3646 break; 3647 case MSR_KVM_ASYNC_PF_INT: 3648 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3649 return 1; 3650 3651 if (kvm_pv_enable_async_pf_int(vcpu, data)) 3652 return 1; 3653 break; 3654 case MSR_KVM_ASYNC_PF_ACK: 3655 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 3656 return 1; 3657 if (data & 0x1) { 3658 vcpu->arch.apf.pageready_pending = false; 3659 kvm_check_async_pf_completion(vcpu); 3660 } 3661 break; 3662 case MSR_KVM_STEAL_TIME: 3663 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 3664 return 1; 3665 3666 if (unlikely(!sched_info_on())) 3667 return 1; 3668 3669 if (data & KVM_STEAL_RESERVED_MASK) 3670 return 1; 3671 3672 vcpu->arch.st.msr_val = data; 3673 3674 if (!(data & KVM_MSR_ENABLED)) 3675 break; 3676 3677 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 3678 3679 break; 3680 case MSR_KVM_PV_EOI_EN: 3681 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 3682 return 1; 3683 3684 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8))) 3685 return 1; 3686 break; 3687 3688 case MSR_KVM_POLL_CONTROL: 3689 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 3690 return 1; 3691 3692 /* only enable bit supported */ 3693 if (data & (-1ULL << 1)) 3694 return 1; 3695 3696 vcpu->arch.msr_kvm_poll_control = data; 3697 break; 3698 3699 case MSR_IA32_MCG_CTL: 3700 case MSR_IA32_MCG_STATUS: 3701 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 3702 return set_msr_mce(vcpu, msr_info); 3703 3704 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3705 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3706 pr = true; 3707 fallthrough; 3708 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3709 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 3710 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3711 return kvm_pmu_set_msr(vcpu, msr_info); 3712 3713 if (pr || data != 0) 3714 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " 3715 "0x%x data 0x%llx\n", msr, data); 3716 break; 3717 case MSR_K7_CLK_CTL: 3718 /* 3719 * Ignore all writes to this no longer documented MSR. 3720 * Writes are only relevant for old K7 processors, 3721 * all pre-dating SVM, but a recommended workaround from 3722 * AMD for these chips. It is possible to specify the 3723 * affected processor models on the command line, hence 3724 * the need to ignore the workaround. 3725 */ 3726 break; 3727 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 3728 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 3729 case HV_X64_MSR_SYNDBG_OPTIONS: 3730 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 3731 case HV_X64_MSR_CRASH_CTL: 3732 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 3733 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 3734 case HV_X64_MSR_TSC_EMULATION_CONTROL: 3735 case HV_X64_MSR_TSC_EMULATION_STATUS: 3736 return kvm_hv_set_msr_common(vcpu, msr, data, 3737 msr_info->host_initiated); 3738 case MSR_IA32_BBL_CR_CTL3: 3739 /* Drop writes to this legacy MSR -- see rdmsr 3740 * counterpart for further detail. 3741 */ 3742 if (report_ignored_msrs) 3743 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", 3744 msr, data); 3745 break; 3746 case MSR_AMD64_OSVW_ID_LENGTH: 3747 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3748 return 1; 3749 vcpu->arch.osvw.length = data; 3750 break; 3751 case MSR_AMD64_OSVW_STATUS: 3752 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 3753 return 1; 3754 vcpu->arch.osvw.status = data; 3755 break; 3756 case MSR_PLATFORM_INFO: 3757 if (!msr_info->host_initiated || 3758 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && 3759 cpuid_fault_enabled(vcpu))) 3760 return 1; 3761 vcpu->arch.msr_platform_info = data; 3762 break; 3763 case MSR_MISC_FEATURES_ENABLES: 3764 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 3765 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 3766 !supports_cpuid_fault(vcpu))) 3767 return 1; 3768 vcpu->arch.msr_misc_features_enables = data; 3769 break; 3770#ifdef CONFIG_X86_64 3771 case MSR_IA32_XFD: 3772 if (!msr_info->host_initiated && 3773 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 3774 return 1; 3775 3776 if (data & ~kvm_guest_supported_xfd(vcpu)) 3777 return 1; 3778 3779 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data); 3780 break; 3781 case MSR_IA32_XFD_ERR: 3782 if (!msr_info->host_initiated && 3783 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 3784 return 1; 3785 3786 if (data & ~kvm_guest_supported_xfd(vcpu)) 3787 return 1; 3788 3789 vcpu->arch.guest_fpu.xfd_err = data; 3790 break; 3791#endif 3792 default: 3793 if (kvm_pmu_is_valid_msr(vcpu, msr)) 3794 return kvm_pmu_set_msr(vcpu, msr_info); 3795 return KVM_MSR_RET_INVALID; 3796 } 3797 return 0; 3798} 3799EXPORT_SYMBOL_GPL(kvm_set_msr_common); 3800 3801static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) 3802{ 3803 u64 data; 3804 u64 mcg_cap = vcpu->arch.mcg_cap; 3805 unsigned bank_num = mcg_cap & 0xff; 3806 3807 switch (msr) { 3808 case MSR_IA32_P5_MC_ADDR: 3809 case MSR_IA32_P5_MC_TYPE: 3810 data = 0; 3811 break; 3812 case MSR_IA32_MCG_CAP: 3813 data = vcpu->arch.mcg_cap; 3814 break; 3815 case MSR_IA32_MCG_CTL: 3816 if (!(mcg_cap & MCG_CTL_P) && !host) 3817 return 1; 3818 data = vcpu->arch.mcg_ctl; 3819 break; 3820 case MSR_IA32_MCG_STATUS: 3821 data = vcpu->arch.mcg_status; 3822 break; 3823 default: 3824 if (msr >= MSR_IA32_MC0_CTL && 3825 msr < MSR_IA32_MCx_CTL(bank_num)) { 3826 u32 offset = array_index_nospec( 3827 msr - MSR_IA32_MC0_CTL, 3828 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL); 3829 3830 data = vcpu->arch.mce_banks[offset]; 3831 break; 3832 } 3833 return 1; 3834 } 3835 *pdata = data; 3836 return 0; 3837} 3838 3839int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 3840{ 3841 switch (msr_info->index) { 3842 case MSR_IA32_PLATFORM_ID: 3843 case MSR_IA32_EBL_CR_POWERON: 3844 case MSR_IA32_LASTBRANCHFROMIP: 3845 case MSR_IA32_LASTBRANCHTOIP: 3846 case MSR_IA32_LASTINTFROMIP: 3847 case MSR_IA32_LASTINTTOIP: 3848 case MSR_AMD64_SYSCFG: 3849 case MSR_K8_TSEG_ADDR: 3850 case MSR_K8_TSEG_MASK: 3851 case MSR_VM_HSAVE_PA: 3852 case MSR_K8_INT_PENDING_MSG: 3853 case MSR_AMD64_NB_CFG: 3854 case MSR_FAM10H_MMIO_CONF_BASE: 3855 case MSR_AMD64_BU_CFG2: 3856 case MSR_IA32_PERF_CTL: 3857 case MSR_AMD64_DC_CFG: 3858 case MSR_F15H_EX_CFG: 3859 /* 3860 * Intel Sandy Bridge CPUs must support the RAPL (running average power 3861 * limit) MSRs. Just return 0, as we do not want to expose the host 3862 * data here. Do not conditionalize this on CPUID, as KVM does not do 3863 * so for existing CPU-specific MSRs. 3864 */ 3865 case MSR_RAPL_POWER_UNIT: 3866 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */ 3867 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */ 3868 case MSR_PKG_ENERGY_STATUS: /* Total package */ 3869 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */ 3870 msr_info->data = 0; 3871 break; 3872 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5: 3873 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 3874 return kvm_pmu_get_msr(vcpu, msr_info); 3875 if (!msr_info->host_initiated) 3876 return 1; 3877 msr_info->data = 0; 3878 break; 3879 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 3880 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 3881 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 3882 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 3883 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 3884 return kvm_pmu_get_msr(vcpu, msr_info); 3885 msr_info->data = 0; 3886 break; 3887 case MSR_IA32_UCODE_REV: 3888 msr_info->data = vcpu->arch.microcode_version; 3889 break; 3890 case MSR_IA32_ARCH_CAPABILITIES: 3891 if (!msr_info->host_initiated && 3892 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) 3893 return 1; 3894 msr_info->data = vcpu->arch.arch_capabilities; 3895 break; 3896 case MSR_IA32_PERF_CAPABILITIES: 3897 if (!msr_info->host_initiated && 3898 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM)) 3899 return 1; 3900 msr_info->data = vcpu->arch.perf_capabilities; 3901 break; 3902 case MSR_IA32_POWER_CTL: 3903 msr_info->data = vcpu->arch.msr_ia32_power_ctl; 3904 break; 3905 case MSR_IA32_TSC: { 3906 /* 3907 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset 3908 * even when not intercepted. AMD manual doesn't explicitly 3909 * state this but appears to behave the same. 3910 * 3911 * On userspace reads and writes, however, we unconditionally 3912 * return L1's TSC value to ensure backwards-compatible 3913 * behavior for migration. 3914 */ 3915 u64 offset, ratio; 3916 3917 if (msr_info->host_initiated) { 3918 offset = vcpu->arch.l1_tsc_offset; 3919 ratio = vcpu->arch.l1_tsc_scaling_ratio; 3920 } else { 3921 offset = vcpu->arch.tsc_offset; 3922 ratio = vcpu->arch.tsc_scaling_ratio; 3923 } 3924 3925 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset; 3926 break; 3927 } 3928 case MSR_MTRRcap: 3929 case 0x200 ... 0x2ff: 3930 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 3931 case 0xcd: /* fsb frequency */ 3932 msr_info->data = 3; 3933 break; 3934 /* 3935 * MSR_EBC_FREQUENCY_ID 3936 * Conservative value valid for even the basic CPU models. 3937 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 3938 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 3939 * and 266MHz for model 3, or 4. Set Core Clock 3940 * Frequency to System Bus Frequency Ratio to 1 (bits 3941 * 31:24) even though these are only valid for CPU 3942 * models > 2, however guests may end up dividing or 3943 * multiplying by zero otherwise. 3944 */ 3945 case MSR_EBC_FREQUENCY_ID: 3946 msr_info->data = 1 << 24; 3947 break; 3948 case MSR_IA32_APICBASE: 3949 msr_info->data = kvm_get_apic_base(vcpu); 3950 break; 3951 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: 3952 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 3953 case MSR_IA32_TSC_DEADLINE: 3954 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 3955 break; 3956 case MSR_IA32_TSC_ADJUST: 3957 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 3958 break; 3959 case MSR_IA32_MISC_ENABLE: 3960 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 3961 break; 3962 case MSR_IA32_SMBASE: 3963 if (!msr_info->host_initiated) 3964 return 1; 3965 msr_info->data = vcpu->arch.smbase; 3966 break; 3967 case MSR_SMI_COUNT: 3968 msr_info->data = vcpu->arch.smi_count; 3969 break; 3970 case MSR_IA32_PERF_STATUS: 3971 /* TSC increment by tick */ 3972 msr_info->data = 1000ULL; 3973 /* CPU multiplier */ 3974 msr_info->data |= (((uint64_t)4ULL) << 40); 3975 break; 3976 case MSR_EFER: 3977 msr_info->data = vcpu->arch.efer; 3978 break; 3979 case MSR_KVM_WALL_CLOCK: 3980 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3981 return 1; 3982 3983 msr_info->data = vcpu->kvm->arch.wall_clock; 3984 break; 3985 case MSR_KVM_WALL_CLOCK_NEW: 3986 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3987 return 1; 3988 3989 msr_info->data = vcpu->kvm->arch.wall_clock; 3990 break; 3991 case MSR_KVM_SYSTEM_TIME: 3992 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) 3993 return 1; 3994 3995 msr_info->data = vcpu->arch.time; 3996 break; 3997 case MSR_KVM_SYSTEM_TIME_NEW: 3998 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) 3999 return 1; 4000 4001 msr_info->data = vcpu->arch.time; 4002 break; 4003 case MSR_KVM_ASYNC_PF_EN: 4004 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) 4005 return 1; 4006 4007 msr_info->data = vcpu->arch.apf.msr_en_val; 4008 break; 4009 case MSR_KVM_ASYNC_PF_INT: 4010 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4011 return 1; 4012 4013 msr_info->data = vcpu->arch.apf.msr_int_val; 4014 break; 4015 case MSR_KVM_ASYNC_PF_ACK: 4016 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) 4017 return 1; 4018 4019 msr_info->data = 0; 4020 break; 4021 case MSR_KVM_STEAL_TIME: 4022 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) 4023 return 1; 4024 4025 msr_info->data = vcpu->arch.st.msr_val; 4026 break; 4027 case MSR_KVM_PV_EOI_EN: 4028 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) 4029 return 1; 4030 4031 msr_info->data = vcpu->arch.pv_eoi.msr_val; 4032 break; 4033 case MSR_KVM_POLL_CONTROL: 4034 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) 4035 return 1; 4036 4037 msr_info->data = vcpu->arch.msr_kvm_poll_control; 4038 break; 4039 case MSR_IA32_P5_MC_ADDR: 4040 case MSR_IA32_P5_MC_TYPE: 4041 case MSR_IA32_MCG_CAP: 4042 case MSR_IA32_MCG_CTL: 4043 case MSR_IA32_MCG_STATUS: 4044 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 4045 return get_msr_mce(vcpu, msr_info->index, &msr_info->data, 4046 msr_info->host_initiated); 4047 case MSR_IA32_XSS: 4048 if (!msr_info->host_initiated && 4049 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) 4050 return 1; 4051 msr_info->data = vcpu->arch.ia32_xss; 4052 break; 4053 case MSR_K7_CLK_CTL: 4054 /* 4055 * Provide expected ramp-up count for K7. All other 4056 * are set to zero, indicating minimum divisors for 4057 * every field. 4058 * 4059 * This prevents guest kernels on AMD host with CPU 4060 * type 6, model 8 and higher from exploding due to 4061 * the rdmsr failing. 4062 */ 4063 msr_info->data = 0x20000000; 4064 break; 4065 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 4066 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: 4067 case HV_X64_MSR_SYNDBG_OPTIONS: 4068 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 4069 case HV_X64_MSR_CRASH_CTL: 4070 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 4071 case HV_X64_MSR_REENLIGHTENMENT_CONTROL: 4072 case HV_X64_MSR_TSC_EMULATION_CONTROL: 4073 case HV_X64_MSR_TSC_EMULATION_STATUS: 4074 return kvm_hv_get_msr_common(vcpu, 4075 msr_info->index, &msr_info->data, 4076 msr_info->host_initiated); 4077 case MSR_IA32_BBL_CR_CTL3: 4078 /* This legacy MSR exists but isn't fully documented in current 4079 * silicon. It is however accessed by winxp in very narrow 4080 * scenarios where it sets bit #19, itself documented as 4081 * a "reserved" bit. Best effort attempt to source coherent 4082 * read data here should the balance of the register be 4083 * interpreted by the guest: 4084 * 4085 * L2 cache control register 3: 64GB range, 256KB size, 4086 * enabled, latency 0x1, configured 4087 */ 4088 msr_info->data = 0xbe702111; 4089 break; 4090 case MSR_AMD64_OSVW_ID_LENGTH: 4091 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4092 return 1; 4093 msr_info->data = vcpu->arch.osvw.length; 4094 break; 4095 case MSR_AMD64_OSVW_STATUS: 4096 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 4097 return 1; 4098 msr_info->data = vcpu->arch.osvw.status; 4099 break; 4100 case MSR_PLATFORM_INFO: 4101 if (!msr_info->host_initiated && 4102 !vcpu->kvm->arch.guest_can_read_msr_platform_info) 4103 return 1; 4104 msr_info->data = vcpu->arch.msr_platform_info; 4105 break; 4106 case MSR_MISC_FEATURES_ENABLES: 4107 msr_info->data = vcpu->arch.msr_misc_features_enables; 4108 break; 4109 case MSR_K7_HWCR: 4110 msr_info->data = vcpu->arch.msr_hwcr; 4111 break; 4112#ifdef CONFIG_X86_64 4113 case MSR_IA32_XFD: 4114 if (!msr_info->host_initiated && 4115 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4116 return 1; 4117 4118 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd; 4119 break; 4120 case MSR_IA32_XFD_ERR: 4121 if (!msr_info->host_initiated && 4122 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)) 4123 return 1; 4124 4125 msr_info->data = vcpu->arch.guest_fpu.xfd_err; 4126 break; 4127#endif 4128 default: 4129 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 4130 return kvm_pmu_get_msr(vcpu, msr_info); 4131 return KVM_MSR_RET_INVALID; 4132 } 4133 return 0; 4134} 4135EXPORT_SYMBOL_GPL(kvm_get_msr_common); 4136 4137/* 4138 * Read or write a bunch of msrs. All parameters are kernel addresses. 4139 * 4140 * @return number of msrs set successfully. 4141 */ 4142static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 4143 struct kvm_msr_entry *entries, 4144 int (*do_msr)(struct kvm_vcpu *vcpu, 4145 unsigned index, u64 *data)) 4146{ 4147 int i; 4148 4149 for (i = 0; i < msrs->nmsrs; ++i) 4150 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 4151 break; 4152 4153 return i; 4154} 4155 4156/* 4157 * Read or write a bunch of msrs. Parameters are user addresses. 4158 * 4159 * @return number of msrs set successfully. 4160 */ 4161static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 4162 int (*do_msr)(struct kvm_vcpu *vcpu, 4163 unsigned index, u64 *data), 4164 int writeback) 4165{ 4166 struct kvm_msrs msrs; 4167 struct kvm_msr_entry *entries; 4168 int r, n; 4169 unsigned size; 4170 4171 r = -EFAULT; 4172 if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) 4173 goto out; 4174 4175 r = -E2BIG; 4176 if (msrs.nmsrs >= MAX_IO_MSRS) 4177 goto out; 4178 4179 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 4180 entries = memdup_user(user_msrs->entries, size); 4181 if (IS_ERR(entries)) { 4182 r = PTR_ERR(entries); 4183 goto out; 4184 } 4185 4186 r = n = __msr_io(vcpu, &msrs, entries, do_msr); 4187 if (r < 0) 4188 goto out_free; 4189 4190 r = -EFAULT; 4191 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 4192 goto out_free; 4193 4194 r = n; 4195 4196out_free: 4197 kfree(entries); 4198out: 4199 return r; 4200} 4201 4202static inline bool kvm_can_mwait_in_guest(void) 4203{ 4204 return boot_cpu_has(X86_FEATURE_MWAIT) && 4205 !boot_cpu_has_bug(X86_BUG_MONITOR) && 4206 boot_cpu_has(X86_FEATURE_ARAT); 4207} 4208 4209static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu, 4210 struct kvm_cpuid2 __user *cpuid_arg) 4211{ 4212 struct kvm_cpuid2 cpuid; 4213 int r; 4214 4215 r = -EFAULT; 4216 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4217 return r; 4218 4219 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries); 4220 if (r) 4221 return r; 4222 4223 r = -EFAULT; 4224 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4225 return r; 4226 4227 return 0; 4228} 4229 4230int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 4231{ 4232 int r = 0; 4233 4234 switch (ext) { 4235 case KVM_CAP_IRQCHIP: 4236 case KVM_CAP_HLT: 4237 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 4238 case KVM_CAP_SET_TSS_ADDR: 4239 case KVM_CAP_EXT_CPUID: 4240 case KVM_CAP_EXT_EMUL_CPUID: 4241 case KVM_CAP_CLOCKSOURCE: 4242 case KVM_CAP_PIT: 4243 case KVM_CAP_NOP_IO_DELAY: 4244 case KVM_CAP_MP_STATE: 4245 case KVM_CAP_SYNC_MMU: 4246 case KVM_CAP_USER_NMI: 4247 case KVM_CAP_REINJECT_CONTROL: 4248 case KVM_CAP_IRQ_INJECT_STATUS: 4249 case KVM_CAP_IOEVENTFD: 4250 case KVM_CAP_IOEVENTFD_NO_LENGTH: 4251 case KVM_CAP_PIT2: 4252 case KVM_CAP_PIT_STATE2: 4253 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 4254 case KVM_CAP_VCPU_EVENTS: 4255 case KVM_CAP_HYPERV: 4256 case KVM_CAP_HYPERV_VAPIC: 4257 case KVM_CAP_HYPERV_SPIN: 4258 case KVM_CAP_HYPERV_SYNIC: 4259 case KVM_CAP_HYPERV_SYNIC2: 4260 case KVM_CAP_HYPERV_VP_INDEX: 4261 case KVM_CAP_HYPERV_EVENTFD: 4262 case KVM_CAP_HYPERV_TLBFLUSH: 4263 case KVM_CAP_HYPERV_SEND_IPI: 4264 case KVM_CAP_HYPERV_CPUID: 4265 case KVM_CAP_HYPERV_ENFORCE_CPUID: 4266 case KVM_CAP_SYS_HYPERV_CPUID: 4267 case KVM_CAP_PCI_SEGMENT: 4268 case KVM_CAP_DEBUGREGS: 4269 case KVM_CAP_X86_ROBUST_SINGLESTEP: 4270 case KVM_CAP_XSAVE: 4271 case KVM_CAP_ASYNC_PF: 4272 case KVM_CAP_ASYNC_PF_INT: 4273 case KVM_CAP_GET_TSC_KHZ: 4274 case KVM_CAP_KVMCLOCK_CTRL: 4275 case KVM_CAP_READONLY_MEM: 4276 case KVM_CAP_HYPERV_TIME: 4277 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 4278 case KVM_CAP_TSC_DEADLINE_TIMER: 4279 case KVM_CAP_DISABLE_QUIRKS: 4280 case KVM_CAP_SET_BOOT_CPU_ID: 4281 case KVM_CAP_SPLIT_IRQCHIP: 4282 case KVM_CAP_IMMEDIATE_EXIT: 4283 case KVM_CAP_PMU_EVENT_FILTER: 4284 case KVM_CAP_GET_MSR_FEATURES: 4285 case KVM_CAP_MSR_PLATFORM_INFO: 4286 case KVM_CAP_EXCEPTION_PAYLOAD: 4287 case KVM_CAP_SET_GUEST_DEBUG: 4288 case KVM_CAP_LAST_CPU: 4289 case KVM_CAP_X86_USER_SPACE_MSR: 4290 case KVM_CAP_X86_MSR_FILTER: 4291 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 4292#ifdef CONFIG_X86_SGX_KVM 4293 case KVM_CAP_SGX_ATTRIBUTE: 4294#endif 4295 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 4296 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 4297 case KVM_CAP_SREGS2: 4298 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 4299 case KVM_CAP_VCPU_ATTRIBUTES: 4300 case KVM_CAP_SYS_ATTRIBUTES: 4301 case KVM_CAP_VAPIC: 4302 case KVM_CAP_ENABLE_CAP: 4303 r = 1; 4304 break; 4305 case KVM_CAP_EXIT_HYPERCALL: 4306 r = KVM_EXIT_HYPERCALL_VALID_MASK; 4307 break; 4308 case KVM_CAP_SET_GUEST_DEBUG2: 4309 return KVM_GUESTDBG_VALID_MASK; 4310#ifdef CONFIG_KVM_XEN 4311 case KVM_CAP_XEN_HVM: 4312 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR | 4313 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL | 4314 KVM_XEN_HVM_CONFIG_SHARED_INFO | 4315 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL | 4316 KVM_XEN_HVM_CONFIG_EVTCHN_SEND; 4317 if (sched_info_on()) 4318 r |= KVM_XEN_HVM_CONFIG_RUNSTATE; 4319 break; 4320#endif 4321 case KVM_CAP_SYNC_REGS: 4322 r = KVM_SYNC_X86_VALID_FIELDS; 4323 break; 4324 case KVM_CAP_ADJUST_CLOCK: 4325 r = KVM_CLOCK_VALID_FLAGS; 4326 break; 4327 case KVM_CAP_X86_DISABLE_EXITS: 4328 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE | 4329 KVM_X86_DISABLE_EXITS_CSTATE; 4330 if(kvm_can_mwait_in_guest()) 4331 r |= KVM_X86_DISABLE_EXITS_MWAIT; 4332 break; 4333 case KVM_CAP_X86_SMM: 4334 /* SMBASE is usually relocated above 1M on modern chipsets, 4335 * and SMM handlers might indeed rely on 4G segment limits, 4336 * so do not report SMM to be available if real mode is 4337 * emulated via vm86 mode. Still, do not go to great lengths 4338 * to avoid userspace's usage of the feature, because it is a 4339 * fringe case that is not enabled except via specific settings 4340 * of the module parameters. 4341 */ 4342 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE); 4343 break; 4344 case KVM_CAP_NR_VCPUS: 4345 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS); 4346 break; 4347 case KVM_CAP_MAX_VCPUS: 4348 r = KVM_MAX_VCPUS; 4349 break; 4350 case KVM_CAP_MAX_VCPU_ID: 4351 r = KVM_MAX_VCPU_IDS; 4352 break; 4353 case KVM_CAP_PV_MMU: /* obsolete */ 4354 r = 0; 4355 break; 4356 case KVM_CAP_MCE: 4357 r = KVM_MAX_MCE_BANKS; 4358 break; 4359 case KVM_CAP_XCRS: 4360 r = boot_cpu_has(X86_FEATURE_XSAVE); 4361 break; 4362 case KVM_CAP_TSC_CONTROL: 4363 case KVM_CAP_VM_TSC_CONTROL: 4364 r = kvm_has_tsc_control; 4365 break; 4366 case KVM_CAP_X2APIC_API: 4367 r = KVM_X2APIC_API_VALID_FLAGS; 4368 break; 4369 case KVM_CAP_NESTED_STATE: 4370 r = kvm_x86_ops.nested_ops->get_state ? 4371 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0; 4372 break; 4373 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 4374 r = kvm_x86_ops.enable_direct_tlbflush != NULL; 4375 break; 4376 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 4377 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL; 4378 break; 4379 case KVM_CAP_SMALLER_MAXPHYADDR: 4380 r = (int) allow_smaller_maxphyaddr; 4381 break; 4382 case KVM_CAP_STEAL_TIME: 4383 r = sched_info_on(); 4384 break; 4385 case KVM_CAP_X86_BUS_LOCK_EXIT: 4386 if (kvm_has_bus_lock_exit) 4387 r = KVM_BUS_LOCK_DETECTION_OFF | 4388 KVM_BUS_LOCK_DETECTION_EXIT; 4389 else 4390 r = 0; 4391 break; 4392 case KVM_CAP_XSAVE2: { 4393 u64 guest_perm = xstate_get_guest_group_perm(); 4394 4395 r = xstate_required_size(supported_xcr0 & guest_perm, false); 4396 if (r < sizeof(struct kvm_xsave)) 4397 r = sizeof(struct kvm_xsave); 4398 break; 4399 case KVM_CAP_PMU_CAPABILITY: 4400 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0; 4401 break; 4402 } 4403 case KVM_CAP_DISABLE_QUIRKS2: 4404 r = KVM_X86_VALID_QUIRKS; 4405 break; 4406 default: 4407 break; 4408 } 4409 return r; 4410} 4411 4412static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr) 4413{ 4414 void __user *uaddr = (void __user*)(unsigned long)attr->addr; 4415 4416 if ((u64)(unsigned long)uaddr != attr->addr) 4417 return ERR_PTR_USR(-EFAULT); 4418 return uaddr; 4419} 4420 4421static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr) 4422{ 4423 u64 __user *uaddr = kvm_get_attr_addr(attr); 4424 4425 if (attr->group) 4426 return -ENXIO; 4427 4428 if (IS_ERR(uaddr)) 4429 return PTR_ERR(uaddr); 4430 4431 switch (attr->attr) { 4432 case KVM_X86_XCOMP_GUEST_SUPP: 4433 if (put_user(supported_xcr0, uaddr)) 4434 return -EFAULT; 4435 return 0; 4436 default: 4437 return -ENXIO; 4438 break; 4439 } 4440} 4441 4442static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr) 4443{ 4444 if (attr->group) 4445 return -ENXIO; 4446 4447 switch (attr->attr) { 4448 case KVM_X86_XCOMP_GUEST_SUPP: 4449 return 0; 4450 default: 4451 return -ENXIO; 4452 } 4453} 4454 4455long kvm_arch_dev_ioctl(struct file *filp, 4456 unsigned int ioctl, unsigned long arg) 4457{ 4458 void __user *argp = (void __user *)arg; 4459 long r; 4460 4461 switch (ioctl) { 4462 case KVM_GET_MSR_INDEX_LIST: { 4463 struct kvm_msr_list __user *user_msr_list = argp; 4464 struct kvm_msr_list msr_list; 4465 unsigned n; 4466 4467 r = -EFAULT; 4468 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4469 goto out; 4470 n = msr_list.nmsrs; 4471 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 4472 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4473 goto out; 4474 r = -E2BIG; 4475 if (n < msr_list.nmsrs) 4476 goto out; 4477 r = -EFAULT; 4478 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 4479 num_msrs_to_save * sizeof(u32))) 4480 goto out; 4481 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 4482 &emulated_msrs, 4483 num_emulated_msrs * sizeof(u32))) 4484 goto out; 4485 r = 0; 4486 break; 4487 } 4488 case KVM_GET_SUPPORTED_CPUID: 4489 case KVM_GET_EMULATED_CPUID: { 4490 struct kvm_cpuid2 __user *cpuid_arg = argp; 4491 struct kvm_cpuid2 cpuid; 4492 4493 r = -EFAULT; 4494 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 4495 goto out; 4496 4497 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 4498 ioctl); 4499 if (r) 4500 goto out; 4501 4502 r = -EFAULT; 4503 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 4504 goto out; 4505 r = 0; 4506 break; 4507 } 4508 case KVM_X86_GET_MCE_CAP_SUPPORTED: 4509 r = -EFAULT; 4510 if (copy_to_user(argp, &kvm_mce_cap_supported, 4511 sizeof(kvm_mce_cap_supported))) 4512 goto out; 4513 r = 0; 4514 break; 4515 case KVM_GET_MSR_FEATURE_INDEX_LIST: { 4516 struct kvm_msr_list __user *user_msr_list = argp; 4517 struct kvm_msr_list msr_list; 4518 unsigned int n; 4519 4520 r = -EFAULT; 4521 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) 4522 goto out; 4523 n = msr_list.nmsrs; 4524 msr_list.nmsrs = num_msr_based_features; 4525 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) 4526 goto out; 4527 r = -E2BIG; 4528 if (n < msr_list.nmsrs) 4529 goto out; 4530 r = -EFAULT; 4531 if (copy_to_user(user_msr_list->indices, &msr_based_features, 4532 num_msr_based_features * sizeof(u32))) 4533 goto out; 4534 r = 0; 4535 break; 4536 } 4537 case KVM_GET_MSRS: 4538 r = msr_io(NULL, argp, do_get_msr_feature, 1); 4539 break; 4540 case KVM_GET_SUPPORTED_HV_CPUID: 4541 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp); 4542 break; 4543 case KVM_GET_DEVICE_ATTR: { 4544 struct kvm_device_attr attr; 4545 r = -EFAULT; 4546 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4547 break; 4548 r = kvm_x86_dev_get_attr(&attr); 4549 break; 4550 } 4551 case KVM_HAS_DEVICE_ATTR: { 4552 struct kvm_device_attr attr; 4553 r = -EFAULT; 4554 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) 4555 break; 4556 r = kvm_x86_dev_has_attr(&attr); 4557 break; 4558 } 4559 default: 4560 r = -EINVAL; 4561 break; 4562 } 4563out: 4564 return r; 4565} 4566 4567static void wbinvd_ipi(void *garbage) 4568{ 4569 wbinvd(); 4570} 4571 4572static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 4573{ 4574 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 4575} 4576 4577void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 4578{ 4579 /* Address WBINVD may be executed by guest */ 4580 if (need_emulate_wbinvd(vcpu)) { 4581 if (static_call(kvm_x86_has_wbinvd_exit)()) 4582 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 4583 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 4584 smp_call_function_single(vcpu->cpu, 4585 wbinvd_ipi, NULL, 1); 4586 } 4587 4588 static_call(kvm_x86_vcpu_load)(vcpu, cpu); 4589 4590 /* Save host pkru register if supported */ 4591 vcpu->arch.host_pkru = read_pkru(); 4592 4593 /* Apply any externally detected TSC adjustments (due to suspend) */ 4594 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 4595 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 4596 vcpu->arch.tsc_offset_adjustment = 0; 4597 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 4598 } 4599 4600 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { 4601 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 4602 rdtsc() - vcpu->arch.last_host_tsc; 4603 if (tsc_delta < 0) 4604 mark_tsc_unstable("KVM discovered backwards TSC"); 4605 4606 if (kvm_check_tsc_unstable()) { 4607 u64 offset = kvm_compute_l1_tsc_offset(vcpu, 4608 vcpu->arch.last_guest_tsc); 4609 kvm_vcpu_write_tsc_offset(vcpu, offset); 4610 vcpu->arch.tsc_catchup = 1; 4611 } 4612 4613 if (kvm_lapic_hv_timer_in_use(vcpu)) 4614 kvm_lapic_restart_hv_timer(vcpu); 4615 4616 /* 4617 * On a host with synchronized TSC, there is no need to update 4618 * kvmclock on vcpu->cpu migration 4619 */ 4620 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 4621 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 4622 if (vcpu->cpu != cpu) 4623 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 4624 vcpu->cpu = cpu; 4625 } 4626 4627 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 4628} 4629 4630static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 4631{ 4632 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; 4633 struct kvm_steal_time __user *st; 4634 struct kvm_memslots *slots; 4635 static const u8 preempted = KVM_VCPU_PREEMPTED; 4636 4637 /* 4638 * The vCPU can be marked preempted if and only if the VM-Exit was on 4639 * an instruction boundary and will not trigger guest emulation of any 4640 * kind (see vcpu_run). Vendor specific code controls (conservatively) 4641 * when this is true, for example allowing the vCPU to be marked 4642 * preempted if and only if the VM-Exit was due to a host interrupt. 4643 */ 4644 if (!vcpu->arch.at_instruction_boundary) { 4645 vcpu->stat.preemption_other++; 4646 return; 4647 } 4648 4649 vcpu->stat.preemption_reported++; 4650 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 4651 return; 4652 4653 if (vcpu->arch.st.preempted) 4654 return; 4655 4656 /* This happens on process exit */ 4657 if (unlikely(current->mm != vcpu->kvm->mm)) 4658 return; 4659 4660 slots = kvm_memslots(vcpu->kvm); 4661 4662 if (unlikely(slots->generation != ghc->generation || 4663 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) 4664 return; 4665 4666 st = (struct kvm_steal_time __user *)ghc->hva; 4667 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted)); 4668 4669 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted))) 4670 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED; 4671 4672 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); 4673} 4674 4675void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 4676{ 4677 int idx; 4678 4679 if (vcpu->preempted) { 4680 if (!vcpu->arch.guest_state_protected) 4681 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu); 4682 4683 /* 4684 * Take the srcu lock as memslots will be accessed to check the gfn 4685 * cache generation against the memslots generation. 4686 */ 4687 idx = srcu_read_lock(&vcpu->kvm->srcu); 4688 if (kvm_xen_msr_enabled(vcpu->kvm)) 4689 kvm_xen_runstate_set_preempted(vcpu); 4690 else 4691 kvm_steal_time_set_preempted(vcpu); 4692 srcu_read_unlock(&vcpu->kvm->srcu, idx); 4693 } 4694 4695 static_call(kvm_x86_vcpu_put)(vcpu); 4696 vcpu->arch.last_host_tsc = rdtsc(); 4697} 4698 4699static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 4700 struct kvm_lapic_state *s) 4701{ 4702 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 4703 4704 return kvm_apic_get_state(vcpu, s); 4705} 4706 4707static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 4708 struct kvm_lapic_state *s) 4709{ 4710 int r; 4711 4712 r = kvm_apic_set_state(vcpu, s); 4713 if (r) 4714 return r; 4715 update_cr8_intercept(vcpu); 4716 4717 return 0; 4718} 4719 4720static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 4721{ 4722 /* 4723 * We can accept userspace's request for interrupt injection 4724 * as long as we have a place to store the interrupt number. 4725 * The actual injection will happen when the CPU is able to 4726 * deliver the interrupt. 4727 */ 4728 if (kvm_cpu_has_extint(vcpu)) 4729 return false; 4730 4731 /* Acknowledging ExtINT does not happen if LINT0 is masked. */ 4732 return (!lapic_in_kernel(vcpu) || 4733 kvm_apic_accept_pic_intr(vcpu)); 4734} 4735 4736static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 4737{ 4738 /* 4739 * Do not cause an interrupt window exit if an exception 4740 * is pending or an event needs reinjection; userspace 4741 * might want to inject the interrupt manually using KVM_SET_REGS 4742 * or KVM_SET_SREGS. For that to work, we must be at an 4743 * instruction boundary and with no events half-injected. 4744 */ 4745 return (kvm_arch_interrupt_allowed(vcpu) && 4746 kvm_cpu_accept_dm_intr(vcpu) && 4747 !kvm_event_needs_reinjection(vcpu) && 4748 !vcpu->arch.exception.pending); 4749} 4750 4751static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 4752 struct kvm_interrupt *irq) 4753{ 4754 if (irq->irq >= KVM_NR_INTERRUPTS) 4755 return -EINVAL; 4756 4757 if (!irqchip_in_kernel(vcpu->kvm)) { 4758 kvm_queue_interrupt(vcpu, irq->irq, false); 4759 kvm_make_request(KVM_REQ_EVENT, vcpu); 4760 return 0; 4761 } 4762 4763 /* 4764 * With in-kernel LAPIC, we only use this to inject EXTINT, so 4765 * fail for in-kernel 8259. 4766 */ 4767 if (pic_in_kernel(vcpu->kvm)) 4768 return -ENXIO; 4769 4770 if (vcpu->arch.pending_external_vector != -1) 4771 return -EEXIST; 4772 4773 vcpu->arch.pending_external_vector = irq->irq; 4774 kvm_make_request(KVM_REQ_EVENT, vcpu); 4775 return 0; 4776} 4777 4778static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 4779{ 4780 kvm_inject_nmi(vcpu); 4781 4782 return 0; 4783} 4784 4785static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu) 4786{ 4787 kvm_make_request(KVM_REQ_SMI, vcpu); 4788 4789 return 0; 4790} 4791 4792static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 4793 struct kvm_tpr_access_ctl *tac) 4794{ 4795 if (tac->flags) 4796 return -EINVAL; 4797 vcpu->arch.tpr_access_reporting = !!tac->enabled; 4798 return 0; 4799} 4800 4801static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 4802 u64 mcg_cap) 4803{ 4804 int r; 4805 unsigned bank_num = mcg_cap & 0xff, bank; 4806 4807 r = -EINVAL; 4808 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS) 4809 goto out; 4810 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000)) 4811 goto out; 4812 r = 0; 4813 vcpu->arch.mcg_cap = mcg_cap; 4814 /* Init IA32_MCG_CTL to all 1s */ 4815 if (mcg_cap & MCG_CTL_P) 4816 vcpu->arch.mcg_ctl = ~(u64)0; 4817 /* Init IA32_MCi_CTL to all 1s */ 4818 for (bank = 0; bank < bank_num; bank++) 4819 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 4820 4821 static_call(kvm_x86_setup_mce)(vcpu); 4822out: 4823 return r; 4824} 4825 4826static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 4827 struct kvm_x86_mce *mce) 4828{ 4829 u64 mcg_cap = vcpu->arch.mcg_cap; 4830 unsigned bank_num = mcg_cap & 0xff; 4831 u64 *banks = vcpu->arch.mce_banks; 4832 4833 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 4834 return -EINVAL; 4835 /* 4836 * if IA32_MCG_CTL is not all 1s, the uncorrected error 4837 * reporting is disabled 4838 */ 4839 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 4840 vcpu->arch.mcg_ctl != ~(u64)0) 4841 return 0; 4842 banks += 4 * mce->bank; 4843 /* 4844 * if IA32_MCi_CTL is not all 1s, the uncorrected error 4845 * reporting is disabled for the bank 4846 */ 4847 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 4848 return 0; 4849 if (mce->status & MCI_STATUS_UC) { 4850 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 4851 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { 4852 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 4853 return 0; 4854 } 4855 if (banks[1] & MCI_STATUS_VAL) 4856 mce->status |= MCI_STATUS_OVER; 4857 banks[2] = mce->addr; 4858 banks[3] = mce->misc; 4859 vcpu->arch.mcg_status = mce->mcg_status; 4860 banks[1] = mce->status; 4861 kvm_queue_exception(vcpu, MC_VECTOR); 4862 } else if (!(banks[1] & MCI_STATUS_VAL) 4863 || !(banks[1] & MCI_STATUS_UC)) { 4864 if (banks[1] & MCI_STATUS_VAL) 4865 mce->status |= MCI_STATUS_OVER; 4866 banks[2] = mce->addr; 4867 banks[3] = mce->misc; 4868 banks[1] = mce->status; 4869 } else 4870 banks[1] |= MCI_STATUS_OVER; 4871 return 0; 4872} 4873 4874static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 4875 struct kvm_vcpu_events *events) 4876{ 4877 process_nmi(vcpu); 4878 4879 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 4880 process_smi(vcpu); 4881 4882 /* 4883 * In guest mode, payload delivery should be deferred, 4884 * so that the L1 hypervisor can intercept #PF before 4885 * CR2 is modified (or intercept #DB before DR6 is 4886 * modified under nVMX). Unless the per-VM capability, 4887 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of 4888 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we 4889 * opportunistically defer the exception payload, deliver it if the 4890 * capability hasn't been requested before processing a 4891 * KVM_GET_VCPU_EVENTS. 4892 */ 4893 if (!vcpu->kvm->arch.exception_payload_enabled && 4894 vcpu->arch.exception.pending && vcpu->arch.exception.has_payload) 4895 kvm_deliver_exception_payload(vcpu); 4896 4897 /* 4898 * The API doesn't provide the instruction length for software 4899 * exceptions, so don't report them. As long as the guest RIP 4900 * isn't advanced, we should expect to encounter the exception 4901 * again. 4902 */ 4903 if (kvm_exception_is_soft(vcpu->arch.exception.nr)) { 4904 events->exception.injected = 0; 4905 events->exception.pending = 0; 4906 } else { 4907 events->exception.injected = vcpu->arch.exception.injected; 4908 events->exception.pending = vcpu->arch.exception.pending; 4909 /* 4910 * For ABI compatibility, deliberately conflate 4911 * pending and injected exceptions when 4912 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. 4913 */ 4914 if (!vcpu->kvm->arch.exception_payload_enabled) 4915 events->exception.injected |= 4916 vcpu->arch.exception.pending; 4917 } 4918 events->exception.nr = vcpu->arch.exception.nr; 4919 events->exception.has_error_code = vcpu->arch.exception.has_error_code; 4920 events->exception.error_code = vcpu->arch.exception.error_code; 4921 events->exception_has_payload = vcpu->arch.exception.has_payload; 4922 events->exception_payload = vcpu->arch.exception.payload; 4923 4924 events->interrupt.injected = 4925 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; 4926 events->interrupt.nr = vcpu->arch.interrupt.nr; 4927 events->interrupt.soft = 0; 4928 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 4929 4930 events->nmi.injected = vcpu->arch.nmi_injected; 4931 events->nmi.pending = vcpu->arch.nmi_pending != 0; 4932 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu); 4933 events->nmi.pad = 0; 4934 4935 events->sipi_vector = 0; /* never valid when reporting to user space */ 4936 4937 events->smi.smm = is_smm(vcpu); 4938 events->smi.pending = vcpu->arch.smi_pending; 4939 events->smi.smm_inside_nmi = 4940 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 4941 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 4942 4943 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 4944 | KVM_VCPUEVENT_VALID_SHADOW 4945 | KVM_VCPUEVENT_VALID_SMM); 4946 if (vcpu->kvm->arch.exception_payload_enabled) 4947 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; 4948 4949 memset(&events->reserved, 0, sizeof(events->reserved)); 4950} 4951 4952static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm); 4953 4954static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 4955 struct kvm_vcpu_events *events) 4956{ 4957 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 4958 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 4959 | KVM_VCPUEVENT_VALID_SHADOW 4960 | KVM_VCPUEVENT_VALID_SMM 4961 | KVM_VCPUEVENT_VALID_PAYLOAD)) 4962 return -EINVAL; 4963 4964 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { 4965 if (!vcpu->kvm->arch.exception_payload_enabled) 4966 return -EINVAL; 4967 if (events->exception.pending) 4968 events->exception.injected = 0; 4969 else 4970 events->exception_has_payload = 0; 4971 } else { 4972 events->exception.pending = 0; 4973 events->exception_has_payload = 0; 4974 } 4975 4976 if ((events->exception.injected || events->exception.pending) && 4977 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) 4978 return -EINVAL; 4979 4980 /* INITs are latched while in SMM */ 4981 if (events->flags & KVM_VCPUEVENT_VALID_SMM && 4982 (events->smi.smm || events->smi.pending) && 4983 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 4984 return -EINVAL; 4985 4986 process_nmi(vcpu); 4987 vcpu->arch.exception.injected = events->exception.injected; 4988 vcpu->arch.exception.pending = events->exception.pending; 4989 vcpu->arch.exception.nr = events->exception.nr; 4990 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 4991 vcpu->arch.exception.error_code = events->exception.error_code; 4992 vcpu->arch.exception.has_payload = events->exception_has_payload; 4993 vcpu->arch.exception.payload = events->exception_payload; 4994 4995 vcpu->arch.interrupt.injected = events->interrupt.injected; 4996 vcpu->arch.interrupt.nr = events->interrupt.nr; 4997 vcpu->arch.interrupt.soft = events->interrupt.soft; 4998 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 4999 static_call(kvm_x86_set_interrupt_shadow)(vcpu, 5000 events->interrupt.shadow); 5001 5002 vcpu->arch.nmi_injected = events->nmi.injected; 5003 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) 5004 vcpu->arch.nmi_pending = events->nmi.pending; 5005 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked); 5006 5007 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 5008 lapic_in_kernel(vcpu)) 5009 vcpu->arch.apic->sipi_vector = events->sipi_vector; 5010 5011 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 5012 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { 5013 kvm_x86_ops.nested_ops->leave_nested(vcpu); 5014 kvm_smm_changed(vcpu, events->smi.smm); 5015 } 5016 5017 vcpu->arch.smi_pending = events->smi.pending; 5018 5019 if (events->smi.smm) { 5020 if (events->smi.smm_inside_nmi) 5021 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 5022 else 5023 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 5024 } 5025 5026 if (lapic_in_kernel(vcpu)) { 5027 if (events->smi.latched_init) 5028 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5029 else 5030 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 5031 } 5032 } 5033 5034 kvm_make_request(KVM_REQ_EVENT, vcpu); 5035 5036 return 0; 5037} 5038 5039static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 5040 struct kvm_debugregs *dbgregs) 5041{ 5042 unsigned long val; 5043 5044 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 5045 kvm_get_dr(vcpu, 6, &val); 5046 dbgregs->dr6 = val; 5047 dbgregs->dr7 = vcpu->arch.dr7; 5048 dbgregs->flags = 0; 5049 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); 5050} 5051 5052static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 5053 struct kvm_debugregs *dbgregs) 5054{ 5055 if (dbgregs->flags) 5056 return -EINVAL; 5057 5058 if (!kvm_dr6_valid(dbgregs->dr6)) 5059 return -EINVAL; 5060 if (!kvm_dr7_valid(dbgregs->dr7)) 5061 return -EINVAL; 5062 5063 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 5064 kvm_update_dr0123(vcpu); 5065 vcpu->arch.dr6 = dbgregs->dr6; 5066 vcpu->arch.dr7 = dbgregs->dr7; 5067 kvm_update_dr7(vcpu); 5068 5069 return 0; 5070} 5071 5072static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 5073 struct kvm_xsave *guest_xsave) 5074{ 5075 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5076 return; 5077 5078 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, 5079 guest_xsave->region, 5080 sizeof(guest_xsave->region), 5081 vcpu->arch.pkru); 5082} 5083 5084static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu, 5085 u8 *state, unsigned int size) 5086{ 5087 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5088 return; 5089 5090 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, 5091 state, size, vcpu->arch.pkru); 5092} 5093 5094static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 5095 struct kvm_xsave *guest_xsave) 5096{ 5097 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 5098 return 0; 5099 5100 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu, 5101 guest_xsave->region, 5102 supported_xcr0, &vcpu->arch.pkru); 5103} 5104 5105static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 5106 struct kvm_xcrs *guest_xcrs) 5107{ 5108 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 5109 guest_xcrs->nr_xcrs = 0; 5110 return; 5111 } 5112 5113 guest_xcrs->nr_xcrs = 1; 5114 guest_xcrs->flags = 0; 5115 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 5116 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 5117} 5118 5119static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 5120 struct kvm_xcrs *guest_xcrs) 5121{ 5122 int i, r = 0; 5123 5124 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 5125 return -EINVAL; 5126 5127 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 5128 return -EINVAL; 5129 5130 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 5131 /* Only support XCR0 currently */ 5132 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 5133 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 5134 guest_xcrs->xcrs[i].value); 5135 break; 5136 } 5137 if (r) 5138 r = -EINVAL; 5139 return r; 5140} 5141 5142/* 5143 * kvm_set_guest_paused() indicates to the guest kernel that it has been 5144 * stopped by the hypervisor. This function will be called from the host only. 5145 * EINVAL is returned when the host attempts to set the flag for a guest that 5146 * does not support pv clocks. 5147 */ 5148static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 5149{ 5150 if (!vcpu->arch.pv_time.active) 5151 return -EINVAL; 5152 vcpu->arch.pvclock_set_guest_stopped_request = true; 5153 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5154 return 0; 5155} 5156 5157static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu, 5158 struct kvm_device_attr *attr) 5159{ 5160 int r; 5161 5162 switch (attr->attr) { 5163 case KVM_VCPU_TSC_OFFSET: 5164 r = 0; 5165 break; 5166 default: 5167 r = -ENXIO; 5168 } 5169 5170 return r; 5171} 5172 5173static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu, 5174 struct kvm_device_attr *attr) 5175{ 5176 u64 __user *uaddr = kvm_get_attr_addr(attr); 5177 int r; 5178 5179 if (IS_ERR(uaddr)) 5180 return PTR_ERR(uaddr); 5181 5182 switch (attr->attr) { 5183 case KVM_VCPU_TSC_OFFSET: 5184 r = -EFAULT; 5185 if (put_user(vcpu->arch.l1_tsc_offset, uaddr)) 5186 break; 5187 r = 0; 5188 break; 5189 default: 5190 r = -ENXIO; 5191 } 5192 5193 return r; 5194} 5195 5196static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu, 5197 struct kvm_device_attr *attr) 5198{ 5199 u64 __user *uaddr = kvm_get_attr_addr(attr); 5200 struct kvm *kvm = vcpu->kvm; 5201 int r; 5202 5203 if (IS_ERR(uaddr)) 5204 return PTR_ERR(uaddr); 5205 5206 switch (attr->attr) { 5207 case KVM_VCPU_TSC_OFFSET: { 5208 u64 offset, tsc, ns; 5209 unsigned long flags; 5210 bool matched; 5211 5212 r = -EFAULT; 5213 if (get_user(offset, uaddr)) 5214 break; 5215 5216 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 5217 5218 matched = (vcpu->arch.virtual_tsc_khz && 5219 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz && 5220 kvm->arch.last_tsc_offset == offset); 5221 5222 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset; 5223 ns = get_kvmclock_base_ns(); 5224 5225 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched); 5226 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 5227 5228 r = 0; 5229 break; 5230 } 5231 default: 5232 r = -ENXIO; 5233 } 5234 5235 return r; 5236} 5237 5238static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu, 5239 unsigned int ioctl, 5240 void __user *argp) 5241{ 5242 struct kvm_device_attr attr; 5243 int r; 5244 5245 if (copy_from_user(&attr, argp, sizeof(attr))) 5246 return -EFAULT; 5247 5248 if (attr.group != KVM_VCPU_TSC_CTRL) 5249 return -ENXIO; 5250 5251 switch (ioctl) { 5252 case KVM_HAS_DEVICE_ATTR: 5253 r = kvm_arch_tsc_has_attr(vcpu, &attr); 5254 break; 5255 case KVM_GET_DEVICE_ATTR: 5256 r = kvm_arch_tsc_get_attr(vcpu, &attr); 5257 break; 5258 case KVM_SET_DEVICE_ATTR: 5259 r = kvm_arch_tsc_set_attr(vcpu, &attr); 5260 break; 5261 } 5262 5263 return r; 5264} 5265 5266static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 5267 struct kvm_enable_cap *cap) 5268{ 5269 int r; 5270 uint16_t vmcs_version; 5271 void __user *user_ptr; 5272 5273 if (cap->flags) 5274 return -EINVAL; 5275 5276 switch (cap->cap) { 5277 case KVM_CAP_HYPERV_SYNIC2: 5278 if (cap->args[0]) 5279 return -EINVAL; 5280 fallthrough; 5281 5282 case KVM_CAP_HYPERV_SYNIC: 5283 if (!irqchip_in_kernel(vcpu->kvm)) 5284 return -EINVAL; 5285 return kvm_hv_activate_synic(vcpu, cap->cap == 5286 KVM_CAP_HYPERV_SYNIC2); 5287 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: 5288 if (!kvm_x86_ops.nested_ops->enable_evmcs) 5289 return -ENOTTY; 5290 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version); 5291 if (!r) { 5292 user_ptr = (void __user *)(uintptr_t)cap->args[0]; 5293 if (copy_to_user(user_ptr, &vmcs_version, 5294 sizeof(vmcs_version))) 5295 r = -EFAULT; 5296 } 5297 return r; 5298 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: 5299 if (!kvm_x86_ops.enable_direct_tlbflush) 5300 return -ENOTTY; 5301 5302 return static_call(kvm_x86_enable_direct_tlbflush)(vcpu); 5303 5304 case KVM_CAP_HYPERV_ENFORCE_CPUID: 5305 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]); 5306 5307 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: 5308 vcpu->arch.pv_cpuid.enforce = cap->args[0]; 5309 if (vcpu->arch.pv_cpuid.enforce) 5310 kvm_update_pv_runtime(vcpu); 5311 5312 return 0; 5313 default: 5314 return -EINVAL; 5315 } 5316} 5317 5318long kvm_arch_vcpu_ioctl(struct file *filp, 5319 unsigned int ioctl, unsigned long arg) 5320{ 5321 struct kvm_vcpu *vcpu = filp->private_data; 5322 void __user *argp = (void __user *)arg; 5323 int r; 5324 union { 5325 struct kvm_sregs2 *sregs2; 5326 struct kvm_lapic_state *lapic; 5327 struct kvm_xsave *xsave; 5328 struct kvm_xcrs *xcrs; 5329 void *buffer; 5330 } u; 5331 5332 vcpu_load(vcpu); 5333 5334 u.buffer = NULL; 5335 switch (ioctl) { 5336 case KVM_GET_LAPIC: { 5337 r = -EINVAL; 5338 if (!lapic_in_kernel(vcpu)) 5339 goto out; 5340 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), 5341 GFP_KERNEL_ACCOUNT); 5342 5343 r = -ENOMEM; 5344 if (!u.lapic) 5345 goto out; 5346 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 5347 if (r) 5348 goto out; 5349 r = -EFAULT; 5350 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 5351 goto out; 5352 r = 0; 5353 break; 5354 } 5355 case KVM_SET_LAPIC: { 5356 r = -EINVAL; 5357 if (!lapic_in_kernel(vcpu)) 5358 goto out; 5359 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 5360 if (IS_ERR(u.lapic)) { 5361 r = PTR_ERR(u.lapic); 5362 goto out_nofree; 5363 } 5364 5365 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 5366 break; 5367 } 5368 case KVM_INTERRUPT: { 5369 struct kvm_interrupt irq; 5370 5371 r = -EFAULT; 5372 if (copy_from_user(&irq, argp, sizeof(irq))) 5373 goto out; 5374 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 5375 break; 5376 } 5377 case KVM_NMI: { 5378 r = kvm_vcpu_ioctl_nmi(vcpu); 5379 break; 5380 } 5381 case KVM_SMI: { 5382 r = kvm_vcpu_ioctl_smi(vcpu); 5383 break; 5384 } 5385 case KVM_SET_CPUID: { 5386 struct kvm_cpuid __user *cpuid_arg = argp; 5387 struct kvm_cpuid cpuid; 5388 5389 r = -EFAULT; 5390 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5391 goto out; 5392 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 5393 break; 5394 } 5395 case KVM_SET_CPUID2: { 5396 struct kvm_cpuid2 __user *cpuid_arg = argp; 5397 struct kvm_cpuid2 cpuid; 5398 5399 r = -EFAULT; 5400 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5401 goto out; 5402 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 5403 cpuid_arg->entries); 5404 break; 5405 } 5406 case KVM_GET_CPUID2: { 5407 struct kvm_cpuid2 __user *cpuid_arg = argp; 5408 struct kvm_cpuid2 cpuid; 5409 5410 r = -EFAULT; 5411 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) 5412 goto out; 5413 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 5414 cpuid_arg->entries); 5415 if (r) 5416 goto out; 5417 r = -EFAULT; 5418 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) 5419 goto out; 5420 r = 0; 5421 break; 5422 } 5423 case KVM_GET_MSRS: { 5424 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5425 r = msr_io(vcpu, argp, do_get_msr, 1); 5426 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5427 break; 5428 } 5429 case KVM_SET_MSRS: { 5430 int idx = srcu_read_lock(&vcpu->kvm->srcu); 5431 r = msr_io(vcpu, argp, do_set_msr, 0); 5432 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5433 break; 5434 } 5435 case KVM_TPR_ACCESS_REPORTING: { 5436 struct kvm_tpr_access_ctl tac; 5437 5438 r = -EFAULT; 5439 if (copy_from_user(&tac, argp, sizeof(tac))) 5440 goto out; 5441 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 5442 if (r) 5443 goto out; 5444 r = -EFAULT; 5445 if (copy_to_user(argp, &tac, sizeof(tac))) 5446 goto out; 5447 r = 0; 5448 break; 5449 }; 5450 case KVM_SET_VAPIC_ADDR: { 5451 struct kvm_vapic_addr va; 5452 int idx; 5453 5454 r = -EINVAL; 5455 if (!lapic_in_kernel(vcpu)) 5456 goto out; 5457 r = -EFAULT; 5458 if (copy_from_user(&va, argp, sizeof(va))) 5459 goto out; 5460 idx = srcu_read_lock(&vcpu->kvm->srcu); 5461 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 5462 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5463 break; 5464 } 5465 case KVM_X86_SETUP_MCE: { 5466 u64 mcg_cap; 5467 5468 r = -EFAULT; 5469 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) 5470 goto out; 5471 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 5472 break; 5473 } 5474 case KVM_X86_SET_MCE: { 5475 struct kvm_x86_mce mce; 5476 5477 r = -EFAULT; 5478 if (copy_from_user(&mce, argp, sizeof(mce))) 5479 goto out; 5480 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 5481 break; 5482 } 5483 case KVM_GET_VCPU_EVENTS: { 5484 struct kvm_vcpu_events events; 5485 5486 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 5487 5488 r = -EFAULT; 5489 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 5490 break; 5491 r = 0; 5492 break; 5493 } 5494 case KVM_SET_VCPU_EVENTS: { 5495 struct kvm_vcpu_events events; 5496 5497 r = -EFAULT; 5498 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 5499 break; 5500 5501 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 5502 break; 5503 } 5504 case KVM_GET_DEBUGREGS: { 5505 struct kvm_debugregs dbgregs; 5506 5507 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 5508 5509 r = -EFAULT; 5510 if (copy_to_user(argp, &dbgregs, 5511 sizeof(struct kvm_debugregs))) 5512 break; 5513 r = 0; 5514 break; 5515 } 5516 case KVM_SET_DEBUGREGS: { 5517 struct kvm_debugregs dbgregs; 5518 5519 r = -EFAULT; 5520 if (copy_from_user(&dbgregs, argp, 5521 sizeof(struct kvm_debugregs))) 5522 break; 5523 5524 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 5525 break; 5526 } 5527 case KVM_GET_XSAVE: { 5528 r = -EINVAL; 5529 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave)) 5530 break; 5531 5532 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT); 5533 r = -ENOMEM; 5534 if (!u.xsave) 5535 break; 5536 5537 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 5538 5539 r = -EFAULT; 5540 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 5541 break; 5542 r = 0; 5543 break; 5544 } 5545 case KVM_SET_XSAVE: { 5546 int size = vcpu->arch.guest_fpu.uabi_size; 5547 5548 u.xsave = memdup_user(argp, size); 5549 if (IS_ERR(u.xsave)) { 5550 r = PTR_ERR(u.xsave); 5551 goto out_nofree; 5552 } 5553 5554 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 5555 break; 5556 } 5557 5558 case KVM_GET_XSAVE2: { 5559 int size = vcpu->arch.guest_fpu.uabi_size; 5560 5561 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT); 5562 r = -ENOMEM; 5563 if (!u.xsave) 5564 break; 5565 5566 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size); 5567 5568 r = -EFAULT; 5569 if (copy_to_user(argp, u.xsave, size)) 5570 break; 5571 5572 r = 0; 5573 break; 5574 } 5575 5576 case KVM_GET_XCRS: { 5577 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT); 5578 r = -ENOMEM; 5579 if (!u.xcrs) 5580 break; 5581 5582 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 5583 5584 r = -EFAULT; 5585 if (copy_to_user(argp, u.xcrs, 5586 sizeof(struct kvm_xcrs))) 5587 break; 5588 r = 0; 5589 break; 5590 } 5591 case KVM_SET_XCRS: { 5592 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 5593 if (IS_ERR(u.xcrs)) { 5594 r = PTR_ERR(u.xcrs); 5595 goto out_nofree; 5596 } 5597 5598 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 5599 break; 5600 } 5601 case KVM_SET_TSC_KHZ: { 5602 u32 user_tsc_khz; 5603 5604 r = -EINVAL; 5605 user_tsc_khz = (u32)arg; 5606 5607 if (kvm_has_tsc_control && 5608 user_tsc_khz >= kvm_max_guest_tsc_khz) 5609 goto out; 5610 5611 if (user_tsc_khz == 0) 5612 user_tsc_khz = tsc_khz; 5613 5614 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 5615 r = 0; 5616 5617 goto out; 5618 } 5619 case KVM_GET_TSC_KHZ: { 5620 r = vcpu->arch.virtual_tsc_khz; 5621 goto out; 5622 } 5623 case KVM_KVMCLOCK_CTRL: { 5624 r = kvm_set_guest_paused(vcpu); 5625 goto out; 5626 } 5627 case KVM_ENABLE_CAP: { 5628 struct kvm_enable_cap cap; 5629 5630 r = -EFAULT; 5631 if (copy_from_user(&cap, argp, sizeof(cap))) 5632 goto out; 5633 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 5634 break; 5635 } 5636 case KVM_GET_NESTED_STATE: { 5637 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5638 u32 user_data_size; 5639 5640 r = -EINVAL; 5641 if (!kvm_x86_ops.nested_ops->get_state) 5642 break; 5643 5644 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); 5645 r = -EFAULT; 5646 if (get_user(user_data_size, &user_kvm_nested_state->size)) 5647 break; 5648 5649 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state, 5650 user_data_size); 5651 if (r < 0) 5652 break; 5653 5654 if (r > user_data_size) { 5655 if (put_user(r, &user_kvm_nested_state->size)) 5656 r = -EFAULT; 5657 else 5658 r = -E2BIG; 5659 break; 5660 } 5661 5662 r = 0; 5663 break; 5664 } 5665 case KVM_SET_NESTED_STATE: { 5666 struct kvm_nested_state __user *user_kvm_nested_state = argp; 5667 struct kvm_nested_state kvm_state; 5668 int idx; 5669 5670 r = -EINVAL; 5671 if (!kvm_x86_ops.nested_ops->set_state) 5672 break; 5673 5674 r = -EFAULT; 5675 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) 5676 break; 5677 5678 r = -EINVAL; 5679 if (kvm_state.size < sizeof(kvm_state)) 5680 break; 5681 5682 if (kvm_state.flags & 5683 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE 5684 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING 5685 | KVM_STATE_NESTED_GIF_SET)) 5686 break; 5687 5688 /* nested_run_pending implies guest_mode. */ 5689 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) 5690 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) 5691 break; 5692 5693 idx = srcu_read_lock(&vcpu->kvm->srcu); 5694 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state); 5695 srcu_read_unlock(&vcpu->kvm->srcu, idx); 5696 break; 5697 } 5698 case KVM_GET_SUPPORTED_HV_CPUID: 5699 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp); 5700 break; 5701#ifdef CONFIG_KVM_XEN 5702 case KVM_XEN_VCPU_GET_ATTR: { 5703 struct kvm_xen_vcpu_attr xva; 5704 5705 r = -EFAULT; 5706 if (copy_from_user(&xva, argp, sizeof(xva))) 5707 goto out; 5708 r = kvm_xen_vcpu_get_attr(vcpu, &xva); 5709 if (!r && copy_to_user(argp, &xva, sizeof(xva))) 5710 r = -EFAULT; 5711 break; 5712 } 5713 case KVM_XEN_VCPU_SET_ATTR: { 5714 struct kvm_xen_vcpu_attr xva; 5715 5716 r = -EFAULT; 5717 if (copy_from_user(&xva, argp, sizeof(xva))) 5718 goto out; 5719 r = kvm_xen_vcpu_set_attr(vcpu, &xva); 5720 break; 5721 } 5722#endif 5723 case KVM_GET_SREGS2: { 5724 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL); 5725 r = -ENOMEM; 5726 if (!u.sregs2) 5727 goto out; 5728 __get_sregs2(vcpu, u.sregs2); 5729 r = -EFAULT; 5730 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2))) 5731 goto out; 5732 r = 0; 5733 break; 5734 } 5735 case KVM_SET_SREGS2: { 5736 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2)); 5737 if (IS_ERR(u.sregs2)) { 5738 r = PTR_ERR(u.sregs2); 5739 u.sregs2 = NULL; 5740 goto out; 5741 } 5742 r = __set_sregs2(vcpu, u.sregs2); 5743 break; 5744 } 5745 case KVM_HAS_DEVICE_ATTR: 5746 case KVM_GET_DEVICE_ATTR: 5747 case KVM_SET_DEVICE_ATTR: 5748 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp); 5749 break; 5750 default: 5751 r = -EINVAL; 5752 } 5753out: 5754 kfree(u.buffer); 5755out_nofree: 5756 vcpu_put(vcpu); 5757 return r; 5758} 5759 5760vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 5761{ 5762 return VM_FAULT_SIGBUS; 5763} 5764 5765static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 5766{ 5767 int ret; 5768 5769 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 5770 return -EINVAL; 5771 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr); 5772 return ret; 5773} 5774 5775static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 5776 u64 ident_addr) 5777{ 5778 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr); 5779} 5780 5781static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 5782 unsigned long kvm_nr_mmu_pages) 5783{ 5784 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 5785 return -EINVAL; 5786 5787 mutex_lock(&kvm->slots_lock); 5788 5789 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 5790 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 5791 5792 mutex_unlock(&kvm->slots_lock); 5793 return 0; 5794} 5795 5796static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) 5797{ 5798 return kvm->arch.n_max_mmu_pages; 5799} 5800 5801static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 5802{ 5803 struct kvm_pic *pic = kvm->arch.vpic; 5804 int r; 5805 5806 r = 0; 5807 switch (chip->chip_id) { 5808 case KVM_IRQCHIP_PIC_MASTER: 5809 memcpy(&chip->chip.pic, &pic->pics[0], 5810 sizeof(struct kvm_pic_state)); 5811 break; 5812 case KVM_IRQCHIP_PIC_SLAVE: 5813 memcpy(&chip->chip.pic, &pic->pics[1], 5814 sizeof(struct kvm_pic_state)); 5815 break; 5816 case KVM_IRQCHIP_IOAPIC: 5817 kvm_get_ioapic(kvm, &chip->chip.ioapic); 5818 break; 5819 default: 5820 r = -EINVAL; 5821 break; 5822 } 5823 return r; 5824} 5825 5826static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 5827{ 5828 struct kvm_pic *pic = kvm->arch.vpic; 5829 int r; 5830 5831 r = 0; 5832 switch (chip->chip_id) { 5833 case KVM_IRQCHIP_PIC_MASTER: 5834 spin_lock(&pic->lock); 5835 memcpy(&pic->pics[0], &chip->chip.pic, 5836 sizeof(struct kvm_pic_state)); 5837 spin_unlock(&pic->lock); 5838 break; 5839 case KVM_IRQCHIP_PIC_SLAVE: 5840 spin_lock(&pic->lock); 5841 memcpy(&pic->pics[1], &chip->chip.pic, 5842 sizeof(struct kvm_pic_state)); 5843 spin_unlock(&pic->lock); 5844 break; 5845 case KVM_IRQCHIP_IOAPIC: 5846 kvm_set_ioapic(kvm, &chip->chip.ioapic); 5847 break; 5848 default: 5849 r = -EINVAL; 5850 break; 5851 } 5852 kvm_pic_update_irq(pic); 5853 return r; 5854} 5855 5856static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 5857{ 5858 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 5859 5860 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 5861 5862 mutex_lock(&kps->lock); 5863 memcpy(ps, &kps->channels, sizeof(*ps)); 5864 mutex_unlock(&kps->lock); 5865 return 0; 5866} 5867 5868static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 5869{ 5870 int i; 5871 struct kvm_pit *pit = kvm->arch.vpit; 5872 5873 mutex_lock(&pit->pit_state.lock); 5874 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 5875 for (i = 0; i < 3; i++) 5876 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 5877 mutex_unlock(&pit->pit_state.lock); 5878 return 0; 5879} 5880 5881static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 5882{ 5883 mutex_lock(&kvm->arch.vpit->pit_state.lock); 5884 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 5885 sizeof(ps->channels)); 5886 ps->flags = kvm->arch.vpit->pit_state.flags; 5887 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 5888 memset(&ps->reserved, 0, sizeof(ps->reserved)); 5889 return 0; 5890} 5891 5892static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 5893{ 5894 int start = 0; 5895 int i; 5896 u32 prev_legacy, cur_legacy; 5897 struct kvm_pit *pit = kvm->arch.vpit; 5898 5899 mutex_lock(&pit->pit_state.lock); 5900 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 5901 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 5902 if (!prev_legacy && cur_legacy) 5903 start = 1; 5904 memcpy(&pit->pit_state.channels, &ps->channels, 5905 sizeof(pit->pit_state.channels)); 5906 pit->pit_state.flags = ps->flags; 5907 for (i = 0; i < 3; i++) 5908 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 5909 start && i == 0); 5910 mutex_unlock(&pit->pit_state.lock); 5911 return 0; 5912} 5913 5914static int kvm_vm_ioctl_reinject(struct kvm *kvm, 5915 struct kvm_reinject_control *control) 5916{ 5917 struct kvm_pit *pit = kvm->arch.vpit; 5918 5919 /* pit->pit_state.lock was overloaded to prevent userspace from getting 5920 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 5921 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 5922 */ 5923 mutex_lock(&pit->pit_state.lock); 5924 kvm_pit_set_reinject(pit, control->pit_reinject); 5925 mutex_unlock(&pit->pit_state.lock); 5926 5927 return 0; 5928} 5929 5930void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) 5931{ 5932 5933 /* 5934 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called 5935 * before reporting dirty_bitmap to userspace. KVM flushes the buffers 5936 * on all VM-Exits, thus we only need to kick running vCPUs to force a 5937 * VM-Exit. 5938 */ 5939 struct kvm_vcpu *vcpu; 5940 unsigned long i; 5941 5942 kvm_for_each_vcpu(i, vcpu, kvm) 5943 kvm_vcpu_kick(vcpu); 5944} 5945 5946int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 5947 bool line_status) 5948{ 5949 if (!irqchip_in_kernel(kvm)) 5950 return -ENXIO; 5951 5952 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 5953 irq_event->irq, irq_event->level, 5954 line_status); 5955 return 0; 5956} 5957 5958int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 5959 struct kvm_enable_cap *cap) 5960{ 5961 int r; 5962 5963 if (cap->flags) 5964 return -EINVAL; 5965 5966 switch (cap->cap) { 5967 case KVM_CAP_DISABLE_QUIRKS2: 5968 r = -EINVAL; 5969 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS) 5970 break; 5971 fallthrough; 5972 case KVM_CAP_DISABLE_QUIRKS: 5973 kvm->arch.disabled_quirks = cap->args[0]; 5974 r = 0; 5975 break; 5976 case KVM_CAP_SPLIT_IRQCHIP: { 5977 mutex_lock(&kvm->lock); 5978 r = -EINVAL; 5979 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 5980 goto split_irqchip_unlock; 5981 r = -EEXIST; 5982 if (irqchip_in_kernel(kvm)) 5983 goto split_irqchip_unlock; 5984 if (kvm->created_vcpus) 5985 goto split_irqchip_unlock; 5986 r = kvm_setup_empty_irq_routing(kvm); 5987 if (r) 5988 goto split_irqchip_unlock; 5989 /* Pairs with irqchip_in_kernel. */ 5990 smp_wmb(); 5991 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 5992 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 5993 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 5994 r = 0; 5995split_irqchip_unlock: 5996 mutex_unlock(&kvm->lock); 5997 break; 5998 } 5999 case KVM_CAP_X2APIC_API: 6000 r = -EINVAL; 6001 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 6002 break; 6003 6004 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 6005 kvm->arch.x2apic_format = true; 6006 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 6007 kvm->arch.x2apic_broadcast_quirk_disabled = true; 6008 6009 r = 0; 6010 break; 6011 case KVM_CAP_X86_DISABLE_EXITS: 6012 r = -EINVAL; 6013 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS) 6014 break; 6015 6016 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) && 6017 kvm_can_mwait_in_guest()) 6018 kvm->arch.mwait_in_guest = true; 6019 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) 6020 kvm->arch.hlt_in_guest = true; 6021 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) 6022 kvm->arch.pause_in_guest = true; 6023 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE) 6024 kvm->arch.cstate_in_guest = true; 6025 r = 0; 6026 break; 6027 case KVM_CAP_MSR_PLATFORM_INFO: 6028 kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; 6029 r = 0; 6030 break; 6031 case KVM_CAP_EXCEPTION_PAYLOAD: 6032 kvm->arch.exception_payload_enabled = cap->args[0]; 6033 r = 0; 6034 break; 6035 case KVM_CAP_X86_USER_SPACE_MSR: 6036 kvm->arch.user_space_msr_mask = cap->args[0]; 6037 r = 0; 6038 break; 6039 case KVM_CAP_X86_BUS_LOCK_EXIT: 6040 r = -EINVAL; 6041 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE) 6042 break; 6043 6044 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) && 6045 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)) 6046 break; 6047 6048 if (kvm_has_bus_lock_exit && 6049 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT) 6050 kvm->arch.bus_lock_detection_enabled = true; 6051 r = 0; 6052 break; 6053#ifdef CONFIG_X86_SGX_KVM 6054 case KVM_CAP_SGX_ATTRIBUTE: { 6055 unsigned long allowed_attributes = 0; 6056 6057 r = sgx_set_attribute(&allowed_attributes, cap->args[0]); 6058 if (r) 6059 break; 6060 6061 /* KVM only supports the PROVISIONKEY privileged attribute. */ 6062 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) && 6063 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY)) 6064 kvm->arch.sgx_provisioning_allowed = true; 6065 else 6066 r = -EINVAL; 6067 break; 6068 } 6069#endif 6070 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: 6071 r = -EINVAL; 6072 if (!kvm_x86_ops.vm_copy_enc_context_from) 6073 break; 6074 6075 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]); 6076 break; 6077 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: 6078 r = -EINVAL; 6079 if (!kvm_x86_ops.vm_move_enc_context_from) 6080 break; 6081 6082 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]); 6083 break; 6084 case KVM_CAP_EXIT_HYPERCALL: 6085 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) { 6086 r = -EINVAL; 6087 break; 6088 } 6089 kvm->arch.hypercall_exit_enabled = cap->args[0]; 6090 r = 0; 6091 break; 6092 case KVM_CAP_EXIT_ON_EMULATION_FAILURE: 6093 r = -EINVAL; 6094 if (cap->args[0] & ~1) 6095 break; 6096 kvm->arch.exit_on_emulation_error = cap->args[0]; 6097 r = 0; 6098 break; 6099 case KVM_CAP_PMU_CAPABILITY: 6100 r = -EINVAL; 6101 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK)) 6102 break; 6103 6104 mutex_lock(&kvm->lock); 6105 if (!kvm->created_vcpus) { 6106 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE); 6107 r = 0; 6108 } 6109 mutex_unlock(&kvm->lock); 6110 break; 6111 default: 6112 r = -EINVAL; 6113 break; 6114 } 6115 return r; 6116} 6117 6118static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow) 6119{ 6120 struct kvm_x86_msr_filter *msr_filter; 6121 6122 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT); 6123 if (!msr_filter) 6124 return NULL; 6125 6126 msr_filter->default_allow = default_allow; 6127 return msr_filter; 6128} 6129 6130static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter) 6131{ 6132 u32 i; 6133 6134 if (!msr_filter) 6135 return; 6136 6137 for (i = 0; i < msr_filter->count; i++) 6138 kfree(msr_filter->ranges[i].bitmap); 6139 6140 kfree(msr_filter); 6141} 6142 6143static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter, 6144 struct kvm_msr_filter_range *user_range) 6145{ 6146 unsigned long *bitmap = NULL; 6147 size_t bitmap_size; 6148 6149 if (!user_range->nmsrs) 6150 return 0; 6151 6152 if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE)) 6153 return -EINVAL; 6154 6155 if (!user_range->flags) 6156 return -EINVAL; 6157 6158 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long); 6159 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE) 6160 return -EINVAL; 6161 6162 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size); 6163 if (IS_ERR(bitmap)) 6164 return PTR_ERR(bitmap); 6165 6166 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) { 6167 .flags = user_range->flags, 6168 .base = user_range->base, 6169 .nmsrs = user_range->nmsrs, 6170 .bitmap = bitmap, 6171 }; 6172 6173 msr_filter->count++; 6174 return 0; 6175} 6176 6177static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp) 6178{ 6179 struct kvm_msr_filter __user *user_msr_filter = argp; 6180 struct kvm_x86_msr_filter *new_filter, *old_filter; 6181 struct kvm_msr_filter filter; 6182 bool default_allow; 6183 bool empty = true; 6184 int r = 0; 6185 u32 i; 6186 6187 if (copy_from_user(&filter, user_msr_filter, sizeof(filter))) 6188 return -EFAULT; 6189 6190 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) 6191 empty &= !filter.ranges[i].nmsrs; 6192 6193 default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY); 6194 if (empty && !default_allow) 6195 return -EINVAL; 6196 6197 new_filter = kvm_alloc_msr_filter(default_allow); 6198 if (!new_filter) 6199 return -ENOMEM; 6200 6201 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) { 6202 r = kvm_add_msr_filter(new_filter, &filter.ranges[i]); 6203 if (r) { 6204 kvm_free_msr_filter(new_filter); 6205 return r; 6206 } 6207 } 6208 6209 mutex_lock(&kvm->lock); 6210 6211 /* The per-VM filter is protected by kvm->lock... */ 6212 old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1); 6213 6214 rcu_assign_pointer(kvm->arch.msr_filter, new_filter); 6215 synchronize_srcu(&kvm->srcu); 6216 6217 kvm_free_msr_filter(old_filter); 6218 6219 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED); 6220 mutex_unlock(&kvm->lock); 6221 6222 return 0; 6223} 6224 6225#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 6226static int kvm_arch_suspend_notifier(struct kvm *kvm) 6227{ 6228 struct kvm_vcpu *vcpu; 6229 unsigned long i; 6230 int ret = 0; 6231 6232 mutex_lock(&kvm->lock); 6233 kvm_for_each_vcpu(i, vcpu, kvm) { 6234 if (!vcpu->arch.pv_time.active) 6235 continue; 6236 6237 ret = kvm_set_guest_paused(vcpu); 6238 if (ret) { 6239 kvm_err("Failed to pause guest VCPU%d: %d\n", 6240 vcpu->vcpu_id, ret); 6241 break; 6242 } 6243 } 6244 mutex_unlock(&kvm->lock); 6245 6246 return ret ? NOTIFY_BAD : NOTIFY_DONE; 6247} 6248 6249int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state) 6250{ 6251 switch (state) { 6252 case PM_HIBERNATION_PREPARE: 6253 case PM_SUSPEND_PREPARE: 6254 return kvm_arch_suspend_notifier(kvm); 6255 } 6256 6257 return NOTIFY_DONE; 6258} 6259#endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ 6260 6261static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp) 6262{ 6263 struct kvm_clock_data data = { 0 }; 6264 6265 get_kvmclock(kvm, &data); 6266 if (copy_to_user(argp, &data, sizeof(data))) 6267 return -EFAULT; 6268 6269 return 0; 6270} 6271 6272static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp) 6273{ 6274 struct kvm_arch *ka = &kvm->arch; 6275 struct kvm_clock_data data; 6276 u64 now_raw_ns; 6277 6278 if (copy_from_user(&data, argp, sizeof(data))) 6279 return -EFAULT; 6280 6281 /* 6282 * Only KVM_CLOCK_REALTIME is used, but allow passing the 6283 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK. 6284 */ 6285 if (data.flags & ~KVM_CLOCK_VALID_FLAGS) 6286 return -EINVAL; 6287 6288 kvm_hv_request_tsc_page_update(kvm); 6289 kvm_start_pvclock_update(kvm); 6290 pvclock_update_vm_gtod_copy(kvm); 6291 6292 /* 6293 * This pairs with kvm_guest_time_update(): when masterclock is 6294 * in use, we use master_kernel_ns + kvmclock_offset to set 6295 * unsigned 'system_time' so if we use get_kvmclock_ns() (which 6296 * is slightly ahead) here we risk going negative on unsigned 6297 * 'system_time' when 'data.clock' is very small. 6298 */ 6299 if (data.flags & KVM_CLOCK_REALTIME) { 6300 u64 now_real_ns = ktime_get_real_ns(); 6301 6302 /* 6303 * Avoid stepping the kvmclock backwards. 6304 */ 6305 if (now_real_ns > data.realtime) 6306 data.clock += now_real_ns - data.realtime; 6307 } 6308 6309 if (ka->use_master_clock) 6310 now_raw_ns = ka->master_kernel_ns; 6311 else 6312 now_raw_ns = get_kvmclock_base_ns(); 6313 ka->kvmclock_offset = data.clock - now_raw_ns; 6314 kvm_end_pvclock_update(kvm); 6315 return 0; 6316} 6317 6318long kvm_arch_vm_ioctl(struct file *filp, 6319 unsigned int ioctl, unsigned long arg) 6320{ 6321 struct kvm *kvm = filp->private_data; 6322 void __user *argp = (void __user *)arg; 6323 int r = -ENOTTY; 6324 /* 6325 * This union makes it completely explicit to gcc-3.x 6326 * that these two variables' stack usage should be 6327 * combined, not added together. 6328 */ 6329 union { 6330 struct kvm_pit_state ps; 6331 struct kvm_pit_state2 ps2; 6332 struct kvm_pit_config pit_config; 6333 } u; 6334 6335 switch (ioctl) { 6336 case KVM_SET_TSS_ADDR: 6337 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 6338 break; 6339 case KVM_SET_IDENTITY_MAP_ADDR: { 6340 u64 ident_addr; 6341 6342 mutex_lock(&kvm->lock); 6343 r = -EINVAL; 6344 if (kvm->created_vcpus) 6345 goto set_identity_unlock; 6346 r = -EFAULT; 6347 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) 6348 goto set_identity_unlock; 6349 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 6350set_identity_unlock: 6351 mutex_unlock(&kvm->lock); 6352 break; 6353 } 6354 case KVM_SET_NR_MMU_PAGES: 6355 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 6356 break; 6357 case KVM_GET_NR_MMU_PAGES: 6358 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); 6359 break; 6360 case KVM_CREATE_IRQCHIP: { 6361 mutex_lock(&kvm->lock); 6362 6363 r = -EEXIST; 6364 if (irqchip_in_kernel(kvm)) 6365 goto create_irqchip_unlock; 6366 6367 r = -EINVAL; 6368 if (kvm->created_vcpus) 6369 goto create_irqchip_unlock; 6370 6371 r = kvm_pic_init(kvm); 6372 if (r) 6373 goto create_irqchip_unlock; 6374 6375 r = kvm_ioapic_init(kvm); 6376 if (r) { 6377 kvm_pic_destroy(kvm); 6378 goto create_irqchip_unlock; 6379 } 6380 6381 r = kvm_setup_default_irq_routing(kvm); 6382 if (r) { 6383 kvm_ioapic_destroy(kvm); 6384 kvm_pic_destroy(kvm); 6385 goto create_irqchip_unlock; 6386 } 6387 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 6388 smp_wmb(); 6389 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 6390 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); 6391 create_irqchip_unlock: 6392 mutex_unlock(&kvm->lock); 6393 break; 6394 } 6395 case KVM_CREATE_PIT: 6396 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 6397 goto create_pit; 6398 case KVM_CREATE_PIT2: 6399 r = -EFAULT; 6400 if (copy_from_user(&u.pit_config, argp, 6401 sizeof(struct kvm_pit_config))) 6402 goto out; 6403 create_pit: 6404 mutex_lock(&kvm->lock); 6405 r = -EEXIST; 6406 if (kvm->arch.vpit) 6407 goto create_pit_unlock; 6408 r = -ENOMEM; 6409 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 6410 if (kvm->arch.vpit) 6411 r = 0; 6412 create_pit_unlock: 6413 mutex_unlock(&kvm->lock); 6414 break; 6415 case KVM_GET_IRQCHIP: { 6416 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 6417 struct kvm_irqchip *chip; 6418 6419 chip = memdup_user(argp, sizeof(*chip)); 6420 if (IS_ERR(chip)) { 6421 r = PTR_ERR(chip); 6422 goto out; 6423 } 6424 6425 r = -ENXIO; 6426 if (!irqchip_kernel(kvm)) 6427 goto get_irqchip_out; 6428 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 6429 if (r) 6430 goto get_irqchip_out; 6431 r = -EFAULT; 6432 if (copy_to_user(argp, chip, sizeof(*chip))) 6433 goto get_irqchip_out; 6434 r = 0; 6435 get_irqchip_out: 6436 kfree(chip); 6437 break; 6438 } 6439 case KVM_SET_IRQCHIP: { 6440 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 6441 struct kvm_irqchip *chip; 6442 6443 chip = memdup_user(argp, sizeof(*chip)); 6444 if (IS_ERR(chip)) { 6445 r = PTR_ERR(chip); 6446 goto out; 6447 } 6448 6449 r = -ENXIO; 6450 if (!irqchip_kernel(kvm)) 6451 goto set_irqchip_out; 6452 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 6453 set_irqchip_out: 6454 kfree(chip); 6455 break; 6456 } 6457 case KVM_GET_PIT: { 6458 r = -EFAULT; 6459 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 6460 goto out; 6461 r = -ENXIO; 6462 if (!kvm->arch.vpit) 6463 goto out; 6464 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 6465 if (r) 6466 goto out; 6467 r = -EFAULT; 6468 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 6469 goto out; 6470 r = 0; 6471 break; 6472 } 6473 case KVM_SET_PIT: { 6474 r = -EFAULT; 6475 if (copy_from_user(&u.ps, argp, sizeof(u.ps))) 6476 goto out; 6477 mutex_lock(&kvm->lock); 6478 r = -ENXIO; 6479 if (!kvm->arch.vpit) 6480 goto set_pit_out; 6481 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 6482set_pit_out: 6483 mutex_unlock(&kvm->lock); 6484 break; 6485 } 6486 case KVM_GET_PIT2: { 6487 r = -ENXIO; 6488 if (!kvm->arch.vpit) 6489 goto out; 6490 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 6491 if (r) 6492 goto out; 6493 r = -EFAULT; 6494 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 6495 goto out; 6496 r = 0; 6497 break; 6498 } 6499 case KVM_SET_PIT2: { 6500 r = -EFAULT; 6501 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 6502 goto out; 6503 mutex_lock(&kvm->lock); 6504 r = -ENXIO; 6505 if (!kvm->arch.vpit) 6506 goto set_pit2_out; 6507 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 6508set_pit2_out: 6509 mutex_unlock(&kvm->lock); 6510 break; 6511 } 6512 case KVM_REINJECT_CONTROL: { 6513 struct kvm_reinject_control control; 6514 r = -EFAULT; 6515 if (copy_from_user(&control, argp, sizeof(control))) 6516 goto out; 6517 r = -ENXIO; 6518 if (!kvm->arch.vpit) 6519 goto out; 6520 r = kvm_vm_ioctl_reinject(kvm, &control); 6521 break; 6522 } 6523 case KVM_SET_BOOT_CPU_ID: 6524 r = 0; 6525 mutex_lock(&kvm->lock); 6526 if (kvm->created_vcpus) 6527 r = -EBUSY; 6528 else 6529 kvm->arch.bsp_vcpu_id = arg; 6530 mutex_unlock(&kvm->lock); 6531 break; 6532#ifdef CONFIG_KVM_XEN 6533 case KVM_XEN_HVM_CONFIG: { 6534 struct kvm_xen_hvm_config xhc; 6535 r = -EFAULT; 6536 if (copy_from_user(&xhc, argp, sizeof(xhc))) 6537 goto out; 6538 r = kvm_xen_hvm_config(kvm, &xhc); 6539 break; 6540 } 6541 case KVM_XEN_HVM_GET_ATTR: { 6542 struct kvm_xen_hvm_attr xha; 6543 6544 r = -EFAULT; 6545 if (copy_from_user(&xha, argp, sizeof(xha))) 6546 goto out; 6547 r = kvm_xen_hvm_get_attr(kvm, &xha); 6548 if (!r && copy_to_user(argp, &xha, sizeof(xha))) 6549 r = -EFAULT; 6550 break; 6551 } 6552 case KVM_XEN_HVM_SET_ATTR: { 6553 struct kvm_xen_hvm_attr xha; 6554 6555 r = -EFAULT; 6556 if (copy_from_user(&xha, argp, sizeof(xha))) 6557 goto out; 6558 r = kvm_xen_hvm_set_attr(kvm, &xha); 6559 break; 6560 } 6561 case KVM_XEN_HVM_EVTCHN_SEND: { 6562 struct kvm_irq_routing_xen_evtchn uxe; 6563 6564 r = -EFAULT; 6565 if (copy_from_user(&uxe, argp, sizeof(uxe))) 6566 goto out; 6567 r = kvm_xen_hvm_evtchn_send(kvm, &uxe); 6568 break; 6569 } 6570#endif 6571 case KVM_SET_CLOCK: 6572 r = kvm_vm_ioctl_set_clock(kvm, argp); 6573 break; 6574 case KVM_GET_CLOCK: 6575 r = kvm_vm_ioctl_get_clock(kvm, argp); 6576 break; 6577 case KVM_SET_TSC_KHZ: { 6578 u32 user_tsc_khz; 6579 6580 r = -EINVAL; 6581 user_tsc_khz = (u32)arg; 6582 6583 if (kvm_has_tsc_control && 6584 user_tsc_khz >= kvm_max_guest_tsc_khz) 6585 goto out; 6586 6587 if (user_tsc_khz == 0) 6588 user_tsc_khz = tsc_khz; 6589 6590 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz); 6591 r = 0; 6592 6593 goto out; 6594 } 6595 case KVM_GET_TSC_KHZ: { 6596 r = READ_ONCE(kvm->arch.default_tsc_khz); 6597 goto out; 6598 } 6599 case KVM_MEMORY_ENCRYPT_OP: { 6600 r = -ENOTTY; 6601 if (!kvm_x86_ops.mem_enc_ioctl) 6602 goto out; 6603 6604 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp); 6605 break; 6606 } 6607 case KVM_MEMORY_ENCRYPT_REG_REGION: { 6608 struct kvm_enc_region region; 6609 6610 r = -EFAULT; 6611 if (copy_from_user(®ion, argp, sizeof(region))) 6612 goto out; 6613 6614 r = -ENOTTY; 6615 if (!kvm_x86_ops.mem_enc_register_region) 6616 goto out; 6617 6618 r = static_call(kvm_x86_mem_enc_register_region)(kvm, ®ion); 6619 break; 6620 } 6621 case KVM_MEMORY_ENCRYPT_UNREG_REGION: { 6622 struct kvm_enc_region region; 6623 6624 r = -EFAULT; 6625 if (copy_from_user(®ion, argp, sizeof(region))) 6626 goto out; 6627 6628 r = -ENOTTY; 6629 if (!kvm_x86_ops.mem_enc_unregister_region) 6630 goto out; 6631 6632 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, ®ion); 6633 break; 6634 } 6635 case KVM_HYPERV_EVENTFD: { 6636 struct kvm_hyperv_eventfd hvevfd; 6637 6638 r = -EFAULT; 6639 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) 6640 goto out; 6641 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); 6642 break; 6643 } 6644 case KVM_SET_PMU_EVENT_FILTER: 6645 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); 6646 break; 6647 case KVM_X86_SET_MSR_FILTER: 6648 r = kvm_vm_ioctl_set_msr_filter(kvm, argp); 6649 break; 6650 default: 6651 r = -ENOTTY; 6652 } 6653out: 6654 return r; 6655} 6656 6657static void kvm_init_msr_list(void) 6658{ 6659 struct x86_pmu_capability x86_pmu; 6660 u32 dummy[2]; 6661 unsigned i; 6662 6663 BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3, 6664 "Please update the fixed PMCs in msrs_to_saved_all[]"); 6665 6666 perf_get_x86_pmu_capability(&x86_pmu); 6667 6668 num_msrs_to_save = 0; 6669 num_emulated_msrs = 0; 6670 num_msr_based_features = 0; 6671 6672 for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) { 6673 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0) 6674 continue; 6675 6676 /* 6677 * Even MSRs that are valid in the host may not be exposed 6678 * to the guests in some cases. 6679 */ 6680 switch (msrs_to_save_all[i]) { 6681 case MSR_IA32_BNDCFGS: 6682 if (!kvm_mpx_supported()) 6683 continue; 6684 break; 6685 case MSR_TSC_AUX: 6686 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) && 6687 !kvm_cpu_cap_has(X86_FEATURE_RDPID)) 6688 continue; 6689 break; 6690 case MSR_IA32_UMWAIT_CONTROL: 6691 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG)) 6692 continue; 6693 break; 6694 case MSR_IA32_RTIT_CTL: 6695 case MSR_IA32_RTIT_STATUS: 6696 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) 6697 continue; 6698 break; 6699 case MSR_IA32_RTIT_CR3_MATCH: 6700 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 6701 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) 6702 continue; 6703 break; 6704 case MSR_IA32_RTIT_OUTPUT_BASE: 6705 case MSR_IA32_RTIT_OUTPUT_MASK: 6706 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 6707 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && 6708 !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) 6709 continue; 6710 break; 6711 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 6712 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || 6713 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >= 6714 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2) 6715 continue; 6716 break; 6717 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17: 6718 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >= 6719 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp)) 6720 continue; 6721 break; 6722 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17: 6723 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >= 6724 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp)) 6725 continue; 6726 break; 6727 case MSR_IA32_XFD: 6728 case MSR_IA32_XFD_ERR: 6729 if (!kvm_cpu_cap_has(X86_FEATURE_XFD)) 6730 continue; 6731 break; 6732 default: 6733 break; 6734 } 6735 6736 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i]; 6737 } 6738 6739 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) { 6740 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i])) 6741 continue; 6742 6743 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i]; 6744 } 6745 6746 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) { 6747 struct kvm_msr_entry msr; 6748 6749 msr.index = msr_based_features_all[i]; 6750 if (kvm_get_msr_feature(&msr)) 6751 continue; 6752 6753 msr_based_features[num_msr_based_features++] = msr_based_features_all[i]; 6754 } 6755} 6756 6757static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 6758 const void *v) 6759{ 6760 int handled = 0; 6761 int n; 6762 6763 do { 6764 n = min(len, 8); 6765 if (!(lapic_in_kernel(vcpu) && 6766 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 6767 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 6768 break; 6769 handled += n; 6770 addr += n; 6771 len -= n; 6772 v += n; 6773 } while (len); 6774 6775 return handled; 6776} 6777 6778static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 6779{ 6780 int handled = 0; 6781 int n; 6782 6783 do { 6784 n = min(len, 8); 6785 if (!(lapic_in_kernel(vcpu) && 6786 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 6787 addr, n, v)) 6788 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 6789 break; 6790 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 6791 handled += n; 6792 addr += n; 6793 len -= n; 6794 v += n; 6795 } while (len); 6796 6797 return handled; 6798} 6799 6800static void kvm_set_segment(struct kvm_vcpu *vcpu, 6801 struct kvm_segment *var, int seg) 6802{ 6803 static_call(kvm_x86_set_segment)(vcpu, var, seg); 6804} 6805 6806void kvm_get_segment(struct kvm_vcpu *vcpu, 6807 struct kvm_segment *var, int seg) 6808{ 6809 static_call(kvm_x86_get_segment)(vcpu, var, seg); 6810} 6811 6812gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access, 6813 struct x86_exception *exception) 6814{ 6815 struct kvm_mmu *mmu = vcpu->arch.mmu; 6816 gpa_t t_gpa; 6817 6818 BUG_ON(!mmu_is_nested(vcpu)); 6819 6820 /* NPT walks are always user-walks */ 6821 access |= PFERR_USER_MASK; 6822 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception); 6823 6824 return t_gpa; 6825} 6826 6827gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 6828 struct x86_exception *exception) 6829{ 6830 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 6831 6832 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 6833 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 6834} 6835EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read); 6836 6837 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, 6838 struct x86_exception *exception) 6839{ 6840 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 6841 6842 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 6843 access |= PFERR_FETCH_MASK; 6844 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 6845} 6846 6847gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 6848 struct x86_exception *exception) 6849{ 6850 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 6851 6852 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 6853 access |= PFERR_WRITE_MASK; 6854 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 6855} 6856EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write); 6857 6858/* uses this to access any guest's mapped memory without checking CPL */ 6859gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 6860 struct x86_exception *exception) 6861{ 6862 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 6863 6864 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception); 6865} 6866 6867static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 6868 struct kvm_vcpu *vcpu, u64 access, 6869 struct x86_exception *exception) 6870{ 6871 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 6872 void *data = val; 6873 int r = X86EMUL_CONTINUE; 6874 6875 while (bytes) { 6876 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 6877 unsigned offset = addr & (PAGE_SIZE-1); 6878 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 6879 int ret; 6880 6881 if (gpa == UNMAPPED_GVA) 6882 return X86EMUL_PROPAGATE_FAULT; 6883 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 6884 offset, toread); 6885 if (ret < 0) { 6886 r = X86EMUL_IO_NEEDED; 6887 goto out; 6888 } 6889 6890 bytes -= toread; 6891 data += toread; 6892 addr += toread; 6893 } 6894out: 6895 return r; 6896} 6897 6898/* used for instruction fetching */ 6899static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 6900 gva_t addr, void *val, unsigned int bytes, 6901 struct x86_exception *exception) 6902{ 6903 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6904 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 6905 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 6906 unsigned offset; 6907 int ret; 6908 6909 /* Inline kvm_read_guest_virt_helper for speed. */ 6910 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK, 6911 exception); 6912 if (unlikely(gpa == UNMAPPED_GVA)) 6913 return X86EMUL_PROPAGATE_FAULT; 6914 6915 offset = addr & (PAGE_SIZE-1); 6916 if (WARN_ON(offset + bytes > PAGE_SIZE)) 6917 bytes = (unsigned)PAGE_SIZE - offset; 6918 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 6919 offset, bytes); 6920 if (unlikely(ret < 0)) 6921 return X86EMUL_IO_NEEDED; 6922 6923 return X86EMUL_CONTINUE; 6924} 6925 6926int kvm_read_guest_virt(struct kvm_vcpu *vcpu, 6927 gva_t addr, void *val, unsigned int bytes, 6928 struct x86_exception *exception) 6929{ 6930 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; 6931 6932 /* 6933 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED 6934 * is returned, but our callers are not ready for that and they blindly 6935 * call kvm_inject_page_fault. Ensure that they at least do not leak 6936 * uninitialized kernel stack memory into cr2 and error code. 6937 */ 6938 memset(exception, 0, sizeof(*exception)); 6939 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 6940 exception); 6941} 6942EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 6943 6944static int emulator_read_std(struct x86_emulate_ctxt *ctxt, 6945 gva_t addr, void *val, unsigned int bytes, 6946 struct x86_exception *exception, bool system) 6947{ 6948 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6949 u64 access = 0; 6950 6951 if (system) 6952 access |= PFERR_IMPLICIT_ACCESS; 6953 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 6954 access |= PFERR_USER_MASK; 6955 6956 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); 6957} 6958 6959static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt, 6960 unsigned long addr, void *val, unsigned int bytes) 6961{ 6962 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 6963 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes); 6964 6965 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE; 6966} 6967 6968static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 6969 struct kvm_vcpu *vcpu, u64 access, 6970 struct x86_exception *exception) 6971{ 6972 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 6973 void *data = val; 6974 int r = X86EMUL_CONTINUE; 6975 6976 while (bytes) { 6977 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); 6978 unsigned offset = addr & (PAGE_SIZE-1); 6979 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 6980 int ret; 6981 6982 if (gpa == UNMAPPED_GVA) 6983 return X86EMUL_PROPAGATE_FAULT; 6984 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 6985 if (ret < 0) { 6986 r = X86EMUL_IO_NEEDED; 6987 goto out; 6988 } 6989 6990 bytes -= towrite; 6991 data += towrite; 6992 addr += towrite; 6993 } 6994out: 6995 return r; 6996} 6997 6998static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, 6999 unsigned int bytes, struct x86_exception *exception, 7000 bool system) 7001{ 7002 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7003 u64 access = PFERR_WRITE_MASK; 7004 7005 if (system) 7006 access |= PFERR_IMPLICIT_ACCESS; 7007 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3) 7008 access |= PFERR_USER_MASK; 7009 7010 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7011 access, exception); 7012} 7013 7014int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, 7015 unsigned int bytes, struct x86_exception *exception) 7016{ 7017 /* kvm_write_guest_virt_system can pull in tons of pages. */ 7018 vcpu->arch.l1tf_flush_l1d = true; 7019 7020 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, 7021 PFERR_WRITE_MASK, exception); 7022} 7023EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 7024 7025static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type, 7026 void *insn, int insn_len) 7027{ 7028 return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type, 7029 insn, insn_len); 7030} 7031 7032int handle_ud(struct kvm_vcpu *vcpu) 7033{ 7034 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX }; 7035 int emul_type = EMULTYPE_TRAP_UD; 7036 char sig[5]; /* ud2; .ascii "kvm" */ 7037 struct x86_exception e; 7038 7039 if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0))) 7040 return 1; 7041 7042 if (force_emulation_prefix && 7043 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), 7044 sig, sizeof(sig), &e) == 0 && 7045 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) { 7046 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); 7047 emul_type = EMULTYPE_TRAP_UD_FORCED; 7048 } 7049 7050 return kvm_emulate_instruction(vcpu, emul_type); 7051} 7052EXPORT_SYMBOL_GPL(handle_ud); 7053 7054static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7055 gpa_t gpa, bool write) 7056{ 7057 /* For APIC access vmexit */ 7058 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7059 return 1; 7060 7061 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 7062 trace_vcpu_match_mmio(gva, gpa, write, true); 7063 return 1; 7064 } 7065 7066 return 0; 7067} 7068 7069static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 7070 gpa_t *gpa, struct x86_exception *exception, 7071 bool write) 7072{ 7073 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 7074 u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0) 7075 | (write ? PFERR_WRITE_MASK : 0); 7076 7077 /* 7078 * currently PKRU is only applied to ept enabled guest so 7079 * there is no pkey in EPT page table for L1 guest or EPT 7080 * shadow page table for L2 guest. 7081 */ 7082 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) || 7083 !permission_fault(vcpu, vcpu->arch.walk_mmu, 7084 vcpu->arch.mmio_access, 0, access))) { 7085 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 7086 (gva & (PAGE_SIZE - 1)); 7087 trace_vcpu_match_mmio(gva, *gpa, write, false); 7088 return 1; 7089 } 7090 7091 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); 7092 7093 if (*gpa == UNMAPPED_GVA) 7094 return -1; 7095 7096 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 7097} 7098 7099int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 7100 const void *val, int bytes) 7101{ 7102 int ret; 7103 7104 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 7105 if (ret < 0) 7106 return 0; 7107 kvm_page_track_write(vcpu, gpa, val, bytes); 7108 return 1; 7109} 7110 7111struct read_write_emulator_ops { 7112 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 7113 int bytes); 7114 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 7115 void *val, int bytes); 7116 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7117 int bytes, void *val); 7118 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 7119 void *val, int bytes); 7120 bool write; 7121}; 7122 7123static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 7124{ 7125 if (vcpu->mmio_read_completed) { 7126 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 7127 vcpu->mmio_fragments[0].gpa, val); 7128 vcpu->mmio_read_completed = 0; 7129 return 1; 7130 } 7131 7132 return 0; 7133} 7134 7135static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7136 void *val, int bytes) 7137{ 7138 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 7139} 7140 7141static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 7142 void *val, int bytes) 7143{ 7144 return emulator_write_phys(vcpu, gpa, val, bytes); 7145} 7146 7147static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 7148{ 7149 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 7150 return vcpu_mmio_write(vcpu, gpa, bytes, val); 7151} 7152 7153static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7154 void *val, int bytes) 7155{ 7156 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 7157 return X86EMUL_IO_NEEDED; 7158} 7159 7160static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 7161 void *val, int bytes) 7162{ 7163 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 7164 7165 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 7166 return X86EMUL_CONTINUE; 7167} 7168 7169static const struct read_write_emulator_ops read_emultor = { 7170 .read_write_prepare = read_prepare, 7171 .read_write_emulate = read_emulate, 7172 .read_write_mmio = vcpu_mmio_read, 7173 .read_write_exit_mmio = read_exit_mmio, 7174}; 7175 7176static const struct read_write_emulator_ops write_emultor = { 7177 .read_write_emulate = write_emulate, 7178 .read_write_mmio = write_mmio, 7179 .read_write_exit_mmio = write_exit_mmio, 7180 .write = true, 7181}; 7182 7183static int emulator_read_write_onepage(unsigned long addr, void *val, 7184 unsigned int bytes, 7185 struct x86_exception *exception, 7186 struct kvm_vcpu *vcpu, 7187 const struct read_write_emulator_ops *ops) 7188{ 7189 gpa_t gpa; 7190 int handled, ret; 7191 bool write = ops->write; 7192 struct kvm_mmio_fragment *frag; 7193 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7194 7195 /* 7196 * If the exit was due to a NPF we may already have a GPA. 7197 * If the GPA is present, use it to avoid the GVA to GPA table walk. 7198 * Note, this cannot be used on string operations since string 7199 * operation using rep will only have the initial GPA from the NPF 7200 * occurred. 7201 */ 7202 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) && 7203 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) { 7204 gpa = ctxt->gpa_val; 7205 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 7206 } else { 7207 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 7208 if (ret < 0) 7209 return X86EMUL_PROPAGATE_FAULT; 7210 } 7211 7212 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 7213 return X86EMUL_CONTINUE; 7214 7215 /* 7216 * Is this MMIO handled locally? 7217 */ 7218 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 7219 if (handled == bytes) 7220 return X86EMUL_CONTINUE; 7221 7222 gpa += handled; 7223 bytes -= handled; 7224 val += handled; 7225 7226 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 7227 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 7228 frag->gpa = gpa; 7229 frag->data = val; 7230 frag->len = bytes; 7231 return X86EMUL_CONTINUE; 7232} 7233 7234static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 7235 unsigned long addr, 7236 void *val, unsigned int bytes, 7237 struct x86_exception *exception, 7238 const struct read_write_emulator_ops *ops) 7239{ 7240 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7241 gpa_t gpa; 7242 int rc; 7243 7244 if (ops->read_write_prepare && 7245 ops->read_write_prepare(vcpu, val, bytes)) 7246 return X86EMUL_CONTINUE; 7247 7248 vcpu->mmio_nr_fragments = 0; 7249 7250 /* Crossing a page boundary? */ 7251 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 7252 int now; 7253 7254 now = -addr & ~PAGE_MASK; 7255 rc = emulator_read_write_onepage(addr, val, now, exception, 7256 vcpu, ops); 7257 7258 if (rc != X86EMUL_CONTINUE) 7259 return rc; 7260 addr += now; 7261 if (ctxt->mode != X86EMUL_MODE_PROT64) 7262 addr = (u32)addr; 7263 val += now; 7264 bytes -= now; 7265 } 7266 7267 rc = emulator_read_write_onepage(addr, val, bytes, exception, 7268 vcpu, ops); 7269 if (rc != X86EMUL_CONTINUE) 7270 return rc; 7271 7272 if (!vcpu->mmio_nr_fragments) 7273 return rc; 7274 7275 gpa = vcpu->mmio_fragments[0].gpa; 7276 7277 vcpu->mmio_needed = 1; 7278 vcpu->mmio_cur_fragment = 0; 7279 7280 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 7281 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 7282 vcpu->run->exit_reason = KVM_EXIT_MMIO; 7283 vcpu->run->mmio.phys_addr = gpa; 7284 7285 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 7286} 7287 7288static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 7289 unsigned long addr, 7290 void *val, 7291 unsigned int bytes, 7292 struct x86_exception *exception) 7293{ 7294 return emulator_read_write(ctxt, addr, val, bytes, 7295 exception, &read_emultor); 7296} 7297 7298static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 7299 unsigned long addr, 7300 const void *val, 7301 unsigned int bytes, 7302 struct x86_exception *exception) 7303{ 7304 return emulator_read_write(ctxt, addr, (void *)val, bytes, 7305 exception, &write_emultor); 7306} 7307 7308#define emulator_try_cmpxchg_user(t, ptr, old, new) \ 7309 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t)) 7310 7311static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 7312 unsigned long addr, 7313 const void *old, 7314 const void *new, 7315 unsigned int bytes, 7316 struct x86_exception *exception) 7317{ 7318 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7319 u64 page_line_mask; 7320 unsigned long hva; 7321 gpa_t gpa; 7322 int r; 7323 7324 /* guests cmpxchg8b have to be emulated atomically */ 7325 if (bytes > 8 || (bytes & (bytes - 1))) 7326 goto emul_write; 7327 7328 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 7329 7330 if (gpa == UNMAPPED_GVA || 7331 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 7332 goto emul_write; 7333 7334 /* 7335 * Emulate the atomic as a straight write to avoid #AC if SLD is 7336 * enabled in the host and the access splits a cache line. 7337 */ 7338 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 7339 page_line_mask = ~(cache_line_size() - 1); 7340 else 7341 page_line_mask = PAGE_MASK; 7342 7343 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask)) 7344 goto emul_write; 7345 7346 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa)); 7347 if (kvm_is_error_hva(hva)) 7348 goto emul_write; 7349 7350 hva += offset_in_page(gpa); 7351 7352 switch (bytes) { 7353 case 1: 7354 r = emulator_try_cmpxchg_user(u8, hva, old, new); 7355 break; 7356 case 2: 7357 r = emulator_try_cmpxchg_user(u16, hva, old, new); 7358 break; 7359 case 4: 7360 r = emulator_try_cmpxchg_user(u32, hva, old, new); 7361 break; 7362 case 8: 7363 r = emulator_try_cmpxchg_user(u64, hva, old, new); 7364 break; 7365 default: 7366 BUG(); 7367 } 7368 7369 if (r < 0) 7370 return X86EMUL_UNHANDLEABLE; 7371 if (r) 7372 return X86EMUL_CMPXCHG_FAILED; 7373 7374 kvm_page_track_write(vcpu, gpa, new, bytes); 7375 7376 return X86EMUL_CONTINUE; 7377 7378emul_write: 7379 printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); 7380 7381 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 7382} 7383 7384static int kernel_pio(struct kvm_vcpu *vcpu, void *pd) 7385{ 7386 int r = 0, i; 7387 7388 for (i = 0; i < vcpu->arch.pio.count; i++) { 7389 if (vcpu->arch.pio.in) 7390 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port, 7391 vcpu->arch.pio.size, pd); 7392 else 7393 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, 7394 vcpu->arch.pio.port, vcpu->arch.pio.size, 7395 pd); 7396 if (r) 7397 break; 7398 pd += vcpu->arch.pio.size; 7399 } 7400 return r; 7401} 7402 7403static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 7404 unsigned short port, 7405 unsigned int count, bool in) 7406{ 7407 vcpu->arch.pio.port = port; 7408 vcpu->arch.pio.in = in; 7409 vcpu->arch.pio.count = count; 7410 vcpu->arch.pio.size = size; 7411 7412 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) 7413 return 1; 7414 7415 vcpu->run->exit_reason = KVM_EXIT_IO; 7416 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 7417 vcpu->run->io.size = size; 7418 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 7419 vcpu->run->io.count = count; 7420 vcpu->run->io.port = port; 7421 7422 return 0; 7423} 7424 7425static int __emulator_pio_in(struct kvm_vcpu *vcpu, int size, 7426 unsigned short port, unsigned int count) 7427{ 7428 WARN_ON(vcpu->arch.pio.count); 7429 memset(vcpu->arch.pio_data, 0, size * count); 7430 return emulator_pio_in_out(vcpu, size, port, count, true); 7431} 7432 7433static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val) 7434{ 7435 int size = vcpu->arch.pio.size; 7436 unsigned count = vcpu->arch.pio.count; 7437 memcpy(val, vcpu->arch.pio_data, size * count); 7438 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data); 7439 vcpu->arch.pio.count = 0; 7440} 7441 7442static int emulator_pio_in(struct kvm_vcpu *vcpu, int size, 7443 unsigned short port, void *val, unsigned int count) 7444{ 7445 if (vcpu->arch.pio.count) { 7446 /* 7447 * Complete a previous iteration that required userspace I/O. 7448 * Note, @count isn't guaranteed to match pio.count as userspace 7449 * can modify ECX before rerunning the vCPU. Ignore any such 7450 * shenanigans as KVM doesn't support modifying the rep count, 7451 * and the emulator ensures @count doesn't overflow the buffer. 7452 */ 7453 } else { 7454 int r = __emulator_pio_in(vcpu, size, port, count); 7455 if (!r) 7456 return r; 7457 7458 /* Results already available, fall through. */ 7459 } 7460 7461 complete_emulator_pio_in(vcpu, val); 7462 return 1; 7463} 7464 7465static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 7466 int size, unsigned short port, void *val, 7467 unsigned int count) 7468{ 7469 return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count); 7470 7471} 7472 7473static int emulator_pio_out(struct kvm_vcpu *vcpu, int size, 7474 unsigned short port, const void *val, 7475 unsigned int count) 7476{ 7477 int ret; 7478 7479 memcpy(vcpu->arch.pio_data, val, size * count); 7480 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data); 7481 ret = emulator_pio_in_out(vcpu, size, port, count, false); 7482 if (ret) 7483 vcpu->arch.pio.count = 0; 7484 7485 return ret; 7486} 7487 7488static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 7489 int size, unsigned short port, 7490 const void *val, unsigned int count) 7491{ 7492 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count); 7493} 7494 7495static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 7496{ 7497 return static_call(kvm_x86_get_segment_base)(vcpu, seg); 7498} 7499 7500static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 7501{ 7502 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 7503} 7504 7505static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 7506{ 7507 if (!need_emulate_wbinvd(vcpu)) 7508 return X86EMUL_CONTINUE; 7509 7510 if (static_call(kvm_x86_has_wbinvd_exit)()) { 7511 int cpu = get_cpu(); 7512 7513 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 7514 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask, 7515 wbinvd_ipi, NULL, 1); 7516 put_cpu(); 7517 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 7518 } else 7519 wbinvd(); 7520 return X86EMUL_CONTINUE; 7521} 7522 7523int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 7524{ 7525 kvm_emulate_wbinvd_noskip(vcpu); 7526 return kvm_skip_emulated_instruction(vcpu); 7527} 7528EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 7529 7530 7531 7532static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 7533{ 7534 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 7535} 7536 7537static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, 7538 unsigned long *dest) 7539{ 7540 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 7541} 7542 7543static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 7544 unsigned long value) 7545{ 7546 7547 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 7548} 7549 7550static u64 mk_cr_64(u64 curr_cr, u32 new_val) 7551{ 7552 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 7553} 7554 7555static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 7556{ 7557 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7558 unsigned long value; 7559 7560 switch (cr) { 7561 case 0: 7562 value = kvm_read_cr0(vcpu); 7563 break; 7564 case 2: 7565 value = vcpu->arch.cr2; 7566 break; 7567 case 3: 7568 value = kvm_read_cr3(vcpu); 7569 break; 7570 case 4: 7571 value = kvm_read_cr4(vcpu); 7572 break; 7573 case 8: 7574 value = kvm_get_cr8(vcpu); 7575 break; 7576 default: 7577 kvm_err("%s: unexpected cr %u\n", __func__, cr); 7578 return 0; 7579 } 7580 7581 return value; 7582} 7583 7584static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 7585{ 7586 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7587 int res = 0; 7588 7589 switch (cr) { 7590 case 0: 7591 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 7592 break; 7593 case 2: 7594 vcpu->arch.cr2 = val; 7595 break; 7596 case 3: 7597 res = kvm_set_cr3(vcpu, val); 7598 break; 7599 case 4: 7600 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 7601 break; 7602 case 8: 7603 res = kvm_set_cr8(vcpu, val); 7604 break; 7605 default: 7606 kvm_err("%s: unexpected cr %u\n", __func__, cr); 7607 res = -1; 7608 } 7609 7610 return res; 7611} 7612 7613static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 7614{ 7615 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt)); 7616} 7617 7618static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7619{ 7620 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt); 7621} 7622 7623static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7624{ 7625 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt); 7626} 7627 7628static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7629{ 7630 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt); 7631} 7632 7633static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 7634{ 7635 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt); 7636} 7637 7638static unsigned long emulator_get_cached_segment_base( 7639 struct x86_emulate_ctxt *ctxt, int seg) 7640{ 7641 return get_segment_base(emul_to_vcpu(ctxt), seg); 7642} 7643 7644static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 7645 struct desc_struct *desc, u32 *base3, 7646 int seg) 7647{ 7648 struct kvm_segment var; 7649 7650 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 7651 *selector = var.selector; 7652 7653 if (var.unusable) { 7654 memset(desc, 0, sizeof(*desc)); 7655 if (base3) 7656 *base3 = 0; 7657 return false; 7658 } 7659 7660 if (var.g) 7661 var.limit >>= 12; 7662 set_desc_limit(desc, var.limit); 7663 set_desc_base(desc, (unsigned long)var.base); 7664#ifdef CONFIG_X86_64 7665 if (base3) 7666 *base3 = var.base >> 32; 7667#endif 7668 desc->type = var.type; 7669 desc->s = var.s; 7670 desc->dpl = var.dpl; 7671 desc->p = var.present; 7672 desc->avl = var.avl; 7673 desc->l = var.l; 7674 desc->d = var.db; 7675 desc->g = var.g; 7676 7677 return true; 7678} 7679 7680static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 7681 struct desc_struct *desc, u32 base3, 7682 int seg) 7683{ 7684 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7685 struct kvm_segment var; 7686 7687 var.selector = selector; 7688 var.base = get_desc_base(desc); 7689#ifdef CONFIG_X86_64 7690 var.base |= ((u64)base3) << 32; 7691#endif 7692 var.limit = get_desc_limit(desc); 7693 if (desc->g) 7694 var.limit = (var.limit << 12) | 0xfff; 7695 var.type = desc->type; 7696 var.dpl = desc->dpl; 7697 var.db = desc->d; 7698 var.s = desc->s; 7699 var.l = desc->l; 7700 var.g = desc->g; 7701 var.avl = desc->avl; 7702 var.present = desc->p; 7703 var.unusable = !var.present; 7704 var.padding = 0; 7705 7706 kvm_set_segment(vcpu, &var, seg); 7707 return; 7708} 7709 7710static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt, 7711 u32 msr_index, u64 *pdata) 7712{ 7713 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7714 int r; 7715 7716 r = kvm_get_msr_with_filter(vcpu, msr_index, pdata); 7717 7718 if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0, 7719 complete_emulated_rdmsr, r)) { 7720 /* Bounce to user space */ 7721 return X86EMUL_IO_NEEDED; 7722 } 7723 7724 return r; 7725} 7726 7727static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt, 7728 u32 msr_index, u64 data) 7729{ 7730 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7731 int r; 7732 7733 r = kvm_set_msr_with_filter(vcpu, msr_index, data); 7734 7735 if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data, 7736 complete_emulated_msr_access, r)) { 7737 /* Bounce to user space */ 7738 return X86EMUL_IO_NEEDED; 7739 } 7740 7741 return r; 7742} 7743 7744static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 7745 u32 msr_index, u64 *pdata) 7746{ 7747 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); 7748} 7749 7750static int emulator_set_msr(struct x86_emulate_ctxt *ctxt, 7751 u32 msr_index, u64 data) 7752{ 7753 return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data); 7754} 7755 7756static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt) 7757{ 7758 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7759 7760 return vcpu->arch.smbase; 7761} 7762 7763static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase) 7764{ 7765 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7766 7767 vcpu->arch.smbase = smbase; 7768} 7769 7770static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, 7771 u32 pmc) 7772{ 7773 if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc)) 7774 return 0; 7775 return -EINVAL; 7776} 7777 7778static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 7779 u32 pmc, u64 *pdata) 7780{ 7781 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 7782} 7783 7784static void emulator_halt(struct x86_emulate_ctxt *ctxt) 7785{ 7786 emul_to_vcpu(ctxt)->arch.halt_request = 1; 7787} 7788 7789static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 7790 struct x86_instruction_info *info, 7791 enum x86_intercept_stage stage) 7792{ 7793 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage, 7794 &ctxt->exception); 7795} 7796 7797static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 7798 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, 7799 bool exact_only) 7800{ 7801 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only); 7802} 7803 7804static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt) 7805{ 7806 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM); 7807} 7808 7809static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt) 7810{ 7811 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE); 7812} 7813 7814static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt) 7815{ 7816 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR); 7817} 7818 7819static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt) 7820{ 7821 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID); 7822} 7823 7824static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 7825{ 7826 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg); 7827} 7828 7829static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 7830{ 7831 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val); 7832} 7833 7834static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 7835{ 7836 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked); 7837} 7838 7839static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt) 7840{ 7841 return emul_to_vcpu(ctxt)->arch.hflags; 7842} 7843 7844static void emulator_exiting_smm(struct x86_emulate_ctxt *ctxt) 7845{ 7846 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 7847 7848 kvm_smm_changed(vcpu, false); 7849} 7850 7851static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt, 7852 const char *smstate) 7853{ 7854 return static_call(kvm_x86_leave_smm)(emul_to_vcpu(ctxt), smstate); 7855} 7856 7857static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt) 7858{ 7859 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt)); 7860} 7861 7862static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr) 7863{ 7864 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr); 7865} 7866 7867static const struct x86_emulate_ops emulate_ops = { 7868 .read_gpr = emulator_read_gpr, 7869 .write_gpr = emulator_write_gpr, 7870 .read_std = emulator_read_std, 7871 .write_std = emulator_write_std, 7872 .read_phys = kvm_read_guest_phys_system, 7873 .fetch = kvm_fetch_guest_virt, 7874 .read_emulated = emulator_read_emulated, 7875 .write_emulated = emulator_write_emulated, 7876 .cmpxchg_emulated = emulator_cmpxchg_emulated, 7877 .invlpg = emulator_invlpg, 7878 .pio_in_emulated = emulator_pio_in_emulated, 7879 .pio_out_emulated = emulator_pio_out_emulated, 7880 .get_segment = emulator_get_segment, 7881 .set_segment = emulator_set_segment, 7882 .get_cached_segment_base = emulator_get_cached_segment_base, 7883 .get_gdt = emulator_get_gdt, 7884 .get_idt = emulator_get_idt, 7885 .set_gdt = emulator_set_gdt, 7886 .set_idt = emulator_set_idt, 7887 .get_cr = emulator_get_cr, 7888 .set_cr = emulator_set_cr, 7889 .cpl = emulator_get_cpl, 7890 .get_dr = emulator_get_dr, 7891 .set_dr = emulator_set_dr, 7892 .get_smbase = emulator_get_smbase, 7893 .set_smbase = emulator_set_smbase, 7894 .set_msr_with_filter = emulator_set_msr_with_filter, 7895 .get_msr_with_filter = emulator_get_msr_with_filter, 7896 .set_msr = emulator_set_msr, 7897 .get_msr = emulator_get_msr, 7898 .check_pmc = emulator_check_pmc, 7899 .read_pmc = emulator_read_pmc, 7900 .halt = emulator_halt, 7901 .wbinvd = emulator_wbinvd, 7902 .fix_hypercall = emulator_fix_hypercall, 7903 .intercept = emulator_intercept, 7904 .get_cpuid = emulator_get_cpuid, 7905 .guest_has_long_mode = emulator_guest_has_long_mode, 7906 .guest_has_movbe = emulator_guest_has_movbe, 7907 .guest_has_fxsr = emulator_guest_has_fxsr, 7908 .guest_has_rdpid = emulator_guest_has_rdpid, 7909 .set_nmi_mask = emulator_set_nmi_mask, 7910 .get_hflags = emulator_get_hflags, 7911 .exiting_smm = emulator_exiting_smm, 7912 .leave_smm = emulator_leave_smm, 7913 .triple_fault = emulator_triple_fault, 7914 .set_xcr = emulator_set_xcr, 7915}; 7916 7917static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 7918{ 7919 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu); 7920 /* 7921 * an sti; sti; sequence only disable interrupts for the first 7922 * instruction. So, if the last instruction, be it emulated or 7923 * not, left the system with the INT_STI flag enabled, it 7924 * means that the last instruction is an sti. We should not 7925 * leave the flag on in this case. The same goes for mov ss 7926 */ 7927 if (int_shadow & mask) 7928 mask = 0; 7929 if (unlikely(int_shadow || mask)) { 7930 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask); 7931 if (!mask) 7932 kvm_make_request(KVM_REQ_EVENT, vcpu); 7933 } 7934} 7935 7936static bool inject_emulated_exception(struct kvm_vcpu *vcpu) 7937{ 7938 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7939 if (ctxt->exception.vector == PF_VECTOR) 7940 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception); 7941 7942 if (ctxt->exception.error_code_valid) 7943 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 7944 ctxt->exception.error_code); 7945 else 7946 kvm_queue_exception(vcpu, ctxt->exception.vector); 7947 return false; 7948} 7949 7950static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu) 7951{ 7952 struct x86_emulate_ctxt *ctxt; 7953 7954 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT); 7955 if (!ctxt) { 7956 pr_err("kvm: failed to allocate vcpu's emulator\n"); 7957 return NULL; 7958 } 7959 7960 ctxt->vcpu = vcpu; 7961 ctxt->ops = &emulate_ops; 7962 vcpu->arch.emulate_ctxt = ctxt; 7963 7964 return ctxt; 7965} 7966 7967static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 7968{ 7969 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 7970 int cs_db, cs_l; 7971 7972 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); 7973 7974 ctxt->gpa_available = false; 7975 ctxt->eflags = kvm_get_rflags(vcpu); 7976 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 7977 7978 ctxt->eip = kvm_rip_read(vcpu); 7979 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 7980 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 7981 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 7982 cs_db ? X86EMUL_MODE_PROT32 : 7983 X86EMUL_MODE_PROT16; 7984 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK); 7985 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK); 7986 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK); 7987 7988 ctxt->interruptibility = 0; 7989 ctxt->have_exception = false; 7990 ctxt->exception.vector = -1; 7991 ctxt->perm_ok = false; 7992 7993 init_decode_cache(ctxt); 7994 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 7995} 7996 7997void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 7998{ 7999 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8000 int ret; 8001 8002 init_emulate_ctxt(vcpu); 8003 8004 ctxt->op_bytes = 2; 8005 ctxt->ad_bytes = 2; 8006 ctxt->_eip = ctxt->eip + inc_eip; 8007 ret = emulate_int_real(ctxt, irq); 8008 8009 if (ret != X86EMUL_CONTINUE) { 8010 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 8011 } else { 8012 ctxt->eip = ctxt->_eip; 8013 kvm_rip_write(vcpu, ctxt->eip); 8014 kvm_set_rflags(vcpu, ctxt->eflags); 8015 } 8016} 8017EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 8018 8019static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8020 u8 ndata, u8 *insn_bytes, u8 insn_size) 8021{ 8022 struct kvm_run *run = vcpu->run; 8023 u64 info[5]; 8024 u8 info_start; 8025 8026 /* 8027 * Zero the whole array used to retrieve the exit info, as casting to 8028 * u32 for select entries will leave some chunks uninitialized. 8029 */ 8030 memset(&info, 0, sizeof(info)); 8031 8032 static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1], 8033 &info[2], (u32 *)&info[3], 8034 (u32 *)&info[4]); 8035 8036 run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 8037 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION; 8038 8039 /* 8040 * There's currently space for 13 entries, but 5 are used for the exit 8041 * reason and info. Restrict to 4 to reduce the maintenance burden 8042 * when expanding kvm_run.emulation_failure in the future. 8043 */ 8044 if (WARN_ON_ONCE(ndata > 4)) 8045 ndata = 4; 8046 8047 /* Always include the flags as a 'data' entry. */ 8048 info_start = 1; 8049 run->emulation_failure.flags = 0; 8050 8051 if (insn_size) { 8052 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) + 8053 sizeof(run->emulation_failure.insn_bytes) != 16)); 8054 info_start += 2; 8055 run->emulation_failure.flags |= 8056 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES; 8057 run->emulation_failure.insn_size = insn_size; 8058 memset(run->emulation_failure.insn_bytes, 0x90, 8059 sizeof(run->emulation_failure.insn_bytes)); 8060 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size); 8061 } 8062 8063 memcpy(&run->internal.data[info_start], info, sizeof(info)); 8064 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data, 8065 ndata * sizeof(data[0])); 8066 8067 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata; 8068} 8069 8070static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu) 8071{ 8072 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8073 8074 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data, 8075 ctxt->fetch.end - ctxt->fetch.data); 8076} 8077 8078void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, 8079 u8 ndata) 8080{ 8081 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0); 8082} 8083EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit); 8084 8085void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu) 8086{ 8087 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0); 8088} 8089EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit); 8090 8091static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) 8092{ 8093 struct kvm *kvm = vcpu->kvm; 8094 8095 ++vcpu->stat.insn_emulation_fail; 8096 trace_kvm_emulate_insn_failed(vcpu); 8097 8098 if (emulation_type & EMULTYPE_VMWARE_GP) { 8099 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8100 return 1; 8101 } 8102 8103 if (kvm->arch.exit_on_emulation_error || 8104 (emulation_type & EMULTYPE_SKIP)) { 8105 prepare_emulation_ctxt_failure_exit(vcpu); 8106 return 0; 8107 } 8108 8109 kvm_queue_exception(vcpu, UD_VECTOR); 8110 8111 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) { 8112 prepare_emulation_ctxt_failure_exit(vcpu); 8113 return 0; 8114 } 8115 8116 return 1; 8117} 8118 8119static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8120 bool write_fault_to_shadow_pgtable, 8121 int emulation_type) 8122{ 8123 gpa_t gpa = cr2_or_gpa; 8124 kvm_pfn_t pfn; 8125 8126 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8127 return false; 8128 8129 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8130 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8131 return false; 8132 8133 if (!vcpu->arch.mmu->root_role.direct) { 8134 /* 8135 * Write permission should be allowed since only 8136 * write access need to be emulated. 8137 */ 8138 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8139 8140 /* 8141 * If the mapping is invalid in guest, let cpu retry 8142 * it to generate fault. 8143 */ 8144 if (gpa == UNMAPPED_GVA) 8145 return true; 8146 } 8147 8148 /* 8149 * Do not retry the unhandleable instruction if it faults on the 8150 * readonly host memory, otherwise it will goto a infinite loop: 8151 * retry instruction -> write #PF -> emulation fail -> retry 8152 * instruction -> ... 8153 */ 8154 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 8155 8156 /* 8157 * If the instruction failed on the error pfn, it can not be fixed, 8158 * report the error to userspace. 8159 */ 8160 if (is_error_noslot_pfn(pfn)) 8161 return false; 8162 8163 kvm_release_pfn_clean(pfn); 8164 8165 /* The instructions are well-emulated on direct mmu. */ 8166 if (vcpu->arch.mmu->root_role.direct) { 8167 unsigned int indirect_shadow_pages; 8168 8169 write_lock(&vcpu->kvm->mmu_lock); 8170 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 8171 write_unlock(&vcpu->kvm->mmu_lock); 8172 8173 if (indirect_shadow_pages) 8174 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8175 8176 return true; 8177 } 8178 8179 /* 8180 * if emulation was due to access to shadowed page table 8181 * and it failed try to unshadow page and re-enter the 8182 * guest to let CPU execute the instruction. 8183 */ 8184 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8185 8186 /* 8187 * If the access faults on its page table, it can not 8188 * be fixed by unprotecting shadow page and it should 8189 * be reported to userspace. 8190 */ 8191 return !write_fault_to_shadow_pgtable; 8192} 8193 8194static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 8195 gpa_t cr2_or_gpa, int emulation_type) 8196{ 8197 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 8198 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa; 8199 8200 last_retry_eip = vcpu->arch.last_retry_eip; 8201 last_retry_addr = vcpu->arch.last_retry_addr; 8202 8203 /* 8204 * If the emulation is caused by #PF and it is non-page_table 8205 * writing instruction, it means the VM-EXIT is caused by shadow 8206 * page protected, we can zap the shadow page and retry this 8207 * instruction directly. 8208 * 8209 * Note: if the guest uses a non-page-table modifying instruction 8210 * on the PDE that points to the instruction, then we will unmap 8211 * the instruction and go to an infinite loop. So, we cache the 8212 * last retried eip and the last fault address, if we meet the eip 8213 * and the address again, we can break out of the potential infinite 8214 * loop. 8215 */ 8216 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 8217 8218 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) 8219 return false; 8220 8221 if (WARN_ON_ONCE(is_guest_mode(vcpu)) || 8222 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF))) 8223 return false; 8224 8225 if (x86_page_table_writing_insn(ctxt)) 8226 return false; 8227 8228 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa) 8229 return false; 8230 8231 vcpu->arch.last_retry_eip = ctxt->eip; 8232 vcpu->arch.last_retry_addr = cr2_or_gpa; 8233 8234 if (!vcpu->arch.mmu->root_role.direct) 8235 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL); 8236 8237 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 8238 8239 return true; 8240} 8241 8242static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 8243static int complete_emulated_pio(struct kvm_vcpu *vcpu); 8244 8245static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm) 8246{ 8247 trace_kvm_smm_transition(vcpu->vcpu_id, vcpu->arch.smbase, entering_smm); 8248 8249 if (entering_smm) { 8250 vcpu->arch.hflags |= HF_SMM_MASK; 8251 } else { 8252 vcpu->arch.hflags &= ~(HF_SMM_MASK | HF_SMM_INSIDE_NMI_MASK); 8253 8254 /* Process a latched INIT or SMI, if any. */ 8255 kvm_make_request(KVM_REQ_EVENT, vcpu); 8256 8257 /* 8258 * Even if KVM_SET_SREGS2 loaded PDPTRs out of band, 8259 * on SMM exit we still need to reload them from 8260 * guest memory 8261 */ 8262 vcpu->arch.pdptrs_from_userspace = false; 8263 } 8264 8265 kvm_mmu_reset_context(vcpu); 8266} 8267 8268static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 8269 unsigned long *db) 8270{ 8271 u32 dr6 = 0; 8272 int i; 8273 u32 enable, rwlen; 8274 8275 enable = dr7; 8276 rwlen = dr7 >> 16; 8277 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 8278 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 8279 dr6 |= (1 << i); 8280 return dr6; 8281} 8282 8283static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu) 8284{ 8285 struct kvm_run *kvm_run = vcpu->run; 8286 8287 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 8288 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW; 8289 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 8290 kvm_run->debug.arch.exception = DB_VECTOR; 8291 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8292 return 0; 8293 } 8294 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); 8295 return 1; 8296} 8297 8298int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 8299{ 8300 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 8301 int r; 8302 8303 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu); 8304 if (unlikely(!r)) 8305 return 0; 8306 8307 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 8308 8309 /* 8310 * rflags is the old, "raw" value of the flags. The new value has 8311 * not been saved yet. 8312 * 8313 * This is correct even for TF set by the guest, because "the 8314 * processor will not generate this exception after the instruction 8315 * that sets the TF flag". 8316 */ 8317 if (unlikely(rflags & X86_EFLAGS_TF)) 8318 r = kvm_vcpu_do_singlestep(vcpu); 8319 return r; 8320} 8321EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 8322 8323static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, int *r) 8324{ 8325 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 8326 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 8327 struct kvm_run *kvm_run = vcpu->run; 8328 unsigned long eip = kvm_get_linear_rip(vcpu); 8329 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8330 vcpu->arch.guest_debug_dr7, 8331 vcpu->arch.eff_db); 8332 8333 if (dr6 != 0) { 8334 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 8335 kvm_run->debug.arch.pc = eip; 8336 kvm_run->debug.arch.exception = DB_VECTOR; 8337 kvm_run->exit_reason = KVM_EXIT_DEBUG; 8338 *r = 0; 8339 return true; 8340 } 8341 } 8342 8343 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 8344 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) { 8345 unsigned long eip = kvm_get_linear_rip(vcpu); 8346 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 8347 vcpu->arch.dr7, 8348 vcpu->arch.db); 8349 8350 if (dr6 != 0) { 8351 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 8352 *r = 1; 8353 return true; 8354 } 8355 } 8356 8357 return false; 8358} 8359 8360static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) 8361{ 8362 switch (ctxt->opcode_len) { 8363 case 1: 8364 switch (ctxt->b) { 8365 case 0xe4: /* IN */ 8366 case 0xe5: 8367 case 0xec: 8368 case 0xed: 8369 case 0xe6: /* OUT */ 8370 case 0xe7: 8371 case 0xee: 8372 case 0xef: 8373 case 0x6c: /* INS */ 8374 case 0x6d: 8375 case 0x6e: /* OUTS */ 8376 case 0x6f: 8377 return true; 8378 } 8379 break; 8380 case 2: 8381 switch (ctxt->b) { 8382 case 0x33: /* RDPMC */ 8383 return true; 8384 } 8385 break; 8386 } 8387 8388 return false; 8389} 8390 8391/* 8392 * Decode an instruction for emulation. The caller is responsible for handling 8393 * code breakpoints. Note, manually detecting code breakpoints is unnecessary 8394 * (and wrong) when emulating on an intercepted fault-like exception[*], as 8395 * code breakpoints have higher priority and thus have already been done by 8396 * hardware. 8397 * 8398 * [*] Except #MC, which is higher priority, but KVM should never emulate in 8399 * response to a machine check. 8400 */ 8401int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type, 8402 void *insn, int insn_len) 8403{ 8404 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8405 int r; 8406 8407 init_emulate_ctxt(vcpu); 8408 8409 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type); 8410 8411 trace_kvm_emulate_insn_start(vcpu); 8412 ++vcpu->stat.insn_emulation; 8413 8414 return r; 8415} 8416EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction); 8417 8418int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 8419 int emulation_type, void *insn, int insn_len) 8420{ 8421 int r; 8422 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 8423 bool writeback = true; 8424 bool write_fault_to_spt; 8425 8426 if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len))) 8427 return 1; 8428 8429 vcpu->arch.l1tf_flush_l1d = true; 8430 8431 /* 8432 * Clear write_fault_to_shadow_pgtable here to ensure it is 8433 * never reused. 8434 */ 8435 write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable; 8436 vcpu->arch.write_fault_to_shadow_pgtable = false; 8437 8438 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 8439 kvm_clear_exception_queue(vcpu); 8440 8441 /* 8442 * Return immediately if RIP hits a code breakpoint, such #DBs 8443 * are fault-like and are higher priority than any faults on 8444 * the code fetch itself. 8445 */ 8446 if (!(emulation_type & EMULTYPE_SKIP) && 8447 kvm_vcpu_check_code_breakpoint(vcpu, &r)) 8448 return r; 8449 8450 r = x86_decode_emulated_instruction(vcpu, emulation_type, 8451 insn, insn_len); 8452 if (r != EMULATION_OK) { 8453 if ((emulation_type & EMULTYPE_TRAP_UD) || 8454 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) { 8455 kvm_queue_exception(vcpu, UD_VECTOR); 8456 return 1; 8457 } 8458 if (reexecute_instruction(vcpu, cr2_or_gpa, 8459 write_fault_to_spt, 8460 emulation_type)) 8461 return 1; 8462 if (ctxt->have_exception) { 8463 /* 8464 * #UD should result in just EMULATION_FAILED, and trap-like 8465 * exception should not be encountered during decode. 8466 */ 8467 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR || 8468 exception_type(ctxt->exception.vector) == EXCPT_TRAP); 8469 inject_emulated_exception(vcpu); 8470 return 1; 8471 } 8472 return handle_emulation_failure(vcpu, emulation_type); 8473 } 8474 } 8475 8476 if ((emulation_type & EMULTYPE_VMWARE_GP) && 8477 !is_vmware_backdoor_opcode(ctxt)) { 8478 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 8479 return 1; 8480 } 8481 8482 /* 8483 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for 8484 * use *only* by vendor callbacks for kvm_skip_emulated_instruction(). 8485 * The caller is responsible for updating interruptibility state and 8486 * injecting single-step #DBs. 8487 */ 8488 if (emulation_type & EMULTYPE_SKIP) { 8489 if (ctxt->mode != X86EMUL_MODE_PROT64) 8490 ctxt->eip = (u32)ctxt->_eip; 8491 else 8492 ctxt->eip = ctxt->_eip; 8493 8494 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) { 8495 r = 1; 8496 goto writeback; 8497 } 8498 8499 kvm_rip_write(vcpu, ctxt->eip); 8500 if (ctxt->eflags & X86_EFLAGS_RF) 8501 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 8502 return 1; 8503 } 8504 8505 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type)) 8506 return 1; 8507 8508 /* this is needed for vmware backdoor interface to work since it 8509 changes registers values during IO operation */ 8510 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 8511 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 8512 emulator_invalidate_register_cache(ctxt); 8513 } 8514 8515restart: 8516 if (emulation_type & EMULTYPE_PF) { 8517 /* Save the faulting GPA (cr2) in the address field */ 8518 ctxt->exception.address = cr2_or_gpa; 8519 8520 /* With shadow page tables, cr2 contains a GVA or nGPA. */ 8521 if (vcpu->arch.mmu->root_role.direct) { 8522 ctxt->gpa_available = true; 8523 ctxt->gpa_val = cr2_or_gpa; 8524 } 8525 } else { 8526 /* Sanitize the address out of an abundance of paranoia. */ 8527 ctxt->exception.address = 0; 8528 } 8529 8530 r = x86_emulate_insn(ctxt); 8531 8532 if (r == EMULATION_INTERCEPTED) 8533 return 1; 8534 8535 if (r == EMULATION_FAILED) { 8536 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt, 8537 emulation_type)) 8538 return 1; 8539 8540 return handle_emulation_failure(vcpu, emulation_type); 8541 } 8542 8543 if (ctxt->have_exception) { 8544 r = 1; 8545 if (inject_emulated_exception(vcpu)) 8546 return r; 8547 } else if (vcpu->arch.pio.count) { 8548 if (!vcpu->arch.pio.in) { 8549 /* FIXME: return into emulator if single-stepping. */ 8550 vcpu->arch.pio.count = 0; 8551 } else { 8552 writeback = false; 8553 vcpu->arch.complete_userspace_io = complete_emulated_pio; 8554 } 8555 r = 0; 8556 } else if (vcpu->mmio_needed) { 8557 ++vcpu->stat.mmio_exits; 8558 8559 if (!vcpu->mmio_is_write) 8560 writeback = false; 8561 r = 0; 8562 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 8563 } else if (vcpu->arch.complete_userspace_io) { 8564 writeback = false; 8565 r = 0; 8566 } else if (r == EMULATION_RESTART) 8567 goto restart; 8568 else 8569 r = 1; 8570 8571writeback: 8572 if (writeback) { 8573 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu); 8574 toggle_interruptibility(vcpu, ctxt->interruptibility); 8575 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 8576 if (!ctxt->have_exception || 8577 exception_type(ctxt->exception.vector) == EXCPT_TRAP) { 8578 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS); 8579 if (ctxt->is_branch) 8580 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS); 8581 kvm_rip_write(vcpu, ctxt->eip); 8582 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) 8583 r = kvm_vcpu_do_singlestep(vcpu); 8584 static_call_cond(kvm_x86_update_emulated_instruction)(vcpu); 8585 __kvm_set_rflags(vcpu, ctxt->eflags); 8586 } 8587 8588 /* 8589 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 8590 * do nothing, and it will be requested again as soon as 8591 * the shadow expires. But we still need to check here, 8592 * because POPF has no interrupt shadow. 8593 */ 8594 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 8595 kvm_make_request(KVM_REQ_EVENT, vcpu); 8596 } else 8597 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 8598 8599 return r; 8600} 8601 8602int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) 8603{ 8604 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); 8605} 8606EXPORT_SYMBOL_GPL(kvm_emulate_instruction); 8607 8608int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, 8609 void *insn, int insn_len) 8610{ 8611 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); 8612} 8613EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); 8614 8615static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) 8616{ 8617 vcpu->arch.pio.count = 0; 8618 return 1; 8619} 8620 8621static int complete_fast_pio_out(struct kvm_vcpu *vcpu) 8622{ 8623 vcpu->arch.pio.count = 0; 8624 8625 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) 8626 return 1; 8627 8628 return kvm_skip_emulated_instruction(vcpu); 8629} 8630 8631static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, 8632 unsigned short port) 8633{ 8634 unsigned long val = kvm_rax_read(vcpu); 8635 int ret = emulator_pio_out(vcpu, size, port, &val, 1); 8636 8637 if (ret) 8638 return ret; 8639 8640 /* 8641 * Workaround userspace that relies on old KVM behavior of %rip being 8642 * incremented prior to exiting to userspace to handle "OUT 0x7e". 8643 */ 8644 if (port == 0x7e && 8645 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { 8646 vcpu->arch.complete_userspace_io = 8647 complete_fast_pio_out_port_0x7e; 8648 kvm_skip_emulated_instruction(vcpu); 8649 } else { 8650 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 8651 vcpu->arch.complete_userspace_io = complete_fast_pio_out; 8652 } 8653 return 0; 8654} 8655 8656static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 8657{ 8658 unsigned long val; 8659 8660 /* We should only ever be called with arch.pio.count equal to 1 */ 8661 BUG_ON(vcpu->arch.pio.count != 1); 8662 8663 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) { 8664 vcpu->arch.pio.count = 0; 8665 return 1; 8666 } 8667 8668 /* For size less than 4 we merge, else we zero extend */ 8669 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; 8670 8671 /* 8672 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform 8673 * the copy and tracing 8674 */ 8675 emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1); 8676 kvm_rax_write(vcpu, val); 8677 8678 return kvm_skip_emulated_instruction(vcpu); 8679} 8680 8681static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, 8682 unsigned short port) 8683{ 8684 unsigned long val; 8685 int ret; 8686 8687 /* For size less than 4 we merge, else we zero extend */ 8688 val = (size < 4) ? kvm_rax_read(vcpu) : 0; 8689 8690 ret = emulator_pio_in(vcpu, size, port, &val, 1); 8691 if (ret) { 8692 kvm_rax_write(vcpu, val); 8693 return ret; 8694 } 8695 8696 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu); 8697 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 8698 8699 return 0; 8700} 8701 8702int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) 8703{ 8704 int ret; 8705 8706 if (in) 8707 ret = kvm_fast_pio_in(vcpu, size, port); 8708 else 8709 ret = kvm_fast_pio_out(vcpu, size, port); 8710 return ret && kvm_skip_emulated_instruction(vcpu); 8711} 8712EXPORT_SYMBOL_GPL(kvm_fast_pio); 8713 8714static int kvmclock_cpu_down_prep(unsigned int cpu) 8715{ 8716 __this_cpu_write(cpu_tsc_khz, 0); 8717 return 0; 8718} 8719 8720static void tsc_khz_changed(void *data) 8721{ 8722 struct cpufreq_freqs *freq = data; 8723 unsigned long khz = 0; 8724 8725 if (data) 8726 khz = freq->new; 8727 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 8728 khz = cpufreq_quick_get(raw_smp_processor_id()); 8729 if (!khz) 8730 khz = tsc_khz; 8731 __this_cpu_write(cpu_tsc_khz, khz); 8732} 8733 8734#ifdef CONFIG_X86_64 8735static void kvm_hyperv_tsc_notifier(void) 8736{ 8737 struct kvm *kvm; 8738 int cpu; 8739 8740 mutex_lock(&kvm_lock); 8741 list_for_each_entry(kvm, &vm_list, vm_list) 8742 kvm_make_mclock_inprogress_request(kvm); 8743 8744 /* no guest entries from this point */ 8745 hyperv_stop_tsc_emulation(); 8746 8747 /* TSC frequency always matches when on Hyper-V */ 8748 for_each_present_cpu(cpu) 8749 per_cpu(cpu_tsc_khz, cpu) = tsc_khz; 8750 kvm_max_guest_tsc_khz = tsc_khz; 8751 8752 list_for_each_entry(kvm, &vm_list, vm_list) { 8753 __kvm_start_pvclock_update(kvm); 8754 pvclock_update_vm_gtod_copy(kvm); 8755 kvm_end_pvclock_update(kvm); 8756 } 8757 8758 mutex_unlock(&kvm_lock); 8759} 8760#endif 8761 8762static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) 8763{ 8764 struct kvm *kvm; 8765 struct kvm_vcpu *vcpu; 8766 int send_ipi = 0; 8767 unsigned long i; 8768 8769 /* 8770 * We allow guests to temporarily run on slowing clocks, 8771 * provided we notify them after, or to run on accelerating 8772 * clocks, provided we notify them before. Thus time never 8773 * goes backwards. 8774 * 8775 * However, we have a problem. We can't atomically update 8776 * the frequency of a given CPU from this function; it is 8777 * merely a notifier, which can be called from any CPU. 8778 * Changing the TSC frequency at arbitrary points in time 8779 * requires a recomputation of local variables related to 8780 * the TSC for each VCPU. We must flag these local variables 8781 * to be updated and be sure the update takes place with the 8782 * new frequency before any guests proceed. 8783 * 8784 * Unfortunately, the combination of hotplug CPU and frequency 8785 * change creates an intractable locking scenario; the order 8786 * of when these callouts happen is undefined with respect to 8787 * CPU hotplug, and they can race with each other. As such, 8788 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 8789 * undefined; you can actually have a CPU frequency change take 8790 * place in between the computation of X and the setting of the 8791 * variable. To protect against this problem, all updates of 8792 * the per_cpu tsc_khz variable are done in an interrupt 8793 * protected IPI, and all callers wishing to update the value 8794 * must wait for a synchronous IPI to complete (which is trivial 8795 * if the caller is on the CPU already). This establishes the 8796 * necessary total order on variable updates. 8797 * 8798 * Note that because a guest time update may take place 8799 * anytime after the setting of the VCPU's request bit, the 8800 * correct TSC value must be set before the request. However, 8801 * to ensure the update actually makes it to any guest which 8802 * starts running in hardware virtualization between the set 8803 * and the acquisition of the spinlock, we must also ping the 8804 * CPU after setting the request bit. 8805 * 8806 */ 8807 8808 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 8809 8810 mutex_lock(&kvm_lock); 8811 list_for_each_entry(kvm, &vm_list, vm_list) { 8812 kvm_for_each_vcpu(i, vcpu, kvm) { 8813 if (vcpu->cpu != cpu) 8814 continue; 8815 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 8816 if (vcpu->cpu != raw_smp_processor_id()) 8817 send_ipi = 1; 8818 } 8819 } 8820 mutex_unlock(&kvm_lock); 8821 8822 if (freq->old < freq->new && send_ipi) { 8823 /* 8824 * We upscale the frequency. Must make the guest 8825 * doesn't see old kvmclock values while running with 8826 * the new frequency, otherwise we risk the guest sees 8827 * time go backwards. 8828 * 8829 * In case we update the frequency for another cpu 8830 * (which might be in guest context) send an interrupt 8831 * to kick the cpu out of guest context. Next time 8832 * guest context is entered kvmclock will be updated, 8833 * so the guest will not see stale values. 8834 */ 8835 smp_call_function_single(cpu, tsc_khz_changed, freq, 1); 8836 } 8837} 8838 8839static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 8840 void *data) 8841{ 8842 struct cpufreq_freqs *freq = data; 8843 int cpu; 8844 8845 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 8846 return 0; 8847 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 8848 return 0; 8849 8850 for_each_cpu(cpu, freq->policy->cpus) 8851 __kvmclock_cpufreq_notifier(freq, cpu); 8852 8853 return 0; 8854} 8855 8856static struct notifier_block kvmclock_cpufreq_notifier_block = { 8857 .notifier_call = kvmclock_cpufreq_notifier 8858}; 8859 8860static int kvmclock_cpu_online(unsigned int cpu) 8861{ 8862 tsc_khz_changed(NULL); 8863 return 0; 8864} 8865 8866static void kvm_timer_init(void) 8867{ 8868 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 8869 max_tsc_khz = tsc_khz; 8870 8871 if (IS_ENABLED(CONFIG_CPU_FREQ)) { 8872 struct cpufreq_policy *policy; 8873 int cpu; 8874 8875 cpu = get_cpu(); 8876 policy = cpufreq_cpu_get(cpu); 8877 if (policy) { 8878 if (policy->cpuinfo.max_freq) 8879 max_tsc_khz = policy->cpuinfo.max_freq; 8880 cpufreq_cpu_put(policy); 8881 } 8882 put_cpu(); 8883 } 8884 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 8885 CPUFREQ_TRANSITION_NOTIFIER); 8886 } 8887 8888 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 8889 kvmclock_cpu_online, kvmclock_cpu_down_prep); 8890} 8891 8892#ifdef CONFIG_X86_64 8893static void pvclock_gtod_update_fn(struct work_struct *work) 8894{ 8895 struct kvm *kvm; 8896 struct kvm_vcpu *vcpu; 8897 unsigned long i; 8898 8899 mutex_lock(&kvm_lock); 8900 list_for_each_entry(kvm, &vm_list, vm_list) 8901 kvm_for_each_vcpu(i, vcpu, kvm) 8902 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 8903 atomic_set(&kvm_guest_has_master_clock, 0); 8904 mutex_unlock(&kvm_lock); 8905} 8906 8907static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); 8908 8909/* 8910 * Indirection to move queue_work() out of the tk_core.seq write held 8911 * region to prevent possible deadlocks against time accessors which 8912 * are invoked with work related locks held. 8913 */ 8914static void pvclock_irq_work_fn(struct irq_work *w) 8915{ 8916 queue_work(system_long_wq, &pvclock_gtod_work); 8917} 8918 8919static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn); 8920 8921/* 8922 * Notification about pvclock gtod data update. 8923 */ 8924static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, 8925 void *priv) 8926{ 8927 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 8928 struct timekeeper *tk = priv; 8929 8930 update_pvclock_gtod(tk); 8931 8932 /* 8933 * Disable master clock if host does not trust, or does not use, 8934 * TSC based clocksource. Delegate queue_work() to irq_work as 8935 * this is invoked with tk_core.seq write held. 8936 */ 8937 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && 8938 atomic_read(&kvm_guest_has_master_clock) != 0) 8939 irq_work_queue(&pvclock_irq_work); 8940 return 0; 8941} 8942 8943static struct notifier_block pvclock_gtod_notifier = { 8944 .notifier_call = pvclock_gtod_notify, 8945}; 8946#endif 8947 8948int kvm_arch_init(void *opaque) 8949{ 8950 struct kvm_x86_init_ops *ops = opaque; 8951 int r; 8952 8953 if (kvm_x86_ops.hardware_enable) { 8954 pr_err("kvm: already loaded vendor module '%s'\n", kvm_x86_ops.name); 8955 r = -EEXIST; 8956 goto out; 8957 } 8958 8959 if (!ops->cpu_has_kvm_support()) { 8960 pr_err_ratelimited("kvm: no hardware support for '%s'\n", 8961 ops->runtime_ops->name); 8962 r = -EOPNOTSUPP; 8963 goto out; 8964 } 8965 if (ops->disabled_by_bios()) { 8966 pr_err_ratelimited("kvm: support for '%s' disabled by bios\n", 8967 ops->runtime_ops->name); 8968 r = -EOPNOTSUPP; 8969 goto out; 8970 } 8971 8972 /* 8973 * KVM explicitly assumes that the guest has an FPU and 8974 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the 8975 * vCPU's FPU state as a fxregs_state struct. 8976 */ 8977 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { 8978 printk(KERN_ERR "kvm: inadequate fpu\n"); 8979 r = -EOPNOTSUPP; 8980 goto out; 8981 } 8982 8983 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 8984 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n"); 8985 r = -EOPNOTSUPP; 8986 goto out; 8987 } 8988 8989 r = -ENOMEM; 8990 8991 x86_emulator_cache = kvm_alloc_emulator_cache(); 8992 if (!x86_emulator_cache) { 8993 pr_err("kvm: failed to allocate cache for x86 emulator\n"); 8994 goto out; 8995 } 8996 8997 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs); 8998 if (!user_return_msrs) { 8999 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n"); 9000 goto out_free_x86_emulator_cache; 9001 } 9002 kvm_nr_uret_msrs = 0; 9003 9004 r = kvm_mmu_vendor_module_init(); 9005 if (r) 9006 goto out_free_percpu; 9007 9008 kvm_timer_init(); 9009 9010 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 9011 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); 9012 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0; 9013 } 9014 9015 if (pi_inject_timer == -1) 9016 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER); 9017#ifdef CONFIG_X86_64 9018 pvclock_gtod_register_notifier(&pvclock_gtod_notifier); 9019 9020 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9021 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); 9022#endif 9023 9024 return 0; 9025 9026out_free_percpu: 9027 free_percpu(user_return_msrs); 9028out_free_x86_emulator_cache: 9029 kmem_cache_destroy(x86_emulator_cache); 9030out: 9031 return r; 9032} 9033 9034void kvm_arch_exit(void) 9035{ 9036#ifdef CONFIG_X86_64 9037 if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) 9038 clear_hv_tscchange_cb(); 9039#endif 9040 kvm_lapic_exit(); 9041 9042 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 9043 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, 9044 CPUFREQ_TRANSITION_NOTIFIER); 9045 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); 9046#ifdef CONFIG_X86_64 9047 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); 9048 irq_work_sync(&pvclock_irq_work); 9049 cancel_work_sync(&pvclock_gtod_work); 9050#endif 9051 kvm_x86_ops.hardware_enable = NULL; 9052 kvm_mmu_vendor_module_exit(); 9053 free_percpu(user_return_msrs); 9054 kmem_cache_destroy(x86_emulator_cache); 9055#ifdef CONFIG_KVM_XEN 9056 static_key_deferred_flush(&kvm_xen_enabled); 9057 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key)); 9058#endif 9059} 9060 9061static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason) 9062{ 9063 /* 9064 * The vCPU has halted, e.g. executed HLT. Update the run state if the 9065 * local APIC is in-kernel, the run loop will detect the non-runnable 9066 * state and halt the vCPU. Exit to userspace if the local APIC is 9067 * managed by userspace, in which case userspace is responsible for 9068 * handling wake events. 9069 */ 9070 ++vcpu->stat.halt_exits; 9071 if (lapic_in_kernel(vcpu)) { 9072 vcpu->arch.mp_state = state; 9073 return 1; 9074 } else { 9075 vcpu->run->exit_reason = reason; 9076 return 0; 9077 } 9078} 9079 9080int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu) 9081{ 9082 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT); 9083} 9084EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip); 9085 9086int kvm_emulate_halt(struct kvm_vcpu *vcpu) 9087{ 9088 int ret = kvm_skip_emulated_instruction(vcpu); 9089 /* 9090 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered 9091 * KVM_EXIT_DEBUG here. 9092 */ 9093 return kvm_emulate_halt_noskip(vcpu) && ret; 9094} 9095EXPORT_SYMBOL_GPL(kvm_emulate_halt); 9096 9097int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu) 9098{ 9099 int ret = kvm_skip_emulated_instruction(vcpu); 9100 9101 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, 9102 KVM_EXIT_AP_RESET_HOLD) && ret; 9103} 9104EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold); 9105 9106#ifdef CONFIG_X86_64 9107static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, 9108 unsigned long clock_type) 9109{ 9110 struct kvm_clock_pairing clock_pairing; 9111 struct timespec64 ts; 9112 u64 cycle; 9113 int ret; 9114 9115 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) 9116 return -KVM_EOPNOTSUPP; 9117 9118 /* 9119 * When tsc is in permanent catchup mode guests won't be able to use 9120 * pvclock_read_retry loop to get consistent view of pvclock 9121 */ 9122 if (vcpu->arch.tsc_always_catchup) 9123 return -KVM_EOPNOTSUPP; 9124 9125 if (!kvm_get_walltime_and_clockread(&ts, &cycle)) 9126 return -KVM_EOPNOTSUPP; 9127 9128 clock_pairing.sec = ts.tv_sec; 9129 clock_pairing.nsec = ts.tv_nsec; 9130 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); 9131 clock_pairing.flags = 0; 9132 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); 9133 9134 ret = 0; 9135 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, 9136 sizeof(struct kvm_clock_pairing))) 9137 ret = -KVM_EFAULT; 9138 9139 return ret; 9140} 9141#endif 9142 9143/* 9144 * kvm_pv_kick_cpu_op: Kick a vcpu. 9145 * 9146 * @apicid - apicid of vcpu to be kicked. 9147 */ 9148static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid) 9149{ 9150 struct kvm_lapic_irq lapic_irq; 9151 9152 lapic_irq.shorthand = APIC_DEST_NOSHORT; 9153 lapic_irq.dest_mode = APIC_DEST_PHYSICAL; 9154 lapic_irq.level = 0; 9155 lapic_irq.dest_id = apicid; 9156 lapic_irq.msi_redir_hint = false; 9157 9158 lapic_irq.delivery_mode = APIC_DM_REMRD; 9159 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); 9160} 9161 9162bool kvm_apicv_activated(struct kvm *kvm) 9163{ 9164 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0); 9165} 9166EXPORT_SYMBOL_GPL(kvm_apicv_activated); 9167 9168bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu) 9169{ 9170 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons); 9171 ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu); 9172 9173 return (vm_reasons | vcpu_reasons) == 0; 9174} 9175EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated); 9176 9177static void set_or_clear_apicv_inhibit(unsigned long *inhibits, 9178 enum kvm_apicv_inhibit reason, bool set) 9179{ 9180 if (set) 9181 __set_bit(reason, inhibits); 9182 else 9183 __clear_bit(reason, inhibits); 9184 9185 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits); 9186} 9187 9188static void kvm_apicv_init(struct kvm *kvm) 9189{ 9190 unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons; 9191 9192 init_rwsem(&kvm->arch.apicv_update_lock); 9193 9194 set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true); 9195 9196 if (!enable_apicv) 9197 set_or_clear_apicv_inhibit(inhibits, 9198 APICV_INHIBIT_REASON_DISABLE, true); 9199} 9200 9201static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id) 9202{ 9203 struct kvm_vcpu *target = NULL; 9204 struct kvm_apic_map *map; 9205 9206 vcpu->stat.directed_yield_attempted++; 9207 9208 if (single_task_running()) 9209 goto no_yield; 9210 9211 rcu_read_lock(); 9212 map = rcu_dereference(vcpu->kvm->arch.apic_map); 9213 9214 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id]) 9215 target = map->phys_map[dest_id]->vcpu; 9216 9217 rcu_read_unlock(); 9218 9219 if (!target || !READ_ONCE(target->ready)) 9220 goto no_yield; 9221 9222 /* Ignore requests to yield to self */ 9223 if (vcpu == target) 9224 goto no_yield; 9225 9226 if (kvm_vcpu_yield_to(target) <= 0) 9227 goto no_yield; 9228 9229 vcpu->stat.directed_yield_successful++; 9230 9231no_yield: 9232 return; 9233} 9234 9235static int complete_hypercall_exit(struct kvm_vcpu *vcpu) 9236{ 9237 u64 ret = vcpu->run->hypercall.ret; 9238 9239 if (!is_64_bit_mode(vcpu)) 9240 ret = (u32)ret; 9241 kvm_rax_write(vcpu, ret); 9242 ++vcpu->stat.hypercalls; 9243 return kvm_skip_emulated_instruction(vcpu); 9244} 9245 9246int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) 9247{ 9248 unsigned long nr, a0, a1, a2, a3, ret; 9249 int op_64_bit; 9250 9251 if (kvm_xen_hypercall_enabled(vcpu->kvm)) 9252 return kvm_xen_hypercall(vcpu); 9253 9254 if (kvm_hv_hypercall_enabled(vcpu)) 9255 return kvm_hv_hypercall(vcpu); 9256 9257 nr = kvm_rax_read(vcpu); 9258 a0 = kvm_rbx_read(vcpu); 9259 a1 = kvm_rcx_read(vcpu); 9260 a2 = kvm_rdx_read(vcpu); 9261 a3 = kvm_rsi_read(vcpu); 9262 9263 trace_kvm_hypercall(nr, a0, a1, a2, a3); 9264 9265 op_64_bit = is_64_bit_hypercall(vcpu); 9266 if (!op_64_bit) { 9267 nr &= 0xFFFFFFFF; 9268 a0 &= 0xFFFFFFFF; 9269 a1 &= 0xFFFFFFFF; 9270 a2 &= 0xFFFFFFFF; 9271 a3 &= 0xFFFFFFFF; 9272 } 9273 9274 // if (static_call(kvm_x86_get_cpl)(vcpu) != 0) { 9275 // ret = -KVM_EPERM; 9276 // goto out; 9277 // } 9278 9279 ret = -KVM_ENOSYS; 9280 9281 switch (nr) { 9282 case KVM_HC_VAPIC_POLL_IRQ: 9283 ret = 0; 9284 break; 9285 case KVM_HC_KICK_CPU: 9286 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT)) 9287 break; 9288 9289 kvm_pv_kick_cpu_op(vcpu->kvm, a1); 9290 kvm_sched_yield(vcpu, a1); 9291 ret = 0; 9292 break; 9293#ifdef CONFIG_X86_64 9294 case KVM_HC_CLOCK_PAIRING: 9295 ret = kvm_pv_clock_pairing(vcpu, a0, a1); 9296 break; 9297#endif 9298 case KVM_HC_SEND_IPI: 9299 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI)) 9300 break; 9301 9302 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); 9303 break; 9304 case KVM_HC_SCHED_YIELD: 9305 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD)) 9306 break; 9307 9308 kvm_sched_yield(vcpu, a0); 9309 ret = 0; 9310 break; 9311 case KVM_HC_MAP_GPA_RANGE: { 9312 u64 gpa = a0, npages = a1, attrs = a2; 9313 9314 ret = -KVM_ENOSYS; 9315 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) 9316 break; 9317 9318 if (!PAGE_ALIGNED(gpa) || !npages || 9319 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) { 9320 ret = -KVM_EINVAL; 9321 break; 9322 } 9323 9324 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 9325 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; 9326 vcpu->run->hypercall.args[0] = gpa; 9327 vcpu->run->hypercall.args[1] = npages; 9328 vcpu->run->hypercall.args[2] = attrs; 9329 vcpu->run->hypercall.longmode = op_64_bit; 9330 vcpu->arch.complete_userspace_io = complete_hypercall_exit; 9331 return 0; 9332 } 9333 case KVM_HC_CPC_VMMCALL_SIGNAL: 9334 CPC_DBG("SIGNAL VMMCALL %lu:%lu\n", a0, a1); 9335 cpc_send_guest_event(a0, a1); 9336 ret = 0; 9337 break; 9338 case KVM_HC_CPC_VMMCALL_EXIT: 9339 CPC_DBG("EXIT VMMCALL %lu:%lu\n", a0, a1); 9340 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; 9341 vcpu->run->hypercall.nr = KVM_HC_CPC_VMMCALL_EXIT; 9342 vcpu->run->hypercall.args[0] = a0; 9343 vcpu->run->hypercall.args[1] = a1; 9344 vcpu->run->hypercall.args[2] = 0; 9345 vcpu->run->hypercall.longmode = op_64_bit; 9346 vcpu->arch.complete_userspace_io = complete_hypercall_exit; 9347 return 0; 9348 default: 9349 ret = -KVM_ENOSYS; 9350 break; 9351 } 9352//out: 9353 if (!op_64_bit) 9354 ret = (u32)ret; 9355 kvm_rax_write(vcpu, ret); 9356 9357 ++vcpu->stat.hypercalls; 9358 return kvm_skip_emulated_instruction(vcpu); 9359} 9360EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); 9361 9362static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) 9363{ 9364 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 9365 char instruction[3]; 9366 unsigned long rip = kvm_rip_read(vcpu); 9367 9368 /* 9369 * If the quirk is disabled, synthesize a #UD and let the guest pick up 9370 * the pieces. 9371 */ 9372 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) { 9373 ctxt->exception.error_code_valid = false; 9374 ctxt->exception.vector = UD_VECTOR; 9375 ctxt->have_exception = true; 9376 return X86EMUL_PROPAGATE_FAULT; 9377 } 9378 9379 static_call(kvm_x86_patch_hypercall)(vcpu, instruction); 9380 9381 return emulator_write_emulated(ctxt, rip, instruction, 3, 9382 &ctxt->exception); 9383} 9384 9385static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) 9386{ 9387 return vcpu->run->request_interrupt_window && 9388 likely(!pic_in_kernel(vcpu->kvm)); 9389} 9390 9391/* Called within kvm->srcu read side. */ 9392static void post_kvm_run_save(struct kvm_vcpu *vcpu) 9393{ 9394 struct kvm_run *kvm_run = vcpu->run; 9395 9396 kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu); 9397 kvm_run->cr8 = kvm_get_cr8(vcpu); 9398 kvm_run->apic_base = kvm_get_apic_base(vcpu); 9399 9400 kvm_run->ready_for_interrupt_injection = 9401 pic_in_kernel(vcpu->kvm) || 9402 kvm_vcpu_ready_for_interrupt_injection(vcpu); 9403 9404 if (is_smm(vcpu)) 9405 kvm_run->flags |= KVM_RUN_X86_SMM; 9406} 9407 9408static void update_cr8_intercept(struct kvm_vcpu *vcpu) 9409{ 9410 int max_irr, tpr; 9411 9412 if (!kvm_x86_ops.update_cr8_intercept) 9413 return; 9414 9415 if (!lapic_in_kernel(vcpu)) 9416 return; 9417 9418 if (vcpu->arch.apicv_active) 9419 return; 9420 9421 if (!vcpu->arch.apic->vapic_addr) 9422 max_irr = kvm_lapic_find_highest_irr(vcpu); 9423 else 9424 max_irr = -1; 9425 9426 if (max_irr != -1) 9427 max_irr >>= 4; 9428 9429 tpr = kvm_lapic_get_cr8(vcpu); 9430 9431 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr); 9432} 9433 9434 9435int kvm_check_nested_events(struct kvm_vcpu *vcpu) 9436{ 9437 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 9438 kvm_x86_ops.nested_ops->triple_fault(vcpu); 9439 return 1; 9440 } 9441 9442 return kvm_x86_ops.nested_ops->check_events(vcpu); 9443} 9444 9445static void kvm_inject_exception(struct kvm_vcpu *vcpu) 9446{ 9447 if (vcpu->arch.exception.error_code && !is_protmode(vcpu)) 9448 vcpu->arch.exception.error_code = false; 9449 static_call(kvm_x86_queue_exception)(vcpu); 9450} 9451 9452static int inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit) 9453{ 9454 int r; 9455 bool can_inject = true; 9456 9457 /* try to reinject previous events if any */ 9458 9459 if (vcpu->arch.exception.injected) { 9460 kvm_inject_exception(vcpu); 9461 can_inject = false; 9462 } 9463 /* 9464 * Do not inject an NMI or interrupt if there is a pending 9465 * exception. Exceptions and interrupts are recognized at 9466 * instruction boundaries, i.e. the start of an instruction. 9467 * Trap-like exceptions, e.g. #DB, have higher priority than 9468 * NMIs and interrupts, i.e. traps are recognized before an 9469 * NMI/interrupt that's pending on the same instruction. 9470 * Fault-like exceptions, e.g. #GP and #PF, are the lowest 9471 * priority, but are only generated (pended) during instruction 9472 * execution, i.e. a pending fault-like exception means the 9473 * fault occurred on the *previous* instruction and must be 9474 * serviced prior to recognizing any new events in order to 9475 * fully complete the previous instruction. 9476 */ 9477 else if (!vcpu->arch.exception.pending) { 9478 if (vcpu->arch.nmi_injected) { 9479 static_call(kvm_x86_inject_nmi)(vcpu); 9480 can_inject = false; 9481 } else if (vcpu->arch.interrupt.injected) { 9482 static_call(kvm_x86_inject_irq)(vcpu); 9483 can_inject = false; 9484 } 9485 } 9486 9487 WARN_ON_ONCE(vcpu->arch.exception.injected && 9488 vcpu->arch.exception.pending); 9489 9490 /* 9491 * Call check_nested_events() even if we reinjected a previous event 9492 * in order for caller to determine if it should require immediate-exit 9493 * from L2 to L1 due to pending L1 events which require exit 9494 * from L2 to L1. 9495 */ 9496 if (is_guest_mode(vcpu)) { 9497 r = kvm_check_nested_events(vcpu); 9498 if (r < 0) 9499 goto out; 9500 } 9501 9502 /* try to inject new event if pending */ 9503 if (vcpu->arch.exception.pending) { 9504 trace_kvm_inj_exception(vcpu->arch.exception.nr, 9505 vcpu->arch.exception.has_error_code, 9506 vcpu->arch.exception.error_code); 9507 9508 vcpu->arch.exception.pending = false; 9509 vcpu->arch.exception.injected = true; 9510 9511 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT) 9512 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | 9513 X86_EFLAGS_RF); 9514 9515 if (vcpu->arch.exception.nr == DB_VECTOR) { 9516 kvm_deliver_exception_payload(vcpu); 9517 if (vcpu->arch.dr7 & DR7_GD) { 9518 vcpu->arch.dr7 &= ~DR7_GD; 9519 kvm_update_dr7(vcpu); 9520 } 9521 } 9522 9523 kvm_inject_exception(vcpu); 9524 can_inject = false; 9525 } 9526 9527 /* Don't inject interrupts if the user asked to avoid doing so */ 9528 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) 9529 return 0; 9530 9531 /* 9532 * Finally, inject interrupt events. If an event cannot be injected 9533 * due to architectural conditions (e.g. IF=0) a window-open exit 9534 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending 9535 * and can architecturally be injected, but we cannot do it right now: 9536 * an interrupt could have arrived just now and we have to inject it 9537 * as a vmexit, or there could already an event in the queue, which is 9538 * indicated by can_inject. In that case we request an immediate exit 9539 * in order to make progress and get back here for another iteration. 9540 * The kvm_x86_ops hooks communicate this by returning -EBUSY. 9541 */ 9542 if (vcpu->arch.smi_pending) { 9543 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY; 9544 if (r < 0) 9545 goto out; 9546 if (r) { 9547 vcpu->arch.smi_pending = false; 9548 ++vcpu->arch.smi_count; 9549 enter_smm(vcpu); 9550 can_inject = false; 9551 } else 9552 static_call(kvm_x86_enable_smi_window)(vcpu); 9553 } 9554 9555 if (vcpu->arch.nmi_pending) { 9556 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY; 9557 if (r < 0) 9558 goto out; 9559 if (r) { 9560 --vcpu->arch.nmi_pending; 9561 vcpu->arch.nmi_injected = true; 9562 static_call(kvm_x86_inject_nmi)(vcpu); 9563 can_inject = false; 9564 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0); 9565 } 9566 if (vcpu->arch.nmi_pending) 9567 static_call(kvm_x86_enable_nmi_window)(vcpu); 9568 } 9569 9570 if (kvm_cpu_has_injectable_intr(vcpu)) { 9571 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY; 9572 if (r < 0) 9573 goto out; 9574 if (r) { 9575 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false); 9576 static_call(kvm_x86_inject_irq)(vcpu); 9577 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0); 9578 } 9579 if (kvm_cpu_has_injectable_intr(vcpu)) 9580 static_call(kvm_x86_enable_irq_window)(vcpu); 9581 } 9582 9583 if (is_guest_mode(vcpu) && 9584 kvm_x86_ops.nested_ops->hv_timer_pending && 9585 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu)) 9586 *req_immediate_exit = true; 9587 9588 WARN_ON(vcpu->arch.exception.pending); 9589 return 0; 9590 9591out: 9592 if (r == -EBUSY) { 9593 *req_immediate_exit = true; 9594 r = 0; 9595 } 9596 return r; 9597} 9598 9599static void process_nmi(struct kvm_vcpu *vcpu) 9600{ 9601 unsigned limit = 2; 9602 9603 /* 9604 * x86 is limited to one NMI running, and one NMI pending after it. 9605 * If an NMI is already in progress, limit further NMIs to just one. 9606 * Otherwise, allow two (and we'll inject the first one immediately). 9607 */ 9608 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected) 9609 limit = 1; 9610 9611 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); 9612 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); 9613 kvm_make_request(KVM_REQ_EVENT, vcpu); 9614} 9615 9616static u32 enter_smm_get_segment_flags(struct kvm_segment *seg) 9617{ 9618 u32 flags = 0; 9619 flags |= seg->g << 23; 9620 flags |= seg->db << 22; 9621 flags |= seg->l << 21; 9622 flags |= seg->avl << 20; 9623 flags |= seg->present << 15; 9624 flags |= seg->dpl << 13; 9625 flags |= seg->s << 12; 9626 flags |= seg->type << 8; 9627 return flags; 9628} 9629 9630static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n) 9631{ 9632 struct kvm_segment seg; 9633 int offset; 9634 9635 kvm_get_segment(vcpu, &seg, n); 9636 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector); 9637 9638 if (n < 3) 9639 offset = 0x7f84 + n * 12; 9640 else 9641 offset = 0x7f2c + (n - 3) * 12; 9642 9643 put_smstate(u32, buf, offset + 8, seg.base); 9644 put_smstate(u32, buf, offset + 4, seg.limit); 9645 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg)); 9646} 9647 9648#ifdef CONFIG_X86_64 9649static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n) 9650{ 9651 struct kvm_segment seg; 9652 int offset; 9653 u16 flags; 9654 9655 kvm_get_segment(vcpu, &seg, n); 9656 offset = 0x7e00 + n * 16; 9657 9658 flags = enter_smm_get_segment_flags(&seg) >> 8; 9659 put_smstate(u16, buf, offset, seg.selector); 9660 put_smstate(u16, buf, offset + 2, flags); 9661 put_smstate(u32, buf, offset + 4, seg.limit); 9662 put_smstate(u64, buf, offset + 8, seg.base); 9663} 9664#endif 9665 9666static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf) 9667{ 9668 struct desc_ptr dt; 9669 struct kvm_segment seg; 9670 unsigned long val; 9671 int i; 9672 9673 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu)); 9674 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu)); 9675 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu)); 9676 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu)); 9677 9678 for (i = 0; i < 8; i++) 9679 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i)); 9680 9681 kvm_get_dr(vcpu, 6, &val); 9682 put_smstate(u32, buf, 0x7fcc, (u32)val); 9683 kvm_get_dr(vcpu, 7, &val); 9684 put_smstate(u32, buf, 0x7fc8, (u32)val); 9685 9686 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 9687 put_smstate(u32, buf, 0x7fc4, seg.selector); 9688 put_smstate(u32, buf, 0x7f64, seg.base); 9689 put_smstate(u32, buf, 0x7f60, seg.limit); 9690 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg)); 9691 9692 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 9693 put_smstate(u32, buf, 0x7fc0, seg.selector); 9694 put_smstate(u32, buf, 0x7f80, seg.base); 9695 put_smstate(u32, buf, 0x7f7c, seg.limit); 9696 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg)); 9697 9698 static_call(kvm_x86_get_gdt)(vcpu, &dt); 9699 put_smstate(u32, buf, 0x7f74, dt.address); 9700 put_smstate(u32, buf, 0x7f70, dt.size); 9701 9702 static_call(kvm_x86_get_idt)(vcpu, &dt); 9703 put_smstate(u32, buf, 0x7f58, dt.address); 9704 put_smstate(u32, buf, 0x7f54, dt.size); 9705 9706 for (i = 0; i < 6; i++) 9707 enter_smm_save_seg_32(vcpu, buf, i); 9708 9709 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu)); 9710 9711 /* revision id */ 9712 put_smstate(u32, buf, 0x7efc, 0x00020000); 9713 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase); 9714} 9715 9716#ifdef CONFIG_X86_64 9717static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf) 9718{ 9719 struct desc_ptr dt; 9720 struct kvm_segment seg; 9721 unsigned long val; 9722 int i; 9723 9724 for (i = 0; i < 16; i++) 9725 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i)); 9726 9727 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu)); 9728 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu)); 9729 9730 kvm_get_dr(vcpu, 6, &val); 9731 put_smstate(u64, buf, 0x7f68, val); 9732 kvm_get_dr(vcpu, 7, &val); 9733 put_smstate(u64, buf, 0x7f60, val); 9734 9735 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu)); 9736 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu)); 9737 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu)); 9738 9739 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase); 9740 9741 /* revision id */ 9742 put_smstate(u32, buf, 0x7efc, 0x00020064); 9743 9744 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer); 9745 9746 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR); 9747 put_smstate(u16, buf, 0x7e90, seg.selector); 9748 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8); 9749 put_smstate(u32, buf, 0x7e94, seg.limit); 9750 put_smstate(u64, buf, 0x7e98, seg.base); 9751 9752 static_call(kvm_x86_get_idt)(vcpu, &dt); 9753 put_smstate(u32, buf, 0x7e84, dt.size); 9754 put_smstate(u64, buf, 0x7e88, dt.address); 9755 9756 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR); 9757 put_smstate(u16, buf, 0x7e70, seg.selector); 9758 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8); 9759 put_smstate(u32, buf, 0x7e74, seg.limit); 9760 put_smstate(u64, buf, 0x7e78, seg.base); 9761 9762 static_call(kvm_x86_get_gdt)(vcpu, &dt); 9763 put_smstate(u32, buf, 0x7e64, dt.size); 9764 put_smstate(u64, buf, 0x7e68, dt.address); 9765 9766 for (i = 0; i < 6; i++) 9767 enter_smm_save_seg_64(vcpu, buf, i); 9768} 9769#endif 9770 9771static void enter_smm(struct kvm_vcpu *vcpu) 9772{ 9773 struct kvm_segment cs, ds; 9774 struct desc_ptr dt; 9775 unsigned long cr0; 9776 char buf[512]; 9777 9778 memset(buf, 0, 512); 9779#ifdef CONFIG_X86_64 9780 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) 9781 enter_smm_save_state_64(vcpu, buf); 9782 else 9783#endif 9784 enter_smm_save_state_32(vcpu, buf); 9785 9786 /* 9787 * Give enter_smm() a chance to make ISA-specific changes to the vCPU 9788 * state (e.g. leave guest mode) after we've saved the state into the 9789 * SMM state-save area. 9790 */ 9791 static_call(kvm_x86_enter_smm)(vcpu, buf); 9792 9793 kvm_smm_changed(vcpu, true); 9794 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf)); 9795 9796 if (static_call(kvm_x86_get_nmi_mask)(vcpu)) 9797 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 9798 else 9799 static_call(kvm_x86_set_nmi_mask)(vcpu, true); 9800 9801 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 9802 kvm_rip_write(vcpu, 0x8000); 9803 9804 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG); 9805 static_call(kvm_x86_set_cr0)(vcpu, cr0); 9806 vcpu->arch.cr0 = cr0; 9807 9808 static_call(kvm_x86_set_cr4)(vcpu, 0); 9809 9810 /* Undocumented: IDT limit is set to zero on entry to SMM. */ 9811 dt.address = dt.size = 0; 9812 static_call(kvm_x86_set_idt)(vcpu, &dt); 9813 9814 kvm_set_dr(vcpu, 7, DR7_FIXED_1); 9815 9816 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff; 9817 cs.base = vcpu->arch.smbase; 9818 9819 ds.selector = 0; 9820 ds.base = 0; 9821 9822 cs.limit = ds.limit = 0xffffffff; 9823 cs.type = ds.type = 0x3; 9824 cs.dpl = ds.dpl = 0; 9825 cs.db = ds.db = 0; 9826 cs.s = ds.s = 1; 9827 cs.l = ds.l = 0; 9828 cs.g = ds.g = 1; 9829 cs.avl = ds.avl = 0; 9830 cs.present = ds.present = 1; 9831 cs.unusable = ds.unusable = 0; 9832 cs.padding = ds.padding = 0; 9833 9834 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 9835 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS); 9836 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES); 9837 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS); 9838 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS); 9839 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS); 9840 9841#ifdef CONFIG_X86_64 9842 if (guest_cpuid_has(vcpu, X86_FEATURE_LM)) 9843 static_call(kvm_x86_set_efer)(vcpu, 0); 9844#endif 9845 9846 kvm_update_cpuid_runtime(vcpu); 9847 kvm_mmu_reset_context(vcpu); 9848} 9849 9850static void process_smi(struct kvm_vcpu *vcpu) 9851{ 9852 vcpu->arch.smi_pending = true; 9853 kvm_make_request(KVM_REQ_EVENT, vcpu); 9854} 9855 9856void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, 9857 unsigned long *vcpu_bitmap) 9858{ 9859 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap); 9860} 9861 9862void kvm_make_scan_ioapic_request(struct kvm *kvm) 9863{ 9864 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); 9865} 9866 9867void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) 9868{ 9869 bool activate; 9870 9871 if (!lapic_in_kernel(vcpu)) 9872 return; 9873 9874 down_read(&vcpu->kvm->arch.apicv_update_lock); 9875 preempt_disable(); 9876 9877 activate = kvm_vcpu_apicv_activated(vcpu); 9878 9879 if (vcpu->arch.apicv_active == activate) 9880 goto out; 9881 9882 vcpu->arch.apicv_active = activate; 9883 kvm_apic_update_apicv(vcpu); 9884 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu); 9885 9886 /* 9887 * When APICv gets disabled, we may still have injected interrupts 9888 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was 9889 * still active when the interrupt got accepted. Make sure 9890 * inject_pending_event() is called to check for that. 9891 */ 9892 if (!vcpu->arch.apicv_active) 9893 kvm_make_request(KVM_REQ_EVENT, vcpu); 9894 9895out: 9896 preempt_enable(); 9897 up_read(&vcpu->kvm->arch.apicv_update_lock); 9898} 9899EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv); 9900 9901void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 9902 enum kvm_apicv_inhibit reason, bool set) 9903{ 9904 unsigned long old, new; 9905 9906 lockdep_assert_held_write(&kvm->arch.apicv_update_lock); 9907 9908 if (!static_call(kvm_x86_check_apicv_inhibit_reasons)(reason)) 9909 return; 9910 9911 old = new = kvm->arch.apicv_inhibit_reasons; 9912 9913 set_or_clear_apicv_inhibit(&new, reason, set); 9914 9915 if (!!old != !!new) { 9916 /* 9917 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid 9918 * false positives in the sanity check WARN in svm_vcpu_run(). 9919 * This task will wait for all vCPUs to ack the kick IRQ before 9920 * updating apicv_inhibit_reasons, and all other vCPUs will 9921 * block on acquiring apicv_update_lock so that vCPUs can't 9922 * redo svm_vcpu_run() without seeing the new inhibit state. 9923 * 9924 * Note, holding apicv_update_lock and taking it in the read 9925 * side (handling the request) also prevents other vCPUs from 9926 * servicing the request with a stale apicv_inhibit_reasons. 9927 */ 9928 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE); 9929 kvm->arch.apicv_inhibit_reasons = new; 9930 if (new) { 9931 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE); 9932 kvm_zap_gfn_range(kvm, gfn, gfn+1); 9933 } 9934 } else { 9935 kvm->arch.apicv_inhibit_reasons = new; 9936 } 9937} 9938 9939void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, 9940 enum kvm_apicv_inhibit reason, bool set) 9941{ 9942 if (!enable_apicv) 9943 return; 9944 9945 down_write(&kvm->arch.apicv_update_lock); 9946 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set); 9947 up_write(&kvm->arch.apicv_update_lock); 9948} 9949EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit); 9950 9951static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) 9952{ 9953 if (!kvm_apic_present(vcpu)) 9954 return; 9955 9956 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); 9957 9958 if (irqchip_split(vcpu->kvm)) 9959 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); 9960 else { 9961 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 9962 if (ioapic_in_kernel(vcpu->kvm)) 9963 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); 9964 } 9965 9966 if (is_guest_mode(vcpu)) 9967 vcpu->arch.load_eoi_exitmap_pending = true; 9968 else 9969 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); 9970} 9971 9972static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) 9973{ 9974 u64 eoi_exit_bitmap[4]; 9975 9976 if (!kvm_apic_hw_enabled(vcpu->arch.apic)) 9977 return; 9978 9979 if (to_hv_vcpu(vcpu)) { 9980 bitmap_or((ulong *)eoi_exit_bitmap, 9981 vcpu->arch.ioapic_handled_vectors, 9982 to_hv_synic(vcpu)->vec_bitmap, 256); 9983 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap); 9984 return; 9985 } 9986 9987 static_call_cond(kvm_x86_load_eoi_exitmap)( 9988 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors); 9989} 9990 9991void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 9992 unsigned long start, unsigned long end) 9993{ 9994 unsigned long apic_address; 9995 9996 /* 9997 * The physical address of apic access page is stored in the VMCS. 9998 * Update it when it becomes invalid. 9999 */ 10000 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 10001 if (start <= apic_address && apic_address < end) 10002 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD); 10003} 10004 10005static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) 10006{ 10007 if (!lapic_in_kernel(vcpu)) 10008 return; 10009 10010 static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu); 10011} 10012 10013void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu) 10014{ 10015 smp_send_reschedule(vcpu->cpu); 10016} 10017EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit); 10018 10019/* 10020 * Called within kvm->srcu read side. 10021 * Returns 1 to let vcpu_run() continue the guest execution loop without 10022 * exiting to the userspace. Otherwise, the value will be returned to the 10023 * userspace. 10024 */ 10025static int vcpu_enter_guest(struct kvm_vcpu *vcpu) 10026{ 10027 int r; 10028 bool req_int_win = 10029 dm_request_for_irq_injection(vcpu) && 10030 kvm_cpu_accept_dm_intr(vcpu); 10031 fastpath_t exit_fastpath; 10032 10033 bool req_immediate_exit = false; 10034 10035 /* Forbid vmenter if vcpu dirty ring is soft-full */ 10036 if (unlikely(vcpu->kvm->dirty_ring_size && 10037 kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) { 10038 vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL; 10039 trace_kvm_dirty_ring_exit(vcpu); 10040 r = 0; 10041 goto out; 10042 } 10043 10044 if (kvm_request_pending(vcpu)) { 10045 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) { 10046 r = -EIO; 10047 goto out; 10048 } 10049 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) { 10050 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) { 10051 r = 0; 10052 goto out; 10053 } 10054 } 10055 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) 10056 kvm_mmu_free_obsolete_roots(vcpu); 10057 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) 10058 __kvm_migrate_timers(vcpu); 10059 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) 10060 kvm_update_masterclock(vcpu->kvm); 10061 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) 10062 kvm_gen_kvmclock_update(vcpu); 10063 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { 10064 r = kvm_guest_time_update(vcpu); 10065 if (unlikely(r)) 10066 goto out; 10067 } 10068 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) 10069 kvm_mmu_sync_roots(vcpu); 10070 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu)) 10071 kvm_mmu_load_pgd(vcpu); 10072 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) { 10073 kvm_vcpu_flush_tlb_all(vcpu); 10074 10075 /* Flushing all ASIDs flushes the current ASID... */ 10076 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 10077 } 10078 kvm_service_local_tlb_flush_requests(vcpu); 10079 10080 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { 10081 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; 10082 r = 0; 10083 goto out; 10084 } 10085 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { 10086 if (is_guest_mode(vcpu)) { 10087 kvm_x86_ops.nested_ops->triple_fault(vcpu); 10088 } else { 10089 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 10090 vcpu->mmio_needed = 0; 10091 r = 0; 10092 goto out; 10093 } 10094 } 10095 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { 10096 /* Page is swapped out. Do synthetic halt */ 10097 vcpu->arch.apf.halted = true; 10098 r = 1; 10099 goto out; 10100 } 10101 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) 10102 record_steal_time(vcpu); 10103 if (kvm_check_request(KVM_REQ_SMI, vcpu)) 10104 process_smi(vcpu); 10105 if (kvm_check_request(KVM_REQ_NMI, vcpu)) 10106 process_nmi(vcpu); 10107 if (kvm_check_request(KVM_REQ_PMU, vcpu)) 10108 kvm_pmu_handle_event(vcpu); 10109 if (kvm_check_request(KVM_REQ_PMI, vcpu)) 10110 kvm_pmu_deliver_pmi(vcpu); 10111 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { 10112 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); 10113 if (test_bit(vcpu->arch.pending_ioapic_eoi, 10114 vcpu->arch.ioapic_handled_vectors)) { 10115 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; 10116 vcpu->run->eoi.vector = 10117 vcpu->arch.pending_ioapic_eoi; 10118 r = 0; 10119 goto out; 10120 } 10121 } 10122 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) 10123 vcpu_scan_ioapic(vcpu); 10124 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) 10125 vcpu_load_eoi_exitmap(vcpu); 10126 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) 10127 kvm_vcpu_reload_apic_access_page(vcpu); 10128 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { 10129 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10130 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; 10131 vcpu->run->system_event.ndata = 0; 10132 r = 0; 10133 goto out; 10134 } 10135 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { 10136 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; 10137 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; 10138 vcpu->run->system_event.ndata = 0; 10139 r = 0; 10140 goto out; 10141 } 10142 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { 10143 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); 10144 10145 vcpu->run->exit_reason = KVM_EXIT_HYPERV; 10146 vcpu->run->hyperv = hv_vcpu->exit; 10147 r = 0; 10148 goto out; 10149 } 10150 10151 /* 10152 * KVM_REQ_HV_STIMER has to be processed after 10153 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers 10154 * depend on the guest clock being up-to-date 10155 */ 10156 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) 10157 kvm_hv_process_stimers(vcpu); 10158 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu)) 10159 kvm_vcpu_update_apicv(vcpu); 10160 if (kvm_check_request(KVM_REQ_APF_READY, vcpu)) 10161 kvm_check_async_pf_completion(vcpu); 10162 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu)) 10163 static_call(kvm_x86_msr_filter_changed)(vcpu); 10164 10165 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu)) 10166 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu); 10167 10168 if (kvm_check_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, vcpu)) { 10169 kvm_vcpu_reset(vcpu, true); 10170 if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE) 10171 goto out; 10172 } 10173 } 10174 10175 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win || 10176 kvm_xen_has_interrupt(vcpu)) { 10177 ++vcpu->stat.req_event; 10178 r = kvm_apic_accept_events(vcpu); 10179 if (r < 0) { 10180 r = 0; 10181 goto out; 10182 } 10183 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { 10184 r = 1; 10185 goto out; 10186 } 10187 10188 r = inject_pending_event(vcpu, &req_immediate_exit); 10189 if (r < 0) { 10190 r = 0; 10191 goto out; 10192 } 10193 if (req_int_win) 10194 static_call(kvm_x86_enable_irq_window)(vcpu); 10195 10196 if (kvm_lapic_enabled(vcpu)) { 10197 update_cr8_intercept(vcpu); 10198 kvm_lapic_sync_to_vapic(vcpu); 10199 } 10200 } 10201 10202 r = kvm_mmu_reload(vcpu); 10203 if (unlikely(r)) { 10204 goto cancel_injection; 10205 } 10206 10207 preempt_disable(); 10208 10209 static_call(kvm_x86_prepare_switch_to_guest)(vcpu); 10210 10211 /* 10212 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt 10213 * IPI are then delayed after guest entry, which ensures that they 10214 * result in virtual interrupt delivery. 10215 */ 10216 local_irq_disable(); 10217 10218 /* Store vcpu->apicv_active before vcpu->mode. */ 10219 smp_store_release(&vcpu->mode, IN_GUEST_MODE); 10220 10221 kvm_vcpu_srcu_read_unlock(vcpu); 10222 10223 /* 10224 * 1) We should set ->mode before checking ->requests. Please see 10225 * the comment in kvm_vcpu_exiting_guest_mode(). 10226 * 10227 * 2) For APICv, we should set ->mode before checking PID.ON. This 10228 * pairs with the memory barrier implicit in pi_test_and_set_on 10229 * (see vmx_deliver_posted_interrupt). 10230 * 10231 * 3) This also orders the write to mode from any reads to the page 10232 * tables done while the VCPU is running. Please see the comment 10233 * in kvm_flush_remote_tlbs. 10234 */ 10235 smp_mb__after_srcu_read_unlock(); 10236 10237 /* 10238 * Process pending posted interrupts to handle the case where the 10239 * notification IRQ arrived in the host, or was never sent (because the 10240 * target vCPU wasn't running). Do this regardless of the vCPU's APICv 10241 * status, KVM doesn't update assigned devices when APICv is inhibited, 10242 * i.e. they can post interrupts even if APICv is temporarily disabled. 10243 */ 10244 if (kvm_lapic_enabled(vcpu)) 10245 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10246 10247 if (kvm_vcpu_exit_request(vcpu)) { 10248 vcpu->mode = OUTSIDE_GUEST_MODE; 10249 smp_wmb(); 10250 local_irq_enable(); 10251 preempt_enable(); 10252 kvm_vcpu_srcu_read_lock(vcpu); 10253 r = 1; 10254 goto cancel_injection; 10255 } 10256 10257 if (req_immediate_exit) { 10258 kvm_make_request(KVM_REQ_EVENT, vcpu); 10259 static_call(kvm_x86_request_immediate_exit)(vcpu); 10260 } 10261 10262 fpregs_assert_state_consistent(); 10263 if (test_thread_flag(TIF_NEED_FPU_LOAD)) 10264 switch_fpu_return(); 10265 10266 if (vcpu->arch.guest_fpu.xfd_err) 10267 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); 10268 10269 if (unlikely(vcpu->arch.switch_db_regs)) { 10270 set_debugreg(0, 7); 10271 set_debugreg(vcpu->arch.eff_db[0], 0); 10272 set_debugreg(vcpu->arch.eff_db[1], 1); 10273 set_debugreg(vcpu->arch.eff_db[2], 2); 10274 set_debugreg(vcpu->arch.eff_db[3], 3); 10275 } else if (unlikely(hw_breakpoint_active())) { 10276 set_debugreg(0, 7); 10277 } 10278 10279 guest_timing_enter_irqoff(); 10280 10281 for (;;) { 10282 /* 10283 * Assert that vCPU vs. VM APICv state is consistent. An APICv 10284 * update must kick and wait for all vCPUs before toggling the 10285 * per-VM state, and responsing vCPUs must wait for the update 10286 * to complete before servicing KVM_REQ_APICV_UPDATE. 10287 */ 10288 WARN_ON_ONCE(kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)); 10289 10290 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu); 10291 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST)) 10292 break; 10293 10294 if (kvm_lapic_enabled(vcpu)) 10295 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu); 10296 10297 if (unlikely(kvm_vcpu_exit_request(vcpu))) { 10298 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED; 10299 break; 10300 } 10301 } 10302 10303 /* 10304 * Do this here before restoring debug registers on the host. And 10305 * since we do this before handling the vmexit, a DR access vmexit 10306 * can (a) read the correct value of the debug registers, (b) set 10307 * KVM_DEBUGREG_WONT_EXIT again. 10308 */ 10309 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { 10310 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); 10311 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu); 10312 kvm_update_dr0123(vcpu); 10313 kvm_update_dr7(vcpu); 10314 } 10315 10316 /* 10317 * If the guest has used debug registers, at least dr7 10318 * will be disabled while returning to the host. 10319 * If we don't have active breakpoints in the host, we don't 10320 * care about the messed up debug address registers. But if 10321 * we have some of them active, restore the old state. 10322 */ 10323 if (hw_breakpoint_active()) 10324 hw_breakpoint_restore(); 10325 10326 vcpu->arch.last_vmentry_cpu = vcpu->cpu; 10327 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); 10328 10329 vcpu->mode = OUTSIDE_GUEST_MODE; 10330 smp_wmb(); 10331 10332 /* 10333 * Sync xfd before calling handle_exit_irqoff() which may 10334 * rely on the fact that guest_fpu::xfd is up-to-date (e.g. 10335 * in #NM irqoff handler). 10336 */ 10337 if (vcpu->arch.xfd_no_write_intercept) 10338 fpu_sync_guest_vmexit_xfd_state(); 10339 10340 static_call(kvm_x86_handle_exit_irqoff)(vcpu); 10341 10342 if (vcpu->arch.guest_fpu.xfd_err) 10343 wrmsrl(MSR_IA32_XFD_ERR, 0); 10344 10345 /* 10346 * Consume any pending interrupts, including the possible source of 10347 * VM-Exit on SVM and any ticks that occur between VM-Exit and now. 10348 * An instruction is required after local_irq_enable() to fully unblock 10349 * interrupts on processors that implement an interrupt shadow, the 10350 * stat.exits increment will do nicely. 10351 */ 10352 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); 10353 local_irq_enable(); 10354 ++vcpu->stat.exits; 10355 local_irq_disable(); 10356 kvm_after_interrupt(vcpu); 10357 10358 /* 10359 * Wait until after servicing IRQs to account guest time so that any 10360 * ticks that occurred while running the guest are properly accounted 10361 * to the guest. Waiting until IRQs are enabled degrades the accuracy 10362 * of accounting via context tracking, but the loss of accuracy is 10363 * acceptable for all known use cases. 10364 */ 10365 guest_timing_exit_irqoff(); 10366 10367 local_irq_enable(); 10368 preempt_enable(); 10369 10370 kvm_vcpu_srcu_read_lock(vcpu); 10371 10372 /* 10373 * Profile KVM exit RIPs: 10374 */ 10375 if (unlikely(prof_on == KVM_PROFILING)) { 10376 unsigned long rip = kvm_rip_read(vcpu); 10377 profile_hit(KVM_PROFILING, (void *)rip); 10378 } 10379 10380 if (unlikely(vcpu->arch.tsc_always_catchup)) 10381 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 10382 10383 if (vcpu->arch.apic_attention) 10384 kvm_lapic_sync_from_vapic(vcpu); 10385 10386 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath); 10387 return r; 10388 10389cancel_injection: 10390 if (req_immediate_exit) 10391 kvm_make_request(KVM_REQ_EVENT, vcpu); 10392 static_call(kvm_x86_cancel_injection)(vcpu); 10393 if (unlikely(vcpu->arch.apic_attention)) 10394 kvm_lapic_sync_from_vapic(vcpu); 10395out: 10396 return r; 10397} 10398 10399/* Called within kvm->srcu read side. */ 10400static inline int vcpu_block(struct kvm_vcpu *vcpu) 10401{ 10402 bool hv_timer; 10403 10404 if (!kvm_arch_vcpu_runnable(vcpu)) { 10405 /* 10406 * Switch to the software timer before halt-polling/blocking as 10407 * the guest's timer may be a break event for the vCPU, and the 10408 * hypervisor timer runs only when the CPU is in guest mode. 10409 * Switch before halt-polling so that KVM recognizes an expired 10410 * timer before blocking. 10411 */ 10412 hv_timer = kvm_lapic_hv_timer_in_use(vcpu); 10413 if (hv_timer) 10414 kvm_lapic_switch_to_sw_timer(vcpu); 10415 10416 kvm_vcpu_srcu_read_unlock(vcpu); 10417 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) 10418 kvm_vcpu_halt(vcpu); 10419 else 10420 kvm_vcpu_block(vcpu); 10421 kvm_vcpu_srcu_read_lock(vcpu); 10422 10423 if (hv_timer) 10424 kvm_lapic_switch_to_hv_timer(vcpu); 10425 10426 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu)) 10427 return 1; 10428 } 10429 10430 if (kvm_apic_accept_events(vcpu) < 0) 10431 return 0; 10432 switch(vcpu->arch.mp_state) { 10433 case KVM_MP_STATE_HALTED: 10434 case KVM_MP_STATE_AP_RESET_HOLD: 10435 vcpu->arch.pv.pv_unhalted = false; 10436 vcpu->arch.mp_state = 10437 KVM_MP_STATE_RUNNABLE; 10438 fallthrough; 10439 case KVM_MP_STATE_RUNNABLE: 10440 vcpu->arch.apf.halted = false; 10441 break; 10442 case KVM_MP_STATE_INIT_RECEIVED: 10443 break; 10444 default: 10445 return -EINTR; 10446 } 10447 return 1; 10448} 10449 10450static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu) 10451{ 10452 if (is_guest_mode(vcpu)) 10453 kvm_check_nested_events(vcpu); 10454 10455 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && 10456 !vcpu->arch.apf.halted); 10457} 10458 10459/* Called within kvm->srcu read side. */ 10460static int vcpu_run(struct kvm_vcpu *vcpu) 10461{ 10462 int r; 10463 10464 vcpu->arch.l1tf_flush_l1d = true; 10465 10466 for (;;) { 10467 /* 10468 * If another guest vCPU requests a PV TLB flush in the middle 10469 * of instruction emulation, the rest of the emulation could 10470 * use a stale page translation. Assume that any code after 10471 * this point can start executing an instruction. 10472 */ 10473 vcpu->arch.at_instruction_boundary = false; 10474 if (kvm_vcpu_running(vcpu)) { 10475 r = vcpu_enter_guest(vcpu); 10476 } else { 10477 r = vcpu_block(vcpu); 10478 } 10479 10480 if (r <= 0) 10481 break; 10482 10483 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu); 10484 if (kvm_xen_has_pending_events(vcpu)) 10485 kvm_xen_inject_pending_events(vcpu); 10486 10487 if (kvm_cpu_has_pending_timer(vcpu)) 10488 kvm_inject_pending_timer_irqs(vcpu); 10489 10490 if (dm_request_for_irq_injection(vcpu) && 10491 kvm_vcpu_ready_for_interrupt_injection(vcpu)) { 10492 r = 0; 10493 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; 10494 ++vcpu->stat.request_irq_exits; 10495 break; 10496 } 10497 10498 if (__xfer_to_guest_mode_work_pending()) { 10499 kvm_vcpu_srcu_read_unlock(vcpu); 10500 r = xfer_to_guest_mode_handle_work(vcpu); 10501 kvm_vcpu_srcu_read_lock(vcpu); 10502 if (r) 10503 return r; 10504 } 10505 } 10506 10507 return r; 10508} 10509 10510static inline int complete_emulated_io(struct kvm_vcpu *vcpu) 10511{ 10512 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); 10513} 10514 10515static int complete_emulated_pio(struct kvm_vcpu *vcpu) 10516{ 10517 BUG_ON(!vcpu->arch.pio.count); 10518 10519 return complete_emulated_io(vcpu); 10520} 10521 10522/* 10523 * Implements the following, as a state machine: 10524 * 10525 * read: 10526 * for each fragment 10527 * for each mmio piece in the fragment 10528 * write gpa, len 10529 * exit 10530 * copy data 10531 * execute insn 10532 * 10533 * write: 10534 * for each fragment 10535 * for each mmio piece in the fragment 10536 * write gpa, len 10537 * copy data 10538 * exit 10539 */ 10540static int complete_emulated_mmio(struct kvm_vcpu *vcpu) 10541{ 10542 struct kvm_run *run = vcpu->run; 10543 struct kvm_mmio_fragment *frag; 10544 unsigned len; 10545 10546 BUG_ON(!vcpu->mmio_needed); 10547 10548 /* Complete previous fragment */ 10549 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 10550 len = min(8u, frag->len); 10551 if (!vcpu->mmio_is_write) 10552 memcpy(frag->data, run->mmio.data, len); 10553 10554 if (frag->len <= 8) { 10555 /* Switch to the next fragment. */ 10556 frag++; 10557 vcpu->mmio_cur_fragment++; 10558 } else { 10559 /* Go forward to the next mmio piece. */ 10560 frag->data += len; 10561 frag->gpa += len; 10562 frag->len -= len; 10563 } 10564 10565 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 10566 vcpu->mmio_needed = 0; 10567 10568 /* FIXME: return into emulator if single-stepping. */ 10569 if (vcpu->mmio_is_write) 10570 return 1; 10571 vcpu->mmio_read_completed = 1; 10572 return complete_emulated_io(vcpu); 10573 } 10574 10575 run->exit_reason = KVM_EXIT_MMIO; 10576 run->mmio.phys_addr = frag->gpa; 10577 if (vcpu->mmio_is_write) 10578 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 10579 run->mmio.len = min(8u, frag->len); 10580 run->mmio.is_write = vcpu->mmio_is_write; 10581 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 10582 return 0; 10583} 10584 10585/* Swap (qemu) user FPU context for the guest FPU context. */ 10586static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) 10587{ 10588 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */ 10589 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true); 10590 trace_kvm_fpu(1); 10591} 10592 10593/* When vcpu_run ends, restore user space FPU context. */ 10594static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) 10595{ 10596 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false); 10597 ++vcpu->stat.fpu_reload; 10598 trace_kvm_fpu(0); 10599} 10600 10601int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) 10602{ 10603 struct kvm_run *kvm_run = vcpu->run; 10604 int r; 10605 10606 vcpu_load(vcpu); 10607 kvm_sigset_activate(vcpu); 10608 kvm_run->flags = 0; 10609 kvm_load_guest_fpu(vcpu); 10610 10611 kvm_vcpu_srcu_read_lock(vcpu); 10612 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { 10613 if (kvm_run->immediate_exit) { 10614 r = -EINTR; 10615 goto out; 10616 } 10617 /* 10618 * It should be impossible for the hypervisor timer to be in 10619 * use before KVM has ever run the vCPU. 10620 */ 10621 WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu)); 10622 10623 kvm_vcpu_srcu_read_unlock(vcpu); 10624 kvm_vcpu_block(vcpu); 10625 kvm_vcpu_srcu_read_lock(vcpu); 10626 10627 if (kvm_apic_accept_events(vcpu) < 0) { 10628 r = 0; 10629 goto out; 10630 } 10631 kvm_clear_request(KVM_REQ_UNHALT, vcpu); 10632 r = -EAGAIN; 10633 if (signal_pending(current)) { 10634 r = -EINTR; 10635 kvm_run->exit_reason = KVM_EXIT_INTR; 10636 ++vcpu->stat.signal_exits; 10637 } 10638 goto out; 10639 } 10640 10641 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) || 10642 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) { 10643 r = -EINVAL; 10644 goto out; 10645 } 10646 10647 if (kvm_run->kvm_dirty_regs) { 10648 r = sync_regs(vcpu); 10649 if (r != 0) 10650 goto out; 10651 } 10652 10653 /* re-sync apic's tpr */ 10654 if (!lapic_in_kernel(vcpu)) { 10655 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { 10656 r = -EINVAL; 10657 goto out; 10658 } 10659 } 10660 10661 if (unlikely(vcpu->arch.complete_userspace_io)) { 10662 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; 10663 vcpu->arch.complete_userspace_io = NULL; 10664 r = cui(vcpu); 10665 if (r <= 0) 10666 goto out; 10667 } else 10668 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed); 10669 10670 if (kvm_run->immediate_exit) { 10671 r = -EINTR; 10672 goto out; 10673 } 10674 10675 r = static_call(kvm_x86_vcpu_pre_run)(vcpu); 10676 if (r <= 0) 10677 goto out; 10678 10679 r = vcpu_run(vcpu); 10680 10681out: 10682 kvm_put_guest_fpu(vcpu); 10683 if (kvm_run->kvm_valid_regs) 10684 store_regs(vcpu); 10685 post_kvm_run_save(vcpu); 10686 kvm_vcpu_srcu_read_unlock(vcpu); 10687 10688 kvm_sigset_deactivate(vcpu); 10689 vcpu_put(vcpu); 10690 return r; 10691} 10692 10693static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 10694{ 10695 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { 10696 /* 10697 * We are here if userspace calls get_regs() in the middle of 10698 * instruction emulation. Registers state needs to be copied 10699 * back from emulation context to vcpu. Userspace shouldn't do 10700 * that usually, but some bad designed PV devices (vmware 10701 * backdoor interface) need this to work 10702 */ 10703 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt); 10704 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 10705 } 10706 regs->rax = kvm_rax_read(vcpu); 10707 regs->rbx = kvm_rbx_read(vcpu); 10708 regs->rcx = kvm_rcx_read(vcpu); 10709 regs->rdx = kvm_rdx_read(vcpu); 10710 regs->rsi = kvm_rsi_read(vcpu); 10711 regs->rdi = kvm_rdi_read(vcpu); 10712 regs->rsp = kvm_rsp_read(vcpu); 10713 regs->rbp = kvm_rbp_read(vcpu); 10714#ifdef CONFIG_X86_64 10715 regs->r8 = kvm_r8_read(vcpu); 10716 regs->r9 = kvm_r9_read(vcpu); 10717 regs->r10 = kvm_r10_read(vcpu); 10718 regs->r11 = kvm_r11_read(vcpu); 10719 regs->r12 = kvm_r12_read(vcpu); 10720 regs->r13 = kvm_r13_read(vcpu); 10721 regs->r14 = kvm_r14_read(vcpu); 10722 regs->r15 = kvm_r15_read(vcpu); 10723#endif 10724 10725 regs->rip = kvm_rip_read(vcpu); 10726 regs->rflags = kvm_get_rflags(vcpu); 10727} 10728 10729int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 10730{ 10731 vcpu_load(vcpu); 10732 __get_regs(vcpu, regs); 10733 vcpu_put(vcpu); 10734 return 0; 10735} 10736 10737static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 10738{ 10739 vcpu->arch.emulate_regs_need_sync_from_vcpu = true; 10740 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 10741 10742 kvm_rax_write(vcpu, regs->rax); 10743 kvm_rbx_write(vcpu, regs->rbx); 10744 kvm_rcx_write(vcpu, regs->rcx); 10745 kvm_rdx_write(vcpu, regs->rdx); 10746 kvm_rsi_write(vcpu, regs->rsi); 10747 kvm_rdi_write(vcpu, regs->rdi); 10748 kvm_rsp_write(vcpu, regs->rsp); 10749 kvm_rbp_write(vcpu, regs->rbp); 10750#ifdef CONFIG_X86_64 10751 kvm_r8_write(vcpu, regs->r8); 10752 kvm_r9_write(vcpu, regs->r9); 10753 kvm_r10_write(vcpu, regs->r10); 10754 kvm_r11_write(vcpu, regs->r11); 10755 kvm_r12_write(vcpu, regs->r12); 10756 kvm_r13_write(vcpu, regs->r13); 10757 kvm_r14_write(vcpu, regs->r14); 10758 kvm_r15_write(vcpu, regs->r15); 10759#endif 10760 10761 kvm_rip_write(vcpu, regs->rip); 10762 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); 10763 10764 vcpu->arch.exception.pending = false; 10765 10766 kvm_make_request(KVM_REQ_EVENT, vcpu); 10767} 10768 10769int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) 10770{ 10771 vcpu_load(vcpu); 10772 __set_regs(vcpu, regs); 10773 vcpu_put(vcpu); 10774 return 0; 10775} 10776 10777static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 10778{ 10779 struct desc_ptr dt; 10780 10781 if (vcpu->arch.guest_state_protected) 10782 goto skip_protected_regs; 10783 10784 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 10785 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 10786 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); 10787 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 10788 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 10789 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 10790 10791 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 10792 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 10793 10794 static_call(kvm_x86_get_idt)(vcpu, &dt); 10795 sregs->idt.limit = dt.size; 10796 sregs->idt.base = dt.address; 10797 static_call(kvm_x86_get_gdt)(vcpu, &dt); 10798 sregs->gdt.limit = dt.size; 10799 sregs->gdt.base = dt.address; 10800 10801 sregs->cr2 = vcpu->arch.cr2; 10802 sregs->cr3 = kvm_read_cr3(vcpu); 10803 10804skip_protected_regs: 10805 sregs->cr0 = kvm_read_cr0(vcpu); 10806 sregs->cr4 = kvm_read_cr4(vcpu); 10807 sregs->cr8 = kvm_get_cr8(vcpu); 10808 sregs->efer = vcpu->arch.efer; 10809 sregs->apic_base = kvm_get_apic_base(vcpu); 10810} 10811 10812static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 10813{ 10814 __get_sregs_common(vcpu, sregs); 10815 10816 if (vcpu->arch.guest_state_protected) 10817 return; 10818 10819 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) 10820 set_bit(vcpu->arch.interrupt.nr, 10821 (unsigned long *)sregs->interrupt_bitmap); 10822} 10823 10824static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 10825{ 10826 int i; 10827 10828 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2); 10829 10830 if (vcpu->arch.guest_state_protected) 10831 return; 10832 10833 if (is_pae_paging(vcpu)) { 10834 for (i = 0 ; i < 4 ; i++) 10835 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i); 10836 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID; 10837 } 10838} 10839 10840int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 10841 struct kvm_sregs *sregs) 10842{ 10843 vcpu_load(vcpu); 10844 __get_sregs(vcpu, sregs); 10845 vcpu_put(vcpu); 10846 return 0; 10847} 10848 10849int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 10850 struct kvm_mp_state *mp_state) 10851{ 10852 int r; 10853 10854 vcpu_load(vcpu); 10855 if (kvm_mpx_supported()) 10856 kvm_load_guest_fpu(vcpu); 10857 10858 r = kvm_apic_accept_events(vcpu); 10859 if (r < 0) 10860 goto out; 10861 r = 0; 10862 10863 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED || 10864 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) && 10865 vcpu->arch.pv.pv_unhalted) 10866 mp_state->mp_state = KVM_MP_STATE_RUNNABLE; 10867 else 10868 mp_state->mp_state = vcpu->arch.mp_state; 10869 10870out: 10871 if (kvm_mpx_supported()) 10872 kvm_put_guest_fpu(vcpu); 10873 vcpu_put(vcpu); 10874 return r; 10875} 10876 10877int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 10878 struct kvm_mp_state *mp_state) 10879{ 10880 int ret = -EINVAL; 10881 10882 vcpu_load(vcpu); 10883 10884 if (!lapic_in_kernel(vcpu) && 10885 mp_state->mp_state != KVM_MP_STATE_RUNNABLE) 10886 goto out; 10887 10888 /* 10889 * KVM_MP_STATE_INIT_RECEIVED means the processor is in 10890 * INIT state; latched init should be reported using 10891 * KVM_SET_VCPU_EVENTS, so reject it here. 10892 */ 10893 if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) && 10894 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || 10895 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) 10896 goto out; 10897 10898 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { 10899 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; 10900 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); 10901 } else 10902 vcpu->arch.mp_state = mp_state->mp_state; 10903 kvm_make_request(KVM_REQ_EVENT, vcpu); 10904 10905 ret = 0; 10906out: 10907 vcpu_put(vcpu); 10908 return ret; 10909} 10910 10911int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, 10912 int reason, bool has_error_code, u32 error_code) 10913{ 10914 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; 10915 int ret; 10916 10917 init_emulate_ctxt(vcpu); 10918 10919 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, 10920 has_error_code, error_code); 10921 if (ret) { 10922 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 10923 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 10924 vcpu->run->internal.ndata = 0; 10925 return 0; 10926 } 10927 10928 kvm_rip_write(vcpu, ctxt->eip); 10929 kvm_set_rflags(vcpu, ctxt->eflags); 10930 return 1; 10931} 10932EXPORT_SYMBOL_GPL(kvm_task_switch); 10933 10934static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 10935{ 10936 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { 10937 /* 10938 * When EFER.LME and CR0.PG are set, the processor is in 10939 * 64-bit mode (though maybe in a 32-bit code segment). 10940 * CR4.PAE and EFER.LMA must be set. 10941 */ 10942 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA)) 10943 return false; 10944 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3)) 10945 return false; 10946 } else { 10947 /* 10948 * Not in 64-bit mode: EFER.LMA is clear and the code 10949 * segment cannot be 64-bit. 10950 */ 10951 if (sregs->efer & EFER_LMA || sregs->cs.l) 10952 return false; 10953 } 10954 10955 return kvm_is_valid_cr4(vcpu, sregs->cr4); 10956} 10957 10958static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs, 10959 int *mmu_reset_needed, bool update_pdptrs) 10960{ 10961 struct msr_data apic_base_msr; 10962 int idx; 10963 struct desc_ptr dt; 10964 10965 if (!kvm_is_valid_sregs(vcpu, sregs)) 10966 return -EINVAL; 10967 10968 apic_base_msr.data = sregs->apic_base; 10969 apic_base_msr.host_initiated = true; 10970 if (kvm_set_apic_base(vcpu, &apic_base_msr)) 10971 return -EINVAL; 10972 10973 if (vcpu->arch.guest_state_protected) 10974 return 0; 10975 10976 dt.size = sregs->idt.limit; 10977 dt.address = sregs->idt.base; 10978 static_call(kvm_x86_set_idt)(vcpu, &dt); 10979 dt.size = sregs->gdt.limit; 10980 dt.address = sregs->gdt.base; 10981 static_call(kvm_x86_set_gdt)(vcpu, &dt); 10982 10983 vcpu->arch.cr2 = sregs->cr2; 10984 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; 10985 vcpu->arch.cr3 = sregs->cr3; 10986 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 10987 static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3); 10988 10989 kvm_set_cr8(vcpu, sregs->cr8); 10990 10991 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer; 10992 static_call(kvm_x86_set_efer)(vcpu, sregs->efer); 10993 10994 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; 10995 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0); 10996 vcpu->arch.cr0 = sregs->cr0; 10997 10998 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; 10999 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4); 11000 11001 if (update_pdptrs) { 11002 idx = srcu_read_lock(&vcpu->kvm->srcu); 11003 if (is_pae_paging(vcpu)) { 11004 load_pdptrs(vcpu, kvm_read_cr3(vcpu)); 11005 *mmu_reset_needed = 1; 11006 } 11007 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11008 } 11009 11010 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); 11011 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); 11012 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); 11013 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); 11014 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); 11015 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); 11016 11017 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); 11018 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); 11019 11020 update_cr8_intercept(vcpu); 11021 11022 /* Older userspace won't unhalt the vcpu on reset. */ 11023 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && 11024 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && 11025 !is_protmode(vcpu)) 11026 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11027 11028 return 0; 11029} 11030 11031static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) 11032{ 11033 int pending_vec, max_bits; 11034 int mmu_reset_needed = 0; 11035 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true); 11036 11037 if (ret) 11038 return ret; 11039 11040 if (mmu_reset_needed) 11041 kvm_mmu_reset_context(vcpu); 11042 11043 max_bits = KVM_NR_INTERRUPTS; 11044 pending_vec = find_first_bit( 11045 (const unsigned long *)sregs->interrupt_bitmap, max_bits); 11046 11047 if (pending_vec < max_bits) { 11048 kvm_queue_interrupt(vcpu, pending_vec, false); 11049 pr_debug("Set back pending irq %d\n", pending_vec); 11050 kvm_make_request(KVM_REQ_EVENT, vcpu); 11051 } 11052 return 0; 11053} 11054 11055static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) 11056{ 11057 int mmu_reset_needed = 0; 11058 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID; 11059 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) && 11060 !(sregs2->efer & EFER_LMA); 11061 int i, ret; 11062 11063 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID) 11064 return -EINVAL; 11065 11066 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected)) 11067 return -EINVAL; 11068 11069 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2, 11070 &mmu_reset_needed, !valid_pdptrs); 11071 if (ret) 11072 return ret; 11073 11074 if (valid_pdptrs) { 11075 for (i = 0; i < 4 ; i++) 11076 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]); 11077 11078 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 11079 mmu_reset_needed = 1; 11080 vcpu->arch.pdptrs_from_userspace = true; 11081 } 11082 if (mmu_reset_needed) 11083 kvm_mmu_reset_context(vcpu); 11084 return 0; 11085} 11086 11087int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 11088 struct kvm_sregs *sregs) 11089{ 11090 int ret; 11091 11092 vcpu_load(vcpu); 11093 ret = __set_sregs(vcpu, sregs); 11094 vcpu_put(vcpu); 11095 return ret; 11096} 11097 11098static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm) 11099{ 11100 bool set = false; 11101 struct kvm_vcpu *vcpu; 11102 unsigned long i; 11103 11104 if (!enable_apicv) 11105 return; 11106 11107 down_write(&kvm->arch.apicv_update_lock); 11108 11109 kvm_for_each_vcpu(i, vcpu, kvm) { 11110 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) { 11111 set = true; 11112 break; 11113 } 11114 } 11115 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set); 11116 up_write(&kvm->arch.apicv_update_lock); 11117} 11118 11119int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 11120 struct kvm_guest_debug *dbg) 11121{ 11122 unsigned long rflags; 11123 int i, r; 11124 11125 if (vcpu->arch.guest_state_protected) 11126 return -EINVAL; 11127 11128 vcpu_load(vcpu); 11129 11130 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { 11131 r = -EBUSY; 11132 if (vcpu->arch.exception.pending) 11133 goto out; 11134 if (dbg->control & KVM_GUESTDBG_INJECT_DB) 11135 kvm_queue_exception(vcpu, DB_VECTOR); 11136 else 11137 kvm_queue_exception(vcpu, BP_VECTOR); 11138 } 11139 11140 /* 11141 * Read rflags as long as potentially injected trace flags are still 11142 * filtered out. 11143 */ 11144 rflags = kvm_get_rflags(vcpu); 11145 11146 vcpu->guest_debug = dbg->control; 11147 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) 11148 vcpu->guest_debug = 0; 11149 11150 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 11151 for (i = 0; i < KVM_NR_DB_REGS; ++i) 11152 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; 11153 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; 11154 } else { 11155 for (i = 0; i < KVM_NR_DB_REGS; i++) 11156 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 11157 } 11158 kvm_update_dr7(vcpu); 11159 11160 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 11161 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu); 11162 11163 /* 11164 * Trigger an rflags update that will inject or remove the trace 11165 * flags. 11166 */ 11167 kvm_set_rflags(vcpu, rflags); 11168 11169 static_call(kvm_x86_update_exception_bitmap)(vcpu); 11170 11171 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm); 11172 11173 r = 0; 11174 11175out: 11176 vcpu_put(vcpu); 11177 return r; 11178} 11179 11180/* 11181 * Translate a guest virtual address to a guest physical address. 11182 */ 11183int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 11184 struct kvm_translation *tr) 11185{ 11186 unsigned long vaddr = tr->linear_address; 11187 gpa_t gpa; 11188 int idx; 11189 11190 vcpu_load(vcpu); 11191 11192 idx = srcu_read_lock(&vcpu->kvm->srcu); 11193 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); 11194 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11195 tr->physical_address = gpa; 11196 tr->valid = gpa != UNMAPPED_GVA; 11197 tr->writeable = 1; 11198 tr->usermode = 0; 11199 11200 vcpu_put(vcpu); 11201 return 0; 11202} 11203 11204int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11205{ 11206 struct fxregs_state *fxsave; 11207 11208 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11209 return 0; 11210 11211 vcpu_load(vcpu); 11212 11213 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11214 memcpy(fpu->fpr, fxsave->st_space, 128); 11215 fpu->fcw = fxsave->cwd; 11216 fpu->fsw = fxsave->swd; 11217 fpu->ftwx = fxsave->twd; 11218 fpu->last_opcode = fxsave->fop; 11219 fpu->last_ip = fxsave->rip; 11220 fpu->last_dp = fxsave->rdp; 11221 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); 11222 11223 vcpu_put(vcpu); 11224 return 0; 11225} 11226 11227int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) 11228{ 11229 struct fxregs_state *fxsave; 11230 11231 if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) 11232 return 0; 11233 11234 vcpu_load(vcpu); 11235 11236 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; 11237 11238 memcpy(fxsave->st_space, fpu->fpr, 128); 11239 fxsave->cwd = fpu->fcw; 11240 fxsave->swd = fpu->fsw; 11241 fxsave->twd = fpu->ftwx; 11242 fxsave->fop = fpu->last_opcode; 11243 fxsave->rip = fpu->last_ip; 11244 fxsave->rdp = fpu->last_dp; 11245 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); 11246 11247 vcpu_put(vcpu); 11248 return 0; 11249} 11250 11251static void store_regs(struct kvm_vcpu *vcpu) 11252{ 11253 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); 11254 11255 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) 11256 __get_regs(vcpu, &vcpu->run->s.regs.regs); 11257 11258 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) 11259 __get_sregs(vcpu, &vcpu->run->s.regs.sregs); 11260 11261 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) 11262 kvm_vcpu_ioctl_x86_get_vcpu_events( 11263 vcpu, &vcpu->run->s.regs.events); 11264} 11265 11266static int sync_regs(struct kvm_vcpu *vcpu) 11267{ 11268 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { 11269 __set_regs(vcpu, &vcpu->run->s.regs.regs); 11270 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; 11271 } 11272 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { 11273 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs)) 11274 return -EINVAL; 11275 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; 11276 } 11277 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { 11278 if (kvm_vcpu_ioctl_x86_set_vcpu_events( 11279 vcpu, &vcpu->run->s.regs.events)) 11280 return -EINVAL; 11281 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; 11282 } 11283 11284 return 0; 11285} 11286 11287int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) 11288{ 11289 if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0) 11290 pr_warn_once("kvm: SMP vm created on host with unstable TSC; " 11291 "guest TSC will not be reliable\n"); 11292 11293 return 0; 11294} 11295 11296int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) 11297{ 11298 struct page *page; 11299 int r; 11300 11301 vcpu->arch.last_vmentry_cpu = -1; 11302 vcpu->arch.regs_avail = ~0; 11303 vcpu->arch.regs_dirty = ~0; 11304 11305 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) 11306 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 11307 else 11308 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; 11309 11310 r = kvm_mmu_create(vcpu); 11311 if (r < 0) 11312 return r; 11313 11314 if (irqchip_in_kernel(vcpu->kvm)) { 11315 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns); 11316 if (r < 0) 11317 goto fail_mmu_destroy; 11318 11319 /* 11320 * Defer evaluating inhibits until the vCPU is first run, as 11321 * this vCPU will not get notified of any changes until this 11322 * vCPU is visible to other vCPUs (marked online and added to 11323 * the set of vCPUs). Opportunistically mark APICv active as 11324 * VMX in particularly is highly unlikely to have inhibits. 11325 * Ignore the current per-VM APICv state so that vCPU creation 11326 * is guaranteed to run with a deterministic value, the request 11327 * will ensure the vCPU gets the correct state before VM-Entry. 11328 */ 11329 if (enable_apicv) { 11330 vcpu->arch.apicv_active = true; 11331 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu); 11332 } 11333 } else 11334 static_branch_inc(&kvm_has_noapic_vcpu); 11335 11336 r = -ENOMEM; 11337 11338 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 11339 if (!page) 11340 goto fail_free_lapic; 11341 vcpu->arch.pio_data = page_address(page); 11342 11343 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4, 11344 GFP_KERNEL_ACCOUNT); 11345 if (!vcpu->arch.mce_banks) 11346 goto fail_free_pio_data; 11347 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; 11348 11349 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, 11350 GFP_KERNEL_ACCOUNT)) 11351 goto fail_free_mce_banks; 11352 11353 if (!alloc_emulate_ctxt(vcpu)) 11354 goto free_wbinvd_dirty_mask; 11355 11356 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) { 11357 pr_err("kvm: failed to allocate vcpu's fpu\n"); 11358 goto free_emulate_ctxt; 11359 } 11360 11361 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 11362 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu); 11363 11364 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; 11365 11366 kvm_async_pf_hash_reset(vcpu); 11367 kvm_pmu_init(vcpu); 11368 11369 vcpu->arch.pending_external_vector = -1; 11370 vcpu->arch.preempted_in_kernel = false; 11371 11372#if IS_ENABLED(CONFIG_HYPERV) 11373 vcpu->arch.hv_root_tdp = INVALID_PAGE; 11374#endif 11375 11376 r = static_call(kvm_x86_vcpu_create)(vcpu); 11377 if (r) 11378 goto free_guest_fpu; 11379 11380 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); 11381 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; 11382 kvm_xen_init_vcpu(vcpu); 11383 kvm_vcpu_mtrr_init(vcpu); 11384 vcpu_load(vcpu); 11385 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz); 11386 kvm_vcpu_reset(vcpu, false); 11387 kvm_init_mmu(vcpu); 11388 vcpu_put(vcpu); 11389 return 0; 11390 11391free_guest_fpu: 11392 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 11393free_emulate_ctxt: 11394 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 11395free_wbinvd_dirty_mask: 11396 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 11397fail_free_mce_banks: 11398 kfree(vcpu->arch.mce_banks); 11399fail_free_pio_data: 11400 free_page((unsigned long)vcpu->arch.pio_data); 11401fail_free_lapic: 11402 kvm_free_lapic(vcpu); 11403fail_mmu_destroy: 11404 kvm_mmu_destroy(vcpu); 11405 return r; 11406} 11407 11408void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) 11409{ 11410 struct kvm *kvm = vcpu->kvm; 11411 11412 if (mutex_lock_killable(&vcpu->mutex)) 11413 return; 11414 vcpu_load(vcpu); 11415 kvm_synchronize_tsc(vcpu, 0); 11416 vcpu_put(vcpu); 11417 11418 /* poll control enabled by default */ 11419 vcpu->arch.msr_kvm_poll_control = 1; 11420 11421 mutex_unlock(&vcpu->mutex); 11422 11423 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0) 11424 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 11425 KVMCLOCK_SYNC_PERIOD); 11426} 11427 11428void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) 11429{ 11430 int idx; 11431 11432 kvmclock_reset(vcpu); 11433 11434 static_call(kvm_x86_vcpu_free)(vcpu); 11435 11436 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); 11437 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); 11438 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); 11439 11440 kvm_xen_destroy_vcpu(vcpu); 11441 kvm_hv_vcpu_uninit(vcpu); 11442 kvm_pmu_destroy(vcpu); 11443 kfree(vcpu->arch.mce_banks); 11444 kvm_free_lapic(vcpu); 11445 idx = srcu_read_lock(&vcpu->kvm->srcu); 11446 kvm_mmu_destroy(vcpu); 11447 srcu_read_unlock(&vcpu->kvm->srcu, idx); 11448 free_page((unsigned long)vcpu->arch.pio_data); 11449 kvfree(vcpu->arch.cpuid_entries); 11450 if (!lapic_in_kernel(vcpu)) 11451 static_branch_dec(&kvm_has_noapic_vcpu); 11452} 11453 11454void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 11455{ 11456 struct kvm_cpuid_entry2 *cpuid_0x1; 11457 unsigned long old_cr0 = kvm_read_cr0(vcpu); 11458 unsigned long new_cr0; 11459 11460 /* 11461 * Several of the "set" flows, e.g. ->set_cr0(), read other registers 11462 * to handle side effects. RESET emulation hits those flows and relies 11463 * on emulated/virtualized registers, including those that are loaded 11464 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel 11465 * to detect improper or missing initialization. 11466 */ 11467 WARN_ON_ONCE(!init_event && 11468 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu))); 11469 11470 kvm_lapic_reset(vcpu, init_event); 11471 11472 vcpu->arch.hflags = 0; 11473 11474 vcpu->arch.smi_pending = 0; 11475 vcpu->arch.smi_count = 0; 11476 atomic_set(&vcpu->arch.nmi_queued, 0); 11477 vcpu->arch.nmi_pending = 0; 11478 vcpu->arch.nmi_injected = false; 11479 kvm_clear_interrupt_queue(vcpu); 11480 kvm_clear_exception_queue(vcpu); 11481 11482 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); 11483 kvm_update_dr0123(vcpu); 11484 vcpu->arch.dr6 = DR6_ACTIVE_LOW; 11485 vcpu->arch.dr7 = DR7_FIXED_1; 11486 kvm_update_dr7(vcpu); 11487 11488 vcpu->arch.cr2 = 0; 11489 11490 kvm_make_request(KVM_REQ_EVENT, vcpu); 11491 vcpu->arch.apf.msr_en_val = 0; 11492 vcpu->arch.apf.msr_int_val = 0; 11493 vcpu->arch.st.msr_val = 0; 11494 11495 kvmclock_reset(vcpu); 11496 11497 kvm_clear_async_pf_completion_queue(vcpu); 11498 kvm_async_pf_hash_reset(vcpu); 11499 vcpu->arch.apf.halted = false; 11500 11501 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) { 11502 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate; 11503 11504 /* 11505 * To avoid have the INIT path from kvm_apic_has_events() that be 11506 * called with loaded FPU and does not let userspace fix the state. 11507 */ 11508 if (init_event) 11509 kvm_put_guest_fpu(vcpu); 11510 11511 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS); 11512 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR); 11513 11514 if (init_event) 11515 kvm_load_guest_fpu(vcpu); 11516 } 11517 11518 if (!init_event) { 11519 kvm_pmu_reset(vcpu); 11520 vcpu->arch.smbase = 0x30000; 11521 11522 vcpu->arch.msr_misc_features_enables = 0; 11523 11524 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP); 11525 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true); 11526 } 11527 11528 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */ 11529 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); 11530 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP); 11531 11532 /* 11533 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon) 11534 * if no CPUID match is found. Note, it's impossible to get a match at 11535 * RESET since KVM emulates RESET before exposing the vCPU to userspace, 11536 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry 11537 * on RESET. But, go through the motions in case that's ever remedied. 11538 */ 11539 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1, 0); 11540 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600); 11541 11542 static_call(kvm_x86_vcpu_reset)(vcpu, init_event); 11543 11544 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 11545 kvm_rip_write(vcpu, 0xfff0); 11546 11547 vcpu->arch.cr3 = 0; 11548 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 11549 11550 /* 11551 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions 11552 * of Intel's SDM list CD/NW as being set on INIT, but they contradict 11553 * (or qualify) that with a footnote stating that CD/NW are preserved. 11554 */ 11555 new_cr0 = X86_CR0_ET; 11556 if (init_event) 11557 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD)); 11558 else 11559 new_cr0 |= X86_CR0_NW | X86_CR0_CD; 11560 11561 static_call(kvm_x86_set_cr0)(vcpu, new_cr0); 11562 static_call(kvm_x86_set_cr4)(vcpu, 0); 11563 static_call(kvm_x86_set_efer)(vcpu, 0); 11564 static_call(kvm_x86_update_exception_bitmap)(vcpu); 11565 11566 /* 11567 * On the standard CR0/CR4/EFER modification paths, there are several 11568 * complex conditions determining whether the MMU has to be reset and/or 11569 * which PCIDs have to be flushed. However, CR0.WP and the paging-related 11570 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush 11571 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as 11572 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here. 11573 */ 11574 if (old_cr0 & X86_CR0_PG) { 11575 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 11576 kvm_mmu_reset_context(vcpu); 11577 } 11578 11579 /* 11580 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's 11581 * APM states the TLBs are untouched by INIT, but it also states that 11582 * the TLBs are flushed on "External initialization of the processor." 11583 * Flush the guest TLB regardless of vendor, there is no meaningful 11584 * benefit in relying on the guest to flush the TLB immediately after 11585 * INIT. A spurious TLB flush is benign and likely negligible from a 11586 * performance perspective. 11587 */ 11588 if (init_event) 11589 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 11590} 11591EXPORT_SYMBOL_GPL(kvm_vcpu_reset); 11592 11593void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) 11594{ 11595 struct kvm_segment cs; 11596 11597 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); 11598 cs.selector = vector << 8; 11599 cs.base = vector << 12; 11600 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); 11601 kvm_rip_write(vcpu, 0); 11602} 11603EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector); 11604 11605int kvm_arch_hardware_enable(void) 11606{ 11607 struct kvm *kvm; 11608 struct kvm_vcpu *vcpu; 11609 unsigned long i; 11610 int ret; 11611 u64 local_tsc; 11612 u64 max_tsc = 0; 11613 bool stable, backwards_tsc = false; 11614 11615 kvm_user_return_msr_cpu_online(); 11616 ret = static_call(kvm_x86_hardware_enable)(); 11617 if (ret != 0) 11618 return ret; 11619 11620 local_tsc = rdtsc(); 11621 stable = !kvm_check_tsc_unstable(); 11622 list_for_each_entry(kvm, &vm_list, vm_list) { 11623 kvm_for_each_vcpu(i, vcpu, kvm) { 11624 if (!stable && vcpu->cpu == smp_processor_id()) 11625 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 11626 if (stable && vcpu->arch.last_host_tsc > local_tsc) { 11627 backwards_tsc = true; 11628 if (vcpu->arch.last_host_tsc > max_tsc) 11629 max_tsc = vcpu->arch.last_host_tsc; 11630 } 11631 } 11632 } 11633 11634 /* 11635 * Sometimes, even reliable TSCs go backwards. This happens on 11636 * platforms that reset TSC during suspend or hibernate actions, but 11637 * maintain synchronization. We must compensate. Fortunately, we can 11638 * detect that condition here, which happens early in CPU bringup, 11639 * before any KVM threads can be running. Unfortunately, we can't 11640 * bring the TSCs fully up to date with real time, as we aren't yet far 11641 * enough into CPU bringup that we know how much real time has actually 11642 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot 11643 * variables that haven't been updated yet. 11644 * 11645 * So we simply find the maximum observed TSC above, then record the 11646 * adjustment to TSC in each VCPU. When the VCPU later gets loaded, 11647 * the adjustment will be applied. Note that we accumulate 11648 * adjustments, in case multiple suspend cycles happen before some VCPU 11649 * gets a chance to run again. In the event that no KVM threads get a 11650 * chance to run, we will miss the entire elapsed period, as we'll have 11651 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may 11652 * loose cycle time. This isn't too big a deal, since the loss will be 11653 * uniform across all VCPUs (not to mention the scenario is extremely 11654 * unlikely). It is possible that a second hibernate recovery happens 11655 * much faster than a first, causing the observed TSC here to be 11656 * smaller; this would require additional padding adjustment, which is 11657 * why we set last_host_tsc to the local tsc observed here. 11658 * 11659 * N.B. - this code below runs only on platforms with reliable TSC, 11660 * as that is the only way backwards_tsc is set above. Also note 11661 * that this runs for ALL vcpus, which is not a bug; all VCPUs should 11662 * have the same delta_cyc adjustment applied if backwards_tsc 11663 * is detected. Note further, this adjustment is only done once, 11664 * as we reset last_host_tsc on all VCPUs to stop this from being 11665 * called multiple times (one for each physical CPU bringup). 11666 * 11667 * Platforms with unreliable TSCs don't have to deal with this, they 11668 * will be compensated by the logic in vcpu_load, which sets the TSC to 11669 * catchup mode. This will catchup all VCPUs to real time, but cannot 11670 * guarantee that they stay in perfect synchronization. 11671 */ 11672 if (backwards_tsc) { 11673 u64 delta_cyc = max_tsc - local_tsc; 11674 list_for_each_entry(kvm, &vm_list, vm_list) { 11675 kvm->arch.backwards_tsc_observed = true; 11676 kvm_for_each_vcpu(i, vcpu, kvm) { 11677 vcpu->arch.tsc_offset_adjustment += delta_cyc; 11678 vcpu->arch.last_host_tsc = local_tsc; 11679 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 11680 } 11681 11682 /* 11683 * We have to disable TSC offset matching.. if you were 11684 * booting a VM while issuing an S4 host suspend.... 11685 * you may have some problem. Solving this issue is 11686 * left as an exercise to the reader. 11687 */ 11688 kvm->arch.last_tsc_nsec = 0; 11689 kvm->arch.last_tsc_write = 0; 11690 } 11691 11692 } 11693 return 0; 11694} 11695 11696void kvm_arch_hardware_disable(void) 11697{ 11698 static_call(kvm_x86_hardware_disable)(); 11699 drop_user_return_notifiers(); 11700} 11701 11702static inline void kvm_ops_update(struct kvm_x86_init_ops *ops) 11703{ 11704 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops)); 11705 11706#define __KVM_X86_OP(func) \ 11707 static_call_update(kvm_x86_##func, kvm_x86_ops.func); 11708#define KVM_X86_OP(func) \ 11709 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func) 11710#define KVM_X86_OP_OPTIONAL __KVM_X86_OP 11711#define KVM_X86_OP_OPTIONAL_RET0(func) \ 11712 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \ 11713 (void *)__static_call_return0); 11714#include <asm/kvm-x86-ops.h> 11715#undef __KVM_X86_OP 11716 11717 kvm_pmu_ops_update(ops->pmu_ops); 11718} 11719 11720int kvm_arch_hardware_setup(void *opaque) 11721{ 11722 struct kvm_x86_init_ops *ops = opaque; 11723 int r; 11724 11725 rdmsrl_safe(MSR_EFER, &host_efer); 11726 11727 if (boot_cpu_has(X86_FEATURE_XSAVES)) 11728 rdmsrl(MSR_IA32_XSS, host_xss); 11729 11730 r = ops->hardware_setup(); 11731 if (r != 0) 11732 return r; 11733 11734 kvm_ops_update(ops); 11735 11736 kvm_register_perf_callbacks(ops->handle_intel_pt_intr); 11737 11738 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES)) 11739 supported_xss = 0; 11740 11741#define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f) 11742 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_); 11743#undef __kvm_cpu_cap_has 11744 11745 if (kvm_has_tsc_control) { 11746 /* 11747 * Make sure the user can only configure tsc_khz values that 11748 * fit into a signed integer. 11749 * A min value is not calculated because it will always 11750 * be 1 on all machines. 11751 */ 11752 u64 max = min(0x7fffffffULL, 11753 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz)); 11754 kvm_max_guest_tsc_khz = max; 11755 } 11756 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits; 11757 kvm_init_msr_list(); 11758 return 0; 11759} 11760 11761void kvm_arch_hardware_unsetup(void) 11762{ 11763 kvm_unregister_perf_callbacks(); 11764 11765 static_call(kvm_x86_hardware_unsetup)(); 11766} 11767 11768int kvm_arch_check_processor_compat(void *opaque) 11769{ 11770 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id()); 11771 struct kvm_x86_init_ops *ops = opaque; 11772 11773 WARN_ON(!irqs_disabled()); 11774 11775 if (__cr4_reserved_bits(cpu_has, c) != 11776 __cr4_reserved_bits(cpu_has, &boot_cpu_data)) 11777 return -EIO; 11778 11779 return ops->check_processor_compatibility(); 11780} 11781 11782bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) 11783{ 11784 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; 11785} 11786EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp); 11787 11788bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) 11789{ 11790 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; 11791} 11792 11793__read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu); 11794EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu); 11795 11796void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu) 11797{ 11798 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); 11799 11800 vcpu->arch.l1tf_flush_l1d = true; 11801 if (pmu->version && unlikely(pmu->event_count)) { 11802 pmu->need_cleanup = true; 11803 kvm_make_request(KVM_REQ_PMU, vcpu); 11804 } 11805 static_call(kvm_x86_sched_in)(vcpu, cpu); 11806} 11807 11808void kvm_arch_free_vm(struct kvm *kvm) 11809{ 11810 kfree(to_kvm_hv(kvm)->hv_pa_pg); 11811 __kvm_arch_free_vm(kvm); 11812} 11813 11814 11815int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) 11816{ 11817 int ret; 11818 unsigned long flags; 11819 11820 if (type) 11821 return -EINVAL; 11822 11823 ret = kvm_page_track_init(kvm); 11824 if (ret) 11825 goto out; 11826 11827 ret = kvm_mmu_init_vm(kvm); 11828 if (ret) 11829 goto out_page_track; 11830 11831 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); 11832 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); 11833 atomic_set(&kvm->arch.noncoherent_dma_count, 0); 11834 11835 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ 11836 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); 11837 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ 11838 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, 11839 &kvm->arch.irq_sources_bitmap); 11840 11841 raw_spin_lock_init(&kvm->arch.tsc_write_lock); 11842 mutex_init(&kvm->arch.apic_map_lock); 11843 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock); 11844 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns(); 11845 11846 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 11847 pvclock_update_vm_gtod_copy(kvm); 11848 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 11849 11850 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz; 11851 kvm->arch.guest_can_read_msr_platform_info = true; 11852 kvm->arch.enable_pmu = enable_pmu; 11853 11854#if IS_ENABLED(CONFIG_HYPERV) 11855 spin_lock_init(&kvm->arch.hv_root_tdp_lock); 11856 kvm->arch.hv_root_tdp = INVALID_PAGE; 11857#endif 11858 11859 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); 11860 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); 11861 11862 kvm_apicv_init(kvm); 11863 kvm_hv_init_vm(kvm); 11864 kvm_xen_init_vm(kvm); 11865 11866 return static_call(kvm_x86_vm_init)(kvm); 11867 11868out_page_track: 11869 kvm_page_track_cleanup(kvm); 11870out: 11871 return ret; 11872} 11873 11874int kvm_arch_post_init_vm(struct kvm *kvm) 11875{ 11876 return kvm_mmu_post_init_vm(kvm); 11877} 11878 11879static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) 11880{ 11881 vcpu_load(vcpu); 11882 kvm_mmu_unload(vcpu); 11883 vcpu_put(vcpu); 11884} 11885 11886static void kvm_unload_vcpu_mmus(struct kvm *kvm) 11887{ 11888 unsigned long i; 11889 struct kvm_vcpu *vcpu; 11890 11891 kvm_for_each_vcpu(i, vcpu, kvm) { 11892 kvm_clear_async_pf_completion_queue(vcpu); 11893 kvm_unload_vcpu_mmu(vcpu); 11894 } 11895} 11896 11897void kvm_arch_sync_events(struct kvm *kvm) 11898{ 11899 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); 11900 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); 11901 kvm_free_pit(kvm); 11902} 11903 11904/** 11905 * __x86_set_memory_region: Setup KVM internal memory slot 11906 * 11907 * @kvm: the kvm pointer to the VM. 11908 * @id: the slot ID to setup. 11909 * @gpa: the GPA to install the slot (unused when @size == 0). 11910 * @size: the size of the slot. Set to zero to uninstall a slot. 11911 * 11912 * This function helps to setup a KVM internal memory slot. Specify 11913 * @size > 0 to install a new slot, while @size == 0 to uninstall a 11914 * slot. The return code can be one of the following: 11915 * 11916 * HVA: on success (uninstall will return a bogus HVA) 11917 * -errno: on error 11918 * 11919 * The caller should always use IS_ERR() to check the return value 11920 * before use. Note, the KVM internal memory slots are guaranteed to 11921 * remain valid and unchanged until the VM is destroyed, i.e., the 11922 * GPA->HVA translation will not change. However, the HVA is a user 11923 * address, i.e. its accessibility is not guaranteed, and must be 11924 * accessed via __copy_{to,from}_user(). 11925 */ 11926void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, 11927 u32 size) 11928{ 11929 int i, r; 11930 unsigned long hva, old_npages; 11931 struct kvm_memslots *slots = kvm_memslots(kvm); 11932 struct kvm_memory_slot *slot; 11933 11934 /* Called with kvm->slots_lock held. */ 11935 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) 11936 return ERR_PTR_USR(-EINVAL); 11937 11938 slot = id_to_memslot(slots, id); 11939 if (size) { 11940 if (slot && slot->npages) 11941 return ERR_PTR_USR(-EEXIST); 11942 11943 /* 11944 * MAP_SHARED to prevent internal slot pages from being moved 11945 * by fork()/COW. 11946 */ 11947 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, 11948 MAP_SHARED | MAP_ANONYMOUS, 0); 11949 if (IS_ERR((void *)hva)) 11950 return (void __user *)hva; 11951 } else { 11952 if (!slot || !slot->npages) 11953 return NULL; 11954 11955 old_npages = slot->npages; 11956 hva = slot->userspace_addr; 11957 } 11958 11959 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 11960 struct kvm_userspace_memory_region m; 11961 11962 m.slot = id | (i << 16); 11963 m.flags = 0; 11964 m.guest_phys_addr = gpa; 11965 m.userspace_addr = hva; 11966 m.memory_size = size; 11967 r = __kvm_set_memory_region(kvm, &m); 11968 if (r < 0) 11969 return ERR_PTR_USR(r); 11970 } 11971 11972 if (!size) 11973 vm_munmap(hva, old_npages * PAGE_SIZE); 11974 11975 return (void __user *)hva; 11976} 11977EXPORT_SYMBOL_GPL(__x86_set_memory_region); 11978 11979void kvm_arch_pre_destroy_vm(struct kvm *kvm) 11980{ 11981 kvm_mmu_pre_destroy_vm(kvm); 11982} 11983 11984void kvm_arch_destroy_vm(struct kvm *kvm) 11985{ 11986 if (current->mm == kvm->mm) { 11987 /* 11988 * Free memory regions allocated on behalf of userspace, 11989 * unless the memory map has changed due to process exit 11990 * or fd copying. 11991 */ 11992 mutex_lock(&kvm->slots_lock); 11993 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 11994 0, 0); 11995 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 11996 0, 0); 11997 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); 11998 mutex_unlock(&kvm->slots_lock); 11999 } 12000 kvm_unload_vcpu_mmus(kvm); 12001 static_call_cond(kvm_x86_vm_destroy)(kvm); 12002 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1)); 12003 kvm_pic_destroy(kvm); 12004 kvm_ioapic_destroy(kvm); 12005 kvm_destroy_vcpus(kvm); 12006 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); 12007 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); 12008 kvm_mmu_uninit_vm(kvm); 12009 kvm_page_track_cleanup(kvm); 12010 kvm_xen_destroy_vm(kvm); 12011 kvm_hv_destroy_vm(kvm); 12012} 12013 12014static void memslot_rmap_free(struct kvm_memory_slot *slot) 12015{ 12016 int i; 12017 12018 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12019 kvfree(slot->arch.rmap[i]); 12020 slot->arch.rmap[i] = NULL; 12021 } 12022} 12023 12024void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) 12025{ 12026 int i; 12027 12028 memslot_rmap_free(slot); 12029 12030 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12031 kvfree(slot->arch.lpage_info[i - 1]); 12032 slot->arch.lpage_info[i - 1] = NULL; 12033 } 12034 12035 kvm_page_track_free_memslot(slot); 12036} 12037 12038int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages) 12039{ 12040 const int sz = sizeof(*slot->arch.rmap[0]); 12041 int i; 12042 12043 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { 12044 int level = i + 1; 12045 int lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12046 12047 if (slot->arch.rmap[i]) 12048 continue; 12049 12050 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT); 12051 if (!slot->arch.rmap[i]) { 12052 memslot_rmap_free(slot); 12053 return -ENOMEM; 12054 } 12055 } 12056 12057 return 0; 12058} 12059 12060static int kvm_alloc_memslot_metadata(struct kvm *kvm, 12061 struct kvm_memory_slot *slot) 12062{ 12063 unsigned long npages = slot->npages; 12064 int i, r; 12065 12066 /* 12067 * Clear out the previous array pointers for the KVM_MR_MOVE case. The 12068 * old arrays will be freed by __kvm_set_memory_region() if installing 12069 * the new memslot is successful. 12070 */ 12071 memset(&slot->arch, 0, sizeof(slot->arch)); 12072 12073 if (kvm_memslots_have_rmaps(kvm)) { 12074 r = memslot_rmap_alloc(slot, npages); 12075 if (r) 12076 return r; 12077 } 12078 12079 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12080 struct kvm_lpage_info *linfo; 12081 unsigned long ugfn; 12082 int lpages; 12083 int level = i + 1; 12084 12085 lpages = __kvm_mmu_slot_lpages(slot, npages, level); 12086 12087 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); 12088 if (!linfo) 12089 goto out_free; 12090 12091 slot->arch.lpage_info[i - 1] = linfo; 12092 12093 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) 12094 linfo[0].disallow_lpage = 1; 12095 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) 12096 linfo[lpages - 1].disallow_lpage = 1; 12097 ugfn = slot->userspace_addr >> PAGE_SHIFT; 12098 /* 12099 * If the gfn and userspace address are not aligned wrt each 12100 * other, disable large page support for this slot. 12101 */ 12102 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) { 12103 unsigned long j; 12104 12105 for (j = 0; j < lpages; ++j) 12106 linfo[j].disallow_lpage = 1; 12107 } 12108 } 12109 12110 if (kvm_page_track_create_memslot(kvm, slot, npages)) 12111 goto out_free; 12112 12113 return 0; 12114 12115out_free: 12116 memslot_rmap_free(slot); 12117 12118 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { 12119 kvfree(slot->arch.lpage_info[i - 1]); 12120 slot->arch.lpage_info[i - 1] = NULL; 12121 } 12122 return -ENOMEM; 12123} 12124 12125void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) 12126{ 12127 struct kvm_vcpu *vcpu; 12128 unsigned long i; 12129 12130 /* 12131 * memslots->generation has been incremented. 12132 * mmio generation may have reached its maximum value. 12133 */ 12134 kvm_mmu_invalidate_mmio_sptes(kvm, gen); 12135 12136 /* Force re-initialization of steal_time cache */ 12137 kvm_for_each_vcpu(i, vcpu, kvm) 12138 kvm_vcpu_kick(vcpu); 12139} 12140 12141int kvm_arch_prepare_memory_region(struct kvm *kvm, 12142 const struct kvm_memory_slot *old, 12143 struct kvm_memory_slot *new, 12144 enum kvm_mr_change change) 12145{ 12146 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) { 12147 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn()) 12148 return -EINVAL; 12149 12150 return kvm_alloc_memslot_metadata(kvm, new); 12151 } 12152 12153 if (change == KVM_MR_FLAGS_ONLY) 12154 memcpy(&new->arch, &old->arch, sizeof(old->arch)); 12155 else if (WARN_ON_ONCE(change != KVM_MR_DELETE)) 12156 return -EIO; 12157 12158 return 0; 12159} 12160 12161 12162static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable) 12163{ 12164 struct kvm_arch *ka = &kvm->arch; 12165 12166 if (!kvm_x86_ops.cpu_dirty_log_size) 12167 return; 12168 12169 if ((enable && ++ka->cpu_dirty_logging_count == 1) || 12170 (!enable && --ka->cpu_dirty_logging_count == 0)) 12171 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING); 12172 12173 WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0); 12174} 12175 12176static void kvm_mmu_slot_apply_flags(struct kvm *kvm, 12177 struct kvm_memory_slot *old, 12178 const struct kvm_memory_slot *new, 12179 enum kvm_mr_change change) 12180{ 12181 u32 old_flags = old ? old->flags : 0; 12182 u32 new_flags = new ? new->flags : 0; 12183 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES; 12184 12185 /* 12186 * Update CPU dirty logging if dirty logging is being toggled. This 12187 * applies to all operations. 12188 */ 12189 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) 12190 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages); 12191 12192 /* 12193 * Nothing more to do for RO slots (which can't be dirtied and can't be 12194 * made writable) or CREATE/MOVE/DELETE of a slot. 12195 * 12196 * For a memslot with dirty logging disabled: 12197 * CREATE: No dirty mappings will already exist. 12198 * MOVE/DELETE: The old mappings will already have been cleaned up by 12199 * kvm_arch_flush_shadow_memslot() 12200 * 12201 * For a memslot with dirty logging enabled: 12202 * CREATE: No shadow pages exist, thus nothing to write-protect 12203 * and no dirty bits to clear. 12204 * MOVE/DELETE: The old mappings will already have been cleaned up by 12205 * kvm_arch_flush_shadow_memslot(). 12206 */ 12207 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY)) 12208 return; 12209 12210 /* 12211 * READONLY and non-flags changes were filtered out above, and the only 12212 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty 12213 * logging isn't being toggled on or off. 12214 */ 12215 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES))) 12216 return; 12217 12218 if (!log_dirty_pages) { 12219 /* 12220 * Dirty logging tracks sptes in 4k granularity, meaning that 12221 * large sptes have to be split. If live migration succeeds, 12222 * the guest in the source machine will be destroyed and large 12223 * sptes will be created in the destination. However, if the 12224 * guest continues to run in the source machine (for example if 12225 * live migration fails), small sptes will remain around and 12226 * cause bad performance. 12227 * 12228 * Scan sptes if dirty logging has been stopped, dropping those 12229 * which can be collapsed into a single large-page spte. Later 12230 * page faults will create the large-page sptes. 12231 */ 12232 kvm_mmu_zap_collapsible_sptes(kvm, new); 12233 } else { 12234 /* 12235 * Initially-all-set does not require write protecting any page, 12236 * because they're all assumed to be dirty. 12237 */ 12238 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) 12239 return; 12240 12241 if (READ_ONCE(eager_page_split)) 12242 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K); 12243 12244 if (kvm_x86_ops.cpu_dirty_log_size) { 12245 kvm_mmu_slot_leaf_clear_dirty(kvm, new); 12246 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M); 12247 } else { 12248 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K); 12249 } 12250 } 12251} 12252 12253void kvm_arch_commit_memory_region(struct kvm *kvm, 12254 struct kvm_memory_slot *old, 12255 const struct kvm_memory_slot *new, 12256 enum kvm_mr_change change) 12257{ 12258 if (!kvm->arch.n_requested_mmu_pages && 12259 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) { 12260 unsigned long nr_mmu_pages; 12261 12262 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO; 12263 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); 12264 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); 12265 } 12266 12267 kvm_mmu_slot_apply_flags(kvm, old, new, change); 12268 12269 /* Free the arrays associated with the old memslot. */ 12270 if (change == KVM_MR_MOVE) 12271 kvm_arch_free_memslot(kvm, old); 12272} 12273 12274void kvm_arch_flush_shadow_all(struct kvm *kvm) 12275{ 12276 kvm_mmu_zap_all(kvm); 12277} 12278 12279void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 12280 struct kvm_memory_slot *slot) 12281{ 12282 kvm_page_track_flush_slot(kvm, slot); 12283} 12284 12285static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 12286{ 12287 return (is_guest_mode(vcpu) && 12288 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu)); 12289} 12290 12291static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) 12292{ 12293 if (!list_empty_careful(&vcpu->async_pf.done)) 12294 return true; 12295 12296 if (kvm_apic_has_events(vcpu) || 12297 kvm_test_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, vcpu)) 12298 return true; 12299 12300 if (vcpu->arch.pv.pv_unhalted) 12301 return true; 12302 12303 if (vcpu->arch.exception.pending) 12304 return true; 12305 12306 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 12307 (vcpu->arch.nmi_pending && 12308 static_call(kvm_x86_nmi_allowed)(vcpu, false))) 12309 return true; 12310 12311 if (kvm_test_request(KVM_REQ_SMI, vcpu) || 12312 (vcpu->arch.smi_pending && 12313 static_call(kvm_x86_smi_allowed)(vcpu, false))) 12314 return true; 12315 12316 if (kvm_arch_interrupt_allowed(vcpu) && 12317 (kvm_cpu_has_interrupt(vcpu) || 12318 kvm_guest_apic_has_interrupt(vcpu))) 12319 return true; 12320 12321 if (kvm_hv_has_stimer_pending(vcpu)) 12322 return true; 12323 12324 if (is_guest_mode(vcpu) && 12325 kvm_x86_ops.nested_ops->hv_timer_pending && 12326 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu)) 12327 return true; 12328 12329 if (kvm_xen_has_pending_events(vcpu)) 12330 return true; 12331 12332 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) 12333 return true; 12334 12335 return false; 12336} 12337 12338int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) 12339{ 12340 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu); 12341} 12342 12343bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) 12344{ 12345 if (vcpu->arch.apicv_active && static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu)) 12346 return true; 12347 12348 return false; 12349} 12350 12351bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) 12352{ 12353 if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) 12354 return true; 12355 12356 if (kvm_test_request(KVM_REQ_NMI, vcpu) || 12357 kvm_test_request(KVM_REQ_SMI, vcpu) || 12358 kvm_test_request(KVM_REQ_EVENT, vcpu)) 12359 return true; 12360 12361 return kvm_arch_dy_has_pending_interrupt(vcpu); 12362} 12363 12364bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) 12365{ 12366 if (vcpu->arch.guest_state_protected) 12367 return true; 12368 12369 return vcpu->arch.preempted_in_kernel; 12370} 12371 12372unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) 12373{ 12374 return kvm_rip_read(vcpu); 12375} 12376 12377int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) 12378{ 12379 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; 12380} 12381 12382int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) 12383{ 12384 return static_call(kvm_x86_interrupt_allowed)(vcpu, false); 12385} 12386 12387unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) 12388{ 12389 /* Can't read the RIP when guest state is protected, just return 0 */ 12390 if (vcpu->arch.guest_state_protected) 12391 return 0; 12392 12393 if (is_64_bit_mode(vcpu)) 12394 return kvm_rip_read(vcpu); 12395 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + 12396 kvm_rip_read(vcpu)); 12397} 12398EXPORT_SYMBOL_GPL(kvm_get_linear_rip); 12399 12400bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) 12401{ 12402 return kvm_get_linear_rip(vcpu) == linear_rip; 12403} 12404EXPORT_SYMBOL_GPL(kvm_is_linear_rip); 12405 12406unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) 12407{ 12408 unsigned long rflags; 12409 12410 rflags = static_call(kvm_x86_get_rflags)(vcpu); 12411 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 12412 rflags &= ~X86_EFLAGS_TF; 12413 return rflags; 12414} 12415EXPORT_SYMBOL_GPL(kvm_get_rflags); 12416 12417static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 12418{ 12419 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && 12420 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) 12421 rflags |= X86_EFLAGS_TF; 12422 static_call(kvm_x86_set_rflags)(vcpu, rflags); 12423} 12424 12425void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 12426{ 12427 __kvm_set_rflags(vcpu, rflags); 12428 kvm_make_request(KVM_REQ_EVENT, vcpu); 12429} 12430EXPORT_SYMBOL_GPL(kvm_set_rflags); 12431 12432static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) 12433{ 12434 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU)); 12435 12436 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); 12437} 12438 12439static inline u32 kvm_async_pf_next_probe(u32 key) 12440{ 12441 return (key + 1) & (ASYNC_PF_PER_VCPU - 1); 12442} 12443 12444static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12445{ 12446 u32 key = kvm_async_pf_hash_fn(gfn); 12447 12448 while (vcpu->arch.apf.gfns[key] != ~0) 12449 key = kvm_async_pf_next_probe(key); 12450 12451 vcpu->arch.apf.gfns[key] = gfn; 12452} 12453 12454static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) 12455{ 12456 int i; 12457 u32 key = kvm_async_pf_hash_fn(gfn); 12458 12459 for (i = 0; i < ASYNC_PF_PER_VCPU && 12460 (vcpu->arch.apf.gfns[key] != gfn && 12461 vcpu->arch.apf.gfns[key] != ~0); i++) 12462 key = kvm_async_pf_next_probe(key); 12463 12464 return key; 12465} 12466 12467bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12468{ 12469 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; 12470} 12471 12472static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) 12473{ 12474 u32 i, j, k; 12475 12476 i = j = kvm_async_pf_gfn_slot(vcpu, gfn); 12477 12478 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn)) 12479 return; 12480 12481 while (true) { 12482 vcpu->arch.apf.gfns[i] = ~0; 12483 do { 12484 j = kvm_async_pf_next_probe(j); 12485 if (vcpu->arch.apf.gfns[j] == ~0) 12486 return; 12487 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); 12488 /* 12489 * k lies cyclically in ]i,j] 12490 * | i.k.j | 12491 * |....j i.k.| or |.k..j i...| 12492 */ 12493 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); 12494 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; 12495 i = j; 12496 } 12497} 12498 12499static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu) 12500{ 12501 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT; 12502 12503 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason, 12504 sizeof(reason)); 12505} 12506 12507static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token) 12508{ 12509 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 12510 12511 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 12512 &token, offset, sizeof(token)); 12513} 12514 12515static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu) 12516{ 12517 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); 12518 u32 val; 12519 12520 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, 12521 &val, offset, sizeof(val))) 12522 return false; 12523 12524 return !val; 12525} 12526 12527static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) 12528{ 12529 12530 if (!kvm_pv_async_pf_enabled(vcpu)) 12531 return false; 12532 12533 if (vcpu->arch.apf.send_user_only && 12534 static_call(kvm_x86_get_cpl)(vcpu) == 0) 12535 return false; 12536 12537 if (is_guest_mode(vcpu)) { 12538 /* 12539 * L1 needs to opt into the special #PF vmexits that are 12540 * used to deliver async page faults. 12541 */ 12542 return vcpu->arch.apf.delivery_as_pf_vmexit; 12543 } else { 12544 /* 12545 * Play it safe in case the guest temporarily disables paging. 12546 * The real mode IDT in particular is unlikely to have a #PF 12547 * exception setup. 12548 */ 12549 return is_paging(vcpu); 12550 } 12551} 12552 12553bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) 12554{ 12555 if (unlikely(!lapic_in_kernel(vcpu) || 12556 kvm_event_needs_reinjection(vcpu) || 12557 vcpu->arch.exception.pending)) 12558 return false; 12559 12560 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) 12561 return false; 12562 12563 /* 12564 * If interrupts are off we cannot even use an artificial 12565 * halt state. 12566 */ 12567 return kvm_arch_interrupt_allowed(vcpu); 12568} 12569 12570bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, 12571 struct kvm_async_pf *work) 12572{ 12573 struct x86_exception fault; 12574 12575 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa); 12576 kvm_add_async_pf_gfn(vcpu, work->arch.gfn); 12577 12578 if (kvm_can_deliver_async_pf(vcpu) && 12579 !apf_put_user_notpresent(vcpu)) { 12580 fault.vector = PF_VECTOR; 12581 fault.error_code_valid = true; 12582 fault.error_code = 0; 12583 fault.nested_page_fault = false; 12584 fault.address = work->arch.token; 12585 fault.async_page_fault = true; 12586 kvm_inject_page_fault(vcpu, &fault); 12587 return true; 12588 } else { 12589 /* 12590 * It is not possible to deliver a paravirtualized asynchronous 12591 * page fault, but putting the guest in an artificial halt state 12592 * can be beneficial nevertheless: if an interrupt arrives, we 12593 * can deliver it timely and perhaps the guest will schedule 12594 * another process. When the instruction that triggered a page 12595 * fault is retried, hopefully the page will be ready in the host. 12596 */ 12597 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 12598 return false; 12599 } 12600} 12601 12602void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, 12603 struct kvm_async_pf *work) 12604{ 12605 struct kvm_lapic_irq irq = { 12606 .delivery_mode = APIC_DM_FIXED, 12607 .vector = vcpu->arch.apf.vec 12608 }; 12609 12610 if (work->wakeup_all) 12611 work->arch.token = ~0; /* broadcast wakeup */ 12612 else 12613 kvm_del_async_pf_gfn(vcpu, work->arch.gfn); 12614 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa); 12615 12616 if ((work->wakeup_all || work->notpresent_injected) && 12617 kvm_pv_async_pf_enabled(vcpu) && 12618 !apf_put_user_ready(vcpu, work->arch.token)) { 12619 vcpu->arch.apf.pageready_pending = true; 12620 kvm_apic_set_irq(vcpu, &irq, NULL); 12621 } 12622 12623 vcpu->arch.apf.halted = false; 12624 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; 12625} 12626 12627void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu) 12628{ 12629 kvm_make_request(KVM_REQ_APF_READY, vcpu); 12630 if (!vcpu->arch.apf.pageready_pending) 12631 kvm_vcpu_kick(vcpu); 12632} 12633 12634bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) 12635{ 12636 if (!kvm_pv_async_pf_enabled(vcpu)) 12637 return true; 12638 else 12639 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu); 12640} 12641 12642void kvm_arch_start_assignment(struct kvm *kvm) 12643{ 12644 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1) 12645 static_call_cond(kvm_x86_pi_start_assignment)(kvm); 12646} 12647EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); 12648 12649void kvm_arch_end_assignment(struct kvm *kvm) 12650{ 12651 atomic_dec(&kvm->arch.assigned_device_count); 12652} 12653EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); 12654 12655bool kvm_arch_has_assigned_device(struct kvm *kvm) 12656{ 12657 return atomic_read(&kvm->arch.assigned_device_count); 12658} 12659EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); 12660 12661void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 12662{ 12663 atomic_inc(&kvm->arch.noncoherent_dma_count); 12664} 12665EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); 12666 12667void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 12668{ 12669 atomic_dec(&kvm->arch.noncoherent_dma_count); 12670} 12671EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); 12672 12673bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 12674{ 12675 return atomic_read(&kvm->arch.noncoherent_dma_count); 12676} 12677EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); 12678 12679bool kvm_arch_has_irq_bypass(void) 12680{ 12681 return true; 12682} 12683 12684int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, 12685 struct irq_bypass_producer *prod) 12686{ 12687 struct kvm_kernel_irqfd *irqfd = 12688 container_of(cons, struct kvm_kernel_irqfd, consumer); 12689 int ret; 12690 12691 irqfd->producer = prod; 12692 kvm_arch_start_assignment(irqfd->kvm); 12693 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, 12694 prod->irq, irqfd->gsi, 1); 12695 12696 if (ret) 12697 kvm_arch_end_assignment(irqfd->kvm); 12698 12699 return ret; 12700} 12701 12702void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, 12703 struct irq_bypass_producer *prod) 12704{ 12705 int ret; 12706 struct kvm_kernel_irqfd *irqfd = 12707 container_of(cons, struct kvm_kernel_irqfd, consumer); 12708 12709 WARN_ON(irqfd->producer != prod); 12710 irqfd->producer = NULL; 12711 12712 /* 12713 * When producer of consumer is unregistered, we change back to 12714 * remapped mode, so we can re-use the current implementation 12715 * when the irq is masked/disabled or the consumer side (KVM 12716 * int this case doesn't want to receive the interrupts. 12717 */ 12718 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0); 12719 if (ret) 12720 printk(KERN_INFO "irq bypass consumer (token %p) unregistration" 12721 " fails: %d\n", irqfd->consumer.token, ret); 12722 12723 kvm_arch_end_assignment(irqfd->kvm); 12724} 12725 12726int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 12727 uint32_t guest_irq, bool set) 12728{ 12729 return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set); 12730} 12731 12732bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old, 12733 struct kvm_kernel_irq_routing_entry *new) 12734{ 12735 if (new->type != KVM_IRQ_ROUTING_MSI) 12736 return true; 12737 12738 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi)); 12739} 12740 12741bool kvm_vector_hashing_enabled(void) 12742{ 12743 return vector_hashing; 12744} 12745 12746bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 12747{ 12748 return (vcpu->arch.msr_kvm_poll_control & 1) == 0; 12749} 12750EXPORT_SYMBOL_GPL(kvm_arch_no_poll); 12751 12752 12753int kvm_spec_ctrl_test_value(u64 value) 12754{ 12755 /* 12756 * test that setting IA32_SPEC_CTRL to given value 12757 * is allowed by the host processor 12758 */ 12759 12760 u64 saved_value; 12761 unsigned long flags; 12762 int ret = 0; 12763 12764 local_irq_save(flags); 12765 12766 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value)) 12767 ret = 1; 12768 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value)) 12769 ret = 1; 12770 else 12771 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value); 12772 12773 local_irq_restore(flags); 12774 12775 return ret; 12776} 12777EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value); 12778 12779void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code) 12780{ 12781 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 12782 struct x86_exception fault; 12783 u64 access = error_code & 12784 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK); 12785 12786 if (!(error_code & PFERR_PRESENT_MASK) || 12787 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != UNMAPPED_GVA) { 12788 /* 12789 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page 12790 * tables probably do not match the TLB. Just proceed 12791 * with the error code that the processor gave. 12792 */ 12793 fault.vector = PF_VECTOR; 12794 fault.error_code_valid = true; 12795 fault.error_code = error_code; 12796 fault.nested_page_fault = false; 12797 fault.address = gva; 12798 } 12799 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault); 12800} 12801EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error); 12802 12803/* 12804 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns 12805 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value 12806 * indicates whether exit to userspace is needed. 12807 */ 12808int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r, 12809 struct x86_exception *e) 12810{ 12811 if (r == X86EMUL_PROPAGATE_FAULT) { 12812 kvm_inject_emulated_page_fault(vcpu, e); 12813 return 1; 12814 } 12815 12816 /* 12817 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED 12818 * while handling a VMX instruction KVM could've handled the request 12819 * correctly by exiting to userspace and performing I/O but there 12820 * doesn't seem to be a real use-case behind such requests, just return 12821 * KVM_EXIT_INTERNAL_ERROR for now. 12822 */ 12823 kvm_prepare_emulation_failure_exit(vcpu); 12824 12825 return 0; 12826} 12827EXPORT_SYMBOL_GPL(kvm_handle_memory_failure); 12828 12829int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva) 12830{ 12831 bool pcid_enabled; 12832 struct x86_exception e; 12833 struct { 12834 u64 pcid; 12835 u64 gla; 12836 } operand; 12837 int r; 12838 12839 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e); 12840 if (r != X86EMUL_CONTINUE) 12841 return kvm_handle_memory_failure(vcpu, r, &e); 12842 12843 if (operand.pcid >> 12 != 0) { 12844 kvm_inject_gp(vcpu, 0); 12845 return 1; 12846 } 12847 12848 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 12849 12850 switch (type) { 12851 case INVPCID_TYPE_INDIV_ADDR: 12852 if ((!pcid_enabled && (operand.pcid != 0)) || 12853 is_noncanonical_address(operand.gla, vcpu)) { 12854 kvm_inject_gp(vcpu, 0); 12855 return 1; 12856 } 12857 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); 12858 return kvm_skip_emulated_instruction(vcpu); 12859 12860 case INVPCID_TYPE_SINGLE_CTXT: 12861 if (!pcid_enabled && (operand.pcid != 0)) { 12862 kvm_inject_gp(vcpu, 0); 12863 return 1; 12864 } 12865 12866 kvm_invalidate_pcid(vcpu, operand.pcid); 12867 return kvm_skip_emulated_instruction(vcpu); 12868 12869 case INVPCID_TYPE_ALL_NON_GLOBAL: 12870 /* 12871 * Currently, KVM doesn't mark global entries in the shadow 12872 * page tables, so a non-global flush just degenerates to a 12873 * global flush. If needed, we could optimize this later by 12874 * keeping track of global entries in shadow page tables. 12875 */ 12876 12877 fallthrough; 12878 case INVPCID_TYPE_ALL_INCL_GLOBAL: 12879 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); 12880 return kvm_skip_emulated_instruction(vcpu); 12881 12882 default: 12883 kvm_inject_gp(vcpu, 0); 12884 return 1; 12885 } 12886} 12887EXPORT_SYMBOL_GPL(kvm_handle_invpcid); 12888 12889static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu) 12890{ 12891 struct kvm_run *run = vcpu->run; 12892 struct kvm_mmio_fragment *frag; 12893 unsigned int len; 12894 12895 BUG_ON(!vcpu->mmio_needed); 12896 12897 /* Complete previous fragment */ 12898 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; 12899 len = min(8u, frag->len); 12900 if (!vcpu->mmio_is_write) 12901 memcpy(frag->data, run->mmio.data, len); 12902 12903 if (frag->len <= 8) { 12904 /* Switch to the next fragment. */ 12905 frag++; 12906 vcpu->mmio_cur_fragment++; 12907 } else { 12908 /* Go forward to the next mmio piece. */ 12909 frag->data += len; 12910 frag->gpa += len; 12911 frag->len -= len; 12912 } 12913 12914 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { 12915 vcpu->mmio_needed = 0; 12916 12917 // VMG change, at this point, we're always done 12918 // RIP has already been advanced 12919 return 1; 12920 } 12921 12922 // More MMIO is needed 12923 run->mmio.phys_addr = frag->gpa; 12924 run->mmio.len = min(8u, frag->len); 12925 run->mmio.is_write = vcpu->mmio_is_write; 12926 if (run->mmio.is_write) 12927 memcpy(run->mmio.data, frag->data, min(8u, frag->len)); 12928 run->exit_reason = KVM_EXIT_MMIO; 12929 12930 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 12931 12932 return 0; 12933} 12934 12935int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 12936 void *data) 12937{ 12938 int handled; 12939 struct kvm_mmio_fragment *frag; 12940 12941 if (!data) 12942 return -EINVAL; 12943 12944 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data); 12945 if (handled == bytes) 12946 return 1; 12947 12948 bytes -= handled; 12949 gpa += handled; 12950 data += handled; 12951 12952 /*TODO: Check if need to increment number of frags */ 12953 frag = vcpu->mmio_fragments; 12954 vcpu->mmio_nr_fragments = 1; 12955 frag->len = bytes; 12956 frag->gpa = gpa; 12957 frag->data = data; 12958 12959 vcpu->mmio_needed = 1; 12960 vcpu->mmio_cur_fragment = 0; 12961 12962 vcpu->run->mmio.phys_addr = gpa; 12963 vcpu->run->mmio.len = min(8u, frag->len); 12964 vcpu->run->mmio.is_write = 1; 12965 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 12966 vcpu->run->exit_reason = KVM_EXIT_MMIO; 12967 12968 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 12969 12970 return 0; 12971} 12972EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write); 12973 12974int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, 12975 void *data) 12976{ 12977 int handled; 12978 struct kvm_mmio_fragment *frag; 12979 12980 if (!data) 12981 return -EINVAL; 12982 12983 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data); 12984 if (handled == bytes) 12985 return 1; 12986 12987 bytes -= handled; 12988 gpa += handled; 12989 data += handled; 12990 12991 /*TODO: Check if need to increment number of frags */ 12992 frag = vcpu->mmio_fragments; 12993 vcpu->mmio_nr_fragments = 1; 12994 frag->len = bytes; 12995 frag->gpa = gpa; 12996 frag->data = data; 12997 12998 vcpu->mmio_needed = 1; 12999 vcpu->mmio_cur_fragment = 0; 13000 13001 vcpu->run->mmio.phys_addr = gpa; 13002 vcpu->run->mmio.len = min(8u, frag->len); 13003 vcpu->run->mmio.is_write = 0; 13004 vcpu->run->exit_reason = KVM_EXIT_MMIO; 13005 13006 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; 13007 13008 return 0; 13009} 13010EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read); 13011 13012static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13013 unsigned int port); 13014 13015static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu) 13016{ 13017 int size = vcpu->arch.pio.size; 13018 int port = vcpu->arch.pio.port; 13019 13020 vcpu->arch.pio.count = 0; 13021 if (vcpu->arch.sev_pio_count) 13022 return kvm_sev_es_outs(vcpu, size, port); 13023 return 1; 13024} 13025 13026static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, 13027 unsigned int port) 13028{ 13029 for (;;) { 13030 unsigned int count = 13031 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13032 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count); 13033 13034 /* memcpy done already by emulator_pio_out. */ 13035 vcpu->arch.sev_pio_count -= count; 13036 vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size; 13037 if (!ret) 13038 break; 13039 13040 /* Emulation done by the kernel. */ 13041 if (!vcpu->arch.sev_pio_count) 13042 return 1; 13043 } 13044 13045 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs; 13046 return 0; 13047} 13048 13049static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13050 unsigned int port); 13051 13052static void advance_sev_es_emulated_ins(struct kvm_vcpu *vcpu) 13053{ 13054 unsigned count = vcpu->arch.pio.count; 13055 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data); 13056 vcpu->arch.sev_pio_count -= count; 13057 vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size; 13058} 13059 13060static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu) 13061{ 13062 int size = vcpu->arch.pio.size; 13063 int port = vcpu->arch.pio.port; 13064 13065 advance_sev_es_emulated_ins(vcpu); 13066 if (vcpu->arch.sev_pio_count) 13067 return kvm_sev_es_ins(vcpu, size, port); 13068 return 1; 13069} 13070 13071static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, 13072 unsigned int port) 13073{ 13074 for (;;) { 13075 unsigned int count = 13076 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); 13077 if (!__emulator_pio_in(vcpu, size, port, count)) 13078 break; 13079 13080 /* Emulation done by the kernel. */ 13081 advance_sev_es_emulated_ins(vcpu); 13082 if (!vcpu->arch.sev_pio_count) 13083 return 1; 13084 } 13085 13086 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins; 13087 return 0; 13088} 13089 13090int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size, 13091 unsigned int port, void *data, unsigned int count, 13092 int in) 13093{ 13094 vcpu->arch.sev_pio_data = data; 13095 vcpu->arch.sev_pio_count = count; 13096 return in ? kvm_sev_es_ins(vcpu, size, port) 13097 : kvm_sev_es_outs(vcpu, size, port); 13098} 13099EXPORT_SYMBOL_GPL(kvm_sev_es_string_io); 13100 13101EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry); 13102EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); 13103EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); 13104EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); 13105EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); 13106EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); 13107EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); 13108EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun); 13109EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); 13110EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); 13111EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); 13112EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed); 13113EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); 13114EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); 13115EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); 13116EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); 13117EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update); 13118EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); 13119EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); 13120EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); 13121EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); 13122EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log); 13123EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath); 13124EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq); 13125EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter); 13126EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit); 13127EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter); 13128EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit); 13129EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_snp_psc); 13130EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_sev_es_unmap_ghcb); 13131 13132static int __init kvm_x86_init(void) 13133{ 13134 kvm_mmu_x86_module_init(); 13135 return 0; 13136} 13137module_init(kvm_x86_init); 13138 13139static void __exit kvm_x86_exit(void) 13140{ 13141 /* 13142 * If module_init() is implemented, module_exit() must also be 13143 * implemented to allow module unload. 13144 */ 13145} 13146module_exit(kvm_x86_exit);