cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

poly_sin.c (10884B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*---------------------------------------------------------------------------+
      3 |  poly_sin.c                                                               |
      4 |                                                                           |
      5 |  Computation of an approximation of the sin function and the cosine       |
      6 |  function by a polynomial.                                                |
      7 |                                                                           |
      8 | Copyright (C) 1992,1993,1994,1997,1999                                    |
      9 |                  W. Metzenthen, 22 Parker St, Ormond, Vic 3163, Australia |
     10 |                  E-mail   billm@melbpc.org.au                             |
     11 |                                                                           |
     12 |                                                                           |
     13 +---------------------------------------------------------------------------*/
     14
     15#include "exception.h"
     16#include "reg_constant.h"
     17#include "fpu_emu.h"
     18#include "fpu_system.h"
     19#include "control_w.h"
     20#include "poly.h"
     21
     22#define	N_COEFF_P	4
     23#define	N_COEFF_N	4
     24
     25static const unsigned long long pos_terms_l[N_COEFF_P] = {
     26	0xaaaaaaaaaaaaaaabLL,
     27	0x00d00d00d00cf906LL,
     28	0x000006b99159a8bbLL,
     29	0x000000000d7392e6LL
     30};
     31
     32static const unsigned long long neg_terms_l[N_COEFF_N] = {
     33	0x2222222222222167LL,
     34	0x0002e3bc74aab624LL,
     35	0x0000000b09229062LL,
     36	0x00000000000c7973LL
     37};
     38
     39#define	N_COEFF_PH	4
     40#define	N_COEFF_NH	4
     41static const unsigned long long pos_terms_h[N_COEFF_PH] = {
     42	0x0000000000000000LL,
     43	0x05b05b05b05b0406LL,
     44	0x000049f93edd91a9LL,
     45	0x00000000c9c9ed62LL
     46};
     47
     48static const unsigned long long neg_terms_h[N_COEFF_NH] = {
     49	0xaaaaaaaaaaaaaa98LL,
     50	0x001a01a01a019064LL,
     51	0x0000008f76c68a77LL,
     52	0x0000000000d58f5eLL
     53};
     54
     55/*--- poly_sine() -----------------------------------------------------------+
     56 |                                                                           |
     57 +---------------------------------------------------------------------------*/
     58void poly_sine(FPU_REG *st0_ptr)
     59{
     60	int exponent, echange;
     61	Xsig accumulator, argSqrd, argTo4;
     62	unsigned long fix_up, adj;
     63	unsigned long long fixed_arg;
     64	FPU_REG result;
     65
     66	exponent = exponent(st0_ptr);
     67
     68	accumulator.lsw = accumulator.midw = accumulator.msw = 0;
     69
     70	/* Split into two ranges, for arguments below and above 1.0 */
     71	/* The boundary between upper and lower is approx 0.88309101259 */
     72	if ((exponent < -1)
     73	    || ((exponent == -1) && (st0_ptr->sigh <= 0xe21240aa))) {
     74		/* The argument is <= 0.88309101259 */
     75
     76		argSqrd.msw = st0_ptr->sigh;
     77		argSqrd.midw = st0_ptr->sigl;
     78		argSqrd.lsw = 0;
     79		mul64_Xsig(&argSqrd, &significand(st0_ptr));
     80		shr_Xsig(&argSqrd, 2 * (-1 - exponent));
     81		argTo4.msw = argSqrd.msw;
     82		argTo4.midw = argSqrd.midw;
     83		argTo4.lsw = argSqrd.lsw;
     84		mul_Xsig_Xsig(&argTo4, &argTo4);
     85
     86		polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_l,
     87				N_COEFF_N - 1);
     88		mul_Xsig_Xsig(&accumulator, &argSqrd);
     89		negate_Xsig(&accumulator);
     90
     91		polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_l,
     92				N_COEFF_P - 1);
     93
     94		shr_Xsig(&accumulator, 2);	/* Divide by four */
     95		accumulator.msw |= 0x80000000;	/* Add 1.0 */
     96
     97		mul64_Xsig(&accumulator, &significand(st0_ptr));
     98		mul64_Xsig(&accumulator, &significand(st0_ptr));
     99		mul64_Xsig(&accumulator, &significand(st0_ptr));
    100
    101		/* Divide by four, FPU_REG compatible, etc */
    102		exponent = 3 * exponent;
    103
    104		/* The minimum exponent difference is 3 */
    105		shr_Xsig(&accumulator, exponent(st0_ptr) - exponent);
    106
    107		negate_Xsig(&accumulator);
    108		XSIG_LL(accumulator) += significand(st0_ptr);
    109
    110		echange = round_Xsig(&accumulator);
    111
    112		setexponentpos(&result, exponent(st0_ptr) + echange);
    113	} else {
    114		/* The argument is > 0.88309101259 */
    115		/* We use sin(st(0)) = cos(pi/2-st(0)) */
    116
    117		fixed_arg = significand(st0_ptr);
    118
    119		if (exponent == 0) {
    120			/* The argument is >= 1.0 */
    121
    122			/* Put the binary point at the left. */
    123			fixed_arg <<= 1;
    124		}
    125		/* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */
    126		fixed_arg = 0x921fb54442d18469LL - fixed_arg;
    127		/* There is a special case which arises due to rounding, to fix here. */
    128		if (fixed_arg == 0xffffffffffffffffLL)
    129			fixed_arg = 0;
    130
    131		XSIG_LL(argSqrd) = fixed_arg;
    132		argSqrd.lsw = 0;
    133		mul64_Xsig(&argSqrd, &fixed_arg);
    134
    135		XSIG_LL(argTo4) = XSIG_LL(argSqrd);
    136		argTo4.lsw = argSqrd.lsw;
    137		mul_Xsig_Xsig(&argTo4, &argTo4);
    138
    139		polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_h,
    140				N_COEFF_NH - 1);
    141		mul_Xsig_Xsig(&accumulator, &argSqrd);
    142		negate_Xsig(&accumulator);
    143
    144		polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_h,
    145				N_COEFF_PH - 1);
    146		negate_Xsig(&accumulator);
    147
    148		mul64_Xsig(&accumulator, &fixed_arg);
    149		mul64_Xsig(&accumulator, &fixed_arg);
    150
    151		shr_Xsig(&accumulator, 3);
    152		negate_Xsig(&accumulator);
    153
    154		add_Xsig_Xsig(&accumulator, &argSqrd);
    155
    156		shr_Xsig(&accumulator, 1);
    157
    158		accumulator.lsw |= 1;	/* A zero accumulator here would cause problems */
    159		negate_Xsig(&accumulator);
    160
    161		/* The basic computation is complete. Now fix the answer to
    162		   compensate for the error due to the approximation used for
    163		   pi/2
    164		 */
    165
    166		/* This has an exponent of -65 */
    167		fix_up = 0x898cc517;
    168		/* The fix-up needs to be improved for larger args */
    169		if (argSqrd.msw & 0xffc00000) {
    170			/* Get about 32 bit precision in these: */
    171			fix_up -= mul_32_32(0x898cc517, argSqrd.msw) / 6;
    172		}
    173		fix_up = mul_32_32(fix_up, LL_MSW(fixed_arg));
    174
    175		adj = accumulator.lsw;	/* temp save */
    176		accumulator.lsw -= fix_up;
    177		if (accumulator.lsw > adj)
    178			XSIG_LL(accumulator)--;
    179
    180		echange = round_Xsig(&accumulator);
    181
    182		setexponentpos(&result, echange - 1);
    183	}
    184
    185	significand(&result) = XSIG_LL(accumulator);
    186	setsign(&result, getsign(st0_ptr));
    187	FPU_copy_to_reg0(&result, TAG_Valid);
    188
    189#ifdef PARANOID
    190	if ((exponent(&result) >= 0)
    191	    && (significand(&result) > 0x8000000000000000LL)) {
    192		EXCEPTION(EX_INTERNAL | 0x150);
    193	}
    194#endif /* PARANOID */
    195
    196}
    197
    198/*--- poly_cos() ------------------------------------------------------------+
    199 |                                                                           |
    200 +---------------------------------------------------------------------------*/
    201void poly_cos(FPU_REG *st0_ptr)
    202{
    203	FPU_REG result;
    204	long int exponent, exp2, echange;
    205	Xsig accumulator, argSqrd, fix_up, argTo4;
    206	unsigned long long fixed_arg;
    207
    208#ifdef PARANOID
    209	if ((exponent(st0_ptr) > 0)
    210	    || ((exponent(st0_ptr) == 0)
    211		&& (significand(st0_ptr) > 0xc90fdaa22168c234LL))) {
    212		EXCEPTION(EX_Invalid);
    213		FPU_copy_to_reg0(&CONST_QNaN, TAG_Special);
    214		return;
    215	}
    216#endif /* PARANOID */
    217
    218	exponent = exponent(st0_ptr);
    219
    220	accumulator.lsw = accumulator.midw = accumulator.msw = 0;
    221
    222	if ((exponent < -1)
    223	    || ((exponent == -1) && (st0_ptr->sigh <= 0xb00d6f54))) {
    224		/* arg is < 0.687705 */
    225
    226		argSqrd.msw = st0_ptr->sigh;
    227		argSqrd.midw = st0_ptr->sigl;
    228		argSqrd.lsw = 0;
    229		mul64_Xsig(&argSqrd, &significand(st0_ptr));
    230
    231		if (exponent < -1) {
    232			/* shift the argument right by the required places */
    233			shr_Xsig(&argSqrd, 2 * (-1 - exponent));
    234		}
    235
    236		argTo4.msw = argSqrd.msw;
    237		argTo4.midw = argSqrd.midw;
    238		argTo4.lsw = argSqrd.lsw;
    239		mul_Xsig_Xsig(&argTo4, &argTo4);
    240
    241		polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_h,
    242				N_COEFF_NH - 1);
    243		mul_Xsig_Xsig(&accumulator, &argSqrd);
    244		negate_Xsig(&accumulator);
    245
    246		polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_h,
    247				N_COEFF_PH - 1);
    248		negate_Xsig(&accumulator);
    249
    250		mul64_Xsig(&accumulator, &significand(st0_ptr));
    251		mul64_Xsig(&accumulator, &significand(st0_ptr));
    252		shr_Xsig(&accumulator, -2 * (1 + exponent));
    253
    254		shr_Xsig(&accumulator, 3);
    255		negate_Xsig(&accumulator);
    256
    257		add_Xsig_Xsig(&accumulator, &argSqrd);
    258
    259		shr_Xsig(&accumulator, 1);
    260
    261		/* It doesn't matter if accumulator is all zero here, the
    262		   following code will work ok */
    263		negate_Xsig(&accumulator);
    264
    265		if (accumulator.lsw & 0x80000000)
    266			XSIG_LL(accumulator)++;
    267		if (accumulator.msw == 0) {
    268			/* The result is 1.0 */
    269			FPU_copy_to_reg0(&CONST_1, TAG_Valid);
    270			return;
    271		} else {
    272			significand(&result) = XSIG_LL(accumulator);
    273
    274			/* will be a valid positive nr with expon = -1 */
    275			setexponentpos(&result, -1);
    276		}
    277	} else {
    278		fixed_arg = significand(st0_ptr);
    279
    280		if (exponent == 0) {
    281			/* The argument is >= 1.0 */
    282
    283			/* Put the binary point at the left. */
    284			fixed_arg <<= 1;
    285		}
    286		/* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */
    287		fixed_arg = 0x921fb54442d18469LL - fixed_arg;
    288		/* There is a special case which arises due to rounding, to fix here. */
    289		if (fixed_arg == 0xffffffffffffffffLL)
    290			fixed_arg = 0;
    291
    292		exponent = -1;
    293		exp2 = -1;
    294
    295		/* A shift is needed here only for a narrow range of arguments,
    296		   i.e. for fixed_arg approx 2^-32, but we pick up more... */
    297		if (!(LL_MSW(fixed_arg) & 0xffff0000)) {
    298			fixed_arg <<= 16;
    299			exponent -= 16;
    300			exp2 -= 16;
    301		}
    302
    303		XSIG_LL(argSqrd) = fixed_arg;
    304		argSqrd.lsw = 0;
    305		mul64_Xsig(&argSqrd, &fixed_arg);
    306
    307		if (exponent < -1) {
    308			/* shift the argument right by the required places */
    309			shr_Xsig(&argSqrd, 2 * (-1 - exponent));
    310		}
    311
    312		argTo4.msw = argSqrd.msw;
    313		argTo4.midw = argSqrd.midw;
    314		argTo4.lsw = argSqrd.lsw;
    315		mul_Xsig_Xsig(&argTo4, &argTo4);
    316
    317		polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_l,
    318				N_COEFF_N - 1);
    319		mul_Xsig_Xsig(&accumulator, &argSqrd);
    320		negate_Xsig(&accumulator);
    321
    322		polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_l,
    323				N_COEFF_P - 1);
    324
    325		shr_Xsig(&accumulator, 2);	/* Divide by four */
    326		accumulator.msw |= 0x80000000;	/* Add 1.0 */
    327
    328		mul64_Xsig(&accumulator, &fixed_arg);
    329		mul64_Xsig(&accumulator, &fixed_arg);
    330		mul64_Xsig(&accumulator, &fixed_arg);
    331
    332		/* Divide by four, FPU_REG compatible, etc */
    333		exponent = 3 * exponent;
    334
    335		/* The minimum exponent difference is 3 */
    336		shr_Xsig(&accumulator, exp2 - exponent);
    337
    338		negate_Xsig(&accumulator);
    339		XSIG_LL(accumulator) += fixed_arg;
    340
    341		/* The basic computation is complete. Now fix the answer to
    342		   compensate for the error due to the approximation used for
    343		   pi/2
    344		 */
    345
    346		/* This has an exponent of -65 */
    347		XSIG_LL(fix_up) = 0x898cc51701b839a2ll;
    348		fix_up.lsw = 0;
    349
    350		/* The fix-up needs to be improved for larger args */
    351		if (argSqrd.msw & 0xffc00000) {
    352			/* Get about 32 bit precision in these: */
    353			fix_up.msw -= mul_32_32(0x898cc517, argSqrd.msw) / 2;
    354			fix_up.msw += mul_32_32(0x898cc517, argTo4.msw) / 24;
    355		}
    356
    357		exp2 += norm_Xsig(&accumulator);
    358		shr_Xsig(&accumulator, 1);	/* Prevent overflow */
    359		exp2++;
    360		shr_Xsig(&fix_up, 65 + exp2);
    361
    362		add_Xsig_Xsig(&accumulator, &fix_up);
    363
    364		echange = round_Xsig(&accumulator);
    365
    366		setexponentpos(&result, exp2 + echange);
    367		significand(&result) = XSIG_LL(accumulator);
    368	}
    369
    370	FPU_copy_to_reg0(&result, TAG_Valid);
    371
    372#ifdef PARANOID
    373	if ((exponent(&result) >= 0)
    374	    && (significand(&result) > 0x8000000000000000LL)) {
    375		EXCEPTION(EX_INTERNAL | 0x151);
    376	}
    377#endif /* PARANOID */
    378
    379}