cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

fault.c (44607B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 *  Copyright (C) 1995  Linus Torvalds
      4 *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
      5 *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
      6 */
      7#include <linux/sched.h>		/* test_thread_flag(), ...	*/
      8#include <linux/sched/task_stack.h>	/* task_stack_*(), ...		*/
      9#include <linux/kdebug.h>		/* oops_begin/end, ...		*/
     10#include <linux/extable.h>		/* search_exception_tables	*/
     11#include <linux/memblock.h>		/* max_low_pfn			*/
     12#include <linux/kfence.h>		/* kfence_handle_page_fault	*/
     13#include <linux/kprobes.h>		/* NOKPROBE_SYMBOL, ...		*/
     14#include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
     15#include <linux/perf_event.h>		/* perf_sw_event		*/
     16#include <linux/hugetlb.h>		/* hstate_index_to_shift	*/
     17#include <linux/prefetch.h>		/* prefetchw			*/
     18#include <linux/context_tracking.h>	/* exception_enter(), ...	*/
     19#include <linux/uaccess.h>		/* faulthandler_disabled()	*/
     20#include <linux/efi.h>			/* efi_crash_gracefully_on_page_fault()*/
     21#include <linux/mm_types.h>
     22#include <linux/sev.h>			/* snp_lookup_rmpentry()	*/
     23
     24#include <asm/cpufeature.h>		/* boot_cpu_has, ...		*/
     25#include <asm/traps.h>			/* dotraplinkage, ...		*/
     26#include <asm/fixmap.h>			/* VSYSCALL_ADDR		*/
     27#include <asm/vsyscall.h>		/* emulate_vsyscall		*/
     28#include <asm/vm86.h>			/* struct vm86			*/
     29#include <asm/mmu_context.h>		/* vma_pkey()			*/
     30#include <asm/efi.h>			/* efi_crash_gracefully_on_page_fault()*/
     31#include <asm/desc.h>			/* store_idt(), ...		*/
     32#include <asm/cpu_entry_area.h>		/* exception stack		*/
     33#include <asm/pgtable_areas.h>		/* VMALLOC_START, ...		*/
     34#include <asm/kvm_para.h>		/* kvm_handle_async_pf		*/
     35#include <asm/vdso.h>			/* fixup_vdso_exception()	*/
     36#include <asm/irq_stack.h>
     37#include <asm/sev.h>			/* dump_rmpentry()		*/
     38
     39#define CREATE_TRACE_POINTS
     40#include <asm/trace/exceptions.h>
     41
     42/*
     43 * Returns 0 if mmiotrace is disabled, or if the fault is not
     44 * handled by mmiotrace:
     45 */
     46static nokprobe_inline int
     47kmmio_fault(struct pt_regs *regs, unsigned long addr)
     48{
     49	if (unlikely(is_kmmio_active()))
     50		if (kmmio_handler(regs, addr) == 1)
     51			return -1;
     52	return 0;
     53}
     54
     55/*
     56 * Prefetch quirks:
     57 *
     58 * 32-bit mode:
     59 *
     60 *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
     61 *   Check that here and ignore it.  This is AMD erratum #91.
     62 *
     63 * 64-bit mode:
     64 *
     65 *   Sometimes the CPU reports invalid exceptions on prefetch.
     66 *   Check that here and ignore it.
     67 *
     68 * Opcode checker based on code by Richard Brunner.
     69 */
     70static inline int
     71check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
     72		      unsigned char opcode, int *prefetch)
     73{
     74	unsigned char instr_hi = opcode & 0xf0;
     75	unsigned char instr_lo = opcode & 0x0f;
     76
     77	switch (instr_hi) {
     78	case 0x20:
     79	case 0x30:
     80		/*
     81		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
     82		 * In X86_64 long mode, the CPU will signal invalid
     83		 * opcode if some of these prefixes are present so
     84		 * X86_64 will never get here anyway
     85		 */
     86		return ((instr_lo & 7) == 0x6);
     87#ifdef CONFIG_X86_64
     88	case 0x40:
     89		/*
     90		 * In 64-bit mode 0x40..0x4F are valid REX prefixes
     91		 */
     92		return (!user_mode(regs) || user_64bit_mode(regs));
     93#endif
     94	case 0x60:
     95		/* 0x64 thru 0x67 are valid prefixes in all modes. */
     96		return (instr_lo & 0xC) == 0x4;
     97	case 0xF0:
     98		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
     99		return !instr_lo || (instr_lo>>1) == 1;
    100	case 0x00:
    101		/* Prefetch instruction is 0x0F0D or 0x0F18 */
    102		if (get_kernel_nofault(opcode, instr))
    103			return 0;
    104
    105		*prefetch = (instr_lo == 0xF) &&
    106			(opcode == 0x0D || opcode == 0x18);
    107		return 0;
    108	default:
    109		return 0;
    110	}
    111}
    112
    113static bool is_amd_k8_pre_npt(void)
    114{
    115	struct cpuinfo_x86 *c = &boot_cpu_data;
    116
    117	return unlikely(IS_ENABLED(CONFIG_CPU_SUP_AMD) &&
    118			c->x86_vendor == X86_VENDOR_AMD &&
    119			c->x86 == 0xf && c->x86_model < 0x40);
    120}
    121
    122static int
    123is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
    124{
    125	unsigned char *max_instr;
    126	unsigned char *instr;
    127	int prefetch = 0;
    128
    129	/* Erratum #91 affects AMD K8, pre-NPT CPUs */
    130	if (!is_amd_k8_pre_npt())
    131		return 0;
    132
    133	/*
    134	 * If it was a exec (instruction fetch) fault on NX page, then
    135	 * do not ignore the fault:
    136	 */
    137	if (error_code & X86_PF_INSTR)
    138		return 0;
    139
    140	instr = (void *)convert_ip_to_linear(current, regs);
    141	max_instr = instr + 15;
    142
    143	/*
    144	 * This code has historically always bailed out if IP points to a
    145	 * not-present page (e.g. due to a race).  No one has ever
    146	 * complained about this.
    147	 */
    148	pagefault_disable();
    149
    150	while (instr < max_instr) {
    151		unsigned char opcode;
    152
    153		if (user_mode(regs)) {
    154			if (get_user(opcode, (unsigned char __user *) instr))
    155				break;
    156		} else {
    157			if (get_kernel_nofault(opcode, instr))
    158				break;
    159		}
    160
    161		instr++;
    162
    163		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
    164			break;
    165	}
    166
    167	pagefault_enable();
    168	return prefetch;
    169}
    170
    171DEFINE_SPINLOCK(pgd_lock);
    172LIST_HEAD(pgd_list);
    173
    174#ifdef CONFIG_X86_32
    175static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
    176{
    177	unsigned index = pgd_index(address);
    178	pgd_t *pgd_k;
    179	p4d_t *p4d, *p4d_k;
    180	pud_t *pud, *pud_k;
    181	pmd_t *pmd, *pmd_k;
    182
    183	pgd += index;
    184	pgd_k = init_mm.pgd + index;
    185
    186	if (!pgd_present(*pgd_k))
    187		return NULL;
    188
    189	/*
    190	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
    191	 * and redundant with the set_pmd() on non-PAE. As would
    192	 * set_p4d/set_pud.
    193	 */
    194	p4d = p4d_offset(pgd, address);
    195	p4d_k = p4d_offset(pgd_k, address);
    196	if (!p4d_present(*p4d_k))
    197		return NULL;
    198
    199	pud = pud_offset(p4d, address);
    200	pud_k = pud_offset(p4d_k, address);
    201	if (!pud_present(*pud_k))
    202		return NULL;
    203
    204	pmd = pmd_offset(pud, address);
    205	pmd_k = pmd_offset(pud_k, address);
    206
    207	if (pmd_present(*pmd) != pmd_present(*pmd_k))
    208		set_pmd(pmd, *pmd_k);
    209
    210	if (!pmd_present(*pmd_k))
    211		return NULL;
    212	else
    213		BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k));
    214
    215	return pmd_k;
    216}
    217
    218/*
    219 *   Handle a fault on the vmalloc or module mapping area
    220 *
    221 *   This is needed because there is a race condition between the time
    222 *   when the vmalloc mapping code updates the PMD to the point in time
    223 *   where it synchronizes this update with the other page-tables in the
    224 *   system.
    225 *
    226 *   In this race window another thread/CPU can map an area on the same
    227 *   PMD, finds it already present and does not synchronize it with the
    228 *   rest of the system yet. As a result v[mz]alloc might return areas
    229 *   which are not mapped in every page-table in the system, causing an
    230 *   unhandled page-fault when they are accessed.
    231 */
    232static noinline int vmalloc_fault(unsigned long address)
    233{
    234	unsigned long pgd_paddr;
    235	pmd_t *pmd_k;
    236	pte_t *pte_k;
    237
    238	/* Make sure we are in vmalloc area: */
    239	if (!(address >= VMALLOC_START && address < VMALLOC_END))
    240		return -1;
    241
    242	/*
    243	 * Synchronize this task's top level page-table
    244	 * with the 'reference' page table.
    245	 *
    246	 * Do _not_ use "current" here. We might be inside
    247	 * an interrupt in the middle of a task switch..
    248	 */
    249	pgd_paddr = read_cr3_pa();
    250	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
    251	if (!pmd_k)
    252		return -1;
    253
    254	if (pmd_large(*pmd_k))
    255		return 0;
    256
    257	pte_k = pte_offset_kernel(pmd_k, address);
    258	if (!pte_present(*pte_k))
    259		return -1;
    260
    261	return 0;
    262}
    263NOKPROBE_SYMBOL(vmalloc_fault);
    264
    265void arch_sync_kernel_mappings(unsigned long start, unsigned long end)
    266{
    267	unsigned long addr;
    268
    269	for (addr = start & PMD_MASK;
    270	     addr >= TASK_SIZE_MAX && addr < VMALLOC_END;
    271	     addr += PMD_SIZE) {
    272		struct page *page;
    273
    274		spin_lock(&pgd_lock);
    275		list_for_each_entry(page, &pgd_list, lru) {
    276			spinlock_t *pgt_lock;
    277
    278			/* the pgt_lock only for Xen */
    279			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
    280
    281			spin_lock(pgt_lock);
    282			vmalloc_sync_one(page_address(page), addr);
    283			spin_unlock(pgt_lock);
    284		}
    285		spin_unlock(&pgd_lock);
    286	}
    287}
    288
    289static bool low_pfn(unsigned long pfn)
    290{
    291	return pfn < max_low_pfn;
    292}
    293
    294static void dump_pagetable(unsigned long address, bool show_rmpentry)
    295{
    296	pgd_t *base = __va(read_cr3_pa());
    297	pgd_t *pgd = &base[pgd_index(address)];
    298	p4d_t *p4d;
    299	pud_t *pud;
    300	pmd_t *pmd;
    301	pte_t *pte;
    302
    303#ifdef CONFIG_X86_PAE
    304	pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
    305	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
    306		goto out;
    307#define pr_pde pr_cont
    308#else
    309#define pr_pde pr_info
    310#endif
    311	p4d = p4d_offset(pgd, address);
    312	pud = pud_offset(p4d, address);
    313	pmd = pmd_offset(pud, address);
    314	pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
    315#undef pr_pde
    316
    317	/*
    318	 * We must not directly access the pte in the highpte
    319	 * case if the page table is located in highmem.
    320	 * And let's rather not kmap-atomic the pte, just in case
    321	 * it's allocated already:
    322	 */
    323	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
    324		goto out;
    325
    326	pte = pte_offset_kernel(pmd, address);
    327	pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
    328out:
    329	pr_cont("\n");
    330}
    331
    332#else /* CONFIG_X86_64: */
    333
    334#ifdef CONFIG_CPU_SUP_AMD
    335static const char errata93_warning[] =
    336KERN_ERR 
    337"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
    338"******* Working around it, but it may cause SEGVs or burn power.\n"
    339"******* Please consider a BIOS update.\n"
    340"******* Disabling USB legacy in the BIOS may also help.\n";
    341#endif
    342
    343static int bad_address(void *p)
    344{
    345	unsigned long dummy;
    346
    347	return get_kernel_nofault(dummy, (unsigned long *)p);
    348}
    349
    350static void dump_pagetable(unsigned long address, bool show_rmpentry)
    351{
    352	pgd_t *base = __va(read_cr3_pa());
    353	pgd_t *pgd = base + pgd_index(address);
    354	unsigned long pfn;
    355	p4d_t *p4d;
    356	pud_t *pud;
    357	pmd_t *pmd;
    358	pte_t *pte;
    359
    360	if (bad_address(pgd))
    361		goto bad;
    362
    363	pr_info("PGD %lx ", pgd_val(*pgd));
    364
    365	if (!pgd_present(*pgd))
    366		goto out;
    367
    368	p4d = p4d_offset(pgd, address);
    369	if (bad_address(p4d))
    370		goto bad;
    371
    372	pfn = p4d_pfn(*p4d);
    373	pr_cont("P4D %lx ", p4d_val(*p4d));
    374	if (!p4d_present(*p4d) || p4d_large(*p4d))
    375		goto out;
    376
    377	pud = pud_offset(p4d, address);
    378	if (bad_address(pud))
    379		goto bad;
    380
    381	pfn = pud_pfn(*pud);
    382	pr_cont("PUD %lx ", pud_val(*pud));
    383	if (!pud_present(*pud) || pud_large(*pud))
    384		goto out;
    385
    386	pmd = pmd_offset(pud, address);
    387	if (bad_address(pmd))
    388		goto bad;
    389
    390	pfn = pmd_pfn(*pmd);
    391	pr_cont("PMD %lx ", pmd_val(*pmd));
    392	if (!pmd_present(*pmd) || pmd_large(*pmd))
    393		goto out;
    394
    395	pte = pte_offset_kernel(pmd, address);
    396	if (bad_address(pte))
    397		goto bad;
    398
    399	pfn = pte_pfn(*pte);
    400	pr_cont("PTE %lx", pte_val(*pte));
    401out:
    402	pr_cont("\n");
    403
    404	if (show_rmpentry)
    405		dump_rmpentry(pfn);
    406	return;
    407bad:
    408	pr_info("BAD\n");
    409}
    410
    411#endif /* CONFIG_X86_64 */
    412
    413/*
    414 * Workaround for K8 erratum #93 & buggy BIOS.
    415 *
    416 * BIOS SMM functions are required to use a specific workaround
    417 * to avoid corruption of the 64bit RIP register on C stepping K8.
    418 *
    419 * A lot of BIOS that didn't get tested properly miss this.
    420 *
    421 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
    422 * Try to work around it here.
    423 *
    424 * Note we only handle faults in kernel here.
    425 * Does nothing on 32-bit.
    426 */
    427static int is_errata93(struct pt_regs *regs, unsigned long address)
    428{
    429#if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
    430	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
    431	    || boot_cpu_data.x86 != 0xf)
    432		return 0;
    433
    434	if (user_mode(regs))
    435		return 0;
    436
    437	if (address != regs->ip)
    438		return 0;
    439
    440	if ((address >> 32) != 0)
    441		return 0;
    442
    443	address |= 0xffffffffUL << 32;
    444	if ((address >= (u64)_stext && address <= (u64)_etext) ||
    445	    (address >= MODULES_VADDR && address <= MODULES_END)) {
    446		printk_once(errata93_warning);
    447		regs->ip = address;
    448		return 1;
    449	}
    450#endif
    451	return 0;
    452}
    453
    454/*
    455 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
    456 * to illegal addresses >4GB.
    457 *
    458 * We catch this in the page fault handler because these addresses
    459 * are not reachable. Just detect this case and return.  Any code
    460 * segment in LDT is compatibility mode.
    461 */
    462static int is_errata100(struct pt_regs *regs, unsigned long address)
    463{
    464#ifdef CONFIG_X86_64
    465	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
    466		return 1;
    467#endif
    468	return 0;
    469}
    470
    471/* Pentium F0 0F C7 C8 bug workaround: */
    472static int is_f00f_bug(struct pt_regs *regs, unsigned long error_code,
    473		       unsigned long address)
    474{
    475#ifdef CONFIG_X86_F00F_BUG
    476	if (boot_cpu_has_bug(X86_BUG_F00F) && !(error_code & X86_PF_USER) &&
    477	    idt_is_f00f_address(address)) {
    478		handle_invalid_op(regs);
    479		return 1;
    480	}
    481#endif
    482	return 0;
    483}
    484
    485static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index)
    486{
    487	u32 offset = (index >> 3) * sizeof(struct desc_struct);
    488	unsigned long addr;
    489	struct ldttss_desc desc;
    490
    491	if (index == 0) {
    492		pr_alert("%s: NULL\n", name);
    493		return;
    494	}
    495
    496	if (offset + sizeof(struct ldttss_desc) >= gdt->size) {
    497		pr_alert("%s: 0x%hx -- out of bounds\n", name, index);
    498		return;
    499	}
    500
    501	if (copy_from_kernel_nofault(&desc, (void *)(gdt->address + offset),
    502			      sizeof(struct ldttss_desc))) {
    503		pr_alert("%s: 0x%hx -- GDT entry is not readable\n",
    504			 name, index);
    505		return;
    506	}
    507
    508	addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24);
    509#ifdef CONFIG_X86_64
    510	addr |= ((u64)desc.base3 << 32);
    511#endif
    512	pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n",
    513		 name, index, addr, (desc.limit0 | (desc.limit1 << 16)));
    514}
    515
    516static void
    517show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address)
    518{
    519	if (!oops_may_print())
    520		return;
    521
    522	if (error_code & X86_PF_INSTR) {
    523		unsigned int level;
    524		pgd_t *pgd;
    525		pte_t *pte;
    526
    527		pgd = __va(read_cr3_pa());
    528		pgd += pgd_index(address);
    529
    530		pte = lookup_address_in_pgd(pgd, address, &level);
    531
    532		if (pte && pte_present(*pte) && !pte_exec(*pte))
    533			pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
    534				from_kuid(&init_user_ns, current_uid()));
    535		if (pte && pte_present(*pte) && pte_exec(*pte) &&
    536				(pgd_flags(*pgd) & _PAGE_USER) &&
    537				(__read_cr4() & X86_CR4_SMEP))
    538			pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
    539				from_kuid(&init_user_ns, current_uid()));
    540	}
    541
    542	if (address < PAGE_SIZE && !user_mode(regs))
    543		pr_alert("BUG: kernel NULL pointer dereference, address: %px\n",
    544			(void *)address);
    545	else
    546		pr_alert("BUG: unable to handle page fault for address: %px\n",
    547			(void *)address);
    548
    549	pr_alert("#PF: %s %s in %s mode\n",
    550		 (error_code & X86_PF_USER)  ? "user" : "supervisor",
    551		 (error_code & X86_PF_INSTR) ? "instruction fetch" :
    552		 (error_code & X86_PF_WRITE) ? "write access" :
    553					       "read access",
    554			     user_mode(regs) ? "user" : "kernel");
    555	pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code,
    556		 !(error_code & X86_PF_PROT) ? "not-present page" :
    557		 (error_code & X86_PF_RSVD)  ? "reserved bit violation" :
    558		 (error_code & X86_PF_PK)    ? "protection keys violation" :
    559		 (error_code & X86_PF_RMP)   ? "RMP violation" :
    560					       "permissions violation");
    561
    562	if (!(error_code & X86_PF_USER) && user_mode(regs)) {
    563		struct desc_ptr idt, gdt;
    564		u16 ldtr, tr;
    565
    566		/*
    567		 * This can happen for quite a few reasons.  The more obvious
    568		 * ones are faults accessing the GDT, or LDT.  Perhaps
    569		 * surprisingly, if the CPU tries to deliver a benign or
    570		 * contributory exception from user code and gets a page fault
    571		 * during delivery, the page fault can be delivered as though
    572		 * it originated directly from user code.  This could happen
    573		 * due to wrong permissions on the IDT, GDT, LDT, TSS, or
    574		 * kernel or IST stack.
    575		 */
    576		store_idt(&idt);
    577
    578		/* Usable even on Xen PV -- it's just slow. */
    579		native_store_gdt(&gdt);
    580
    581		pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n",
    582			 idt.address, idt.size, gdt.address, gdt.size);
    583
    584		store_ldt(ldtr);
    585		show_ldttss(&gdt, "LDTR", ldtr);
    586
    587		store_tr(tr);
    588		show_ldttss(&gdt, "TR", tr);
    589	}
    590
    591	dump_pagetable(address, error_code & X86_PF_RMP);
    592}
    593
    594static noinline void
    595pgtable_bad(struct pt_regs *regs, unsigned long error_code,
    596	    unsigned long address)
    597{
    598	struct task_struct *tsk;
    599	unsigned long flags;
    600	int sig;
    601
    602	flags = oops_begin();
    603	tsk = current;
    604	sig = SIGKILL;
    605
    606	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
    607	       tsk->comm, address);
    608	dump_pagetable(address, false);
    609
    610	if (__die("Bad pagetable", regs, error_code))
    611		sig = 0;
    612
    613	oops_end(flags, regs, sig);
    614}
    615
    616static void sanitize_error_code(unsigned long address,
    617				unsigned long *error_code)
    618{
    619	/*
    620	 * To avoid leaking information about the kernel page
    621	 * table layout, pretend that user-mode accesses to
    622	 * kernel addresses are always protection faults.
    623	 *
    624	 * NB: This means that failed vsyscalls with vsyscall=none
    625	 * will have the PROT bit.  This doesn't leak any
    626	 * information and does not appear to cause any problems.
    627	 */
    628	if (address >= TASK_SIZE_MAX)
    629		*error_code |= X86_PF_PROT;
    630}
    631
    632static void set_signal_archinfo(unsigned long address,
    633				unsigned long error_code)
    634{
    635	struct task_struct *tsk = current;
    636
    637	tsk->thread.trap_nr = X86_TRAP_PF;
    638	tsk->thread.error_code = error_code | X86_PF_USER;
    639	tsk->thread.cr2 = address;
    640}
    641
    642static noinline void
    643page_fault_oops(struct pt_regs *regs, unsigned long error_code,
    644		unsigned long address)
    645{
    646#ifdef CONFIG_VMAP_STACK
    647	struct stack_info info;
    648#endif
    649	unsigned long flags;
    650	int sig;
    651
    652	if (user_mode(regs)) {
    653		/*
    654		 * Implicit kernel access from user mode?  Skip the stack
    655		 * overflow and EFI special cases.
    656		 */
    657		goto oops;
    658	}
    659
    660#ifdef CONFIG_VMAP_STACK
    661	/*
    662	 * Stack overflow?  During boot, we can fault near the initial
    663	 * stack in the direct map, but that's not an overflow -- check
    664	 * that we're in vmalloc space to avoid this.
    665	 */
    666	if (is_vmalloc_addr((void *)address) &&
    667	    get_stack_guard_info((void *)address, &info)) {
    668		/*
    669		 * We're likely to be running with very little stack space
    670		 * left.  It's plausible that we'd hit this condition but
    671		 * double-fault even before we get this far, in which case
    672		 * we're fine: the double-fault handler will deal with it.
    673		 *
    674		 * We don't want to make it all the way into the oops code
    675		 * and then double-fault, though, because we're likely to
    676		 * break the console driver and lose most of the stack dump.
    677		 */
    678		call_on_stack(__this_cpu_ist_top_va(DF) - sizeof(void*),
    679			      handle_stack_overflow,
    680			      ASM_CALL_ARG3,
    681			      , [arg1] "r" (regs), [arg2] "r" (address), [arg3] "r" (&info));
    682
    683		unreachable();
    684	}
    685#endif
    686
    687	/*
    688	 * Buggy firmware could access regions which might page fault.  If
    689	 * this happens, EFI has a special OOPS path that will try to
    690	 * avoid hanging the system.
    691	 */
    692	if (IS_ENABLED(CONFIG_EFI))
    693		efi_crash_gracefully_on_page_fault(address);
    694
    695	/* Only not-present faults should be handled by KFENCE. */
    696	if (!(error_code & X86_PF_PROT) &&
    697	    kfence_handle_page_fault(address, error_code & X86_PF_WRITE, regs))
    698		return;
    699
    700oops:
    701	/*
    702	 * Oops. The kernel tried to access some bad page. We'll have to
    703	 * terminate things with extreme prejudice:
    704	 */
    705	flags = oops_begin();
    706
    707	show_fault_oops(regs, error_code, address);
    708
    709	if (task_stack_end_corrupted(current))
    710		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
    711
    712	sig = SIGKILL;
    713	if (__die("Oops", regs, error_code))
    714		sig = 0;
    715
    716	/* Executive summary in case the body of the oops scrolled away */
    717	printk(KERN_DEFAULT "CR2: %016lx\n", address);
    718
    719	oops_end(flags, regs, sig);
    720}
    721
    722static noinline void
    723kernelmode_fixup_or_oops(struct pt_regs *regs, unsigned long error_code,
    724			 unsigned long address, int signal, int si_code,
    725			 u32 pkey)
    726{
    727	WARN_ON_ONCE(user_mode(regs));
    728
    729	/* Are we prepared to handle this kernel fault? */
    730	if (fixup_exception(regs, X86_TRAP_PF, error_code, address)) {
    731		/*
    732		 * Any interrupt that takes a fault gets the fixup. This makes
    733		 * the below recursive fault logic only apply to a faults from
    734		 * task context.
    735		 */
    736		if (in_interrupt())
    737			return;
    738
    739		/*
    740		 * Per the above we're !in_interrupt(), aka. task context.
    741		 *
    742		 * In this case we need to make sure we're not recursively
    743		 * faulting through the emulate_vsyscall() logic.
    744		 */
    745		if (current->thread.sig_on_uaccess_err && signal) {
    746			sanitize_error_code(address, &error_code);
    747
    748			set_signal_archinfo(address, error_code);
    749
    750			if (si_code == SEGV_PKUERR) {
    751				force_sig_pkuerr((void __user *)address, pkey);
    752			} else {
    753				/* XXX: hwpoison faults will set the wrong code. */
    754				force_sig_fault(signal, si_code, (void __user *)address);
    755			}
    756		}
    757
    758		/*
    759		 * Barring that, we can do the fixup and be happy.
    760		 */
    761		return;
    762	}
    763
    764	/*
    765	 * AMD erratum #91 manifests as a spurious page fault on a PREFETCH
    766	 * instruction.
    767	 */
    768	if (is_prefetch(regs, error_code, address))
    769		return;
    770
    771	page_fault_oops(regs, error_code, address);
    772}
    773
    774/*
    775 * Print out info about fatal segfaults, if the show_unhandled_signals
    776 * sysctl is set:
    777 */
    778static inline void
    779show_signal_msg(struct pt_regs *regs, unsigned long error_code,
    780		unsigned long address, struct task_struct *tsk)
    781{
    782	const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG;
    783
    784	if (!unhandled_signal(tsk, SIGSEGV))
    785		return;
    786
    787	if (!printk_ratelimit())
    788		return;
    789
    790	printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
    791		loglvl, tsk->comm, task_pid_nr(tsk), address,
    792		(void *)regs->ip, (void *)regs->sp, error_code);
    793
    794	print_vma_addr(KERN_CONT " in ", regs->ip);
    795
    796	printk(KERN_CONT "\n");
    797
    798	show_opcodes(regs, loglvl);
    799}
    800
    801/*
    802 * The (legacy) vsyscall page is the long page in the kernel portion
    803 * of the address space that has user-accessible permissions.
    804 */
    805static bool is_vsyscall_vaddr(unsigned long vaddr)
    806{
    807	return unlikely((vaddr & PAGE_MASK) == VSYSCALL_ADDR);
    808}
    809
    810static void
    811__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
    812		       unsigned long address, u32 pkey, int si_code)
    813{
    814	struct task_struct *tsk = current;
    815
    816	if (!user_mode(regs)) {
    817		kernelmode_fixup_or_oops(regs, error_code, address,
    818					 SIGSEGV, si_code, pkey);
    819		return;
    820	}
    821
    822	if (!(error_code & X86_PF_USER)) {
    823		/* Implicit user access to kernel memory -- just oops */
    824		page_fault_oops(regs, error_code, address);
    825		return;
    826	}
    827
    828	/*
    829	 * User mode accesses just cause a SIGSEGV.
    830	 * It's possible to have interrupts off here:
    831	 */
    832	local_irq_enable();
    833
    834	/*
    835	 * Valid to do another page fault here because this one came
    836	 * from user space:
    837	 */
    838	if (is_prefetch(regs, error_code, address))
    839		return;
    840
    841	if (is_errata100(regs, address))
    842		return;
    843
    844	sanitize_error_code(address, &error_code);
    845
    846	if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
    847		return;
    848
    849	if (likely(show_unhandled_signals))
    850		show_signal_msg(regs, error_code, address, tsk);
    851
    852	set_signal_archinfo(address, error_code);
    853
    854	if (si_code == SEGV_PKUERR)
    855		force_sig_pkuerr((void __user *)address, pkey);
    856	else
    857		force_sig_fault(SIGSEGV, si_code, (void __user *)address);
    858
    859	local_irq_disable();
    860}
    861
    862static noinline void
    863bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
    864		     unsigned long address)
    865{
    866	__bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR);
    867}
    868
    869static void
    870__bad_area(struct pt_regs *regs, unsigned long error_code,
    871	   unsigned long address, u32 pkey, int si_code)
    872{
    873	struct mm_struct *mm = current->mm;
    874	/*
    875	 * Something tried to access memory that isn't in our memory map..
    876	 * Fix it, but check if it's kernel or user first..
    877	 */
    878	mmap_read_unlock(mm);
    879
    880	__bad_area_nosemaphore(regs, error_code, address, pkey, si_code);
    881}
    882
    883static noinline void
    884bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
    885{
    886	__bad_area(regs, error_code, address, 0, SEGV_MAPERR);
    887}
    888
    889static inline bool bad_area_access_from_pkeys(unsigned long error_code,
    890		struct vm_area_struct *vma)
    891{
    892	/* This code is always called on the current mm */
    893	bool foreign = false;
    894
    895	if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
    896		return false;
    897	if (error_code & X86_PF_PK)
    898		return true;
    899	/* this checks permission keys on the VMA: */
    900	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
    901				       (error_code & X86_PF_INSTR), foreign))
    902		return true;
    903	return false;
    904}
    905
    906static noinline void
    907bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
    908		      unsigned long address, struct vm_area_struct *vma)
    909{
    910	/*
    911	 * This OSPKE check is not strictly necessary at runtime.
    912	 * But, doing it this way allows compiler optimizations
    913	 * if pkeys are compiled out.
    914	 */
    915	if (bad_area_access_from_pkeys(error_code, vma)) {
    916		/*
    917		 * A protection key fault means that the PKRU value did not allow
    918		 * access to some PTE.  Userspace can figure out what PKRU was
    919		 * from the XSAVE state.  This function captures the pkey from
    920		 * the vma and passes it to userspace so userspace can discover
    921		 * which protection key was set on the PTE.
    922		 *
    923		 * If we get here, we know that the hardware signaled a X86_PF_PK
    924		 * fault and that there was a VMA once we got in the fault
    925		 * handler.  It does *not* guarantee that the VMA we find here
    926		 * was the one that we faulted on.
    927		 *
    928		 * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
    929		 * 2. T1   : set PKRU to deny access to pkey=4, touches page
    930		 * 3. T1   : faults...
    931		 * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
    932		 * 5. T1   : enters fault handler, takes mmap_lock, etc...
    933		 * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
    934		 *	     faulted on a pte with its pkey=4.
    935		 */
    936		u32 pkey = vma_pkey(vma);
    937
    938		__bad_area(regs, error_code, address, pkey, SEGV_PKUERR);
    939	} else {
    940		__bad_area(regs, error_code, address, 0, SEGV_ACCERR);
    941	}
    942}
    943
    944static void
    945do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
    946	  vm_fault_t fault)
    947{
    948	/* Kernel mode? Handle exceptions or die: */
    949	if (!user_mode(regs)) {
    950		kernelmode_fixup_or_oops(regs, error_code, address,
    951					 SIGBUS, BUS_ADRERR, ARCH_DEFAULT_PKEY);
    952		return;
    953	}
    954
    955	/* User-space => ok to do another page fault: */
    956	if (is_prefetch(regs, error_code, address))
    957		return;
    958
    959	sanitize_error_code(address, &error_code);
    960
    961	if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
    962		return;
    963
    964	set_signal_archinfo(address, error_code);
    965
    966#ifdef CONFIG_MEMORY_FAILURE
    967	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
    968		struct task_struct *tsk = current;
    969		unsigned lsb = 0;
    970
    971		pr_err(
    972	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
    973			tsk->comm, tsk->pid, address);
    974		if (fault & VM_FAULT_HWPOISON_LARGE)
    975			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
    976		if (fault & VM_FAULT_HWPOISON)
    977			lsb = PAGE_SHIFT;
    978		force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
    979		return;
    980	}
    981#endif
    982	force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
    983}
    984
    985static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte)
    986{
    987	if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
    988		return 0;
    989
    990	if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
    991		return 0;
    992
    993	return 1;
    994}
    995
    996/*
    997 * Handle a spurious fault caused by a stale TLB entry.
    998 *
    999 * This allows us to lazily refresh the TLB when increasing the
   1000 * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
   1001 * eagerly is very expensive since that implies doing a full
   1002 * cross-processor TLB flush, even if no stale TLB entries exist
   1003 * on other processors.
   1004 *
   1005 * Spurious faults may only occur if the TLB contains an entry with
   1006 * fewer permission than the page table entry.  Non-present (P = 0)
   1007 * and reserved bit (R = 1) faults are never spurious.
   1008 *
   1009 * There are no security implications to leaving a stale TLB when
   1010 * increasing the permissions on a page.
   1011 *
   1012 * Returns non-zero if a spurious fault was handled, zero otherwise.
   1013 *
   1014 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
   1015 * (Optional Invalidation).
   1016 */
   1017static noinline int
   1018spurious_kernel_fault(unsigned long error_code, unsigned long address)
   1019{
   1020	pgd_t *pgd;
   1021	p4d_t *p4d;
   1022	pud_t *pud;
   1023	pmd_t *pmd;
   1024	pte_t *pte;
   1025	int ret;
   1026
   1027	/*
   1028	 * Only writes to RO or instruction fetches from NX may cause
   1029	 * spurious faults.
   1030	 *
   1031	 * These could be from user or supervisor accesses but the TLB
   1032	 * is only lazily flushed after a kernel mapping protection
   1033	 * change, so user accesses are not expected to cause spurious
   1034	 * faults.
   1035	 */
   1036	if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
   1037	    error_code != (X86_PF_INSTR | X86_PF_PROT))
   1038		return 0;
   1039
   1040	pgd = init_mm.pgd + pgd_index(address);
   1041	if (!pgd_present(*pgd))
   1042		return 0;
   1043
   1044	p4d = p4d_offset(pgd, address);
   1045	if (!p4d_present(*p4d))
   1046		return 0;
   1047
   1048	if (p4d_large(*p4d))
   1049		return spurious_kernel_fault_check(error_code, (pte_t *) p4d);
   1050
   1051	pud = pud_offset(p4d, address);
   1052	if (!pud_present(*pud))
   1053		return 0;
   1054
   1055	if (pud_large(*pud))
   1056		return spurious_kernel_fault_check(error_code, (pte_t *) pud);
   1057
   1058	pmd = pmd_offset(pud, address);
   1059	if (!pmd_present(*pmd))
   1060		return 0;
   1061
   1062	if (pmd_large(*pmd))
   1063		return spurious_kernel_fault_check(error_code, (pte_t *) pmd);
   1064
   1065	pte = pte_offset_kernel(pmd, address);
   1066	if (!pte_present(*pte))
   1067		return 0;
   1068
   1069	ret = spurious_kernel_fault_check(error_code, pte);
   1070	if (!ret)
   1071		return 0;
   1072
   1073	/*
   1074	 * Make sure we have permissions in PMD.
   1075	 * If not, then there's a bug in the page tables:
   1076	 */
   1077	ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd);
   1078	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
   1079
   1080	return ret;
   1081}
   1082NOKPROBE_SYMBOL(spurious_kernel_fault);
   1083
   1084int show_unhandled_signals = 1;
   1085
   1086static inline int
   1087access_error(unsigned long error_code, struct vm_area_struct *vma)
   1088{
   1089	/* This is only called for the current mm, so: */
   1090	bool foreign = false;
   1091
   1092	/*
   1093	 * Read or write was blocked by protection keys.  This is
   1094	 * always an unconditional error and can never result in
   1095	 * a follow-up action to resolve the fault, like a COW.
   1096	 */
   1097	if (error_code & X86_PF_PK)
   1098		return 1;
   1099
   1100	/*
   1101	 * SGX hardware blocked the access.  This usually happens
   1102	 * when the enclave memory contents have been destroyed, like
   1103	 * after a suspend/resume cycle. In any case, the kernel can't
   1104	 * fix the cause of the fault.  Handle the fault as an access
   1105	 * error even in cases where no actual access violation
   1106	 * occurred.  This allows userspace to rebuild the enclave in
   1107	 * response to the signal.
   1108	 */
   1109	if (unlikely(error_code & X86_PF_SGX))
   1110		return 1;
   1111
   1112	/*
   1113	 * Make sure to check the VMA so that we do not perform
   1114	 * faults just to hit a X86_PF_PK as soon as we fill in a
   1115	 * page.
   1116	 */
   1117	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
   1118				       (error_code & X86_PF_INSTR), foreign))
   1119		return 1;
   1120
   1121	if (error_code & X86_PF_WRITE) {
   1122		/* write, present and write, not present: */
   1123		if (unlikely(!(vma->vm_flags & VM_WRITE)))
   1124			return 1;
   1125		return 0;
   1126	}
   1127
   1128	/* read, present: */
   1129	if (unlikely(error_code & X86_PF_PROT))
   1130		return 1;
   1131
   1132	/* read, not present: */
   1133	if (unlikely(!vma_is_accessible(vma)))
   1134		return 1;
   1135
   1136	return 0;
   1137}
   1138
   1139bool fault_in_kernel_space(unsigned long address)
   1140{
   1141	/*
   1142	 * On 64-bit systems, the vsyscall page is at an address above
   1143	 * TASK_SIZE_MAX, but is not considered part of the kernel
   1144	 * address space.
   1145	 */
   1146	if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address))
   1147		return false;
   1148
   1149	return address >= TASK_SIZE_MAX;
   1150}
   1151
   1152/*
   1153 * Called for all faults where 'address' is part of the kernel address
   1154 * space.  Might get called for faults that originate from *code* that
   1155 * ran in userspace or the kernel.
   1156 */
   1157static void
   1158do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code,
   1159		   unsigned long address)
   1160{
   1161	/*
   1162	 * Protection keys exceptions only happen on user pages.  We
   1163	 * have no user pages in the kernel portion of the address
   1164	 * space, so do not expect them here.
   1165	 */
   1166	WARN_ON_ONCE(hw_error_code & X86_PF_PK);
   1167
   1168#ifdef CONFIG_X86_32
   1169	/*
   1170	 * We can fault-in kernel-space virtual memory on-demand. The
   1171	 * 'reference' page table is init_mm.pgd.
   1172	 *
   1173	 * NOTE! We MUST NOT take any locks for this case. We may
   1174	 * be in an interrupt or a critical region, and should
   1175	 * only copy the information from the master page table,
   1176	 * nothing more.
   1177	 *
   1178	 * Before doing this on-demand faulting, ensure that the
   1179	 * fault is not any of the following:
   1180	 * 1. A fault on a PTE with a reserved bit set.
   1181	 * 2. A fault caused by a user-mode access.  (Do not demand-
   1182	 *    fault kernel memory due to user-mode accesses).
   1183	 * 3. A fault caused by a page-level protection violation.
   1184	 *    (A demand fault would be on a non-present page which
   1185	 *     would have X86_PF_PROT==0).
   1186	 *
   1187	 * This is only needed to close a race condition on x86-32 in
   1188	 * the vmalloc mapping/unmapping code. See the comment above
   1189	 * vmalloc_fault() for details. On x86-64 the race does not
   1190	 * exist as the vmalloc mappings don't need to be synchronized
   1191	 * there.
   1192	 */
   1193	if (!(hw_error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
   1194		if (vmalloc_fault(address) >= 0)
   1195			return;
   1196	}
   1197#endif
   1198
   1199	if (is_f00f_bug(regs, hw_error_code, address))
   1200		return;
   1201
   1202	/* Was the fault spurious, caused by lazy TLB invalidation? */
   1203	if (spurious_kernel_fault(hw_error_code, address))
   1204		return;
   1205
   1206	/* kprobes don't want to hook the spurious faults: */
   1207	if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF)))
   1208		return;
   1209
   1210	/*
   1211	 * Note, despite being a "bad area", there are quite a few
   1212	 * acceptable reasons to get here, such as erratum fixups
   1213	 * and handling kernel code that can fault, like get_user().
   1214	 *
   1215	 * Don't take the mm semaphore here. If we fixup a prefetch
   1216	 * fault we could otherwise deadlock:
   1217	 */
   1218	bad_area_nosemaphore(regs, hw_error_code, address);
   1219}
   1220NOKPROBE_SYMBOL(do_kern_addr_fault);
   1221
   1222static inline size_t pages_per_hpage(int level)
   1223{
   1224	return page_level_size(level) / PAGE_SIZE;
   1225}
   1226
   1227/*
   1228 * Return 1 if the caller need to retry, 0 if it the address need to be split
   1229 * in order to resolve the fault.
   1230 */
   1231static int handle_user_rmp_page_fault(struct pt_regs *regs, unsigned long error_code,
   1232				      unsigned long address)
   1233{
   1234	int rmp_level, level;
   1235	pgd_t *pgd;
   1236	pte_t *pte;
   1237	u64 pfn;
   1238
   1239	pgd = __va(read_cr3_pa());
   1240	pgd += pgd_index(address);
   1241
   1242	pte = lookup_address_in_pgd(pgd, address, &level);
   1243
   1244	/*
   1245	 * It can happen if there was a race between an unmap event and
   1246	 * the RMP fault delivery.
   1247	 */
   1248	if (!pte || !pte_present(*pte))
   1249		return 1;
   1250
   1251	pfn = pte_pfn(*pte);
   1252
   1253	/* If its large page then calculte the fault pfn */
   1254	if (level > PG_LEVEL_4K) {
   1255		unsigned long mask;
   1256
   1257		mask = pages_per_hpage(level) - pages_per_hpage(level - 1);
   1258		pfn |= (address >> PAGE_SHIFT) & mask;
   1259	}
   1260
   1261	/*
   1262	 * If its a guest private page, then the fault cannot be resolved.
   1263	 * Send a SIGBUS to terminate the process.
   1264	 */
   1265	if (snp_lookup_rmpentry(pfn, &rmp_level)) {
   1266		do_sigbus(regs, error_code, address, VM_FAULT_SIGBUS);
   1267		return 1;
   1268	}
   1269
   1270	/*
   1271	 * The backing page level is higher than the RMP page level, request
   1272	 * to split the page.
   1273	 */
   1274	if (level > rmp_level)
   1275		return 0;
   1276
   1277	return 1;
   1278}
   1279
   1280/*
   1281 * Handle faults in the user portion of the address space.  Nothing in here
   1282 * should check X86_PF_USER without a specific justification: for almost
   1283 * all purposes, we should treat a normal kernel access to user memory
   1284 * (e.g. get_user(), put_user(), etc.) the same as the WRUSS instruction.
   1285 * The one exception is AC flag handling, which is, per the x86
   1286 * architecture, special for WRUSS.
   1287 */
   1288static inline
   1289void do_user_addr_fault(struct pt_regs *regs,
   1290			unsigned long error_code,
   1291			unsigned long address)
   1292{
   1293	struct vm_area_struct *vma;
   1294	struct task_struct *tsk;
   1295	struct mm_struct *mm;
   1296	vm_fault_t fault;
   1297	unsigned int flags = FAULT_FLAG_DEFAULT;
   1298
   1299	tsk = current;
   1300	mm = tsk->mm;
   1301
   1302	if (unlikely((error_code & (X86_PF_USER | X86_PF_INSTR)) == X86_PF_INSTR)) {
   1303		/*
   1304		 * Whoops, this is kernel mode code trying to execute from
   1305		 * user memory.  Unless this is AMD erratum #93, which
   1306		 * corrupts RIP such that it looks like a user address,
   1307		 * this is unrecoverable.  Don't even try to look up the
   1308		 * VMA or look for extable entries.
   1309		 */
   1310		if (is_errata93(regs, address))
   1311			return;
   1312
   1313		page_fault_oops(regs, error_code, address);
   1314		return;
   1315	}
   1316
   1317	/* kprobes don't want to hook the spurious faults: */
   1318	if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF)))
   1319		return;
   1320
   1321	/*
   1322	 * Reserved bits are never expected to be set on
   1323	 * entries in the user portion of the page tables.
   1324	 */
   1325	if (unlikely(error_code & X86_PF_RSVD))
   1326		pgtable_bad(regs, error_code, address);
   1327
   1328	/*
   1329	 * If SMAP is on, check for invalid kernel (supervisor) access to user
   1330	 * pages in the user address space.  The odd case here is WRUSS,
   1331	 * which, according to the preliminary documentation, does not respect
   1332	 * SMAP and will have the USER bit set so, in all cases, SMAP
   1333	 * enforcement appears to be consistent with the USER bit.
   1334	 */
   1335	if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) &&
   1336		     !(error_code & X86_PF_USER) &&
   1337		     !(regs->flags & X86_EFLAGS_AC))) {
   1338		/*
   1339		 * No extable entry here.  This was a kernel access to an
   1340		 * invalid pointer.  get_kernel_nofault() will not get here.
   1341		 */
   1342		page_fault_oops(regs, error_code, address);
   1343		return;
   1344	}
   1345
   1346	/*
   1347	 * If we're in an interrupt, have no user context or are running
   1348	 * in a region with pagefaults disabled then we must not take the fault
   1349	 */
   1350	if (unlikely(faulthandler_disabled() || !mm)) {
   1351		bad_area_nosemaphore(regs, error_code, address);
   1352		return;
   1353	}
   1354
   1355	/*
   1356	 * It's safe to allow irq's after cr2 has been saved and the
   1357	 * vmalloc fault has been handled.
   1358	 *
   1359	 * User-mode registers count as a user access even for any
   1360	 * potential system fault or CPU buglet:
   1361	 */
   1362	if (user_mode(regs)) {
   1363		local_irq_enable();
   1364		flags |= FAULT_FLAG_USER;
   1365	} else {
   1366		if (regs->flags & X86_EFLAGS_IF)
   1367			local_irq_enable();
   1368	}
   1369
   1370	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
   1371
   1372	if (error_code & X86_PF_WRITE)
   1373		flags |= FAULT_FLAG_WRITE;
   1374	if (error_code & X86_PF_INSTR)
   1375		flags |= FAULT_FLAG_INSTRUCTION;
   1376
   1377	/*
   1378	 * If its an RMP violation, try resolving it.
   1379	 */
   1380	if (error_code & X86_PF_RMP) {
   1381		if (handle_user_rmp_page_fault(regs, error_code, address))
   1382			return;
   1383
   1384		/* Ask to split the page */
   1385		flags |= FAULT_FLAG_PAGE_SPLIT;
   1386	}
   1387
   1388#ifdef CONFIG_X86_64
   1389	/*
   1390	 * Faults in the vsyscall page might need emulation.  The
   1391	 * vsyscall page is at a high address (>PAGE_OFFSET), but is
   1392	 * considered to be part of the user address space.
   1393	 *
   1394	 * The vsyscall page does not have a "real" VMA, so do this
   1395	 * emulation before we go searching for VMAs.
   1396	 *
   1397	 * PKRU never rejects instruction fetches, so we don't need
   1398	 * to consider the PF_PK bit.
   1399	 */
   1400	if (is_vsyscall_vaddr(address)) {
   1401		if (emulate_vsyscall(error_code, regs, address))
   1402			return;
   1403	}
   1404#endif
   1405
   1406	/*
   1407	 * Kernel-mode access to the user address space should only occur
   1408	 * on well-defined single instructions listed in the exception
   1409	 * tables.  But, an erroneous kernel fault occurring outside one of
   1410	 * those areas which also holds mmap_lock might deadlock attempting
   1411	 * to validate the fault against the address space.
   1412	 *
   1413	 * Only do the expensive exception table search when we might be at
   1414	 * risk of a deadlock.  This happens if we
   1415	 * 1. Failed to acquire mmap_lock, and
   1416	 * 2. The access did not originate in userspace.
   1417	 */
   1418	if (unlikely(!mmap_read_trylock(mm))) {
   1419		if (!user_mode(regs) && !search_exception_tables(regs->ip)) {
   1420			/*
   1421			 * Fault from code in kernel from
   1422			 * which we do not expect faults.
   1423			 */
   1424			bad_area_nosemaphore(regs, error_code, address);
   1425			return;
   1426		}
   1427retry:
   1428		mmap_read_lock(mm);
   1429	} else {
   1430		/*
   1431		 * The above down_read_trylock() might have succeeded in
   1432		 * which case we'll have missed the might_sleep() from
   1433		 * down_read():
   1434		 */
   1435		might_sleep();
   1436	}
   1437
   1438	vma = find_vma(mm, address);
   1439	if (unlikely(!vma)) {
   1440		bad_area(regs, error_code, address);
   1441		return;
   1442	}
   1443	if (likely(vma->vm_start <= address))
   1444		goto good_area;
   1445	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
   1446		bad_area(regs, error_code, address);
   1447		return;
   1448	}
   1449	if (unlikely(expand_stack(vma, address))) {
   1450		bad_area(regs, error_code, address);
   1451		return;
   1452	}
   1453
   1454	/*
   1455	 * Ok, we have a good vm_area for this memory access, so
   1456	 * we can handle it..
   1457	 */
   1458good_area:
   1459	if (unlikely(access_error(error_code, vma))) {
   1460		bad_area_access_error(regs, error_code, address, vma);
   1461		return;
   1462	}
   1463
   1464	/*
   1465	 * If for any reason at all we couldn't handle the fault,
   1466	 * make sure we exit gracefully rather than endlessly redo
   1467	 * the fault.  Since we never set FAULT_FLAG_RETRY_NOWAIT, if
   1468	 * we get VM_FAULT_RETRY back, the mmap_lock has been unlocked.
   1469	 *
   1470	 * Note that handle_userfault() may also release and reacquire mmap_lock
   1471	 * (and not return with VM_FAULT_RETRY), when returning to userland to
   1472	 * repeat the page fault later with a VM_FAULT_NOPAGE retval
   1473	 * (potentially after handling any pending signal during the return to
   1474	 * userland). The return to userland is identified whenever
   1475	 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
   1476	 */
   1477	fault = handle_mm_fault(vma, address, flags, regs);
   1478
   1479	if (fault_signal_pending(fault, regs)) {
   1480		/*
   1481		 * Quick path to respond to signals.  The core mm code
   1482		 * has unlocked the mm for us if we get here.
   1483		 */
   1484		if (!user_mode(regs))
   1485			kernelmode_fixup_or_oops(regs, error_code, address,
   1486						 SIGBUS, BUS_ADRERR,
   1487						 ARCH_DEFAULT_PKEY);
   1488		return;
   1489	}
   1490
   1491	/*
   1492	 * If we need to retry the mmap_lock has already been released,
   1493	 * and if there is a fatal signal pending there is no guarantee
   1494	 * that we made any progress. Handle this case first.
   1495	 */
   1496	if (unlikely(fault & VM_FAULT_RETRY)) {
   1497		flags |= FAULT_FLAG_TRIED;
   1498		goto retry;
   1499	}
   1500
   1501	mmap_read_unlock(mm);
   1502	if (likely(!(fault & VM_FAULT_ERROR)))
   1503		return;
   1504
   1505	if (fatal_signal_pending(current) && !user_mode(regs)) {
   1506		kernelmode_fixup_or_oops(regs, error_code, address,
   1507					 0, 0, ARCH_DEFAULT_PKEY);
   1508		return;
   1509	}
   1510
   1511	if (fault & VM_FAULT_OOM) {
   1512		/* Kernel mode? Handle exceptions or die: */
   1513		if (!user_mode(regs)) {
   1514			kernelmode_fixup_or_oops(regs, error_code, address,
   1515						 SIGSEGV, SEGV_MAPERR,
   1516						 ARCH_DEFAULT_PKEY);
   1517			return;
   1518		}
   1519
   1520		/*
   1521		 * We ran out of memory, call the OOM killer, and return the
   1522		 * userspace (which will retry the fault, or kill us if we got
   1523		 * oom-killed):
   1524		 */
   1525		pagefault_out_of_memory();
   1526	} else {
   1527		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
   1528			     VM_FAULT_HWPOISON_LARGE))
   1529			do_sigbus(regs, error_code, address, fault);
   1530		else if (fault & VM_FAULT_SIGSEGV)
   1531			bad_area_nosemaphore(regs, error_code, address);
   1532		else
   1533			BUG();
   1534	}
   1535}
   1536NOKPROBE_SYMBOL(do_user_addr_fault);
   1537
   1538static __always_inline void
   1539trace_page_fault_entries(struct pt_regs *regs, unsigned long error_code,
   1540			 unsigned long address)
   1541{
   1542	if (!trace_pagefault_enabled())
   1543		return;
   1544
   1545	if (user_mode(regs))
   1546		trace_page_fault_user(address, regs, error_code);
   1547	else
   1548		trace_page_fault_kernel(address, regs, error_code);
   1549}
   1550
   1551static __always_inline void
   1552handle_page_fault(struct pt_regs *regs, unsigned long error_code,
   1553			      unsigned long address)
   1554{
   1555	trace_page_fault_entries(regs, error_code, address);
   1556
   1557	if (unlikely(kmmio_fault(regs, address)))
   1558		return;
   1559
   1560	/* Was the fault on kernel-controlled part of the address space? */
   1561	if (unlikely(fault_in_kernel_space(address))) {
   1562		do_kern_addr_fault(regs, error_code, address);
   1563	} else {
   1564		do_user_addr_fault(regs, error_code, address);
   1565		/*
   1566		 * User address page fault handling might have reenabled
   1567		 * interrupts. Fixing up all potential exit points of
   1568		 * do_user_addr_fault() and its leaf functions is just not
   1569		 * doable w/o creating an unholy mess or turning the code
   1570		 * upside down.
   1571		 */
   1572		local_irq_disable();
   1573	}
   1574}
   1575
   1576DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault)
   1577{
   1578	unsigned long address = read_cr2();
   1579	irqentry_state_t state;
   1580
   1581	prefetchw(&current->mm->mmap_lock);
   1582
   1583	/*
   1584	 * KVM uses #PF vector to deliver 'page not present' events to guests
   1585	 * (asynchronous page fault mechanism). The event happens when a
   1586	 * userspace task is trying to access some valid (from guest's point of
   1587	 * view) memory which is not currently mapped by the host (e.g. the
   1588	 * memory is swapped out). Note, the corresponding "page ready" event
   1589	 * which is injected when the memory becomes available, is delivered via
   1590	 * an interrupt mechanism and not a #PF exception
   1591	 * (see arch/x86/kernel/kvm.c: sysvec_kvm_asyncpf_interrupt()).
   1592	 *
   1593	 * We are relying on the interrupted context being sane (valid RSP,
   1594	 * relevant locks not held, etc.), which is fine as long as the
   1595	 * interrupted context had IF=1.  We are also relying on the KVM
   1596	 * async pf type field and CR2 being read consistently instead of
   1597	 * getting values from real and async page faults mixed up.
   1598	 *
   1599	 * Fingers crossed.
   1600	 *
   1601	 * The async #PF handling code takes care of idtentry handling
   1602	 * itself.
   1603	 */
   1604	if (kvm_handle_async_pf(regs, (u32)address))
   1605		return;
   1606
   1607	/*
   1608	 * Entry handling for valid #PF from kernel mode is slightly
   1609	 * different: RCU is already watching and rcu_irq_enter() must not
   1610	 * be invoked because a kernel fault on a user space address might
   1611	 * sleep.
   1612	 *
   1613	 * In case the fault hit a RCU idle region the conditional entry
   1614	 * code reenabled RCU to avoid subsequent wreckage which helps
   1615	 * debuggability.
   1616	 */
   1617	state = irqentry_enter(regs);
   1618
   1619	instrumentation_begin();
   1620	handle_page_fault(regs, error_code, address);
   1621	instrumentation_end();
   1622
   1623	irqentry_exit(regs, state);
   1624}