fault.c (44607B)
1// SPDX-License-Identifier: GPL-2.0 2/* 3 * Copyright (C) 1995 Linus Torvalds 4 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs. 5 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar 6 */ 7#include <linux/sched.h> /* test_thread_flag(), ... */ 8#include <linux/sched/task_stack.h> /* task_stack_*(), ... */ 9#include <linux/kdebug.h> /* oops_begin/end, ... */ 10#include <linux/extable.h> /* search_exception_tables */ 11#include <linux/memblock.h> /* max_low_pfn */ 12#include <linux/kfence.h> /* kfence_handle_page_fault */ 13#include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */ 14#include <linux/mmiotrace.h> /* kmmio_handler, ... */ 15#include <linux/perf_event.h> /* perf_sw_event */ 16#include <linux/hugetlb.h> /* hstate_index_to_shift */ 17#include <linux/prefetch.h> /* prefetchw */ 18#include <linux/context_tracking.h> /* exception_enter(), ... */ 19#include <linux/uaccess.h> /* faulthandler_disabled() */ 20#include <linux/efi.h> /* efi_crash_gracefully_on_page_fault()*/ 21#include <linux/mm_types.h> 22#include <linux/sev.h> /* snp_lookup_rmpentry() */ 23 24#include <asm/cpufeature.h> /* boot_cpu_has, ... */ 25#include <asm/traps.h> /* dotraplinkage, ... */ 26#include <asm/fixmap.h> /* VSYSCALL_ADDR */ 27#include <asm/vsyscall.h> /* emulate_vsyscall */ 28#include <asm/vm86.h> /* struct vm86 */ 29#include <asm/mmu_context.h> /* vma_pkey() */ 30#include <asm/efi.h> /* efi_crash_gracefully_on_page_fault()*/ 31#include <asm/desc.h> /* store_idt(), ... */ 32#include <asm/cpu_entry_area.h> /* exception stack */ 33#include <asm/pgtable_areas.h> /* VMALLOC_START, ... */ 34#include <asm/kvm_para.h> /* kvm_handle_async_pf */ 35#include <asm/vdso.h> /* fixup_vdso_exception() */ 36#include <asm/irq_stack.h> 37#include <asm/sev.h> /* dump_rmpentry() */ 38 39#define CREATE_TRACE_POINTS 40#include <asm/trace/exceptions.h> 41 42/* 43 * Returns 0 if mmiotrace is disabled, or if the fault is not 44 * handled by mmiotrace: 45 */ 46static nokprobe_inline int 47kmmio_fault(struct pt_regs *regs, unsigned long addr) 48{ 49 if (unlikely(is_kmmio_active())) 50 if (kmmio_handler(regs, addr) == 1) 51 return -1; 52 return 0; 53} 54 55/* 56 * Prefetch quirks: 57 * 58 * 32-bit mode: 59 * 60 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch. 61 * Check that here and ignore it. This is AMD erratum #91. 62 * 63 * 64-bit mode: 64 * 65 * Sometimes the CPU reports invalid exceptions on prefetch. 66 * Check that here and ignore it. 67 * 68 * Opcode checker based on code by Richard Brunner. 69 */ 70static inline int 71check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr, 72 unsigned char opcode, int *prefetch) 73{ 74 unsigned char instr_hi = opcode & 0xf0; 75 unsigned char instr_lo = opcode & 0x0f; 76 77 switch (instr_hi) { 78 case 0x20: 79 case 0x30: 80 /* 81 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes. 82 * In X86_64 long mode, the CPU will signal invalid 83 * opcode if some of these prefixes are present so 84 * X86_64 will never get here anyway 85 */ 86 return ((instr_lo & 7) == 0x6); 87#ifdef CONFIG_X86_64 88 case 0x40: 89 /* 90 * In 64-bit mode 0x40..0x4F are valid REX prefixes 91 */ 92 return (!user_mode(regs) || user_64bit_mode(regs)); 93#endif 94 case 0x60: 95 /* 0x64 thru 0x67 are valid prefixes in all modes. */ 96 return (instr_lo & 0xC) == 0x4; 97 case 0xF0: 98 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */ 99 return !instr_lo || (instr_lo>>1) == 1; 100 case 0x00: 101 /* Prefetch instruction is 0x0F0D or 0x0F18 */ 102 if (get_kernel_nofault(opcode, instr)) 103 return 0; 104 105 *prefetch = (instr_lo == 0xF) && 106 (opcode == 0x0D || opcode == 0x18); 107 return 0; 108 default: 109 return 0; 110 } 111} 112 113static bool is_amd_k8_pre_npt(void) 114{ 115 struct cpuinfo_x86 *c = &boot_cpu_data; 116 117 return unlikely(IS_ENABLED(CONFIG_CPU_SUP_AMD) && 118 c->x86_vendor == X86_VENDOR_AMD && 119 c->x86 == 0xf && c->x86_model < 0x40); 120} 121 122static int 123is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr) 124{ 125 unsigned char *max_instr; 126 unsigned char *instr; 127 int prefetch = 0; 128 129 /* Erratum #91 affects AMD K8, pre-NPT CPUs */ 130 if (!is_amd_k8_pre_npt()) 131 return 0; 132 133 /* 134 * If it was a exec (instruction fetch) fault on NX page, then 135 * do not ignore the fault: 136 */ 137 if (error_code & X86_PF_INSTR) 138 return 0; 139 140 instr = (void *)convert_ip_to_linear(current, regs); 141 max_instr = instr + 15; 142 143 /* 144 * This code has historically always bailed out if IP points to a 145 * not-present page (e.g. due to a race). No one has ever 146 * complained about this. 147 */ 148 pagefault_disable(); 149 150 while (instr < max_instr) { 151 unsigned char opcode; 152 153 if (user_mode(regs)) { 154 if (get_user(opcode, (unsigned char __user *) instr)) 155 break; 156 } else { 157 if (get_kernel_nofault(opcode, instr)) 158 break; 159 } 160 161 instr++; 162 163 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch)) 164 break; 165 } 166 167 pagefault_enable(); 168 return prefetch; 169} 170 171DEFINE_SPINLOCK(pgd_lock); 172LIST_HEAD(pgd_list); 173 174#ifdef CONFIG_X86_32 175static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address) 176{ 177 unsigned index = pgd_index(address); 178 pgd_t *pgd_k; 179 p4d_t *p4d, *p4d_k; 180 pud_t *pud, *pud_k; 181 pmd_t *pmd, *pmd_k; 182 183 pgd += index; 184 pgd_k = init_mm.pgd + index; 185 186 if (!pgd_present(*pgd_k)) 187 return NULL; 188 189 /* 190 * set_pgd(pgd, *pgd_k); here would be useless on PAE 191 * and redundant with the set_pmd() on non-PAE. As would 192 * set_p4d/set_pud. 193 */ 194 p4d = p4d_offset(pgd, address); 195 p4d_k = p4d_offset(pgd_k, address); 196 if (!p4d_present(*p4d_k)) 197 return NULL; 198 199 pud = pud_offset(p4d, address); 200 pud_k = pud_offset(p4d_k, address); 201 if (!pud_present(*pud_k)) 202 return NULL; 203 204 pmd = pmd_offset(pud, address); 205 pmd_k = pmd_offset(pud_k, address); 206 207 if (pmd_present(*pmd) != pmd_present(*pmd_k)) 208 set_pmd(pmd, *pmd_k); 209 210 if (!pmd_present(*pmd_k)) 211 return NULL; 212 else 213 BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k)); 214 215 return pmd_k; 216} 217 218/* 219 * Handle a fault on the vmalloc or module mapping area 220 * 221 * This is needed because there is a race condition between the time 222 * when the vmalloc mapping code updates the PMD to the point in time 223 * where it synchronizes this update with the other page-tables in the 224 * system. 225 * 226 * In this race window another thread/CPU can map an area on the same 227 * PMD, finds it already present and does not synchronize it with the 228 * rest of the system yet. As a result v[mz]alloc might return areas 229 * which are not mapped in every page-table in the system, causing an 230 * unhandled page-fault when they are accessed. 231 */ 232static noinline int vmalloc_fault(unsigned long address) 233{ 234 unsigned long pgd_paddr; 235 pmd_t *pmd_k; 236 pte_t *pte_k; 237 238 /* Make sure we are in vmalloc area: */ 239 if (!(address >= VMALLOC_START && address < VMALLOC_END)) 240 return -1; 241 242 /* 243 * Synchronize this task's top level page-table 244 * with the 'reference' page table. 245 * 246 * Do _not_ use "current" here. We might be inside 247 * an interrupt in the middle of a task switch.. 248 */ 249 pgd_paddr = read_cr3_pa(); 250 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address); 251 if (!pmd_k) 252 return -1; 253 254 if (pmd_large(*pmd_k)) 255 return 0; 256 257 pte_k = pte_offset_kernel(pmd_k, address); 258 if (!pte_present(*pte_k)) 259 return -1; 260 261 return 0; 262} 263NOKPROBE_SYMBOL(vmalloc_fault); 264 265void arch_sync_kernel_mappings(unsigned long start, unsigned long end) 266{ 267 unsigned long addr; 268 269 for (addr = start & PMD_MASK; 270 addr >= TASK_SIZE_MAX && addr < VMALLOC_END; 271 addr += PMD_SIZE) { 272 struct page *page; 273 274 spin_lock(&pgd_lock); 275 list_for_each_entry(page, &pgd_list, lru) { 276 spinlock_t *pgt_lock; 277 278 /* the pgt_lock only for Xen */ 279 pgt_lock = &pgd_page_get_mm(page)->page_table_lock; 280 281 spin_lock(pgt_lock); 282 vmalloc_sync_one(page_address(page), addr); 283 spin_unlock(pgt_lock); 284 } 285 spin_unlock(&pgd_lock); 286 } 287} 288 289static bool low_pfn(unsigned long pfn) 290{ 291 return pfn < max_low_pfn; 292} 293 294static void dump_pagetable(unsigned long address, bool show_rmpentry) 295{ 296 pgd_t *base = __va(read_cr3_pa()); 297 pgd_t *pgd = &base[pgd_index(address)]; 298 p4d_t *p4d; 299 pud_t *pud; 300 pmd_t *pmd; 301 pte_t *pte; 302 303#ifdef CONFIG_X86_PAE 304 pr_info("*pdpt = %016Lx ", pgd_val(*pgd)); 305 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd)) 306 goto out; 307#define pr_pde pr_cont 308#else 309#define pr_pde pr_info 310#endif 311 p4d = p4d_offset(pgd, address); 312 pud = pud_offset(p4d, address); 313 pmd = pmd_offset(pud, address); 314 pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd)); 315#undef pr_pde 316 317 /* 318 * We must not directly access the pte in the highpte 319 * case if the page table is located in highmem. 320 * And let's rather not kmap-atomic the pte, just in case 321 * it's allocated already: 322 */ 323 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd)) 324 goto out; 325 326 pte = pte_offset_kernel(pmd, address); 327 pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte)); 328out: 329 pr_cont("\n"); 330} 331 332#else /* CONFIG_X86_64: */ 333 334#ifdef CONFIG_CPU_SUP_AMD 335static const char errata93_warning[] = 336KERN_ERR 337"******* Your BIOS seems to not contain a fix for K8 errata #93\n" 338"******* Working around it, but it may cause SEGVs or burn power.\n" 339"******* Please consider a BIOS update.\n" 340"******* Disabling USB legacy in the BIOS may also help.\n"; 341#endif 342 343static int bad_address(void *p) 344{ 345 unsigned long dummy; 346 347 return get_kernel_nofault(dummy, (unsigned long *)p); 348} 349 350static void dump_pagetable(unsigned long address, bool show_rmpentry) 351{ 352 pgd_t *base = __va(read_cr3_pa()); 353 pgd_t *pgd = base + pgd_index(address); 354 unsigned long pfn; 355 p4d_t *p4d; 356 pud_t *pud; 357 pmd_t *pmd; 358 pte_t *pte; 359 360 if (bad_address(pgd)) 361 goto bad; 362 363 pr_info("PGD %lx ", pgd_val(*pgd)); 364 365 if (!pgd_present(*pgd)) 366 goto out; 367 368 p4d = p4d_offset(pgd, address); 369 if (bad_address(p4d)) 370 goto bad; 371 372 pfn = p4d_pfn(*p4d); 373 pr_cont("P4D %lx ", p4d_val(*p4d)); 374 if (!p4d_present(*p4d) || p4d_large(*p4d)) 375 goto out; 376 377 pud = pud_offset(p4d, address); 378 if (bad_address(pud)) 379 goto bad; 380 381 pfn = pud_pfn(*pud); 382 pr_cont("PUD %lx ", pud_val(*pud)); 383 if (!pud_present(*pud) || pud_large(*pud)) 384 goto out; 385 386 pmd = pmd_offset(pud, address); 387 if (bad_address(pmd)) 388 goto bad; 389 390 pfn = pmd_pfn(*pmd); 391 pr_cont("PMD %lx ", pmd_val(*pmd)); 392 if (!pmd_present(*pmd) || pmd_large(*pmd)) 393 goto out; 394 395 pte = pte_offset_kernel(pmd, address); 396 if (bad_address(pte)) 397 goto bad; 398 399 pfn = pte_pfn(*pte); 400 pr_cont("PTE %lx", pte_val(*pte)); 401out: 402 pr_cont("\n"); 403 404 if (show_rmpentry) 405 dump_rmpentry(pfn); 406 return; 407bad: 408 pr_info("BAD\n"); 409} 410 411#endif /* CONFIG_X86_64 */ 412 413/* 414 * Workaround for K8 erratum #93 & buggy BIOS. 415 * 416 * BIOS SMM functions are required to use a specific workaround 417 * to avoid corruption of the 64bit RIP register on C stepping K8. 418 * 419 * A lot of BIOS that didn't get tested properly miss this. 420 * 421 * The OS sees this as a page fault with the upper 32bits of RIP cleared. 422 * Try to work around it here. 423 * 424 * Note we only handle faults in kernel here. 425 * Does nothing on 32-bit. 426 */ 427static int is_errata93(struct pt_regs *regs, unsigned long address) 428{ 429#if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD) 430 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD 431 || boot_cpu_data.x86 != 0xf) 432 return 0; 433 434 if (user_mode(regs)) 435 return 0; 436 437 if (address != regs->ip) 438 return 0; 439 440 if ((address >> 32) != 0) 441 return 0; 442 443 address |= 0xffffffffUL << 32; 444 if ((address >= (u64)_stext && address <= (u64)_etext) || 445 (address >= MODULES_VADDR && address <= MODULES_END)) { 446 printk_once(errata93_warning); 447 regs->ip = address; 448 return 1; 449 } 450#endif 451 return 0; 452} 453 454/* 455 * Work around K8 erratum #100 K8 in compat mode occasionally jumps 456 * to illegal addresses >4GB. 457 * 458 * We catch this in the page fault handler because these addresses 459 * are not reachable. Just detect this case and return. Any code 460 * segment in LDT is compatibility mode. 461 */ 462static int is_errata100(struct pt_regs *regs, unsigned long address) 463{ 464#ifdef CONFIG_X86_64 465 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32)) 466 return 1; 467#endif 468 return 0; 469} 470 471/* Pentium F0 0F C7 C8 bug workaround: */ 472static int is_f00f_bug(struct pt_regs *regs, unsigned long error_code, 473 unsigned long address) 474{ 475#ifdef CONFIG_X86_F00F_BUG 476 if (boot_cpu_has_bug(X86_BUG_F00F) && !(error_code & X86_PF_USER) && 477 idt_is_f00f_address(address)) { 478 handle_invalid_op(regs); 479 return 1; 480 } 481#endif 482 return 0; 483} 484 485static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index) 486{ 487 u32 offset = (index >> 3) * sizeof(struct desc_struct); 488 unsigned long addr; 489 struct ldttss_desc desc; 490 491 if (index == 0) { 492 pr_alert("%s: NULL\n", name); 493 return; 494 } 495 496 if (offset + sizeof(struct ldttss_desc) >= gdt->size) { 497 pr_alert("%s: 0x%hx -- out of bounds\n", name, index); 498 return; 499 } 500 501 if (copy_from_kernel_nofault(&desc, (void *)(gdt->address + offset), 502 sizeof(struct ldttss_desc))) { 503 pr_alert("%s: 0x%hx -- GDT entry is not readable\n", 504 name, index); 505 return; 506 } 507 508 addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24); 509#ifdef CONFIG_X86_64 510 addr |= ((u64)desc.base3 << 32); 511#endif 512 pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n", 513 name, index, addr, (desc.limit0 | (desc.limit1 << 16))); 514} 515 516static void 517show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address) 518{ 519 if (!oops_may_print()) 520 return; 521 522 if (error_code & X86_PF_INSTR) { 523 unsigned int level; 524 pgd_t *pgd; 525 pte_t *pte; 526 527 pgd = __va(read_cr3_pa()); 528 pgd += pgd_index(address); 529 530 pte = lookup_address_in_pgd(pgd, address, &level); 531 532 if (pte && pte_present(*pte) && !pte_exec(*pte)) 533 pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n", 534 from_kuid(&init_user_ns, current_uid())); 535 if (pte && pte_present(*pte) && pte_exec(*pte) && 536 (pgd_flags(*pgd) & _PAGE_USER) && 537 (__read_cr4() & X86_CR4_SMEP)) 538 pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n", 539 from_kuid(&init_user_ns, current_uid())); 540 } 541 542 if (address < PAGE_SIZE && !user_mode(regs)) 543 pr_alert("BUG: kernel NULL pointer dereference, address: %px\n", 544 (void *)address); 545 else 546 pr_alert("BUG: unable to handle page fault for address: %px\n", 547 (void *)address); 548 549 pr_alert("#PF: %s %s in %s mode\n", 550 (error_code & X86_PF_USER) ? "user" : "supervisor", 551 (error_code & X86_PF_INSTR) ? "instruction fetch" : 552 (error_code & X86_PF_WRITE) ? "write access" : 553 "read access", 554 user_mode(regs) ? "user" : "kernel"); 555 pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code, 556 !(error_code & X86_PF_PROT) ? "not-present page" : 557 (error_code & X86_PF_RSVD) ? "reserved bit violation" : 558 (error_code & X86_PF_PK) ? "protection keys violation" : 559 (error_code & X86_PF_RMP) ? "RMP violation" : 560 "permissions violation"); 561 562 if (!(error_code & X86_PF_USER) && user_mode(regs)) { 563 struct desc_ptr idt, gdt; 564 u16 ldtr, tr; 565 566 /* 567 * This can happen for quite a few reasons. The more obvious 568 * ones are faults accessing the GDT, or LDT. Perhaps 569 * surprisingly, if the CPU tries to deliver a benign or 570 * contributory exception from user code and gets a page fault 571 * during delivery, the page fault can be delivered as though 572 * it originated directly from user code. This could happen 573 * due to wrong permissions on the IDT, GDT, LDT, TSS, or 574 * kernel or IST stack. 575 */ 576 store_idt(&idt); 577 578 /* Usable even on Xen PV -- it's just slow. */ 579 native_store_gdt(&gdt); 580 581 pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n", 582 idt.address, idt.size, gdt.address, gdt.size); 583 584 store_ldt(ldtr); 585 show_ldttss(&gdt, "LDTR", ldtr); 586 587 store_tr(tr); 588 show_ldttss(&gdt, "TR", tr); 589 } 590 591 dump_pagetable(address, error_code & X86_PF_RMP); 592} 593 594static noinline void 595pgtable_bad(struct pt_regs *regs, unsigned long error_code, 596 unsigned long address) 597{ 598 struct task_struct *tsk; 599 unsigned long flags; 600 int sig; 601 602 flags = oops_begin(); 603 tsk = current; 604 sig = SIGKILL; 605 606 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n", 607 tsk->comm, address); 608 dump_pagetable(address, false); 609 610 if (__die("Bad pagetable", regs, error_code)) 611 sig = 0; 612 613 oops_end(flags, regs, sig); 614} 615 616static void sanitize_error_code(unsigned long address, 617 unsigned long *error_code) 618{ 619 /* 620 * To avoid leaking information about the kernel page 621 * table layout, pretend that user-mode accesses to 622 * kernel addresses are always protection faults. 623 * 624 * NB: This means that failed vsyscalls with vsyscall=none 625 * will have the PROT bit. This doesn't leak any 626 * information and does not appear to cause any problems. 627 */ 628 if (address >= TASK_SIZE_MAX) 629 *error_code |= X86_PF_PROT; 630} 631 632static void set_signal_archinfo(unsigned long address, 633 unsigned long error_code) 634{ 635 struct task_struct *tsk = current; 636 637 tsk->thread.trap_nr = X86_TRAP_PF; 638 tsk->thread.error_code = error_code | X86_PF_USER; 639 tsk->thread.cr2 = address; 640} 641 642static noinline void 643page_fault_oops(struct pt_regs *regs, unsigned long error_code, 644 unsigned long address) 645{ 646#ifdef CONFIG_VMAP_STACK 647 struct stack_info info; 648#endif 649 unsigned long flags; 650 int sig; 651 652 if (user_mode(regs)) { 653 /* 654 * Implicit kernel access from user mode? Skip the stack 655 * overflow and EFI special cases. 656 */ 657 goto oops; 658 } 659 660#ifdef CONFIG_VMAP_STACK 661 /* 662 * Stack overflow? During boot, we can fault near the initial 663 * stack in the direct map, but that's not an overflow -- check 664 * that we're in vmalloc space to avoid this. 665 */ 666 if (is_vmalloc_addr((void *)address) && 667 get_stack_guard_info((void *)address, &info)) { 668 /* 669 * We're likely to be running with very little stack space 670 * left. It's plausible that we'd hit this condition but 671 * double-fault even before we get this far, in which case 672 * we're fine: the double-fault handler will deal with it. 673 * 674 * We don't want to make it all the way into the oops code 675 * and then double-fault, though, because we're likely to 676 * break the console driver and lose most of the stack dump. 677 */ 678 call_on_stack(__this_cpu_ist_top_va(DF) - sizeof(void*), 679 handle_stack_overflow, 680 ASM_CALL_ARG3, 681 , [arg1] "r" (regs), [arg2] "r" (address), [arg3] "r" (&info)); 682 683 unreachable(); 684 } 685#endif 686 687 /* 688 * Buggy firmware could access regions which might page fault. If 689 * this happens, EFI has a special OOPS path that will try to 690 * avoid hanging the system. 691 */ 692 if (IS_ENABLED(CONFIG_EFI)) 693 efi_crash_gracefully_on_page_fault(address); 694 695 /* Only not-present faults should be handled by KFENCE. */ 696 if (!(error_code & X86_PF_PROT) && 697 kfence_handle_page_fault(address, error_code & X86_PF_WRITE, regs)) 698 return; 699 700oops: 701 /* 702 * Oops. The kernel tried to access some bad page. We'll have to 703 * terminate things with extreme prejudice: 704 */ 705 flags = oops_begin(); 706 707 show_fault_oops(regs, error_code, address); 708 709 if (task_stack_end_corrupted(current)) 710 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n"); 711 712 sig = SIGKILL; 713 if (__die("Oops", regs, error_code)) 714 sig = 0; 715 716 /* Executive summary in case the body of the oops scrolled away */ 717 printk(KERN_DEFAULT "CR2: %016lx\n", address); 718 719 oops_end(flags, regs, sig); 720} 721 722static noinline void 723kernelmode_fixup_or_oops(struct pt_regs *regs, unsigned long error_code, 724 unsigned long address, int signal, int si_code, 725 u32 pkey) 726{ 727 WARN_ON_ONCE(user_mode(regs)); 728 729 /* Are we prepared to handle this kernel fault? */ 730 if (fixup_exception(regs, X86_TRAP_PF, error_code, address)) { 731 /* 732 * Any interrupt that takes a fault gets the fixup. This makes 733 * the below recursive fault logic only apply to a faults from 734 * task context. 735 */ 736 if (in_interrupt()) 737 return; 738 739 /* 740 * Per the above we're !in_interrupt(), aka. task context. 741 * 742 * In this case we need to make sure we're not recursively 743 * faulting through the emulate_vsyscall() logic. 744 */ 745 if (current->thread.sig_on_uaccess_err && signal) { 746 sanitize_error_code(address, &error_code); 747 748 set_signal_archinfo(address, error_code); 749 750 if (si_code == SEGV_PKUERR) { 751 force_sig_pkuerr((void __user *)address, pkey); 752 } else { 753 /* XXX: hwpoison faults will set the wrong code. */ 754 force_sig_fault(signal, si_code, (void __user *)address); 755 } 756 } 757 758 /* 759 * Barring that, we can do the fixup and be happy. 760 */ 761 return; 762 } 763 764 /* 765 * AMD erratum #91 manifests as a spurious page fault on a PREFETCH 766 * instruction. 767 */ 768 if (is_prefetch(regs, error_code, address)) 769 return; 770 771 page_fault_oops(regs, error_code, address); 772} 773 774/* 775 * Print out info about fatal segfaults, if the show_unhandled_signals 776 * sysctl is set: 777 */ 778static inline void 779show_signal_msg(struct pt_regs *regs, unsigned long error_code, 780 unsigned long address, struct task_struct *tsk) 781{ 782 const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG; 783 784 if (!unhandled_signal(tsk, SIGSEGV)) 785 return; 786 787 if (!printk_ratelimit()) 788 return; 789 790 printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx", 791 loglvl, tsk->comm, task_pid_nr(tsk), address, 792 (void *)regs->ip, (void *)regs->sp, error_code); 793 794 print_vma_addr(KERN_CONT " in ", regs->ip); 795 796 printk(KERN_CONT "\n"); 797 798 show_opcodes(regs, loglvl); 799} 800 801/* 802 * The (legacy) vsyscall page is the long page in the kernel portion 803 * of the address space that has user-accessible permissions. 804 */ 805static bool is_vsyscall_vaddr(unsigned long vaddr) 806{ 807 return unlikely((vaddr & PAGE_MASK) == VSYSCALL_ADDR); 808} 809 810static void 811__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code, 812 unsigned long address, u32 pkey, int si_code) 813{ 814 struct task_struct *tsk = current; 815 816 if (!user_mode(regs)) { 817 kernelmode_fixup_or_oops(regs, error_code, address, 818 SIGSEGV, si_code, pkey); 819 return; 820 } 821 822 if (!(error_code & X86_PF_USER)) { 823 /* Implicit user access to kernel memory -- just oops */ 824 page_fault_oops(regs, error_code, address); 825 return; 826 } 827 828 /* 829 * User mode accesses just cause a SIGSEGV. 830 * It's possible to have interrupts off here: 831 */ 832 local_irq_enable(); 833 834 /* 835 * Valid to do another page fault here because this one came 836 * from user space: 837 */ 838 if (is_prefetch(regs, error_code, address)) 839 return; 840 841 if (is_errata100(regs, address)) 842 return; 843 844 sanitize_error_code(address, &error_code); 845 846 if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address)) 847 return; 848 849 if (likely(show_unhandled_signals)) 850 show_signal_msg(regs, error_code, address, tsk); 851 852 set_signal_archinfo(address, error_code); 853 854 if (si_code == SEGV_PKUERR) 855 force_sig_pkuerr((void __user *)address, pkey); 856 else 857 force_sig_fault(SIGSEGV, si_code, (void __user *)address); 858 859 local_irq_disable(); 860} 861 862static noinline void 863bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code, 864 unsigned long address) 865{ 866 __bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR); 867} 868 869static void 870__bad_area(struct pt_regs *regs, unsigned long error_code, 871 unsigned long address, u32 pkey, int si_code) 872{ 873 struct mm_struct *mm = current->mm; 874 /* 875 * Something tried to access memory that isn't in our memory map.. 876 * Fix it, but check if it's kernel or user first.. 877 */ 878 mmap_read_unlock(mm); 879 880 __bad_area_nosemaphore(regs, error_code, address, pkey, si_code); 881} 882 883static noinline void 884bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address) 885{ 886 __bad_area(regs, error_code, address, 0, SEGV_MAPERR); 887} 888 889static inline bool bad_area_access_from_pkeys(unsigned long error_code, 890 struct vm_area_struct *vma) 891{ 892 /* This code is always called on the current mm */ 893 bool foreign = false; 894 895 if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) 896 return false; 897 if (error_code & X86_PF_PK) 898 return true; 899 /* this checks permission keys on the VMA: */ 900 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE), 901 (error_code & X86_PF_INSTR), foreign)) 902 return true; 903 return false; 904} 905 906static noinline void 907bad_area_access_error(struct pt_regs *regs, unsigned long error_code, 908 unsigned long address, struct vm_area_struct *vma) 909{ 910 /* 911 * This OSPKE check is not strictly necessary at runtime. 912 * But, doing it this way allows compiler optimizations 913 * if pkeys are compiled out. 914 */ 915 if (bad_area_access_from_pkeys(error_code, vma)) { 916 /* 917 * A protection key fault means that the PKRU value did not allow 918 * access to some PTE. Userspace can figure out what PKRU was 919 * from the XSAVE state. This function captures the pkey from 920 * the vma and passes it to userspace so userspace can discover 921 * which protection key was set on the PTE. 922 * 923 * If we get here, we know that the hardware signaled a X86_PF_PK 924 * fault and that there was a VMA once we got in the fault 925 * handler. It does *not* guarantee that the VMA we find here 926 * was the one that we faulted on. 927 * 928 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4); 929 * 2. T1 : set PKRU to deny access to pkey=4, touches page 930 * 3. T1 : faults... 931 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5); 932 * 5. T1 : enters fault handler, takes mmap_lock, etc... 933 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really 934 * faulted on a pte with its pkey=4. 935 */ 936 u32 pkey = vma_pkey(vma); 937 938 __bad_area(regs, error_code, address, pkey, SEGV_PKUERR); 939 } else { 940 __bad_area(regs, error_code, address, 0, SEGV_ACCERR); 941 } 942} 943 944static void 945do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address, 946 vm_fault_t fault) 947{ 948 /* Kernel mode? Handle exceptions or die: */ 949 if (!user_mode(regs)) { 950 kernelmode_fixup_or_oops(regs, error_code, address, 951 SIGBUS, BUS_ADRERR, ARCH_DEFAULT_PKEY); 952 return; 953 } 954 955 /* User-space => ok to do another page fault: */ 956 if (is_prefetch(regs, error_code, address)) 957 return; 958 959 sanitize_error_code(address, &error_code); 960 961 if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address)) 962 return; 963 964 set_signal_archinfo(address, error_code); 965 966#ifdef CONFIG_MEMORY_FAILURE 967 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) { 968 struct task_struct *tsk = current; 969 unsigned lsb = 0; 970 971 pr_err( 972 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n", 973 tsk->comm, tsk->pid, address); 974 if (fault & VM_FAULT_HWPOISON_LARGE) 975 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); 976 if (fault & VM_FAULT_HWPOISON) 977 lsb = PAGE_SHIFT; 978 force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb); 979 return; 980 } 981#endif 982 force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address); 983} 984 985static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte) 986{ 987 if ((error_code & X86_PF_WRITE) && !pte_write(*pte)) 988 return 0; 989 990 if ((error_code & X86_PF_INSTR) && !pte_exec(*pte)) 991 return 0; 992 993 return 1; 994} 995 996/* 997 * Handle a spurious fault caused by a stale TLB entry. 998 * 999 * This allows us to lazily refresh the TLB when increasing the 1000 * permissions of a kernel page (RO -> RW or NX -> X). Doing it 1001 * eagerly is very expensive since that implies doing a full 1002 * cross-processor TLB flush, even if no stale TLB entries exist 1003 * on other processors. 1004 * 1005 * Spurious faults may only occur if the TLB contains an entry with 1006 * fewer permission than the page table entry. Non-present (P = 0) 1007 * and reserved bit (R = 1) faults are never spurious. 1008 * 1009 * There are no security implications to leaving a stale TLB when 1010 * increasing the permissions on a page. 1011 * 1012 * Returns non-zero if a spurious fault was handled, zero otherwise. 1013 * 1014 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3 1015 * (Optional Invalidation). 1016 */ 1017static noinline int 1018spurious_kernel_fault(unsigned long error_code, unsigned long address) 1019{ 1020 pgd_t *pgd; 1021 p4d_t *p4d; 1022 pud_t *pud; 1023 pmd_t *pmd; 1024 pte_t *pte; 1025 int ret; 1026 1027 /* 1028 * Only writes to RO or instruction fetches from NX may cause 1029 * spurious faults. 1030 * 1031 * These could be from user or supervisor accesses but the TLB 1032 * is only lazily flushed after a kernel mapping protection 1033 * change, so user accesses are not expected to cause spurious 1034 * faults. 1035 */ 1036 if (error_code != (X86_PF_WRITE | X86_PF_PROT) && 1037 error_code != (X86_PF_INSTR | X86_PF_PROT)) 1038 return 0; 1039 1040 pgd = init_mm.pgd + pgd_index(address); 1041 if (!pgd_present(*pgd)) 1042 return 0; 1043 1044 p4d = p4d_offset(pgd, address); 1045 if (!p4d_present(*p4d)) 1046 return 0; 1047 1048 if (p4d_large(*p4d)) 1049 return spurious_kernel_fault_check(error_code, (pte_t *) p4d); 1050 1051 pud = pud_offset(p4d, address); 1052 if (!pud_present(*pud)) 1053 return 0; 1054 1055 if (pud_large(*pud)) 1056 return spurious_kernel_fault_check(error_code, (pte_t *) pud); 1057 1058 pmd = pmd_offset(pud, address); 1059 if (!pmd_present(*pmd)) 1060 return 0; 1061 1062 if (pmd_large(*pmd)) 1063 return spurious_kernel_fault_check(error_code, (pte_t *) pmd); 1064 1065 pte = pte_offset_kernel(pmd, address); 1066 if (!pte_present(*pte)) 1067 return 0; 1068 1069 ret = spurious_kernel_fault_check(error_code, pte); 1070 if (!ret) 1071 return 0; 1072 1073 /* 1074 * Make sure we have permissions in PMD. 1075 * If not, then there's a bug in the page tables: 1076 */ 1077 ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd); 1078 WARN_ONCE(!ret, "PMD has incorrect permission bits\n"); 1079 1080 return ret; 1081} 1082NOKPROBE_SYMBOL(spurious_kernel_fault); 1083 1084int show_unhandled_signals = 1; 1085 1086static inline int 1087access_error(unsigned long error_code, struct vm_area_struct *vma) 1088{ 1089 /* This is only called for the current mm, so: */ 1090 bool foreign = false; 1091 1092 /* 1093 * Read or write was blocked by protection keys. This is 1094 * always an unconditional error and can never result in 1095 * a follow-up action to resolve the fault, like a COW. 1096 */ 1097 if (error_code & X86_PF_PK) 1098 return 1; 1099 1100 /* 1101 * SGX hardware blocked the access. This usually happens 1102 * when the enclave memory contents have been destroyed, like 1103 * after a suspend/resume cycle. In any case, the kernel can't 1104 * fix the cause of the fault. Handle the fault as an access 1105 * error even in cases where no actual access violation 1106 * occurred. This allows userspace to rebuild the enclave in 1107 * response to the signal. 1108 */ 1109 if (unlikely(error_code & X86_PF_SGX)) 1110 return 1; 1111 1112 /* 1113 * Make sure to check the VMA so that we do not perform 1114 * faults just to hit a X86_PF_PK as soon as we fill in a 1115 * page. 1116 */ 1117 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE), 1118 (error_code & X86_PF_INSTR), foreign)) 1119 return 1; 1120 1121 if (error_code & X86_PF_WRITE) { 1122 /* write, present and write, not present: */ 1123 if (unlikely(!(vma->vm_flags & VM_WRITE))) 1124 return 1; 1125 return 0; 1126 } 1127 1128 /* read, present: */ 1129 if (unlikely(error_code & X86_PF_PROT)) 1130 return 1; 1131 1132 /* read, not present: */ 1133 if (unlikely(!vma_is_accessible(vma))) 1134 return 1; 1135 1136 return 0; 1137} 1138 1139bool fault_in_kernel_space(unsigned long address) 1140{ 1141 /* 1142 * On 64-bit systems, the vsyscall page is at an address above 1143 * TASK_SIZE_MAX, but is not considered part of the kernel 1144 * address space. 1145 */ 1146 if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address)) 1147 return false; 1148 1149 return address >= TASK_SIZE_MAX; 1150} 1151 1152/* 1153 * Called for all faults where 'address' is part of the kernel address 1154 * space. Might get called for faults that originate from *code* that 1155 * ran in userspace or the kernel. 1156 */ 1157static void 1158do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code, 1159 unsigned long address) 1160{ 1161 /* 1162 * Protection keys exceptions only happen on user pages. We 1163 * have no user pages in the kernel portion of the address 1164 * space, so do not expect them here. 1165 */ 1166 WARN_ON_ONCE(hw_error_code & X86_PF_PK); 1167 1168#ifdef CONFIG_X86_32 1169 /* 1170 * We can fault-in kernel-space virtual memory on-demand. The 1171 * 'reference' page table is init_mm.pgd. 1172 * 1173 * NOTE! We MUST NOT take any locks for this case. We may 1174 * be in an interrupt or a critical region, and should 1175 * only copy the information from the master page table, 1176 * nothing more. 1177 * 1178 * Before doing this on-demand faulting, ensure that the 1179 * fault is not any of the following: 1180 * 1. A fault on a PTE with a reserved bit set. 1181 * 2. A fault caused by a user-mode access. (Do not demand- 1182 * fault kernel memory due to user-mode accesses). 1183 * 3. A fault caused by a page-level protection violation. 1184 * (A demand fault would be on a non-present page which 1185 * would have X86_PF_PROT==0). 1186 * 1187 * This is only needed to close a race condition on x86-32 in 1188 * the vmalloc mapping/unmapping code. See the comment above 1189 * vmalloc_fault() for details. On x86-64 the race does not 1190 * exist as the vmalloc mappings don't need to be synchronized 1191 * there. 1192 */ 1193 if (!(hw_error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) { 1194 if (vmalloc_fault(address) >= 0) 1195 return; 1196 } 1197#endif 1198 1199 if (is_f00f_bug(regs, hw_error_code, address)) 1200 return; 1201 1202 /* Was the fault spurious, caused by lazy TLB invalidation? */ 1203 if (spurious_kernel_fault(hw_error_code, address)) 1204 return; 1205 1206 /* kprobes don't want to hook the spurious faults: */ 1207 if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF))) 1208 return; 1209 1210 /* 1211 * Note, despite being a "bad area", there are quite a few 1212 * acceptable reasons to get here, such as erratum fixups 1213 * and handling kernel code that can fault, like get_user(). 1214 * 1215 * Don't take the mm semaphore here. If we fixup a prefetch 1216 * fault we could otherwise deadlock: 1217 */ 1218 bad_area_nosemaphore(regs, hw_error_code, address); 1219} 1220NOKPROBE_SYMBOL(do_kern_addr_fault); 1221 1222static inline size_t pages_per_hpage(int level) 1223{ 1224 return page_level_size(level) / PAGE_SIZE; 1225} 1226 1227/* 1228 * Return 1 if the caller need to retry, 0 if it the address need to be split 1229 * in order to resolve the fault. 1230 */ 1231static int handle_user_rmp_page_fault(struct pt_regs *regs, unsigned long error_code, 1232 unsigned long address) 1233{ 1234 int rmp_level, level; 1235 pgd_t *pgd; 1236 pte_t *pte; 1237 u64 pfn; 1238 1239 pgd = __va(read_cr3_pa()); 1240 pgd += pgd_index(address); 1241 1242 pte = lookup_address_in_pgd(pgd, address, &level); 1243 1244 /* 1245 * It can happen if there was a race between an unmap event and 1246 * the RMP fault delivery. 1247 */ 1248 if (!pte || !pte_present(*pte)) 1249 return 1; 1250 1251 pfn = pte_pfn(*pte); 1252 1253 /* If its large page then calculte the fault pfn */ 1254 if (level > PG_LEVEL_4K) { 1255 unsigned long mask; 1256 1257 mask = pages_per_hpage(level) - pages_per_hpage(level - 1); 1258 pfn |= (address >> PAGE_SHIFT) & mask; 1259 } 1260 1261 /* 1262 * If its a guest private page, then the fault cannot be resolved. 1263 * Send a SIGBUS to terminate the process. 1264 */ 1265 if (snp_lookup_rmpentry(pfn, &rmp_level)) { 1266 do_sigbus(regs, error_code, address, VM_FAULT_SIGBUS); 1267 return 1; 1268 } 1269 1270 /* 1271 * The backing page level is higher than the RMP page level, request 1272 * to split the page. 1273 */ 1274 if (level > rmp_level) 1275 return 0; 1276 1277 return 1; 1278} 1279 1280/* 1281 * Handle faults in the user portion of the address space. Nothing in here 1282 * should check X86_PF_USER without a specific justification: for almost 1283 * all purposes, we should treat a normal kernel access to user memory 1284 * (e.g. get_user(), put_user(), etc.) the same as the WRUSS instruction. 1285 * The one exception is AC flag handling, which is, per the x86 1286 * architecture, special for WRUSS. 1287 */ 1288static inline 1289void do_user_addr_fault(struct pt_regs *regs, 1290 unsigned long error_code, 1291 unsigned long address) 1292{ 1293 struct vm_area_struct *vma; 1294 struct task_struct *tsk; 1295 struct mm_struct *mm; 1296 vm_fault_t fault; 1297 unsigned int flags = FAULT_FLAG_DEFAULT; 1298 1299 tsk = current; 1300 mm = tsk->mm; 1301 1302 if (unlikely((error_code & (X86_PF_USER | X86_PF_INSTR)) == X86_PF_INSTR)) { 1303 /* 1304 * Whoops, this is kernel mode code trying to execute from 1305 * user memory. Unless this is AMD erratum #93, which 1306 * corrupts RIP such that it looks like a user address, 1307 * this is unrecoverable. Don't even try to look up the 1308 * VMA or look for extable entries. 1309 */ 1310 if (is_errata93(regs, address)) 1311 return; 1312 1313 page_fault_oops(regs, error_code, address); 1314 return; 1315 } 1316 1317 /* kprobes don't want to hook the spurious faults: */ 1318 if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF))) 1319 return; 1320 1321 /* 1322 * Reserved bits are never expected to be set on 1323 * entries in the user portion of the page tables. 1324 */ 1325 if (unlikely(error_code & X86_PF_RSVD)) 1326 pgtable_bad(regs, error_code, address); 1327 1328 /* 1329 * If SMAP is on, check for invalid kernel (supervisor) access to user 1330 * pages in the user address space. The odd case here is WRUSS, 1331 * which, according to the preliminary documentation, does not respect 1332 * SMAP and will have the USER bit set so, in all cases, SMAP 1333 * enforcement appears to be consistent with the USER bit. 1334 */ 1335 if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) && 1336 !(error_code & X86_PF_USER) && 1337 !(regs->flags & X86_EFLAGS_AC))) { 1338 /* 1339 * No extable entry here. This was a kernel access to an 1340 * invalid pointer. get_kernel_nofault() will not get here. 1341 */ 1342 page_fault_oops(regs, error_code, address); 1343 return; 1344 } 1345 1346 /* 1347 * If we're in an interrupt, have no user context or are running 1348 * in a region with pagefaults disabled then we must not take the fault 1349 */ 1350 if (unlikely(faulthandler_disabled() || !mm)) { 1351 bad_area_nosemaphore(regs, error_code, address); 1352 return; 1353 } 1354 1355 /* 1356 * It's safe to allow irq's after cr2 has been saved and the 1357 * vmalloc fault has been handled. 1358 * 1359 * User-mode registers count as a user access even for any 1360 * potential system fault or CPU buglet: 1361 */ 1362 if (user_mode(regs)) { 1363 local_irq_enable(); 1364 flags |= FAULT_FLAG_USER; 1365 } else { 1366 if (regs->flags & X86_EFLAGS_IF) 1367 local_irq_enable(); 1368 } 1369 1370 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address); 1371 1372 if (error_code & X86_PF_WRITE) 1373 flags |= FAULT_FLAG_WRITE; 1374 if (error_code & X86_PF_INSTR) 1375 flags |= FAULT_FLAG_INSTRUCTION; 1376 1377 /* 1378 * If its an RMP violation, try resolving it. 1379 */ 1380 if (error_code & X86_PF_RMP) { 1381 if (handle_user_rmp_page_fault(regs, error_code, address)) 1382 return; 1383 1384 /* Ask to split the page */ 1385 flags |= FAULT_FLAG_PAGE_SPLIT; 1386 } 1387 1388#ifdef CONFIG_X86_64 1389 /* 1390 * Faults in the vsyscall page might need emulation. The 1391 * vsyscall page is at a high address (>PAGE_OFFSET), but is 1392 * considered to be part of the user address space. 1393 * 1394 * The vsyscall page does not have a "real" VMA, so do this 1395 * emulation before we go searching for VMAs. 1396 * 1397 * PKRU never rejects instruction fetches, so we don't need 1398 * to consider the PF_PK bit. 1399 */ 1400 if (is_vsyscall_vaddr(address)) { 1401 if (emulate_vsyscall(error_code, regs, address)) 1402 return; 1403 } 1404#endif 1405 1406 /* 1407 * Kernel-mode access to the user address space should only occur 1408 * on well-defined single instructions listed in the exception 1409 * tables. But, an erroneous kernel fault occurring outside one of 1410 * those areas which also holds mmap_lock might deadlock attempting 1411 * to validate the fault against the address space. 1412 * 1413 * Only do the expensive exception table search when we might be at 1414 * risk of a deadlock. This happens if we 1415 * 1. Failed to acquire mmap_lock, and 1416 * 2. The access did not originate in userspace. 1417 */ 1418 if (unlikely(!mmap_read_trylock(mm))) { 1419 if (!user_mode(regs) && !search_exception_tables(regs->ip)) { 1420 /* 1421 * Fault from code in kernel from 1422 * which we do not expect faults. 1423 */ 1424 bad_area_nosemaphore(regs, error_code, address); 1425 return; 1426 } 1427retry: 1428 mmap_read_lock(mm); 1429 } else { 1430 /* 1431 * The above down_read_trylock() might have succeeded in 1432 * which case we'll have missed the might_sleep() from 1433 * down_read(): 1434 */ 1435 might_sleep(); 1436 } 1437 1438 vma = find_vma(mm, address); 1439 if (unlikely(!vma)) { 1440 bad_area(regs, error_code, address); 1441 return; 1442 } 1443 if (likely(vma->vm_start <= address)) 1444 goto good_area; 1445 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) { 1446 bad_area(regs, error_code, address); 1447 return; 1448 } 1449 if (unlikely(expand_stack(vma, address))) { 1450 bad_area(regs, error_code, address); 1451 return; 1452 } 1453 1454 /* 1455 * Ok, we have a good vm_area for this memory access, so 1456 * we can handle it.. 1457 */ 1458good_area: 1459 if (unlikely(access_error(error_code, vma))) { 1460 bad_area_access_error(regs, error_code, address, vma); 1461 return; 1462 } 1463 1464 /* 1465 * If for any reason at all we couldn't handle the fault, 1466 * make sure we exit gracefully rather than endlessly redo 1467 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if 1468 * we get VM_FAULT_RETRY back, the mmap_lock has been unlocked. 1469 * 1470 * Note that handle_userfault() may also release and reacquire mmap_lock 1471 * (and not return with VM_FAULT_RETRY), when returning to userland to 1472 * repeat the page fault later with a VM_FAULT_NOPAGE retval 1473 * (potentially after handling any pending signal during the return to 1474 * userland). The return to userland is identified whenever 1475 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags. 1476 */ 1477 fault = handle_mm_fault(vma, address, flags, regs); 1478 1479 if (fault_signal_pending(fault, regs)) { 1480 /* 1481 * Quick path to respond to signals. The core mm code 1482 * has unlocked the mm for us if we get here. 1483 */ 1484 if (!user_mode(regs)) 1485 kernelmode_fixup_or_oops(regs, error_code, address, 1486 SIGBUS, BUS_ADRERR, 1487 ARCH_DEFAULT_PKEY); 1488 return; 1489 } 1490 1491 /* 1492 * If we need to retry the mmap_lock has already been released, 1493 * and if there is a fatal signal pending there is no guarantee 1494 * that we made any progress. Handle this case first. 1495 */ 1496 if (unlikely(fault & VM_FAULT_RETRY)) { 1497 flags |= FAULT_FLAG_TRIED; 1498 goto retry; 1499 } 1500 1501 mmap_read_unlock(mm); 1502 if (likely(!(fault & VM_FAULT_ERROR))) 1503 return; 1504 1505 if (fatal_signal_pending(current) && !user_mode(regs)) { 1506 kernelmode_fixup_or_oops(regs, error_code, address, 1507 0, 0, ARCH_DEFAULT_PKEY); 1508 return; 1509 } 1510 1511 if (fault & VM_FAULT_OOM) { 1512 /* Kernel mode? Handle exceptions or die: */ 1513 if (!user_mode(regs)) { 1514 kernelmode_fixup_or_oops(regs, error_code, address, 1515 SIGSEGV, SEGV_MAPERR, 1516 ARCH_DEFAULT_PKEY); 1517 return; 1518 } 1519 1520 /* 1521 * We ran out of memory, call the OOM killer, and return the 1522 * userspace (which will retry the fault, or kill us if we got 1523 * oom-killed): 1524 */ 1525 pagefault_out_of_memory(); 1526 } else { 1527 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON| 1528 VM_FAULT_HWPOISON_LARGE)) 1529 do_sigbus(regs, error_code, address, fault); 1530 else if (fault & VM_FAULT_SIGSEGV) 1531 bad_area_nosemaphore(regs, error_code, address); 1532 else 1533 BUG(); 1534 } 1535} 1536NOKPROBE_SYMBOL(do_user_addr_fault); 1537 1538static __always_inline void 1539trace_page_fault_entries(struct pt_regs *regs, unsigned long error_code, 1540 unsigned long address) 1541{ 1542 if (!trace_pagefault_enabled()) 1543 return; 1544 1545 if (user_mode(regs)) 1546 trace_page_fault_user(address, regs, error_code); 1547 else 1548 trace_page_fault_kernel(address, regs, error_code); 1549} 1550 1551static __always_inline void 1552handle_page_fault(struct pt_regs *regs, unsigned long error_code, 1553 unsigned long address) 1554{ 1555 trace_page_fault_entries(regs, error_code, address); 1556 1557 if (unlikely(kmmio_fault(regs, address))) 1558 return; 1559 1560 /* Was the fault on kernel-controlled part of the address space? */ 1561 if (unlikely(fault_in_kernel_space(address))) { 1562 do_kern_addr_fault(regs, error_code, address); 1563 } else { 1564 do_user_addr_fault(regs, error_code, address); 1565 /* 1566 * User address page fault handling might have reenabled 1567 * interrupts. Fixing up all potential exit points of 1568 * do_user_addr_fault() and its leaf functions is just not 1569 * doable w/o creating an unholy mess or turning the code 1570 * upside down. 1571 */ 1572 local_irq_disable(); 1573 } 1574} 1575 1576DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault) 1577{ 1578 unsigned long address = read_cr2(); 1579 irqentry_state_t state; 1580 1581 prefetchw(¤t->mm->mmap_lock); 1582 1583 /* 1584 * KVM uses #PF vector to deliver 'page not present' events to guests 1585 * (asynchronous page fault mechanism). The event happens when a 1586 * userspace task is trying to access some valid (from guest's point of 1587 * view) memory which is not currently mapped by the host (e.g. the 1588 * memory is swapped out). Note, the corresponding "page ready" event 1589 * which is injected when the memory becomes available, is delivered via 1590 * an interrupt mechanism and not a #PF exception 1591 * (see arch/x86/kernel/kvm.c: sysvec_kvm_asyncpf_interrupt()). 1592 * 1593 * We are relying on the interrupted context being sane (valid RSP, 1594 * relevant locks not held, etc.), which is fine as long as the 1595 * interrupted context had IF=1. We are also relying on the KVM 1596 * async pf type field and CR2 being read consistently instead of 1597 * getting values from real and async page faults mixed up. 1598 * 1599 * Fingers crossed. 1600 * 1601 * The async #PF handling code takes care of idtentry handling 1602 * itself. 1603 */ 1604 if (kvm_handle_async_pf(regs, (u32)address)) 1605 return; 1606 1607 /* 1608 * Entry handling for valid #PF from kernel mode is slightly 1609 * different: RCU is already watching and rcu_irq_enter() must not 1610 * be invoked because a kernel fault on a user space address might 1611 * sleep. 1612 * 1613 * In case the fault hit a RCU idle region the conditional entry 1614 * code reenabled RCU to avoid subsequent wreckage which helps 1615 * debuggability. 1616 */ 1617 state = irqentry_enter(regs); 1618 1619 instrumentation_begin(); 1620 handle_page_fault(regs, error_code, address); 1621 instrumentation_end(); 1622 1623 irqentry_exit(regs, state); 1624}