cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

init.c (31436B)


      1#include <linux/gfp.h>
      2#include <linux/initrd.h>
      3#include <linux/ioport.h>
      4#include <linux/swap.h>
      5#include <linux/memblock.h>
      6#include <linux/swapfile.h>
      7#include <linux/swapops.h>
      8#include <linux/kmemleak.h>
      9#include <linux/sched/task.h>
     10
     11#include <asm/set_memory.h>
     12#include <asm/e820/api.h>
     13#include <asm/init.h>
     14#include <asm/page.h>
     15#include <asm/page_types.h>
     16#include <asm/sections.h>
     17#include <asm/setup.h>
     18#include <asm/tlbflush.h>
     19#include <asm/tlb.h>
     20#include <asm/proto.h>
     21#include <asm/dma.h>		/* for MAX_DMA_PFN */
     22#include <asm/microcode.h>
     23#include <asm/kaslr.h>
     24#include <asm/hypervisor.h>
     25#include <asm/cpufeature.h>
     26#include <asm/pti.h>
     27#include <asm/text-patching.h>
     28#include <asm/memtype.h>
     29
     30/*
     31 * We need to define the tracepoints somewhere, and tlb.c
     32 * is only compiled when SMP=y.
     33 */
     34#include <trace/events/tlb.h>
     35
     36#include "mm_internal.h"
     37
     38/*
     39 * Tables translating between page_cache_type_t and pte encoding.
     40 *
     41 * The default values are defined statically as minimal supported mode;
     42 * WC and WT fall back to UC-.  pat_init() updates these values to support
     43 * more cache modes, WC and WT, when it is safe to do so.  See pat_init()
     44 * for the details.  Note, __early_ioremap() used during early boot-time
     45 * takes pgprot_t (pte encoding) and does not use these tables.
     46 *
     47 *   Index into __cachemode2pte_tbl[] is the cachemode.
     48 *
     49 *   Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
     50 *   (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
     51 */
     52static uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
     53	[_PAGE_CACHE_MODE_WB      ]	= 0         | 0        ,
     54	[_PAGE_CACHE_MODE_WC      ]	= 0         | _PAGE_PCD,
     55	[_PAGE_CACHE_MODE_UC_MINUS]	= 0         | _PAGE_PCD,
     56	[_PAGE_CACHE_MODE_UC      ]	= _PAGE_PWT | _PAGE_PCD,
     57	[_PAGE_CACHE_MODE_WT      ]	= 0         | _PAGE_PCD,
     58	[_PAGE_CACHE_MODE_WP      ]	= 0         | _PAGE_PCD,
     59};
     60
     61unsigned long cachemode2protval(enum page_cache_mode pcm)
     62{
     63	if (likely(pcm == 0))
     64		return 0;
     65	return __cachemode2pte_tbl[pcm];
     66}
     67EXPORT_SYMBOL(cachemode2protval);
     68
     69static uint8_t __pte2cachemode_tbl[8] = {
     70	[__pte2cm_idx( 0        | 0         | 0        )] = _PAGE_CACHE_MODE_WB,
     71	[__pte2cm_idx(_PAGE_PWT | 0         | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
     72	[__pte2cm_idx( 0        | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
     73	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC,
     74	[__pte2cm_idx( 0        | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
     75	[__pte2cm_idx(_PAGE_PWT | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
     76	[__pte2cm_idx(0         | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
     77	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
     78};
     79
     80/* Check that the write-protect PAT entry is set for write-protect */
     81bool x86_has_pat_wp(void)
     82{
     83	return __pte2cachemode_tbl[_PAGE_CACHE_MODE_WP] == _PAGE_CACHE_MODE_WP;
     84}
     85
     86enum page_cache_mode pgprot2cachemode(pgprot_t pgprot)
     87{
     88	unsigned long masked;
     89
     90	masked = pgprot_val(pgprot) & _PAGE_CACHE_MASK;
     91	if (likely(masked == 0))
     92		return 0;
     93	return __pte2cachemode_tbl[__pte2cm_idx(masked)];
     94}
     95
     96static unsigned long __initdata pgt_buf_start;
     97static unsigned long __initdata pgt_buf_end;
     98static unsigned long __initdata pgt_buf_top;
     99
    100static unsigned long min_pfn_mapped;
    101
    102static bool __initdata can_use_brk_pgt = true;
    103
    104/*
    105 * Pages returned are already directly mapped.
    106 *
    107 * Changing that is likely to break Xen, see commit:
    108 *
    109 *    279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
    110 *
    111 * for detailed information.
    112 */
    113__ref void *alloc_low_pages(unsigned int num)
    114{
    115	unsigned long pfn;
    116	int i;
    117
    118	if (after_bootmem) {
    119		unsigned int order;
    120
    121		order = get_order((unsigned long)num << PAGE_SHIFT);
    122		return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
    123	}
    124
    125	if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
    126		unsigned long ret = 0;
    127
    128		if (min_pfn_mapped < max_pfn_mapped) {
    129			ret = memblock_phys_alloc_range(
    130					PAGE_SIZE * num, PAGE_SIZE,
    131					min_pfn_mapped << PAGE_SHIFT,
    132					max_pfn_mapped << PAGE_SHIFT);
    133		}
    134		if (!ret && can_use_brk_pgt)
    135			ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE));
    136
    137		if (!ret)
    138			panic("alloc_low_pages: can not alloc memory");
    139
    140		pfn = ret >> PAGE_SHIFT;
    141	} else {
    142		pfn = pgt_buf_end;
    143		pgt_buf_end += num;
    144	}
    145
    146	for (i = 0; i < num; i++) {
    147		void *adr;
    148
    149		adr = __va((pfn + i) << PAGE_SHIFT);
    150		clear_page(adr);
    151	}
    152
    153	return __va(pfn << PAGE_SHIFT);
    154}
    155
    156/*
    157 * By default need to be able to allocate page tables below PGD firstly for
    158 * the 0-ISA_END_ADDRESS range and secondly for the initial PMD_SIZE mapping.
    159 * With KASLR memory randomization, depending on the machine e820 memory and the
    160 * PUD alignment, twice that many pages may be needed when KASLR memory
    161 * randomization is enabled.
    162 */
    163
    164#ifndef CONFIG_X86_5LEVEL
    165#define INIT_PGD_PAGE_TABLES    3
    166#else
    167#define INIT_PGD_PAGE_TABLES    4
    168#endif
    169
    170#ifndef CONFIG_RANDOMIZE_MEMORY
    171#define INIT_PGD_PAGE_COUNT      (2 * INIT_PGD_PAGE_TABLES)
    172#else
    173#define INIT_PGD_PAGE_COUNT      (4 * INIT_PGD_PAGE_TABLES)
    174#endif
    175
    176#define INIT_PGT_BUF_SIZE	(INIT_PGD_PAGE_COUNT * PAGE_SIZE)
    177RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
    178void  __init early_alloc_pgt_buf(void)
    179{
    180	unsigned long tables = INIT_PGT_BUF_SIZE;
    181	phys_addr_t base;
    182
    183	base = __pa(extend_brk(tables, PAGE_SIZE));
    184
    185	pgt_buf_start = base >> PAGE_SHIFT;
    186	pgt_buf_end = pgt_buf_start;
    187	pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
    188}
    189
    190int after_bootmem;
    191
    192early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
    193
    194struct map_range {
    195	unsigned long start;
    196	unsigned long end;
    197	unsigned page_size_mask;
    198};
    199
    200static int page_size_mask;
    201
    202/*
    203 * Save some of cr4 feature set we're using (e.g.  Pentium 4MB
    204 * enable and PPro Global page enable), so that any CPU's that boot
    205 * up after us can get the correct flags. Invoked on the boot CPU.
    206 */
    207static inline void cr4_set_bits_and_update_boot(unsigned long mask)
    208{
    209	mmu_cr4_features |= mask;
    210	if (trampoline_cr4_features)
    211		*trampoline_cr4_features = mmu_cr4_features;
    212	cr4_set_bits(mask);
    213}
    214
    215static void __init probe_page_size_mask(void)
    216{
    217	/*
    218	 * For pagealloc debugging, identity mapping will use small pages.
    219	 * This will simplify cpa(), which otherwise needs to support splitting
    220	 * large pages into small in interrupt context, etc.
    221	 */
    222	if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
    223		page_size_mask |= 1 << PG_LEVEL_2M;
    224	else
    225		direct_gbpages = 0;
    226
    227	/* Enable PSE if available */
    228	if (boot_cpu_has(X86_FEATURE_PSE))
    229		cr4_set_bits_and_update_boot(X86_CR4_PSE);
    230
    231	/* Enable PGE if available */
    232	__supported_pte_mask &= ~_PAGE_GLOBAL;
    233	if (boot_cpu_has(X86_FEATURE_PGE)) {
    234		cr4_set_bits_and_update_boot(X86_CR4_PGE);
    235		__supported_pte_mask |= _PAGE_GLOBAL;
    236	}
    237
    238	/* By the default is everything supported: */
    239	__default_kernel_pte_mask = __supported_pte_mask;
    240	/* Except when with PTI where the kernel is mostly non-Global: */
    241	if (cpu_feature_enabled(X86_FEATURE_PTI))
    242		__default_kernel_pte_mask &= ~_PAGE_GLOBAL;
    243
    244	/* Enable 1 GB linear kernel mappings if available: */
    245	if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
    246		printk(KERN_INFO "Using GB pages for direct mapping\n");
    247		page_size_mask |= 1 << PG_LEVEL_1G;
    248	} else {
    249		direct_gbpages = 0;
    250	}
    251}
    252
    253static void setup_pcid(void)
    254{
    255	if (!IS_ENABLED(CONFIG_X86_64))
    256		return;
    257
    258	if (!boot_cpu_has(X86_FEATURE_PCID))
    259		return;
    260
    261	if (boot_cpu_has(X86_FEATURE_PGE)) {
    262		/*
    263		 * This can't be cr4_set_bits_and_update_boot() -- the
    264		 * trampoline code can't handle CR4.PCIDE and it wouldn't
    265		 * do any good anyway.  Despite the name,
    266		 * cr4_set_bits_and_update_boot() doesn't actually cause
    267		 * the bits in question to remain set all the way through
    268		 * the secondary boot asm.
    269		 *
    270		 * Instead, we brute-force it and set CR4.PCIDE manually in
    271		 * start_secondary().
    272		 */
    273		cr4_set_bits(X86_CR4_PCIDE);
    274
    275		/*
    276		 * INVPCID's single-context modes (2/3) only work if we set
    277		 * X86_CR4_PCIDE, *and* we INVPCID support.  It's unusable
    278		 * on systems that have X86_CR4_PCIDE clear, or that have
    279		 * no INVPCID support at all.
    280		 */
    281		if (boot_cpu_has(X86_FEATURE_INVPCID))
    282			setup_force_cpu_cap(X86_FEATURE_INVPCID_SINGLE);
    283	} else {
    284		/*
    285		 * flush_tlb_all(), as currently implemented, won't work if
    286		 * PCID is on but PGE is not.  Since that combination
    287		 * doesn't exist on real hardware, there's no reason to try
    288		 * to fully support it, but it's polite to avoid corrupting
    289		 * data if we're on an improperly configured VM.
    290		 */
    291		setup_clear_cpu_cap(X86_FEATURE_PCID);
    292	}
    293}
    294
    295#ifdef CONFIG_X86_32
    296#define NR_RANGE_MR 3
    297#else /* CONFIG_X86_64 */
    298#define NR_RANGE_MR 5
    299#endif
    300
    301static int __meminit save_mr(struct map_range *mr, int nr_range,
    302			     unsigned long start_pfn, unsigned long end_pfn,
    303			     unsigned long page_size_mask)
    304{
    305	if (start_pfn < end_pfn) {
    306		if (nr_range >= NR_RANGE_MR)
    307			panic("run out of range for init_memory_mapping\n");
    308		mr[nr_range].start = start_pfn<<PAGE_SHIFT;
    309		mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
    310		mr[nr_range].page_size_mask = page_size_mask;
    311		nr_range++;
    312	}
    313
    314	return nr_range;
    315}
    316
    317/*
    318 * adjust the page_size_mask for small range to go with
    319 *	big page size instead small one if nearby are ram too.
    320 */
    321static void __ref adjust_range_page_size_mask(struct map_range *mr,
    322							 int nr_range)
    323{
    324	int i;
    325
    326	for (i = 0; i < nr_range; i++) {
    327		if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
    328		    !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
    329			unsigned long start = round_down(mr[i].start, PMD_SIZE);
    330			unsigned long end = round_up(mr[i].end, PMD_SIZE);
    331
    332#ifdef CONFIG_X86_32
    333			if ((end >> PAGE_SHIFT) > max_low_pfn)
    334				continue;
    335#endif
    336
    337			if (memblock_is_region_memory(start, end - start))
    338				mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
    339		}
    340		if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
    341		    !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
    342			unsigned long start = round_down(mr[i].start, PUD_SIZE);
    343			unsigned long end = round_up(mr[i].end, PUD_SIZE);
    344
    345			if (memblock_is_region_memory(start, end - start))
    346				mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
    347		}
    348	}
    349}
    350
    351static const char *page_size_string(struct map_range *mr)
    352{
    353	static const char str_1g[] = "1G";
    354	static const char str_2m[] = "2M";
    355	static const char str_4m[] = "4M";
    356	static const char str_4k[] = "4k";
    357
    358	if (mr->page_size_mask & (1<<PG_LEVEL_1G))
    359		return str_1g;
    360	/*
    361	 * 32-bit without PAE has a 4M large page size.
    362	 * PG_LEVEL_2M is misnamed, but we can at least
    363	 * print out the right size in the string.
    364	 */
    365	if (IS_ENABLED(CONFIG_X86_32) &&
    366	    !IS_ENABLED(CONFIG_X86_PAE) &&
    367	    mr->page_size_mask & (1<<PG_LEVEL_2M))
    368		return str_4m;
    369
    370	if (mr->page_size_mask & (1<<PG_LEVEL_2M))
    371		return str_2m;
    372
    373	return str_4k;
    374}
    375
    376static int __meminit split_mem_range(struct map_range *mr, int nr_range,
    377				     unsigned long start,
    378				     unsigned long end)
    379{
    380	unsigned long start_pfn, end_pfn, limit_pfn;
    381	unsigned long pfn;
    382	int i;
    383
    384	limit_pfn = PFN_DOWN(end);
    385
    386	/* head if not big page alignment ? */
    387	pfn = start_pfn = PFN_DOWN(start);
    388#ifdef CONFIG_X86_32
    389	/*
    390	 * Don't use a large page for the first 2/4MB of memory
    391	 * because there are often fixed size MTRRs in there
    392	 * and overlapping MTRRs into large pages can cause
    393	 * slowdowns.
    394	 */
    395	if (pfn == 0)
    396		end_pfn = PFN_DOWN(PMD_SIZE);
    397	else
    398		end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
    399#else /* CONFIG_X86_64 */
    400	end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
    401#endif
    402	if (end_pfn > limit_pfn)
    403		end_pfn = limit_pfn;
    404	if (start_pfn < end_pfn) {
    405		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
    406		pfn = end_pfn;
    407	}
    408
    409	/* big page (2M) range */
    410	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
    411#ifdef CONFIG_X86_32
    412	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
    413#else /* CONFIG_X86_64 */
    414	end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
    415	if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
    416		end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
    417#endif
    418
    419	if (start_pfn < end_pfn) {
    420		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
    421				page_size_mask & (1<<PG_LEVEL_2M));
    422		pfn = end_pfn;
    423	}
    424
    425#ifdef CONFIG_X86_64
    426	/* big page (1G) range */
    427	start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
    428	end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
    429	if (start_pfn < end_pfn) {
    430		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
    431				page_size_mask &
    432				 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
    433		pfn = end_pfn;
    434	}
    435
    436	/* tail is not big page (1G) alignment */
    437	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
    438	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
    439	if (start_pfn < end_pfn) {
    440		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
    441				page_size_mask & (1<<PG_LEVEL_2M));
    442		pfn = end_pfn;
    443	}
    444#endif
    445
    446	/* tail is not big page (2M) alignment */
    447	start_pfn = pfn;
    448	end_pfn = limit_pfn;
    449	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
    450
    451	if (!after_bootmem)
    452		adjust_range_page_size_mask(mr, nr_range);
    453
    454	/* try to merge same page size and continuous */
    455	for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
    456		unsigned long old_start;
    457		if (mr[i].end != mr[i+1].start ||
    458		    mr[i].page_size_mask != mr[i+1].page_size_mask)
    459			continue;
    460		/* move it */
    461		old_start = mr[i].start;
    462		memmove(&mr[i], &mr[i+1],
    463			(nr_range - 1 - i) * sizeof(struct map_range));
    464		mr[i--].start = old_start;
    465		nr_range--;
    466	}
    467
    468	for (i = 0; i < nr_range; i++)
    469		pr_debug(" [mem %#010lx-%#010lx] page %s\n",
    470				mr[i].start, mr[i].end - 1,
    471				page_size_string(&mr[i]));
    472
    473	return nr_range;
    474}
    475
    476struct range pfn_mapped[E820_MAX_ENTRIES];
    477int nr_pfn_mapped;
    478
    479static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
    480{
    481	nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
    482					     nr_pfn_mapped, start_pfn, end_pfn);
    483	nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
    484
    485	max_pfn_mapped = max(max_pfn_mapped, end_pfn);
    486
    487	if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
    488		max_low_pfn_mapped = max(max_low_pfn_mapped,
    489					 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
    490}
    491
    492bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
    493{
    494	int i;
    495
    496	for (i = 0; i < nr_pfn_mapped; i++)
    497		if ((start_pfn >= pfn_mapped[i].start) &&
    498		    (end_pfn <= pfn_mapped[i].end))
    499			return true;
    500
    501	return false;
    502}
    503
    504/*
    505 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
    506 * This runs before bootmem is initialized and gets pages directly from
    507 * the physical memory. To access them they are temporarily mapped.
    508 */
    509unsigned long __ref init_memory_mapping(unsigned long start,
    510					unsigned long end, pgprot_t prot)
    511{
    512	struct map_range mr[NR_RANGE_MR];
    513	unsigned long ret = 0;
    514	int nr_range, i;
    515
    516	pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
    517	       start, end - 1);
    518
    519	memset(mr, 0, sizeof(mr));
    520	nr_range = split_mem_range(mr, 0, start, end);
    521
    522	for (i = 0; i < nr_range; i++)
    523		ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
    524						   mr[i].page_size_mask,
    525						   prot);
    526
    527	add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
    528
    529	return ret >> PAGE_SHIFT;
    530}
    531
    532/*
    533 * We need to iterate through the E820 memory map and create direct mappings
    534 * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
    535 * create direct mappings for all pfns from [0 to max_low_pfn) and
    536 * [4GB to max_pfn) because of possible memory holes in high addresses
    537 * that cannot be marked as UC by fixed/variable range MTRRs.
    538 * Depending on the alignment of E820 ranges, this may possibly result
    539 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
    540 *
    541 * init_mem_mapping() calls init_range_memory_mapping() with big range.
    542 * That range would have hole in the middle or ends, and only ram parts
    543 * will be mapped in init_range_memory_mapping().
    544 */
    545static unsigned long __init init_range_memory_mapping(
    546					   unsigned long r_start,
    547					   unsigned long r_end)
    548{
    549	unsigned long start_pfn, end_pfn;
    550	unsigned long mapped_ram_size = 0;
    551	int i;
    552
    553	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
    554		u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
    555		u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
    556		if (start >= end)
    557			continue;
    558
    559		/*
    560		 * if it is overlapping with brk pgt, we need to
    561		 * alloc pgt buf from memblock instead.
    562		 */
    563		can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
    564				    min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
    565		init_memory_mapping(start, end, PAGE_KERNEL);
    566		mapped_ram_size += end - start;
    567		can_use_brk_pgt = true;
    568	}
    569
    570	return mapped_ram_size;
    571}
    572
    573static unsigned long __init get_new_step_size(unsigned long step_size)
    574{
    575	/*
    576	 * Initial mapped size is PMD_SIZE (2M).
    577	 * We can not set step_size to be PUD_SIZE (1G) yet.
    578	 * In worse case, when we cross the 1G boundary, and
    579	 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
    580	 * to map 1G range with PTE. Hence we use one less than the
    581	 * difference of page table level shifts.
    582	 *
    583	 * Don't need to worry about overflow in the top-down case, on 32bit,
    584	 * when step_size is 0, round_down() returns 0 for start, and that
    585	 * turns it into 0x100000000ULL.
    586	 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
    587	 * needs to be taken into consideration by the code below.
    588	 */
    589	return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
    590}
    591
    592/**
    593 * memory_map_top_down - Map [map_start, map_end) top down
    594 * @map_start: start address of the target memory range
    595 * @map_end: end address of the target memory range
    596 *
    597 * This function will setup direct mapping for memory range
    598 * [map_start, map_end) in top-down. That said, the page tables
    599 * will be allocated at the end of the memory, and we map the
    600 * memory in top-down.
    601 */
    602static void __init memory_map_top_down(unsigned long map_start,
    603				       unsigned long map_end)
    604{
    605	unsigned long real_end, last_start;
    606	unsigned long step_size;
    607	unsigned long addr;
    608	unsigned long mapped_ram_size = 0;
    609
    610	/*
    611	 * Systems that have many reserved areas near top of the memory,
    612	 * e.g. QEMU with less than 1G RAM and EFI enabled, or Xen, will
    613	 * require lots of 4K mappings which may exhaust pgt_buf.
    614	 * Start with top-most PMD_SIZE range aligned at PMD_SIZE to ensure
    615	 * there is enough mapped memory that can be allocated from
    616	 * memblock.
    617	 */
    618	addr = memblock_phys_alloc_range(PMD_SIZE, PMD_SIZE, map_start,
    619					 map_end);
    620	memblock_phys_free(addr, PMD_SIZE);
    621	real_end = addr + PMD_SIZE;
    622
    623	/* step_size need to be small so pgt_buf from BRK could cover it */
    624	step_size = PMD_SIZE;
    625	max_pfn_mapped = 0; /* will get exact value next */
    626	min_pfn_mapped = real_end >> PAGE_SHIFT;
    627	last_start = real_end;
    628
    629	/*
    630	 * We start from the top (end of memory) and go to the bottom.
    631	 * The memblock_find_in_range() gets us a block of RAM from the
    632	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
    633	 * for page table.
    634	 */
    635	while (last_start > map_start) {
    636		unsigned long start;
    637
    638		if (last_start > step_size) {
    639			start = round_down(last_start - 1, step_size);
    640			if (start < map_start)
    641				start = map_start;
    642		} else
    643			start = map_start;
    644		mapped_ram_size += init_range_memory_mapping(start,
    645							last_start);
    646		last_start = start;
    647		min_pfn_mapped = last_start >> PAGE_SHIFT;
    648		if (mapped_ram_size >= step_size)
    649			step_size = get_new_step_size(step_size);
    650	}
    651
    652	if (real_end < map_end)
    653		init_range_memory_mapping(real_end, map_end);
    654}
    655
    656/**
    657 * memory_map_bottom_up - Map [map_start, map_end) bottom up
    658 * @map_start: start address of the target memory range
    659 * @map_end: end address of the target memory range
    660 *
    661 * This function will setup direct mapping for memory range
    662 * [map_start, map_end) in bottom-up. Since we have limited the
    663 * bottom-up allocation above the kernel, the page tables will
    664 * be allocated just above the kernel and we map the memory
    665 * in [map_start, map_end) in bottom-up.
    666 */
    667static void __init memory_map_bottom_up(unsigned long map_start,
    668					unsigned long map_end)
    669{
    670	unsigned long next, start;
    671	unsigned long mapped_ram_size = 0;
    672	/* step_size need to be small so pgt_buf from BRK could cover it */
    673	unsigned long step_size = PMD_SIZE;
    674
    675	start = map_start;
    676	min_pfn_mapped = start >> PAGE_SHIFT;
    677
    678	/*
    679	 * We start from the bottom (@map_start) and go to the top (@map_end).
    680	 * The memblock_find_in_range() gets us a block of RAM from the
    681	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
    682	 * for page table.
    683	 */
    684	while (start < map_end) {
    685		if (step_size && map_end - start > step_size) {
    686			next = round_up(start + 1, step_size);
    687			if (next > map_end)
    688				next = map_end;
    689		} else {
    690			next = map_end;
    691		}
    692
    693		mapped_ram_size += init_range_memory_mapping(start, next);
    694		start = next;
    695
    696		if (mapped_ram_size >= step_size)
    697			step_size = get_new_step_size(step_size);
    698	}
    699}
    700
    701/*
    702 * The real mode trampoline, which is required for bootstrapping CPUs
    703 * occupies only a small area under the low 1MB.  See reserve_real_mode()
    704 * for details.
    705 *
    706 * If KASLR is disabled the first PGD entry of the direct mapping is copied
    707 * to map the real mode trampoline.
    708 *
    709 * If KASLR is enabled, copy only the PUD which covers the low 1MB
    710 * area. This limits the randomization granularity to 1GB for both 4-level
    711 * and 5-level paging.
    712 */
    713static void __init init_trampoline(void)
    714{
    715#ifdef CONFIG_X86_64
    716	/*
    717	 * The code below will alias kernel page-tables in the user-range of the
    718	 * address space, including the Global bit. So global TLB entries will
    719	 * be created when using the trampoline page-table.
    720	 */
    721	if (!kaslr_memory_enabled())
    722		trampoline_pgd_entry = init_top_pgt[pgd_index(__PAGE_OFFSET)];
    723	else
    724		init_trampoline_kaslr();
    725#endif
    726}
    727
    728void __init init_mem_mapping(void)
    729{
    730	unsigned long end;
    731
    732	pti_check_boottime_disable();
    733	probe_page_size_mask();
    734	setup_pcid();
    735
    736#ifdef CONFIG_X86_64
    737	end = max_pfn << PAGE_SHIFT;
    738#else
    739	end = max_low_pfn << PAGE_SHIFT;
    740#endif
    741
    742	/* the ISA range is always mapped regardless of memory holes */
    743	init_memory_mapping(0, ISA_END_ADDRESS, PAGE_KERNEL);
    744
    745	/* Init the trampoline, possibly with KASLR memory offset */
    746	init_trampoline();
    747
    748	/*
    749	 * If the allocation is in bottom-up direction, we setup direct mapping
    750	 * in bottom-up, otherwise we setup direct mapping in top-down.
    751	 */
    752	if (memblock_bottom_up()) {
    753		unsigned long kernel_end = __pa_symbol(_end);
    754
    755		/*
    756		 * we need two separate calls here. This is because we want to
    757		 * allocate page tables above the kernel. So we first map
    758		 * [kernel_end, end) to make memory above the kernel be mapped
    759		 * as soon as possible. And then use page tables allocated above
    760		 * the kernel to map [ISA_END_ADDRESS, kernel_end).
    761		 */
    762		memory_map_bottom_up(kernel_end, end);
    763		memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
    764	} else {
    765		memory_map_top_down(ISA_END_ADDRESS, end);
    766	}
    767
    768#ifdef CONFIG_X86_64
    769	if (max_pfn > max_low_pfn) {
    770		/* can we preserve max_low_pfn ?*/
    771		max_low_pfn = max_pfn;
    772	}
    773#else
    774	early_ioremap_page_table_range_init();
    775#endif
    776
    777	load_cr3(swapper_pg_dir);
    778	__flush_tlb_all();
    779
    780	x86_init.hyper.init_mem_mapping();
    781
    782	early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
    783}
    784
    785/*
    786 * Initialize an mm_struct to be used during poking and a pointer to be used
    787 * during patching.
    788 */
    789void __init poking_init(void)
    790{
    791	spinlock_t *ptl;
    792	pte_t *ptep;
    793
    794	poking_mm = copy_init_mm();
    795	BUG_ON(!poking_mm);
    796
    797	/*
    798	 * Randomize the poking address, but make sure that the following page
    799	 * will be mapped at the same PMD. We need 2 pages, so find space for 3,
    800	 * and adjust the address if the PMD ends after the first one.
    801	 */
    802	poking_addr = TASK_UNMAPPED_BASE;
    803	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
    804		poking_addr += (kaslr_get_random_long("Poking") & PAGE_MASK) %
    805			(TASK_SIZE - TASK_UNMAPPED_BASE - 3 * PAGE_SIZE);
    806
    807	if (((poking_addr + PAGE_SIZE) & ~PMD_MASK) == 0)
    808		poking_addr += PAGE_SIZE;
    809
    810	/*
    811	 * We need to trigger the allocation of the page-tables that will be
    812	 * needed for poking now. Later, poking may be performed in an atomic
    813	 * section, which might cause allocation to fail.
    814	 */
    815	ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
    816	BUG_ON(!ptep);
    817	pte_unmap_unlock(ptep, ptl);
    818}
    819
    820/*
    821 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
    822 * is valid. The argument is a physical page number.
    823 *
    824 * On x86, access has to be given to the first megabyte of RAM because that
    825 * area traditionally contains BIOS code and data regions used by X, dosemu,
    826 * and similar apps. Since they map the entire memory range, the whole range
    827 * must be allowed (for mapping), but any areas that would otherwise be
    828 * disallowed are flagged as being "zero filled" instead of rejected.
    829 * Access has to be given to non-kernel-ram areas as well, these contain the
    830 * PCI mmio resources as well as potential bios/acpi data regions.
    831 */
    832int devmem_is_allowed(unsigned long pagenr)
    833{
    834	if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE,
    835				IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE)
    836			!= REGION_DISJOINT) {
    837		/*
    838		 * For disallowed memory regions in the low 1MB range,
    839		 * request that the page be shown as all zeros.
    840		 */
    841		if (pagenr < 256)
    842			return 2;
    843
    844		return 0;
    845	}
    846
    847	/*
    848	 * This must follow RAM test, since System RAM is considered a
    849	 * restricted resource under CONFIG_STRICT_IOMEM.
    850	 */
    851	if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
    852		/* Low 1MB bypasses iomem restrictions. */
    853		if (pagenr < 256)
    854			return 1;
    855
    856		return 0;
    857	}
    858
    859	return 1;
    860}
    861
    862void free_init_pages(const char *what, unsigned long begin, unsigned long end)
    863{
    864	unsigned long begin_aligned, end_aligned;
    865
    866	/* Make sure boundaries are page aligned */
    867	begin_aligned = PAGE_ALIGN(begin);
    868	end_aligned   = end & PAGE_MASK;
    869
    870	if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
    871		begin = begin_aligned;
    872		end   = end_aligned;
    873	}
    874
    875	if (begin >= end)
    876		return;
    877
    878	/*
    879	 * If debugging page accesses then do not free this memory but
    880	 * mark them not present - any buggy init-section access will
    881	 * create a kernel page fault:
    882	 */
    883	if (debug_pagealloc_enabled()) {
    884		pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
    885			begin, end - 1);
    886		/*
    887		 * Inform kmemleak about the hole in the memory since the
    888		 * corresponding pages will be unmapped.
    889		 */
    890		kmemleak_free_part((void *)begin, end - begin);
    891		set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
    892	} else {
    893		/*
    894		 * We just marked the kernel text read only above, now that
    895		 * we are going to free part of that, we need to make that
    896		 * writeable and non-executable first.
    897		 */
    898		set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
    899		set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
    900
    901		free_reserved_area((void *)begin, (void *)end,
    902				   POISON_FREE_INITMEM, what);
    903	}
    904}
    905
    906/*
    907 * begin/end can be in the direct map or the "high kernel mapping"
    908 * used for the kernel image only.  free_init_pages() will do the
    909 * right thing for either kind of address.
    910 */
    911void free_kernel_image_pages(const char *what, void *begin, void *end)
    912{
    913	unsigned long begin_ul = (unsigned long)begin;
    914	unsigned long end_ul = (unsigned long)end;
    915	unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT;
    916
    917	free_init_pages(what, begin_ul, end_ul);
    918
    919	/*
    920	 * PTI maps some of the kernel into userspace.  For performance,
    921	 * this includes some kernel areas that do not contain secrets.
    922	 * Those areas might be adjacent to the parts of the kernel image
    923	 * being freed, which may contain secrets.  Remove the "high kernel
    924	 * image mapping" for these freed areas, ensuring they are not even
    925	 * potentially vulnerable to Meltdown regardless of the specific
    926	 * optimizations PTI is currently using.
    927	 *
    928	 * The "noalias" prevents unmapping the direct map alias which is
    929	 * needed to access the freed pages.
    930	 *
    931	 * This is only valid for 64bit kernels. 32bit has only one mapping
    932	 * which can't be treated in this way for obvious reasons.
    933	 */
    934	if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI))
    935		set_memory_np_noalias(begin_ul, len_pages);
    936}
    937
    938void __ref free_initmem(void)
    939{
    940	e820__reallocate_tables();
    941
    942	mem_encrypt_free_decrypted_mem();
    943
    944	free_kernel_image_pages("unused kernel image (initmem)",
    945				&__init_begin, &__init_end);
    946}
    947
    948#ifdef CONFIG_BLK_DEV_INITRD
    949void __init free_initrd_mem(unsigned long start, unsigned long end)
    950{
    951	/*
    952	 * end could be not aligned, and We can not align that,
    953	 * decompressor could be confused by aligned initrd_end
    954	 * We already reserve the end partial page before in
    955	 *   - i386_start_kernel()
    956	 *   - x86_64_start_kernel()
    957	 *   - relocate_initrd()
    958	 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
    959	 */
    960	free_init_pages("initrd", start, PAGE_ALIGN(end));
    961}
    962#endif
    963
    964/*
    965 * Calculate the precise size of the DMA zone (first 16 MB of RAM),
    966 * and pass it to the MM layer - to help it set zone watermarks more
    967 * accurately.
    968 *
    969 * Done on 64-bit systems only for the time being, although 32-bit systems
    970 * might benefit from this as well.
    971 */
    972void __init memblock_find_dma_reserve(void)
    973{
    974#ifdef CONFIG_X86_64
    975	u64 nr_pages = 0, nr_free_pages = 0;
    976	unsigned long start_pfn, end_pfn;
    977	phys_addr_t start_addr, end_addr;
    978	int i;
    979	u64 u;
    980
    981	/*
    982	 * Iterate over all memory ranges (free and reserved ones alike),
    983	 * to calculate the total number of pages in the first 16 MB of RAM:
    984	 */
    985	nr_pages = 0;
    986	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
    987		start_pfn = min(start_pfn, MAX_DMA_PFN);
    988		end_pfn   = min(end_pfn,   MAX_DMA_PFN);
    989
    990		nr_pages += end_pfn - start_pfn;
    991	}
    992
    993	/*
    994	 * Iterate over free memory ranges to calculate the number of free
    995	 * pages in the DMA zone, while not counting potential partial
    996	 * pages at the beginning or the end of the range:
    997	 */
    998	nr_free_pages = 0;
    999	for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
   1000		start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN);
   1001		end_pfn   = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN);
   1002
   1003		if (start_pfn < end_pfn)
   1004			nr_free_pages += end_pfn - start_pfn;
   1005	}
   1006
   1007	set_dma_reserve(nr_pages - nr_free_pages);
   1008#endif
   1009}
   1010
   1011void __init zone_sizes_init(void)
   1012{
   1013	unsigned long max_zone_pfns[MAX_NR_ZONES];
   1014
   1015	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
   1016
   1017#ifdef CONFIG_ZONE_DMA
   1018	max_zone_pfns[ZONE_DMA]		= min(MAX_DMA_PFN, max_low_pfn);
   1019#endif
   1020#ifdef CONFIG_ZONE_DMA32
   1021	max_zone_pfns[ZONE_DMA32]	= min(MAX_DMA32_PFN, max_low_pfn);
   1022#endif
   1023	max_zone_pfns[ZONE_NORMAL]	= max_low_pfn;
   1024#ifdef CONFIG_HIGHMEM
   1025	max_zone_pfns[ZONE_HIGHMEM]	= max_pfn;
   1026#endif
   1027
   1028	free_area_init(max_zone_pfns);
   1029}
   1030
   1031__visible DEFINE_PER_CPU_ALIGNED(struct tlb_state, cpu_tlbstate) = {
   1032	.loaded_mm = &init_mm,
   1033	.next_asid = 1,
   1034	.cr4 = ~0UL,	/* fail hard if we screw up cr4 shadow initialization */
   1035};
   1036
   1037void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
   1038{
   1039	/* entry 0 MUST be WB (hardwired to speed up translations) */
   1040	BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
   1041
   1042	__cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
   1043	__pte2cachemode_tbl[entry] = cache;
   1044}
   1045
   1046#ifdef CONFIG_SWAP
   1047unsigned long max_swapfile_size(void)
   1048{
   1049	unsigned long pages;
   1050
   1051	pages = generic_max_swapfile_size();
   1052
   1053	if (boot_cpu_has_bug(X86_BUG_L1TF) && l1tf_mitigation != L1TF_MITIGATION_OFF) {
   1054		/* Limit the swap file size to MAX_PA/2 for L1TF workaround */
   1055		unsigned long long l1tf_limit = l1tf_pfn_limit();
   1056		/*
   1057		 * We encode swap offsets also with 3 bits below those for pfn
   1058		 * which makes the usable limit higher.
   1059		 */
   1060#if CONFIG_PGTABLE_LEVELS > 2
   1061		l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT;
   1062#endif
   1063		pages = min_t(unsigned long long, l1tf_limit, pages);
   1064	}
   1065	return pages;
   1066}
   1067#endif