cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

init_64.c (43632B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 *  linux/arch/x86_64/mm/init.c
      4 *
      5 *  Copyright (C) 1995  Linus Torvalds
      6 *  Copyright (C) 2000  Pavel Machek <pavel@ucw.cz>
      7 *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
      8 */
      9
     10#include <linux/signal.h>
     11#include <linux/sched.h>
     12#include <linux/kernel.h>
     13#include <linux/errno.h>
     14#include <linux/string.h>
     15#include <linux/types.h>
     16#include <linux/ptrace.h>
     17#include <linux/mman.h>
     18#include <linux/mm.h>
     19#include <linux/swap.h>
     20#include <linux/smp.h>
     21#include <linux/init.h>
     22#include <linux/initrd.h>
     23#include <linux/pagemap.h>
     24#include <linux/memblock.h>
     25#include <linux/proc_fs.h>
     26#include <linux/pci.h>
     27#include <linux/pfn.h>
     28#include <linux/poison.h>
     29#include <linux/dma-mapping.h>
     30#include <linux/memory.h>
     31#include <linux/memory_hotplug.h>
     32#include <linux/memremap.h>
     33#include <linux/nmi.h>
     34#include <linux/gfp.h>
     35#include <linux/kcore.h>
     36#include <linux/bootmem_info.h>
     37
     38#include <asm/processor.h>
     39#include <asm/bios_ebda.h>
     40#include <linux/uaccess.h>
     41#include <asm/pgalloc.h>
     42#include <asm/dma.h>
     43#include <asm/fixmap.h>
     44#include <asm/e820/api.h>
     45#include <asm/apic.h>
     46#include <asm/tlb.h>
     47#include <asm/mmu_context.h>
     48#include <asm/proto.h>
     49#include <asm/smp.h>
     50#include <asm/sections.h>
     51#include <asm/kdebug.h>
     52#include <asm/numa.h>
     53#include <asm/set_memory.h>
     54#include <asm/init.h>
     55#include <asm/uv/uv.h>
     56#include <asm/setup.h>
     57#include <asm/ftrace.h>
     58
     59#include "mm_internal.h"
     60
     61#include "ident_map.c"
     62
     63#define DEFINE_POPULATE(fname, type1, type2, init)		\
     64static inline void fname##_init(struct mm_struct *mm,		\
     65		type1##_t *arg1, type2##_t *arg2, bool init)	\
     66{								\
     67	if (init)						\
     68		fname##_safe(mm, arg1, arg2);			\
     69	else							\
     70		fname(mm, arg1, arg2);				\
     71}
     72
     73DEFINE_POPULATE(p4d_populate, p4d, pud, init)
     74DEFINE_POPULATE(pgd_populate, pgd, p4d, init)
     75DEFINE_POPULATE(pud_populate, pud, pmd, init)
     76DEFINE_POPULATE(pmd_populate_kernel, pmd, pte, init)
     77
     78#define DEFINE_ENTRY(type1, type2, init)			\
     79static inline void set_##type1##_init(type1##_t *arg1,		\
     80			type2##_t arg2, bool init)		\
     81{								\
     82	if (init)						\
     83		set_##type1##_safe(arg1, arg2);			\
     84	else							\
     85		set_##type1(arg1, arg2);			\
     86}
     87
     88DEFINE_ENTRY(p4d, p4d, init)
     89DEFINE_ENTRY(pud, pud, init)
     90DEFINE_ENTRY(pmd, pmd, init)
     91DEFINE_ENTRY(pte, pte, init)
     92
     93
     94/*
     95 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
     96 * physical space so we can cache the place of the first one and move
     97 * around without checking the pgd every time.
     98 */
     99
    100/* Bits supported by the hardware: */
    101pteval_t __supported_pte_mask __read_mostly = ~0;
    102/* Bits allowed in normal kernel mappings: */
    103pteval_t __default_kernel_pte_mask __read_mostly = ~0;
    104EXPORT_SYMBOL_GPL(__supported_pte_mask);
    105/* Used in PAGE_KERNEL_* macros which are reasonably used out-of-tree: */
    106EXPORT_SYMBOL(__default_kernel_pte_mask);
    107
    108int force_personality32;
    109
    110/*
    111 * noexec32=on|off
    112 * Control non executable heap for 32bit processes.
    113 *
    114 * on	PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
    115 * off	PROT_READ implies PROT_EXEC
    116 */
    117static int __init nonx32_setup(char *str)
    118{
    119	if (!strcmp(str, "on"))
    120		force_personality32 &= ~READ_IMPLIES_EXEC;
    121	else if (!strcmp(str, "off"))
    122		force_personality32 |= READ_IMPLIES_EXEC;
    123	return 1;
    124}
    125__setup("noexec32=", nonx32_setup);
    126
    127static void sync_global_pgds_l5(unsigned long start, unsigned long end)
    128{
    129	unsigned long addr;
    130
    131	for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
    132		const pgd_t *pgd_ref = pgd_offset_k(addr);
    133		struct page *page;
    134
    135		/* Check for overflow */
    136		if (addr < start)
    137			break;
    138
    139		if (pgd_none(*pgd_ref))
    140			continue;
    141
    142		spin_lock(&pgd_lock);
    143		list_for_each_entry(page, &pgd_list, lru) {
    144			pgd_t *pgd;
    145			spinlock_t *pgt_lock;
    146
    147			pgd = (pgd_t *)page_address(page) + pgd_index(addr);
    148			/* the pgt_lock only for Xen */
    149			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
    150			spin_lock(pgt_lock);
    151
    152			if (!pgd_none(*pgd_ref) && !pgd_none(*pgd))
    153				BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
    154
    155			if (pgd_none(*pgd))
    156				set_pgd(pgd, *pgd_ref);
    157
    158			spin_unlock(pgt_lock);
    159		}
    160		spin_unlock(&pgd_lock);
    161	}
    162}
    163
    164static void sync_global_pgds_l4(unsigned long start, unsigned long end)
    165{
    166	unsigned long addr;
    167
    168	for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
    169		pgd_t *pgd_ref = pgd_offset_k(addr);
    170		const p4d_t *p4d_ref;
    171		struct page *page;
    172
    173		/*
    174		 * With folded p4d, pgd_none() is always false, we need to
    175		 * handle synchronization on p4d level.
    176		 */
    177		MAYBE_BUILD_BUG_ON(pgd_none(*pgd_ref));
    178		p4d_ref = p4d_offset(pgd_ref, addr);
    179
    180		if (p4d_none(*p4d_ref))
    181			continue;
    182
    183		spin_lock(&pgd_lock);
    184		list_for_each_entry(page, &pgd_list, lru) {
    185			pgd_t *pgd;
    186			p4d_t *p4d;
    187			spinlock_t *pgt_lock;
    188
    189			pgd = (pgd_t *)page_address(page) + pgd_index(addr);
    190			p4d = p4d_offset(pgd, addr);
    191			/* the pgt_lock only for Xen */
    192			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
    193			spin_lock(pgt_lock);
    194
    195			if (!p4d_none(*p4d_ref) && !p4d_none(*p4d))
    196				BUG_ON(p4d_pgtable(*p4d)
    197				       != p4d_pgtable(*p4d_ref));
    198
    199			if (p4d_none(*p4d))
    200				set_p4d(p4d, *p4d_ref);
    201
    202			spin_unlock(pgt_lock);
    203		}
    204		spin_unlock(&pgd_lock);
    205	}
    206}
    207
    208/*
    209 * When memory was added make sure all the processes MM have
    210 * suitable PGD entries in the local PGD level page.
    211 */
    212static void sync_global_pgds(unsigned long start, unsigned long end)
    213{
    214	if (pgtable_l5_enabled())
    215		sync_global_pgds_l5(start, end);
    216	else
    217		sync_global_pgds_l4(start, end);
    218}
    219
    220/*
    221 * NOTE: This function is marked __ref because it calls __init function
    222 * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
    223 */
    224static __ref void *spp_getpage(void)
    225{
    226	void *ptr;
    227
    228	if (after_bootmem)
    229		ptr = (void *) get_zeroed_page(GFP_ATOMIC);
    230	else
    231		ptr = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
    232
    233	if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
    234		panic("set_pte_phys: cannot allocate page data %s\n",
    235			after_bootmem ? "after bootmem" : "");
    236	}
    237
    238	pr_debug("spp_getpage %p\n", ptr);
    239
    240	return ptr;
    241}
    242
    243static p4d_t *fill_p4d(pgd_t *pgd, unsigned long vaddr)
    244{
    245	if (pgd_none(*pgd)) {
    246		p4d_t *p4d = (p4d_t *)spp_getpage();
    247		pgd_populate(&init_mm, pgd, p4d);
    248		if (p4d != p4d_offset(pgd, 0))
    249			printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
    250			       p4d, p4d_offset(pgd, 0));
    251	}
    252	return p4d_offset(pgd, vaddr);
    253}
    254
    255static pud_t *fill_pud(p4d_t *p4d, unsigned long vaddr)
    256{
    257	if (p4d_none(*p4d)) {
    258		pud_t *pud = (pud_t *)spp_getpage();
    259		p4d_populate(&init_mm, p4d, pud);
    260		if (pud != pud_offset(p4d, 0))
    261			printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
    262			       pud, pud_offset(p4d, 0));
    263	}
    264	return pud_offset(p4d, vaddr);
    265}
    266
    267static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
    268{
    269	if (pud_none(*pud)) {
    270		pmd_t *pmd = (pmd_t *) spp_getpage();
    271		pud_populate(&init_mm, pud, pmd);
    272		if (pmd != pmd_offset(pud, 0))
    273			printk(KERN_ERR "PAGETABLE BUG #02! %p <-> %p\n",
    274			       pmd, pmd_offset(pud, 0));
    275	}
    276	return pmd_offset(pud, vaddr);
    277}
    278
    279static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
    280{
    281	if (pmd_none(*pmd)) {
    282		pte_t *pte = (pte_t *) spp_getpage();
    283		pmd_populate_kernel(&init_mm, pmd, pte);
    284		if (pte != pte_offset_kernel(pmd, 0))
    285			printk(KERN_ERR "PAGETABLE BUG #03!\n");
    286	}
    287	return pte_offset_kernel(pmd, vaddr);
    288}
    289
    290static void __set_pte_vaddr(pud_t *pud, unsigned long vaddr, pte_t new_pte)
    291{
    292	pmd_t *pmd = fill_pmd(pud, vaddr);
    293	pte_t *pte = fill_pte(pmd, vaddr);
    294
    295	set_pte(pte, new_pte);
    296
    297	/*
    298	 * It's enough to flush this one mapping.
    299	 * (PGE mappings get flushed as well)
    300	 */
    301	flush_tlb_one_kernel(vaddr);
    302}
    303
    304void set_pte_vaddr_p4d(p4d_t *p4d_page, unsigned long vaddr, pte_t new_pte)
    305{
    306	p4d_t *p4d = p4d_page + p4d_index(vaddr);
    307	pud_t *pud = fill_pud(p4d, vaddr);
    308
    309	__set_pte_vaddr(pud, vaddr, new_pte);
    310}
    311
    312void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
    313{
    314	pud_t *pud = pud_page + pud_index(vaddr);
    315
    316	__set_pte_vaddr(pud, vaddr, new_pte);
    317}
    318
    319void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
    320{
    321	pgd_t *pgd;
    322	p4d_t *p4d_page;
    323
    324	pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
    325
    326	pgd = pgd_offset_k(vaddr);
    327	if (pgd_none(*pgd)) {
    328		printk(KERN_ERR
    329			"PGD FIXMAP MISSING, it should be setup in head.S!\n");
    330		return;
    331	}
    332
    333	p4d_page = p4d_offset(pgd, 0);
    334	set_pte_vaddr_p4d(p4d_page, vaddr, pteval);
    335}
    336
    337pmd_t * __init populate_extra_pmd(unsigned long vaddr)
    338{
    339	pgd_t *pgd;
    340	p4d_t *p4d;
    341	pud_t *pud;
    342
    343	pgd = pgd_offset_k(vaddr);
    344	p4d = fill_p4d(pgd, vaddr);
    345	pud = fill_pud(p4d, vaddr);
    346	return fill_pmd(pud, vaddr);
    347}
    348
    349pte_t * __init populate_extra_pte(unsigned long vaddr)
    350{
    351	pmd_t *pmd;
    352
    353	pmd = populate_extra_pmd(vaddr);
    354	return fill_pte(pmd, vaddr);
    355}
    356
    357/*
    358 * Create large page table mappings for a range of physical addresses.
    359 */
    360static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
    361					enum page_cache_mode cache)
    362{
    363	pgd_t *pgd;
    364	p4d_t *p4d;
    365	pud_t *pud;
    366	pmd_t *pmd;
    367	pgprot_t prot;
    368
    369	pgprot_val(prot) = pgprot_val(PAGE_KERNEL_LARGE) |
    370		protval_4k_2_large(cachemode2protval(cache));
    371	BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
    372	for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
    373		pgd = pgd_offset_k((unsigned long)__va(phys));
    374		if (pgd_none(*pgd)) {
    375			p4d = (p4d_t *) spp_getpage();
    376			set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE |
    377						_PAGE_USER));
    378		}
    379		p4d = p4d_offset(pgd, (unsigned long)__va(phys));
    380		if (p4d_none(*p4d)) {
    381			pud = (pud_t *) spp_getpage();
    382			set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE |
    383						_PAGE_USER));
    384		}
    385		pud = pud_offset(p4d, (unsigned long)__va(phys));
    386		if (pud_none(*pud)) {
    387			pmd = (pmd_t *) spp_getpage();
    388			set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
    389						_PAGE_USER));
    390		}
    391		pmd = pmd_offset(pud, phys);
    392		BUG_ON(!pmd_none(*pmd));
    393		set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
    394	}
    395}
    396
    397void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
    398{
    399	__init_extra_mapping(phys, size, _PAGE_CACHE_MODE_WB);
    400}
    401
    402void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
    403{
    404	__init_extra_mapping(phys, size, _PAGE_CACHE_MODE_UC);
    405}
    406
    407/*
    408 * The head.S code sets up the kernel high mapping:
    409 *
    410 *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
    411 *
    412 * phys_base holds the negative offset to the kernel, which is added
    413 * to the compile time generated pmds. This results in invalid pmds up
    414 * to the point where we hit the physaddr 0 mapping.
    415 *
    416 * We limit the mappings to the region from _text to _brk_end.  _brk_end
    417 * is rounded up to the 2MB boundary. This catches the invalid pmds as
    418 * well, as they are located before _text:
    419 */
    420void __init cleanup_highmap(void)
    421{
    422	unsigned long vaddr = __START_KERNEL_map;
    423	unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
    424	unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
    425	pmd_t *pmd = level2_kernel_pgt;
    426
    427	/*
    428	 * Native path, max_pfn_mapped is not set yet.
    429	 * Xen has valid max_pfn_mapped set in
    430	 *	arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
    431	 */
    432	if (max_pfn_mapped)
    433		vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
    434
    435	for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
    436		if (pmd_none(*pmd))
    437			continue;
    438		if (vaddr < (unsigned long) _text || vaddr > end)
    439			set_pmd(pmd, __pmd(0));
    440	}
    441}
    442
    443/*
    444 * Create PTE level page table mapping for physical addresses.
    445 * It returns the last physical address mapped.
    446 */
    447static unsigned long __meminit
    448phys_pte_init(pte_t *pte_page, unsigned long paddr, unsigned long paddr_end,
    449	      pgprot_t prot, bool init)
    450{
    451	unsigned long pages = 0, paddr_next;
    452	unsigned long paddr_last = paddr_end;
    453	pte_t *pte;
    454	int i;
    455
    456	pte = pte_page + pte_index(paddr);
    457	i = pte_index(paddr);
    458
    459	for (; i < PTRS_PER_PTE; i++, paddr = paddr_next, pte++) {
    460		paddr_next = (paddr & PAGE_MASK) + PAGE_SIZE;
    461		if (paddr >= paddr_end) {
    462			if (!after_bootmem &&
    463			    !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
    464					     E820_TYPE_RAM) &&
    465			    !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
    466					     E820_TYPE_RESERVED_KERN))
    467				set_pte_init(pte, __pte(0), init);
    468			continue;
    469		}
    470
    471		/*
    472		 * We will re-use the existing mapping.
    473		 * Xen for example has some special requirements, like mapping
    474		 * pagetable pages as RO. So assume someone who pre-setup
    475		 * these mappings are more intelligent.
    476		 */
    477		if (!pte_none(*pte)) {
    478			if (!after_bootmem)
    479				pages++;
    480			continue;
    481		}
    482
    483		if (0)
    484			pr_info("   pte=%p addr=%lx pte=%016lx\n", pte, paddr,
    485				pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL).pte);
    486		pages++;
    487		set_pte_init(pte, pfn_pte(paddr >> PAGE_SHIFT, prot), init);
    488		paddr_last = (paddr & PAGE_MASK) + PAGE_SIZE;
    489	}
    490
    491	update_page_count(PG_LEVEL_4K, pages);
    492
    493	return paddr_last;
    494}
    495
    496/*
    497 * Create PMD level page table mapping for physical addresses. The virtual
    498 * and physical address have to be aligned at this level.
    499 * It returns the last physical address mapped.
    500 */
    501static unsigned long __meminit
    502phys_pmd_init(pmd_t *pmd_page, unsigned long paddr, unsigned long paddr_end,
    503	      unsigned long page_size_mask, pgprot_t prot, bool init)
    504{
    505	unsigned long pages = 0, paddr_next;
    506	unsigned long paddr_last = paddr_end;
    507
    508	int i = pmd_index(paddr);
    509
    510	for (; i < PTRS_PER_PMD; i++, paddr = paddr_next) {
    511		pmd_t *pmd = pmd_page + pmd_index(paddr);
    512		pte_t *pte;
    513		pgprot_t new_prot = prot;
    514
    515		paddr_next = (paddr & PMD_MASK) + PMD_SIZE;
    516		if (paddr >= paddr_end) {
    517			if (!after_bootmem &&
    518			    !e820__mapped_any(paddr & PMD_MASK, paddr_next,
    519					     E820_TYPE_RAM) &&
    520			    !e820__mapped_any(paddr & PMD_MASK, paddr_next,
    521					     E820_TYPE_RESERVED_KERN))
    522				set_pmd_init(pmd, __pmd(0), init);
    523			continue;
    524		}
    525
    526		if (!pmd_none(*pmd)) {
    527			if (!pmd_large(*pmd)) {
    528				spin_lock(&init_mm.page_table_lock);
    529				pte = (pte_t *)pmd_page_vaddr(*pmd);
    530				paddr_last = phys_pte_init(pte, paddr,
    531							   paddr_end, prot,
    532							   init);
    533				spin_unlock(&init_mm.page_table_lock);
    534				continue;
    535			}
    536			/*
    537			 * If we are ok with PG_LEVEL_2M mapping, then we will
    538			 * use the existing mapping,
    539			 *
    540			 * Otherwise, we will split the large page mapping but
    541			 * use the same existing protection bits except for
    542			 * large page, so that we don't violate Intel's TLB
    543			 * Application note (317080) which says, while changing
    544			 * the page sizes, new and old translations should
    545			 * not differ with respect to page frame and
    546			 * attributes.
    547			 */
    548			if (page_size_mask & (1 << PG_LEVEL_2M)) {
    549				if (!after_bootmem)
    550					pages++;
    551				paddr_last = paddr_next;
    552				continue;
    553			}
    554			new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
    555		}
    556
    557		if (page_size_mask & (1<<PG_LEVEL_2M)) {
    558			pages++;
    559			spin_lock(&init_mm.page_table_lock);
    560			set_pte_init((pte_t *)pmd,
    561				     pfn_pte((paddr & PMD_MASK) >> PAGE_SHIFT,
    562					     __pgprot(pgprot_val(prot) | _PAGE_PSE)),
    563				     init);
    564			spin_unlock(&init_mm.page_table_lock);
    565			paddr_last = paddr_next;
    566			continue;
    567		}
    568
    569		pte = alloc_low_page();
    570		paddr_last = phys_pte_init(pte, paddr, paddr_end, new_prot, init);
    571
    572		spin_lock(&init_mm.page_table_lock);
    573		pmd_populate_kernel_init(&init_mm, pmd, pte, init);
    574		spin_unlock(&init_mm.page_table_lock);
    575	}
    576	update_page_count(PG_LEVEL_2M, pages);
    577	return paddr_last;
    578}
    579
    580/*
    581 * Create PUD level page table mapping for physical addresses. The virtual
    582 * and physical address do not have to be aligned at this level. KASLR can
    583 * randomize virtual addresses up to this level.
    584 * It returns the last physical address mapped.
    585 */
    586static unsigned long __meminit
    587phys_pud_init(pud_t *pud_page, unsigned long paddr, unsigned long paddr_end,
    588	      unsigned long page_size_mask, pgprot_t _prot, bool init)
    589{
    590	unsigned long pages = 0, paddr_next;
    591	unsigned long paddr_last = paddr_end;
    592	unsigned long vaddr = (unsigned long)__va(paddr);
    593	int i = pud_index(vaddr);
    594
    595	for (; i < PTRS_PER_PUD; i++, paddr = paddr_next) {
    596		pud_t *pud;
    597		pmd_t *pmd;
    598		pgprot_t prot = _prot;
    599
    600		vaddr = (unsigned long)__va(paddr);
    601		pud = pud_page + pud_index(vaddr);
    602		paddr_next = (paddr & PUD_MASK) + PUD_SIZE;
    603
    604		if (paddr >= paddr_end) {
    605			if (!after_bootmem &&
    606			    !e820__mapped_any(paddr & PUD_MASK, paddr_next,
    607					     E820_TYPE_RAM) &&
    608			    !e820__mapped_any(paddr & PUD_MASK, paddr_next,
    609					     E820_TYPE_RESERVED_KERN))
    610				set_pud_init(pud, __pud(0), init);
    611			continue;
    612		}
    613
    614		if (!pud_none(*pud)) {
    615			if (!pud_large(*pud)) {
    616				pmd = pmd_offset(pud, 0);
    617				paddr_last = phys_pmd_init(pmd, paddr,
    618							   paddr_end,
    619							   page_size_mask,
    620							   prot, init);
    621				continue;
    622			}
    623			/*
    624			 * If we are ok with PG_LEVEL_1G mapping, then we will
    625			 * use the existing mapping.
    626			 *
    627			 * Otherwise, we will split the gbpage mapping but use
    628			 * the same existing protection  bits except for large
    629			 * page, so that we don't violate Intel's TLB
    630			 * Application note (317080) which says, while changing
    631			 * the page sizes, new and old translations should
    632			 * not differ with respect to page frame and
    633			 * attributes.
    634			 */
    635			if (page_size_mask & (1 << PG_LEVEL_1G)) {
    636				if (!after_bootmem)
    637					pages++;
    638				paddr_last = paddr_next;
    639				continue;
    640			}
    641			prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
    642		}
    643
    644		if (page_size_mask & (1<<PG_LEVEL_1G)) {
    645			pages++;
    646			spin_lock(&init_mm.page_table_lock);
    647
    648			prot = __pgprot(pgprot_val(prot) | __PAGE_KERNEL_LARGE);
    649
    650			set_pte_init((pte_t *)pud,
    651				     pfn_pte((paddr & PUD_MASK) >> PAGE_SHIFT,
    652					     prot),
    653				     init);
    654			spin_unlock(&init_mm.page_table_lock);
    655			paddr_last = paddr_next;
    656			continue;
    657		}
    658
    659		pmd = alloc_low_page();
    660		paddr_last = phys_pmd_init(pmd, paddr, paddr_end,
    661					   page_size_mask, prot, init);
    662
    663		spin_lock(&init_mm.page_table_lock);
    664		pud_populate_init(&init_mm, pud, pmd, init);
    665		spin_unlock(&init_mm.page_table_lock);
    666	}
    667
    668	update_page_count(PG_LEVEL_1G, pages);
    669
    670	return paddr_last;
    671}
    672
    673static unsigned long __meminit
    674phys_p4d_init(p4d_t *p4d_page, unsigned long paddr, unsigned long paddr_end,
    675	      unsigned long page_size_mask, pgprot_t prot, bool init)
    676{
    677	unsigned long vaddr, vaddr_end, vaddr_next, paddr_next, paddr_last;
    678
    679	paddr_last = paddr_end;
    680	vaddr = (unsigned long)__va(paddr);
    681	vaddr_end = (unsigned long)__va(paddr_end);
    682
    683	if (!pgtable_l5_enabled())
    684		return phys_pud_init((pud_t *) p4d_page, paddr, paddr_end,
    685				     page_size_mask, prot, init);
    686
    687	for (; vaddr < vaddr_end; vaddr = vaddr_next) {
    688		p4d_t *p4d = p4d_page + p4d_index(vaddr);
    689		pud_t *pud;
    690
    691		vaddr_next = (vaddr & P4D_MASK) + P4D_SIZE;
    692		paddr = __pa(vaddr);
    693
    694		if (paddr >= paddr_end) {
    695			paddr_next = __pa(vaddr_next);
    696			if (!after_bootmem &&
    697			    !e820__mapped_any(paddr & P4D_MASK, paddr_next,
    698					     E820_TYPE_RAM) &&
    699			    !e820__mapped_any(paddr & P4D_MASK, paddr_next,
    700					     E820_TYPE_RESERVED_KERN))
    701				set_p4d_init(p4d, __p4d(0), init);
    702			continue;
    703		}
    704
    705		if (!p4d_none(*p4d)) {
    706			pud = pud_offset(p4d, 0);
    707			paddr_last = phys_pud_init(pud, paddr, __pa(vaddr_end),
    708					page_size_mask, prot, init);
    709			continue;
    710		}
    711
    712		pud = alloc_low_page();
    713		paddr_last = phys_pud_init(pud, paddr, __pa(vaddr_end),
    714					   page_size_mask, prot, init);
    715
    716		spin_lock(&init_mm.page_table_lock);
    717		p4d_populate_init(&init_mm, p4d, pud, init);
    718		spin_unlock(&init_mm.page_table_lock);
    719	}
    720
    721	return paddr_last;
    722}
    723
    724static unsigned long __meminit
    725__kernel_physical_mapping_init(unsigned long paddr_start,
    726			       unsigned long paddr_end,
    727			       unsigned long page_size_mask,
    728			       pgprot_t prot, bool init)
    729{
    730	bool pgd_changed = false;
    731	unsigned long vaddr, vaddr_start, vaddr_end, vaddr_next, paddr_last;
    732
    733	paddr_last = paddr_end;
    734	vaddr = (unsigned long)__va(paddr_start);
    735	vaddr_end = (unsigned long)__va(paddr_end);
    736	vaddr_start = vaddr;
    737
    738	for (; vaddr < vaddr_end; vaddr = vaddr_next) {
    739		pgd_t *pgd = pgd_offset_k(vaddr);
    740		p4d_t *p4d;
    741
    742		vaddr_next = (vaddr & PGDIR_MASK) + PGDIR_SIZE;
    743
    744		if (pgd_val(*pgd)) {
    745			p4d = (p4d_t *)pgd_page_vaddr(*pgd);
    746			paddr_last = phys_p4d_init(p4d, __pa(vaddr),
    747						   __pa(vaddr_end),
    748						   page_size_mask,
    749						   prot, init);
    750			continue;
    751		}
    752
    753		p4d = alloc_low_page();
    754		paddr_last = phys_p4d_init(p4d, __pa(vaddr), __pa(vaddr_end),
    755					   page_size_mask, prot, init);
    756
    757		spin_lock(&init_mm.page_table_lock);
    758		if (pgtable_l5_enabled())
    759			pgd_populate_init(&init_mm, pgd, p4d, init);
    760		else
    761			p4d_populate_init(&init_mm, p4d_offset(pgd, vaddr),
    762					  (pud_t *) p4d, init);
    763
    764		spin_unlock(&init_mm.page_table_lock);
    765		pgd_changed = true;
    766	}
    767
    768	if (pgd_changed)
    769		sync_global_pgds(vaddr_start, vaddr_end - 1);
    770
    771	return paddr_last;
    772}
    773
    774
    775/*
    776 * Create page table mapping for the physical memory for specific physical
    777 * addresses. Note that it can only be used to populate non-present entries.
    778 * The virtual and physical addresses have to be aligned on PMD level
    779 * down. It returns the last physical address mapped.
    780 */
    781unsigned long __meminit
    782kernel_physical_mapping_init(unsigned long paddr_start,
    783			     unsigned long paddr_end,
    784			     unsigned long page_size_mask, pgprot_t prot)
    785{
    786	return __kernel_physical_mapping_init(paddr_start, paddr_end,
    787					      page_size_mask, prot, true);
    788}
    789
    790/*
    791 * This function is similar to kernel_physical_mapping_init() above with the
    792 * exception that it uses set_{pud,pmd}() instead of the set_{pud,pte}_safe()
    793 * when updating the mapping. The caller is responsible to flush the TLBs after
    794 * the function returns.
    795 */
    796unsigned long __meminit
    797kernel_physical_mapping_change(unsigned long paddr_start,
    798			       unsigned long paddr_end,
    799			       unsigned long page_size_mask)
    800{
    801	return __kernel_physical_mapping_init(paddr_start, paddr_end,
    802					      page_size_mask, PAGE_KERNEL,
    803					      false);
    804}
    805
    806#ifndef CONFIG_NUMA
    807void __init initmem_init(void)
    808{
    809	memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
    810}
    811#endif
    812
    813void __init paging_init(void)
    814{
    815	sparse_init();
    816
    817	/*
    818	 * clear the default setting with node 0
    819	 * note: don't use nodes_clear here, that is really clearing when
    820	 *	 numa support is not compiled in, and later node_set_state
    821	 *	 will not set it back.
    822	 */
    823	node_clear_state(0, N_MEMORY);
    824	node_clear_state(0, N_NORMAL_MEMORY);
    825
    826	zone_sizes_init();
    827}
    828
    829#ifdef CONFIG_SPARSEMEM_VMEMMAP
    830#define PAGE_UNUSED 0xFD
    831
    832/*
    833 * The unused vmemmap range, which was not yet memset(PAGE_UNUSED), ranges
    834 * from unused_pmd_start to next PMD_SIZE boundary.
    835 */
    836static unsigned long unused_pmd_start __meminitdata;
    837
    838static void __meminit vmemmap_flush_unused_pmd(void)
    839{
    840	if (!unused_pmd_start)
    841		return;
    842	/*
    843	 * Clears (unused_pmd_start, PMD_END]
    844	 */
    845	memset((void *)unused_pmd_start, PAGE_UNUSED,
    846	       ALIGN(unused_pmd_start, PMD_SIZE) - unused_pmd_start);
    847	unused_pmd_start = 0;
    848}
    849
    850#ifdef CONFIG_MEMORY_HOTPLUG
    851/* Returns true if the PMD is completely unused and thus it can be freed */
    852static bool __meminit vmemmap_pmd_is_unused(unsigned long addr, unsigned long end)
    853{
    854	unsigned long start = ALIGN_DOWN(addr, PMD_SIZE);
    855
    856	/*
    857	 * Flush the unused range cache to ensure that memchr_inv() will work
    858	 * for the whole range.
    859	 */
    860	vmemmap_flush_unused_pmd();
    861	memset((void *)addr, PAGE_UNUSED, end - addr);
    862
    863	return !memchr_inv((void *)start, PAGE_UNUSED, PMD_SIZE);
    864}
    865#endif
    866
    867static void __meminit __vmemmap_use_sub_pmd(unsigned long start)
    868{
    869	/*
    870	 * As we expect to add in the same granularity as we remove, it's
    871	 * sufficient to mark only some piece used to block the memmap page from
    872	 * getting removed when removing some other adjacent memmap (just in
    873	 * case the first memmap never gets initialized e.g., because the memory
    874	 * block never gets onlined).
    875	 */
    876	memset((void *)start, 0, sizeof(struct page));
    877}
    878
    879static void __meminit vmemmap_use_sub_pmd(unsigned long start, unsigned long end)
    880{
    881	/*
    882	 * We only optimize if the new used range directly follows the
    883	 * previously unused range (esp., when populating consecutive sections).
    884	 */
    885	if (unused_pmd_start == start) {
    886		if (likely(IS_ALIGNED(end, PMD_SIZE)))
    887			unused_pmd_start = 0;
    888		else
    889			unused_pmd_start = end;
    890		return;
    891	}
    892
    893	/*
    894	 * If the range does not contiguously follows previous one, make sure
    895	 * to mark the unused range of the previous one so it can be removed.
    896	 */
    897	vmemmap_flush_unused_pmd();
    898	__vmemmap_use_sub_pmd(start);
    899}
    900
    901
    902static void __meminit vmemmap_use_new_sub_pmd(unsigned long start, unsigned long end)
    903{
    904	const unsigned long page = ALIGN_DOWN(start, PMD_SIZE);
    905
    906	vmemmap_flush_unused_pmd();
    907
    908	/*
    909	 * Could be our memmap page is filled with PAGE_UNUSED already from a
    910	 * previous remove. Make sure to reset it.
    911	 */
    912	__vmemmap_use_sub_pmd(start);
    913
    914	/*
    915	 * Mark with PAGE_UNUSED the unused parts of the new memmap range
    916	 */
    917	if (!IS_ALIGNED(start, PMD_SIZE))
    918		memset((void *)page, PAGE_UNUSED, start - page);
    919
    920	/*
    921	 * We want to avoid memset(PAGE_UNUSED) when populating the vmemmap of
    922	 * consecutive sections. Remember for the last added PMD where the
    923	 * unused range begins.
    924	 */
    925	if (!IS_ALIGNED(end, PMD_SIZE))
    926		unused_pmd_start = end;
    927}
    928#endif
    929
    930/*
    931 * Memory hotplug specific functions
    932 */
    933#ifdef CONFIG_MEMORY_HOTPLUG
    934/*
    935 * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
    936 * updating.
    937 */
    938static void update_end_of_memory_vars(u64 start, u64 size)
    939{
    940	unsigned long end_pfn = PFN_UP(start + size);
    941
    942	if (end_pfn > max_pfn) {
    943		max_pfn = end_pfn;
    944		max_low_pfn = end_pfn;
    945		high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
    946	}
    947}
    948
    949int add_pages(int nid, unsigned long start_pfn, unsigned long nr_pages,
    950	      struct mhp_params *params)
    951{
    952	int ret;
    953
    954	ret = __add_pages(nid, start_pfn, nr_pages, params);
    955	WARN_ON_ONCE(ret);
    956
    957	/* update max_pfn, max_low_pfn and high_memory */
    958	update_end_of_memory_vars(start_pfn << PAGE_SHIFT,
    959				  nr_pages << PAGE_SHIFT);
    960
    961	return ret;
    962}
    963
    964int arch_add_memory(int nid, u64 start, u64 size,
    965		    struct mhp_params *params)
    966{
    967	unsigned long start_pfn = start >> PAGE_SHIFT;
    968	unsigned long nr_pages = size >> PAGE_SHIFT;
    969
    970	init_memory_mapping(start, start + size, params->pgprot);
    971
    972	return add_pages(nid, start_pfn, nr_pages, params);
    973}
    974
    975static void __meminit free_pagetable(struct page *page, int order)
    976{
    977	unsigned long magic;
    978	unsigned int nr_pages = 1 << order;
    979
    980	/* bootmem page has reserved flag */
    981	if (PageReserved(page)) {
    982		__ClearPageReserved(page);
    983
    984		magic = page->index;
    985		if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) {
    986			while (nr_pages--)
    987				put_page_bootmem(page++);
    988		} else
    989			while (nr_pages--)
    990				free_reserved_page(page++);
    991	} else
    992		free_pages((unsigned long)page_address(page), order);
    993}
    994
    995static void __meminit free_hugepage_table(struct page *page,
    996		struct vmem_altmap *altmap)
    997{
    998	if (altmap)
    999		vmem_altmap_free(altmap, PMD_SIZE / PAGE_SIZE);
   1000	else
   1001		free_pagetable(page, get_order(PMD_SIZE));
   1002}
   1003
   1004static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
   1005{
   1006	pte_t *pte;
   1007	int i;
   1008
   1009	for (i = 0; i < PTRS_PER_PTE; i++) {
   1010		pte = pte_start + i;
   1011		if (!pte_none(*pte))
   1012			return;
   1013	}
   1014
   1015	/* free a pte talbe */
   1016	free_pagetable(pmd_page(*pmd), 0);
   1017	spin_lock(&init_mm.page_table_lock);
   1018	pmd_clear(pmd);
   1019	spin_unlock(&init_mm.page_table_lock);
   1020}
   1021
   1022static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
   1023{
   1024	pmd_t *pmd;
   1025	int i;
   1026
   1027	for (i = 0; i < PTRS_PER_PMD; i++) {
   1028		pmd = pmd_start + i;
   1029		if (!pmd_none(*pmd))
   1030			return;
   1031	}
   1032
   1033	/* free a pmd talbe */
   1034	free_pagetable(pud_page(*pud), 0);
   1035	spin_lock(&init_mm.page_table_lock);
   1036	pud_clear(pud);
   1037	spin_unlock(&init_mm.page_table_lock);
   1038}
   1039
   1040static void __meminit free_pud_table(pud_t *pud_start, p4d_t *p4d)
   1041{
   1042	pud_t *pud;
   1043	int i;
   1044
   1045	for (i = 0; i < PTRS_PER_PUD; i++) {
   1046		pud = pud_start + i;
   1047		if (!pud_none(*pud))
   1048			return;
   1049	}
   1050
   1051	/* free a pud talbe */
   1052	free_pagetable(p4d_page(*p4d), 0);
   1053	spin_lock(&init_mm.page_table_lock);
   1054	p4d_clear(p4d);
   1055	spin_unlock(&init_mm.page_table_lock);
   1056}
   1057
   1058static void __meminit
   1059remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
   1060		 bool direct)
   1061{
   1062	unsigned long next, pages = 0;
   1063	pte_t *pte;
   1064	phys_addr_t phys_addr;
   1065
   1066	pte = pte_start + pte_index(addr);
   1067	for (; addr < end; addr = next, pte++) {
   1068		next = (addr + PAGE_SIZE) & PAGE_MASK;
   1069		if (next > end)
   1070			next = end;
   1071
   1072		if (!pte_present(*pte))
   1073			continue;
   1074
   1075		/*
   1076		 * We mapped [0,1G) memory as identity mapping when
   1077		 * initializing, in arch/x86/kernel/head_64.S. These
   1078		 * pagetables cannot be removed.
   1079		 */
   1080		phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
   1081		if (phys_addr < (phys_addr_t)0x40000000)
   1082			return;
   1083
   1084		if (!direct)
   1085			free_pagetable(pte_page(*pte), 0);
   1086
   1087		spin_lock(&init_mm.page_table_lock);
   1088		pte_clear(&init_mm, addr, pte);
   1089		spin_unlock(&init_mm.page_table_lock);
   1090
   1091		/* For non-direct mapping, pages means nothing. */
   1092		pages++;
   1093	}
   1094
   1095	/* Call free_pte_table() in remove_pmd_table(). */
   1096	flush_tlb_all();
   1097	if (direct)
   1098		update_page_count(PG_LEVEL_4K, -pages);
   1099}
   1100
   1101static void __meminit
   1102remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
   1103		 bool direct, struct vmem_altmap *altmap)
   1104{
   1105	unsigned long next, pages = 0;
   1106	pte_t *pte_base;
   1107	pmd_t *pmd;
   1108
   1109	pmd = pmd_start + pmd_index(addr);
   1110	for (; addr < end; addr = next, pmd++) {
   1111		next = pmd_addr_end(addr, end);
   1112
   1113		if (!pmd_present(*pmd))
   1114			continue;
   1115
   1116		if (pmd_large(*pmd)) {
   1117			if (IS_ALIGNED(addr, PMD_SIZE) &&
   1118			    IS_ALIGNED(next, PMD_SIZE)) {
   1119				if (!direct)
   1120					free_hugepage_table(pmd_page(*pmd),
   1121							    altmap);
   1122
   1123				spin_lock(&init_mm.page_table_lock);
   1124				pmd_clear(pmd);
   1125				spin_unlock(&init_mm.page_table_lock);
   1126				pages++;
   1127			}
   1128#ifdef CONFIG_SPARSEMEM_VMEMMAP
   1129			else if (vmemmap_pmd_is_unused(addr, next)) {
   1130					free_hugepage_table(pmd_page(*pmd),
   1131							    altmap);
   1132					spin_lock(&init_mm.page_table_lock);
   1133					pmd_clear(pmd);
   1134					spin_unlock(&init_mm.page_table_lock);
   1135			}
   1136#endif
   1137			continue;
   1138		}
   1139
   1140		pte_base = (pte_t *)pmd_page_vaddr(*pmd);
   1141		remove_pte_table(pte_base, addr, next, direct);
   1142		free_pte_table(pte_base, pmd);
   1143	}
   1144
   1145	/* Call free_pmd_table() in remove_pud_table(). */
   1146	if (direct)
   1147		update_page_count(PG_LEVEL_2M, -pages);
   1148}
   1149
   1150static void __meminit
   1151remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
   1152		 struct vmem_altmap *altmap, bool direct)
   1153{
   1154	unsigned long next, pages = 0;
   1155	pmd_t *pmd_base;
   1156	pud_t *pud;
   1157
   1158	pud = pud_start + pud_index(addr);
   1159	for (; addr < end; addr = next, pud++) {
   1160		next = pud_addr_end(addr, end);
   1161
   1162		if (!pud_present(*pud))
   1163			continue;
   1164
   1165		if (pud_large(*pud) &&
   1166		    IS_ALIGNED(addr, PUD_SIZE) &&
   1167		    IS_ALIGNED(next, PUD_SIZE)) {
   1168			spin_lock(&init_mm.page_table_lock);
   1169			pud_clear(pud);
   1170			spin_unlock(&init_mm.page_table_lock);
   1171			pages++;
   1172			continue;
   1173		}
   1174
   1175		pmd_base = pmd_offset(pud, 0);
   1176		remove_pmd_table(pmd_base, addr, next, direct, altmap);
   1177		free_pmd_table(pmd_base, pud);
   1178	}
   1179
   1180	if (direct)
   1181		update_page_count(PG_LEVEL_1G, -pages);
   1182}
   1183
   1184static void __meminit
   1185remove_p4d_table(p4d_t *p4d_start, unsigned long addr, unsigned long end,
   1186		 struct vmem_altmap *altmap, bool direct)
   1187{
   1188	unsigned long next, pages = 0;
   1189	pud_t *pud_base;
   1190	p4d_t *p4d;
   1191
   1192	p4d = p4d_start + p4d_index(addr);
   1193	for (; addr < end; addr = next, p4d++) {
   1194		next = p4d_addr_end(addr, end);
   1195
   1196		if (!p4d_present(*p4d))
   1197			continue;
   1198
   1199		BUILD_BUG_ON(p4d_large(*p4d));
   1200
   1201		pud_base = pud_offset(p4d, 0);
   1202		remove_pud_table(pud_base, addr, next, altmap, direct);
   1203		/*
   1204		 * For 4-level page tables we do not want to free PUDs, but in the
   1205		 * 5-level case we should free them. This code will have to change
   1206		 * to adapt for boot-time switching between 4 and 5 level page tables.
   1207		 */
   1208		if (pgtable_l5_enabled())
   1209			free_pud_table(pud_base, p4d);
   1210	}
   1211
   1212	if (direct)
   1213		update_page_count(PG_LEVEL_512G, -pages);
   1214}
   1215
   1216/* start and end are both virtual address. */
   1217static void __meminit
   1218remove_pagetable(unsigned long start, unsigned long end, bool direct,
   1219		struct vmem_altmap *altmap)
   1220{
   1221	unsigned long next;
   1222	unsigned long addr;
   1223	pgd_t *pgd;
   1224	p4d_t *p4d;
   1225
   1226	for (addr = start; addr < end; addr = next) {
   1227		next = pgd_addr_end(addr, end);
   1228
   1229		pgd = pgd_offset_k(addr);
   1230		if (!pgd_present(*pgd))
   1231			continue;
   1232
   1233		p4d = p4d_offset(pgd, 0);
   1234		remove_p4d_table(p4d, addr, next, altmap, direct);
   1235	}
   1236
   1237	flush_tlb_all();
   1238}
   1239
   1240void __ref vmemmap_free(unsigned long start, unsigned long end,
   1241		struct vmem_altmap *altmap)
   1242{
   1243	VM_BUG_ON(!PAGE_ALIGNED(start));
   1244	VM_BUG_ON(!PAGE_ALIGNED(end));
   1245
   1246	remove_pagetable(start, end, false, altmap);
   1247}
   1248
   1249static void __meminit
   1250kernel_physical_mapping_remove(unsigned long start, unsigned long end)
   1251{
   1252	start = (unsigned long)__va(start);
   1253	end = (unsigned long)__va(end);
   1254
   1255	remove_pagetable(start, end, true, NULL);
   1256}
   1257
   1258void __ref arch_remove_memory(u64 start, u64 size, struct vmem_altmap *altmap)
   1259{
   1260	unsigned long start_pfn = start >> PAGE_SHIFT;
   1261	unsigned long nr_pages = size >> PAGE_SHIFT;
   1262
   1263	__remove_pages(start_pfn, nr_pages, altmap);
   1264	kernel_physical_mapping_remove(start, start + size);
   1265}
   1266#endif /* CONFIG_MEMORY_HOTPLUG */
   1267
   1268static struct kcore_list kcore_vsyscall;
   1269
   1270static void __init register_page_bootmem_info(void)
   1271{
   1272#if defined(CONFIG_NUMA) || defined(CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP)
   1273	int i;
   1274
   1275	for_each_online_node(i)
   1276		register_page_bootmem_info_node(NODE_DATA(i));
   1277#endif
   1278}
   1279
   1280/*
   1281 * Pre-allocates page-table pages for the vmalloc area in the kernel page-table.
   1282 * Only the level which needs to be synchronized between all page-tables is
   1283 * allocated because the synchronization can be expensive.
   1284 */
   1285static void __init preallocate_vmalloc_pages(void)
   1286{
   1287	unsigned long addr;
   1288	const char *lvl;
   1289
   1290	for (addr = VMALLOC_START; addr <= VMALLOC_END; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
   1291		pgd_t *pgd = pgd_offset_k(addr);
   1292		p4d_t *p4d;
   1293		pud_t *pud;
   1294
   1295		lvl = "p4d";
   1296		p4d = p4d_alloc(&init_mm, pgd, addr);
   1297		if (!p4d)
   1298			goto failed;
   1299
   1300		if (pgtable_l5_enabled())
   1301			continue;
   1302
   1303		/*
   1304		 * The goal here is to allocate all possibly required
   1305		 * hardware page tables pointed to by the top hardware
   1306		 * level.
   1307		 *
   1308		 * On 4-level systems, the P4D layer is folded away and
   1309		 * the above code does no preallocation.  Below, go down
   1310		 * to the pud _software_ level to ensure the second
   1311		 * hardware level is allocated on 4-level systems too.
   1312		 */
   1313		lvl = "pud";
   1314		pud = pud_alloc(&init_mm, p4d, addr);
   1315		if (!pud)
   1316			goto failed;
   1317	}
   1318
   1319	return;
   1320
   1321failed:
   1322
   1323	/*
   1324	 * The pages have to be there now or they will be missing in
   1325	 * process page-tables later.
   1326	 */
   1327	panic("Failed to pre-allocate %s pages for vmalloc area\n", lvl);
   1328}
   1329
   1330void __init mem_init(void)
   1331{
   1332	pci_iommu_alloc();
   1333
   1334	/* clear_bss() already clear the empty_zero_page */
   1335
   1336	/* this will put all memory onto the freelists */
   1337	memblock_free_all();
   1338	after_bootmem = 1;
   1339	x86_init.hyper.init_after_bootmem();
   1340
   1341	/*
   1342	 * Must be done after boot memory is put on freelist, because here we
   1343	 * might set fields in deferred struct pages that have not yet been
   1344	 * initialized, and memblock_free_all() initializes all the reserved
   1345	 * deferred pages for us.
   1346	 */
   1347	register_page_bootmem_info();
   1348
   1349	/* Register memory areas for /proc/kcore */
   1350	if (get_gate_vma(&init_mm))
   1351		kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR, PAGE_SIZE, KCORE_USER);
   1352
   1353	preallocate_vmalloc_pages();
   1354}
   1355
   1356#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
   1357int __init deferred_page_init_max_threads(const struct cpumask *node_cpumask)
   1358{
   1359	/*
   1360	 * More CPUs always led to greater speedups on tested systems, up to
   1361	 * all the nodes' CPUs.  Use all since the system is otherwise idle
   1362	 * now.
   1363	 */
   1364	return max_t(int, cpumask_weight(node_cpumask), 1);
   1365}
   1366#endif
   1367
   1368int kernel_set_to_readonly;
   1369
   1370void mark_rodata_ro(void)
   1371{
   1372	unsigned long start = PFN_ALIGN(_text);
   1373	unsigned long rodata_start = PFN_ALIGN(__start_rodata);
   1374	unsigned long end = (unsigned long)__end_rodata_hpage_align;
   1375	unsigned long text_end = PFN_ALIGN(_etext);
   1376	unsigned long rodata_end = PFN_ALIGN(__end_rodata);
   1377	unsigned long all_end;
   1378
   1379	printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
   1380	       (end - start) >> 10);
   1381	set_memory_ro(start, (end - start) >> PAGE_SHIFT);
   1382
   1383	kernel_set_to_readonly = 1;
   1384
   1385	/*
   1386	 * The rodata/data/bss/brk section (but not the kernel text!)
   1387	 * should also be not-executable.
   1388	 *
   1389	 * We align all_end to PMD_SIZE because the existing mapping
   1390	 * is a full PMD. If we would align _brk_end to PAGE_SIZE we
   1391	 * split the PMD and the reminder between _brk_end and the end
   1392	 * of the PMD will remain mapped executable.
   1393	 *
   1394	 * Any PMD which was setup after the one which covers _brk_end
   1395	 * has been zapped already via cleanup_highmem().
   1396	 */
   1397	all_end = roundup((unsigned long)_brk_end, PMD_SIZE);
   1398	set_memory_nx(text_end, (all_end - text_end) >> PAGE_SHIFT);
   1399
   1400	set_ftrace_ops_ro();
   1401
   1402#ifdef CONFIG_CPA_DEBUG
   1403	printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
   1404	set_memory_rw(start, (end-start) >> PAGE_SHIFT);
   1405
   1406	printk(KERN_INFO "Testing CPA: again\n");
   1407	set_memory_ro(start, (end-start) >> PAGE_SHIFT);
   1408#endif
   1409
   1410	free_kernel_image_pages("unused kernel image (text/rodata gap)",
   1411				(void *)text_end, (void *)rodata_start);
   1412	free_kernel_image_pages("unused kernel image (rodata/data gap)",
   1413				(void *)rodata_end, (void *)_sdata);
   1414
   1415	debug_checkwx();
   1416}
   1417
   1418int kern_addr_valid(unsigned long addr)
   1419{
   1420	unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
   1421	pgd_t *pgd;
   1422	p4d_t *p4d;
   1423	pud_t *pud;
   1424	pmd_t *pmd;
   1425	pte_t *pte;
   1426
   1427	if (above != 0 && above != -1UL)
   1428		return 0;
   1429
   1430	pgd = pgd_offset_k(addr);
   1431	if (pgd_none(*pgd))
   1432		return 0;
   1433
   1434	p4d = p4d_offset(pgd, addr);
   1435	if (!p4d_present(*p4d))
   1436		return 0;
   1437
   1438	pud = pud_offset(p4d, addr);
   1439	if (!pud_present(*pud))
   1440		return 0;
   1441
   1442	if (pud_large(*pud))
   1443		return pfn_valid(pud_pfn(*pud));
   1444
   1445	pmd = pmd_offset(pud, addr);
   1446	if (!pmd_present(*pmd))
   1447		return 0;
   1448
   1449	if (pmd_large(*pmd))
   1450		return pfn_valid(pmd_pfn(*pmd));
   1451
   1452	pte = pte_offset_kernel(pmd, addr);
   1453	if (pte_none(*pte))
   1454		return 0;
   1455
   1456	return pfn_valid(pte_pfn(*pte));
   1457}
   1458
   1459/*
   1460 * Block size is the minimum amount of memory which can be hotplugged or
   1461 * hotremoved. It must be power of two and must be equal or larger than
   1462 * MIN_MEMORY_BLOCK_SIZE.
   1463 */
   1464#define MAX_BLOCK_SIZE (2UL << 30)
   1465
   1466/* Amount of ram needed to start using large blocks */
   1467#define MEM_SIZE_FOR_LARGE_BLOCK (64UL << 30)
   1468
   1469/* Adjustable memory block size */
   1470static unsigned long set_memory_block_size;
   1471int __init set_memory_block_size_order(unsigned int order)
   1472{
   1473	unsigned long size = 1UL << order;
   1474
   1475	if (size > MEM_SIZE_FOR_LARGE_BLOCK || size < MIN_MEMORY_BLOCK_SIZE)
   1476		return -EINVAL;
   1477
   1478	set_memory_block_size = size;
   1479	return 0;
   1480}
   1481
   1482static unsigned long probe_memory_block_size(void)
   1483{
   1484	unsigned long boot_mem_end = max_pfn << PAGE_SHIFT;
   1485	unsigned long bz;
   1486
   1487	/* If memory block size has been set, then use it */
   1488	bz = set_memory_block_size;
   1489	if (bz)
   1490		goto done;
   1491
   1492	/* Use regular block if RAM is smaller than MEM_SIZE_FOR_LARGE_BLOCK */
   1493	if (boot_mem_end < MEM_SIZE_FOR_LARGE_BLOCK) {
   1494		bz = MIN_MEMORY_BLOCK_SIZE;
   1495		goto done;
   1496	}
   1497
   1498	/*
   1499	 * Use max block size to minimize overhead on bare metal, where
   1500	 * alignment for memory hotplug isn't a concern.
   1501	 */
   1502	if (!boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
   1503		bz = MAX_BLOCK_SIZE;
   1504		goto done;
   1505	}
   1506
   1507	/* Find the largest allowed block size that aligns to memory end */
   1508	for (bz = MAX_BLOCK_SIZE; bz > MIN_MEMORY_BLOCK_SIZE; bz >>= 1) {
   1509		if (IS_ALIGNED(boot_mem_end, bz))
   1510			break;
   1511	}
   1512done:
   1513	pr_info("x86/mm: Memory block size: %ldMB\n", bz >> 20);
   1514
   1515	return bz;
   1516}
   1517
   1518static unsigned long memory_block_size_probed;
   1519unsigned long memory_block_size_bytes(void)
   1520{
   1521	if (!memory_block_size_probed)
   1522		memory_block_size_probed = probe_memory_block_size();
   1523
   1524	return memory_block_size_probed;
   1525}
   1526
   1527#ifdef CONFIG_SPARSEMEM_VMEMMAP
   1528/*
   1529 * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
   1530 */
   1531static long __meminitdata addr_start, addr_end;
   1532static void __meminitdata *p_start, *p_end;
   1533static int __meminitdata node_start;
   1534
   1535static int __meminit vmemmap_populate_hugepages(unsigned long start,
   1536		unsigned long end, int node, struct vmem_altmap *altmap)
   1537{
   1538	unsigned long addr;
   1539	unsigned long next;
   1540	pgd_t *pgd;
   1541	p4d_t *p4d;
   1542	pud_t *pud;
   1543	pmd_t *pmd;
   1544
   1545	for (addr = start; addr < end; addr = next) {
   1546		next = pmd_addr_end(addr, end);
   1547
   1548		pgd = vmemmap_pgd_populate(addr, node);
   1549		if (!pgd)
   1550			return -ENOMEM;
   1551
   1552		p4d = vmemmap_p4d_populate(pgd, addr, node);
   1553		if (!p4d)
   1554			return -ENOMEM;
   1555
   1556		pud = vmemmap_pud_populate(p4d, addr, node);
   1557		if (!pud)
   1558			return -ENOMEM;
   1559
   1560		pmd = pmd_offset(pud, addr);
   1561		if (pmd_none(*pmd)) {
   1562			void *p;
   1563
   1564			p = vmemmap_alloc_block_buf(PMD_SIZE, node, altmap);
   1565			if (p) {
   1566				pte_t entry;
   1567
   1568				entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
   1569						PAGE_KERNEL_LARGE);
   1570				set_pmd(pmd, __pmd(pte_val(entry)));
   1571
   1572				/* check to see if we have contiguous blocks */
   1573				if (p_end != p || node_start != node) {
   1574					if (p_start)
   1575						pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
   1576						       addr_start, addr_end-1, p_start, p_end-1, node_start);
   1577					addr_start = addr;
   1578					node_start = node;
   1579					p_start = p;
   1580				}
   1581
   1582				addr_end = addr + PMD_SIZE;
   1583				p_end = p + PMD_SIZE;
   1584
   1585				if (!IS_ALIGNED(addr, PMD_SIZE) ||
   1586				    !IS_ALIGNED(next, PMD_SIZE))
   1587					vmemmap_use_new_sub_pmd(addr, next);
   1588
   1589				continue;
   1590			} else if (altmap)
   1591				return -ENOMEM; /* no fallback */
   1592		} else if (pmd_large(*pmd)) {
   1593			vmemmap_verify((pte_t *)pmd, node, addr, next);
   1594			vmemmap_use_sub_pmd(addr, next);
   1595			continue;
   1596		}
   1597		if (vmemmap_populate_basepages(addr, next, node, NULL))
   1598			return -ENOMEM;
   1599	}
   1600	return 0;
   1601}
   1602
   1603int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
   1604		struct vmem_altmap *altmap)
   1605{
   1606	int err;
   1607
   1608	VM_BUG_ON(!PAGE_ALIGNED(start));
   1609	VM_BUG_ON(!PAGE_ALIGNED(end));
   1610
   1611	if (end - start < PAGES_PER_SECTION * sizeof(struct page))
   1612		err = vmemmap_populate_basepages(start, end, node, NULL);
   1613	else if (boot_cpu_has(X86_FEATURE_PSE))
   1614		err = vmemmap_populate_hugepages(start, end, node, altmap);
   1615	else if (altmap) {
   1616		pr_err_once("%s: no cpu support for altmap allocations\n",
   1617				__func__);
   1618		err = -ENOMEM;
   1619	} else
   1620		err = vmemmap_populate_basepages(start, end, node, NULL);
   1621	if (!err)
   1622		sync_global_pgds(start, end - 1);
   1623	return err;
   1624}
   1625
   1626#ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
   1627void register_page_bootmem_memmap(unsigned long section_nr,
   1628				  struct page *start_page, unsigned long nr_pages)
   1629{
   1630	unsigned long addr = (unsigned long)start_page;
   1631	unsigned long end = (unsigned long)(start_page + nr_pages);
   1632	unsigned long next;
   1633	pgd_t *pgd;
   1634	p4d_t *p4d;
   1635	pud_t *pud;
   1636	pmd_t *pmd;
   1637	unsigned int nr_pmd_pages;
   1638	struct page *page;
   1639
   1640	for (; addr < end; addr = next) {
   1641		pte_t *pte = NULL;
   1642
   1643		pgd = pgd_offset_k(addr);
   1644		if (pgd_none(*pgd)) {
   1645			next = (addr + PAGE_SIZE) & PAGE_MASK;
   1646			continue;
   1647		}
   1648		get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
   1649
   1650		p4d = p4d_offset(pgd, addr);
   1651		if (p4d_none(*p4d)) {
   1652			next = (addr + PAGE_SIZE) & PAGE_MASK;
   1653			continue;
   1654		}
   1655		get_page_bootmem(section_nr, p4d_page(*p4d), MIX_SECTION_INFO);
   1656
   1657		pud = pud_offset(p4d, addr);
   1658		if (pud_none(*pud)) {
   1659			next = (addr + PAGE_SIZE) & PAGE_MASK;
   1660			continue;
   1661		}
   1662		get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
   1663
   1664		if (!boot_cpu_has(X86_FEATURE_PSE)) {
   1665			next = (addr + PAGE_SIZE) & PAGE_MASK;
   1666			pmd = pmd_offset(pud, addr);
   1667			if (pmd_none(*pmd))
   1668				continue;
   1669			get_page_bootmem(section_nr, pmd_page(*pmd),
   1670					 MIX_SECTION_INFO);
   1671
   1672			pte = pte_offset_kernel(pmd, addr);
   1673			if (pte_none(*pte))
   1674				continue;
   1675			get_page_bootmem(section_nr, pte_page(*pte),
   1676					 SECTION_INFO);
   1677		} else {
   1678			next = pmd_addr_end(addr, end);
   1679
   1680			pmd = pmd_offset(pud, addr);
   1681			if (pmd_none(*pmd))
   1682				continue;
   1683
   1684			nr_pmd_pages = 1 << get_order(PMD_SIZE);
   1685			page = pmd_page(*pmd);
   1686			while (nr_pmd_pages--)
   1687				get_page_bootmem(section_nr, page++,
   1688						 SECTION_INFO);
   1689		}
   1690	}
   1691}
   1692#endif
   1693
   1694void __meminit vmemmap_populate_print_last(void)
   1695{
   1696	if (p_start) {
   1697		pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
   1698			addr_start, addr_end-1, p_start, p_end-1, node_start);
   1699		p_start = NULL;
   1700		p_end = NULL;
   1701		node_start = 0;
   1702	}
   1703}
   1704#endif