cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

kaslr.c (5667B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * This file implements KASLR memory randomization for x86_64. It randomizes
      4 * the virtual address space of kernel memory regions (physical memory
      5 * mapping, vmalloc & vmemmap) for x86_64. This security feature mitigates
      6 * exploits relying on predictable kernel addresses.
      7 *
      8 * Entropy is generated using the KASLR early boot functions now shared in
      9 * the lib directory (originally written by Kees Cook). Randomization is
     10 * done on PGD & P4D/PUD page table levels to increase possible addresses.
     11 * The physical memory mapping code was adapted to support P4D/PUD level
     12 * virtual addresses. This implementation on the best configuration provides
     13 * 30,000 possible virtual addresses in average for each memory region.
     14 * An additional low memory page is used to ensure each CPU can start with
     15 * a PGD aligned virtual address (for realmode).
     16 *
     17 * The order of each memory region is not changed. The feature looks at
     18 * the available space for the regions based on different configuration
     19 * options and randomizes the base and space between each. The size of the
     20 * physical memory mapping is the available physical memory.
     21 */
     22
     23#include <linux/kernel.h>
     24#include <linux/init.h>
     25#include <linux/random.h>
     26#include <linux/memblock.h>
     27#include <linux/pgtable.h>
     28
     29#include <asm/setup.h>
     30#include <asm/kaslr.h>
     31
     32#include "mm_internal.h"
     33
     34#define TB_SHIFT 40
     35
     36/*
     37 * The end address could depend on more configuration options to make the
     38 * highest amount of space for randomization available, but that's too hard
     39 * to keep straight and caused issues already.
     40 */
     41static const unsigned long vaddr_end = CPU_ENTRY_AREA_BASE;
     42
     43/*
     44 * Memory regions randomized by KASLR (except modules that use a separate logic
     45 * earlier during boot). The list is ordered based on virtual addresses. This
     46 * order is kept after randomization.
     47 */
     48static __initdata struct kaslr_memory_region {
     49	unsigned long *base;
     50	unsigned long size_tb;
     51} kaslr_regions[] = {
     52	{ &page_offset_base, 0 },
     53	{ &vmalloc_base, 0 },
     54	{ &vmemmap_base, 0 },
     55};
     56
     57/* Get size in bytes used by the memory region */
     58static inline unsigned long get_padding(struct kaslr_memory_region *region)
     59{
     60	return (region->size_tb << TB_SHIFT);
     61}
     62
     63/* Initialize base and padding for each memory region randomized with KASLR */
     64void __init kernel_randomize_memory(void)
     65{
     66	size_t i;
     67	unsigned long vaddr_start, vaddr;
     68	unsigned long rand, memory_tb;
     69	struct rnd_state rand_state;
     70	unsigned long remain_entropy;
     71	unsigned long vmemmap_size;
     72
     73	vaddr_start = pgtable_l5_enabled() ? __PAGE_OFFSET_BASE_L5 : __PAGE_OFFSET_BASE_L4;
     74	vaddr = vaddr_start;
     75
     76	/*
     77	 * These BUILD_BUG_ON checks ensure the memory layout is consistent
     78	 * with the vaddr_start/vaddr_end variables. These checks are very
     79	 * limited....
     80	 */
     81	BUILD_BUG_ON(vaddr_start >= vaddr_end);
     82	BUILD_BUG_ON(vaddr_end != CPU_ENTRY_AREA_BASE);
     83	BUILD_BUG_ON(vaddr_end > __START_KERNEL_map);
     84
     85	if (!kaslr_memory_enabled())
     86		return;
     87
     88	kaslr_regions[0].size_tb = 1 << (MAX_PHYSMEM_BITS - TB_SHIFT);
     89	kaslr_regions[1].size_tb = VMALLOC_SIZE_TB;
     90
     91	/*
     92	 * Update Physical memory mapping to available and
     93	 * add padding if needed (especially for memory hotplug support).
     94	 */
     95	BUG_ON(kaslr_regions[0].base != &page_offset_base);
     96	memory_tb = DIV_ROUND_UP(max_pfn << PAGE_SHIFT, 1UL << TB_SHIFT) +
     97		CONFIG_RANDOMIZE_MEMORY_PHYSICAL_PADDING;
     98
     99	/* Adapt physical memory region size based on available memory */
    100	if (memory_tb < kaslr_regions[0].size_tb)
    101		kaslr_regions[0].size_tb = memory_tb;
    102
    103	/*
    104	 * Calculate the vmemmap region size in TBs, aligned to a TB
    105	 * boundary.
    106	 */
    107	vmemmap_size = (kaslr_regions[0].size_tb << (TB_SHIFT - PAGE_SHIFT)) *
    108			sizeof(struct page);
    109	kaslr_regions[2].size_tb = DIV_ROUND_UP(vmemmap_size, 1UL << TB_SHIFT);
    110
    111	/* Calculate entropy available between regions */
    112	remain_entropy = vaddr_end - vaddr_start;
    113	for (i = 0; i < ARRAY_SIZE(kaslr_regions); i++)
    114		remain_entropy -= get_padding(&kaslr_regions[i]);
    115
    116	prandom_seed_state(&rand_state, kaslr_get_random_long("Memory"));
    117
    118	for (i = 0; i < ARRAY_SIZE(kaslr_regions); i++) {
    119		unsigned long entropy;
    120
    121		/*
    122		 * Select a random virtual address using the extra entropy
    123		 * available.
    124		 */
    125		entropy = remain_entropy / (ARRAY_SIZE(kaslr_regions) - i);
    126		prandom_bytes_state(&rand_state, &rand, sizeof(rand));
    127		entropy = (rand % (entropy + 1)) & PUD_MASK;
    128		vaddr += entropy;
    129		*kaslr_regions[i].base = vaddr;
    130
    131		/*
    132		 * Jump the region and add a minimum padding based on
    133		 * randomization alignment.
    134		 */
    135		vaddr += get_padding(&kaslr_regions[i]);
    136		vaddr = round_up(vaddr + 1, PUD_SIZE);
    137		remain_entropy -= entropy;
    138	}
    139}
    140
    141void __meminit init_trampoline_kaslr(void)
    142{
    143	pud_t *pud_page_tramp, *pud, *pud_tramp;
    144	p4d_t *p4d_page_tramp, *p4d, *p4d_tramp;
    145	unsigned long paddr, vaddr;
    146	pgd_t *pgd;
    147
    148	pud_page_tramp = alloc_low_page();
    149
    150	/*
    151	 * There are two mappings for the low 1MB area, the direct mapping
    152	 * and the 1:1 mapping for the real mode trampoline:
    153	 *
    154	 * Direct mapping: virt_addr = phys_addr + PAGE_OFFSET
    155	 * 1:1 mapping:    virt_addr = phys_addr
    156	 */
    157	paddr = 0;
    158	vaddr = (unsigned long)__va(paddr);
    159	pgd = pgd_offset_k(vaddr);
    160
    161	p4d = p4d_offset(pgd, vaddr);
    162	pud = pud_offset(p4d, vaddr);
    163
    164	pud_tramp = pud_page_tramp + pud_index(paddr);
    165	*pud_tramp = *pud;
    166
    167	if (pgtable_l5_enabled()) {
    168		p4d_page_tramp = alloc_low_page();
    169
    170		p4d_tramp = p4d_page_tramp + p4d_index(paddr);
    171
    172		set_p4d(p4d_tramp,
    173			__p4d(_KERNPG_TABLE | __pa(pud_page_tramp)));
    174
    175		set_pgd(&trampoline_pgd_entry,
    176			__pgd(_KERNPG_TABLE | __pa(p4d_page_tramp)));
    177	} else {
    178		set_pgd(&trampoline_pgd_entry,
    179			__pgd(_KERNPG_TABLE | __pa(pud_page_tramp)));
    180	}
    181}