cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

mem_encrypt_identity.c (18582B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * AMD Memory Encryption Support
      4 *
      5 * Copyright (C) 2016 Advanced Micro Devices, Inc.
      6 *
      7 * Author: Tom Lendacky <thomas.lendacky@amd.com>
      8 */
      9
     10#define DISABLE_BRANCH_PROFILING
     11
     12/*
     13 * Since we're dealing with identity mappings, physical and virtual
     14 * addresses are the same, so override these defines which are ultimately
     15 * used by the headers in misc.h.
     16 */
     17#define __pa(x)  ((unsigned long)(x))
     18#define __va(x)  ((void *)((unsigned long)(x)))
     19
     20/*
     21 * Special hack: we have to be careful, because no indirections are
     22 * allowed here, and paravirt_ops is a kind of one. As it will only run in
     23 * baremetal anyway, we just keep it from happening. (This list needs to
     24 * be extended when new paravirt and debugging variants are added.)
     25 */
     26#undef CONFIG_PARAVIRT
     27#undef CONFIG_PARAVIRT_XXL
     28#undef CONFIG_PARAVIRT_SPINLOCKS
     29
     30/*
     31 * This code runs before CPU feature bits are set. By default, the
     32 * pgtable_l5_enabled() function uses bit X86_FEATURE_LA57 to determine if
     33 * 5-level paging is active, so that won't work here. USE_EARLY_PGTABLE_L5
     34 * is provided to handle this situation and, instead, use a variable that
     35 * has been set by the early boot code.
     36 */
     37#define USE_EARLY_PGTABLE_L5
     38
     39#include <linux/kernel.h>
     40#include <linux/mm.h>
     41#include <linux/mem_encrypt.h>
     42#include <linux/cc_platform.h>
     43
     44#include <asm/setup.h>
     45#include <asm/sections.h>
     46#include <asm/cmdline.h>
     47#include <asm/coco.h>
     48#include <asm/sev.h>
     49
     50#include "mm_internal.h"
     51
     52#define PGD_FLAGS		_KERNPG_TABLE_NOENC
     53#define P4D_FLAGS		_KERNPG_TABLE_NOENC
     54#define PUD_FLAGS		_KERNPG_TABLE_NOENC
     55#define PMD_FLAGS		_KERNPG_TABLE_NOENC
     56
     57#define PMD_FLAGS_LARGE		(__PAGE_KERNEL_LARGE_EXEC & ~_PAGE_GLOBAL)
     58
     59#define PMD_FLAGS_DEC		PMD_FLAGS_LARGE
     60#define PMD_FLAGS_DEC_WP	((PMD_FLAGS_DEC & ~_PAGE_LARGE_CACHE_MASK) | \
     61				 (_PAGE_PAT_LARGE | _PAGE_PWT))
     62
     63#define PMD_FLAGS_ENC		(PMD_FLAGS_LARGE | _PAGE_ENC)
     64
     65#define PTE_FLAGS		(__PAGE_KERNEL_EXEC & ~_PAGE_GLOBAL)
     66
     67#define PTE_FLAGS_DEC		PTE_FLAGS
     68#define PTE_FLAGS_DEC_WP	((PTE_FLAGS_DEC & ~_PAGE_CACHE_MASK) | \
     69				 (_PAGE_PAT | _PAGE_PWT))
     70
     71#define PTE_FLAGS_ENC		(PTE_FLAGS | _PAGE_ENC)
     72
     73struct sme_populate_pgd_data {
     74	void    *pgtable_area;
     75	pgd_t   *pgd;
     76
     77	pmdval_t pmd_flags;
     78	pteval_t pte_flags;
     79	unsigned long paddr;
     80
     81	unsigned long vaddr;
     82	unsigned long vaddr_end;
     83};
     84
     85/*
     86 * This work area lives in the .init.scratch section, which lives outside of
     87 * the kernel proper. It is sized to hold the intermediate copy buffer and
     88 * more than enough pagetable pages.
     89 *
     90 * By using this section, the kernel can be encrypted in place and it
     91 * avoids any possibility of boot parameters or initramfs images being
     92 * placed such that the in-place encryption logic overwrites them.  This
     93 * section is 2MB aligned to allow for simple pagetable setup using only
     94 * PMD entries (see vmlinux.lds.S).
     95 */
     96static char sme_workarea[2 * PMD_PAGE_SIZE] __section(".init.scratch");
     97
     98static char sme_cmdline_arg[] __initdata = "mem_encrypt";
     99static char sme_cmdline_on[]  __initdata = "on";
    100static char sme_cmdline_off[] __initdata = "off";
    101
    102static void __init sme_clear_pgd(struct sme_populate_pgd_data *ppd)
    103{
    104	unsigned long pgd_start, pgd_end, pgd_size;
    105	pgd_t *pgd_p;
    106
    107	pgd_start = ppd->vaddr & PGDIR_MASK;
    108	pgd_end = ppd->vaddr_end & PGDIR_MASK;
    109
    110	pgd_size = (((pgd_end - pgd_start) / PGDIR_SIZE) + 1) * sizeof(pgd_t);
    111
    112	pgd_p = ppd->pgd + pgd_index(ppd->vaddr);
    113
    114	memset(pgd_p, 0, pgd_size);
    115}
    116
    117static pud_t __init *sme_prepare_pgd(struct sme_populate_pgd_data *ppd)
    118{
    119	pgd_t *pgd;
    120	p4d_t *p4d;
    121	pud_t *pud;
    122	pmd_t *pmd;
    123
    124	pgd = ppd->pgd + pgd_index(ppd->vaddr);
    125	if (pgd_none(*pgd)) {
    126		p4d = ppd->pgtable_area;
    127		memset(p4d, 0, sizeof(*p4d) * PTRS_PER_P4D);
    128		ppd->pgtable_area += sizeof(*p4d) * PTRS_PER_P4D;
    129		set_pgd(pgd, __pgd(PGD_FLAGS | __pa(p4d)));
    130	}
    131
    132	p4d = p4d_offset(pgd, ppd->vaddr);
    133	if (p4d_none(*p4d)) {
    134		pud = ppd->pgtable_area;
    135		memset(pud, 0, sizeof(*pud) * PTRS_PER_PUD);
    136		ppd->pgtable_area += sizeof(*pud) * PTRS_PER_PUD;
    137		set_p4d(p4d, __p4d(P4D_FLAGS | __pa(pud)));
    138	}
    139
    140	pud = pud_offset(p4d, ppd->vaddr);
    141	if (pud_none(*pud)) {
    142		pmd = ppd->pgtable_area;
    143		memset(pmd, 0, sizeof(*pmd) * PTRS_PER_PMD);
    144		ppd->pgtable_area += sizeof(*pmd) * PTRS_PER_PMD;
    145		set_pud(pud, __pud(PUD_FLAGS | __pa(pmd)));
    146	}
    147
    148	if (pud_large(*pud))
    149		return NULL;
    150
    151	return pud;
    152}
    153
    154static void __init sme_populate_pgd_large(struct sme_populate_pgd_data *ppd)
    155{
    156	pud_t *pud;
    157	pmd_t *pmd;
    158
    159	pud = sme_prepare_pgd(ppd);
    160	if (!pud)
    161		return;
    162
    163	pmd = pmd_offset(pud, ppd->vaddr);
    164	if (pmd_large(*pmd))
    165		return;
    166
    167	set_pmd(pmd, __pmd(ppd->paddr | ppd->pmd_flags));
    168}
    169
    170static void __init sme_populate_pgd(struct sme_populate_pgd_data *ppd)
    171{
    172	pud_t *pud;
    173	pmd_t *pmd;
    174	pte_t *pte;
    175
    176	pud = sme_prepare_pgd(ppd);
    177	if (!pud)
    178		return;
    179
    180	pmd = pmd_offset(pud, ppd->vaddr);
    181	if (pmd_none(*pmd)) {
    182		pte = ppd->pgtable_area;
    183		memset(pte, 0, sizeof(*pte) * PTRS_PER_PTE);
    184		ppd->pgtable_area += sizeof(*pte) * PTRS_PER_PTE;
    185		set_pmd(pmd, __pmd(PMD_FLAGS | __pa(pte)));
    186	}
    187
    188	if (pmd_large(*pmd))
    189		return;
    190
    191	pte = pte_offset_map(pmd, ppd->vaddr);
    192	if (pte_none(*pte))
    193		set_pte(pte, __pte(ppd->paddr | ppd->pte_flags));
    194}
    195
    196static void __init __sme_map_range_pmd(struct sme_populate_pgd_data *ppd)
    197{
    198	while (ppd->vaddr < ppd->vaddr_end) {
    199		sme_populate_pgd_large(ppd);
    200
    201		ppd->vaddr += PMD_PAGE_SIZE;
    202		ppd->paddr += PMD_PAGE_SIZE;
    203	}
    204}
    205
    206static void __init __sme_map_range_pte(struct sme_populate_pgd_data *ppd)
    207{
    208	while (ppd->vaddr < ppd->vaddr_end) {
    209		sme_populate_pgd(ppd);
    210
    211		ppd->vaddr += PAGE_SIZE;
    212		ppd->paddr += PAGE_SIZE;
    213	}
    214}
    215
    216static void __init __sme_map_range(struct sme_populate_pgd_data *ppd,
    217				   pmdval_t pmd_flags, pteval_t pte_flags)
    218{
    219	unsigned long vaddr_end;
    220
    221	ppd->pmd_flags = pmd_flags;
    222	ppd->pte_flags = pte_flags;
    223
    224	/* Save original end value since we modify the struct value */
    225	vaddr_end = ppd->vaddr_end;
    226
    227	/* If start is not 2MB aligned, create PTE entries */
    228	ppd->vaddr_end = ALIGN(ppd->vaddr, PMD_PAGE_SIZE);
    229	__sme_map_range_pte(ppd);
    230
    231	/* Create PMD entries */
    232	ppd->vaddr_end = vaddr_end & PMD_PAGE_MASK;
    233	__sme_map_range_pmd(ppd);
    234
    235	/* If end is not 2MB aligned, create PTE entries */
    236	ppd->vaddr_end = vaddr_end;
    237	__sme_map_range_pte(ppd);
    238}
    239
    240static void __init sme_map_range_encrypted(struct sme_populate_pgd_data *ppd)
    241{
    242	__sme_map_range(ppd, PMD_FLAGS_ENC, PTE_FLAGS_ENC);
    243}
    244
    245static void __init sme_map_range_decrypted(struct sme_populate_pgd_data *ppd)
    246{
    247	__sme_map_range(ppd, PMD_FLAGS_DEC, PTE_FLAGS_DEC);
    248}
    249
    250static void __init sme_map_range_decrypted_wp(struct sme_populate_pgd_data *ppd)
    251{
    252	__sme_map_range(ppd, PMD_FLAGS_DEC_WP, PTE_FLAGS_DEC_WP);
    253}
    254
    255static unsigned long __init sme_pgtable_calc(unsigned long len)
    256{
    257	unsigned long entries = 0, tables = 0;
    258
    259	/*
    260	 * Perform a relatively simplistic calculation of the pagetable
    261	 * entries that are needed. Those mappings will be covered mostly
    262	 * by 2MB PMD entries so we can conservatively calculate the required
    263	 * number of P4D, PUD and PMD structures needed to perform the
    264	 * mappings.  For mappings that are not 2MB aligned, PTE mappings
    265	 * would be needed for the start and end portion of the address range
    266	 * that fall outside of the 2MB alignment.  This results in, at most,
    267	 * two extra pages to hold PTE entries for each range that is mapped.
    268	 * Incrementing the count for each covers the case where the addresses
    269	 * cross entries.
    270	 */
    271
    272	/* PGDIR_SIZE is equal to P4D_SIZE on 4-level machine. */
    273	if (PTRS_PER_P4D > 1)
    274		entries += (DIV_ROUND_UP(len, PGDIR_SIZE) + 1) * sizeof(p4d_t) * PTRS_PER_P4D;
    275	entries += (DIV_ROUND_UP(len, P4D_SIZE) + 1) * sizeof(pud_t) * PTRS_PER_PUD;
    276	entries += (DIV_ROUND_UP(len, PUD_SIZE) + 1) * sizeof(pmd_t) * PTRS_PER_PMD;
    277	entries += 2 * sizeof(pte_t) * PTRS_PER_PTE;
    278
    279	/*
    280	 * Now calculate the added pagetable structures needed to populate
    281	 * the new pagetables.
    282	 */
    283
    284	if (PTRS_PER_P4D > 1)
    285		tables += DIV_ROUND_UP(entries, PGDIR_SIZE) * sizeof(p4d_t) * PTRS_PER_P4D;
    286	tables += DIV_ROUND_UP(entries, P4D_SIZE) * sizeof(pud_t) * PTRS_PER_PUD;
    287	tables += DIV_ROUND_UP(entries, PUD_SIZE) * sizeof(pmd_t) * PTRS_PER_PMD;
    288
    289	return entries + tables;
    290}
    291
    292void __init sme_encrypt_kernel(struct boot_params *bp)
    293{
    294	unsigned long workarea_start, workarea_end, workarea_len;
    295	unsigned long execute_start, execute_end, execute_len;
    296	unsigned long kernel_start, kernel_end, kernel_len;
    297	unsigned long initrd_start, initrd_end, initrd_len;
    298	struct sme_populate_pgd_data ppd;
    299	unsigned long pgtable_area_len;
    300	unsigned long decrypted_base;
    301
    302	/*
    303	 * This is early code, use an open coded check for SME instead of
    304	 * using cc_platform_has(). This eliminates worries about removing
    305	 * instrumentation or checking boot_cpu_data in the cc_platform_has()
    306	 * function.
    307	 */
    308	if (!sme_get_me_mask() || sev_status & MSR_AMD64_SEV_ENABLED)
    309		return;
    310
    311	/*
    312	 * Prepare for encrypting the kernel and initrd by building new
    313	 * pagetables with the necessary attributes needed to encrypt the
    314	 * kernel in place.
    315	 *
    316	 *   One range of virtual addresses will map the memory occupied
    317	 *   by the kernel and initrd as encrypted.
    318	 *
    319	 *   Another range of virtual addresses will map the memory occupied
    320	 *   by the kernel and initrd as decrypted and write-protected.
    321	 *
    322	 *     The use of write-protect attribute will prevent any of the
    323	 *     memory from being cached.
    324	 */
    325
    326	/* Physical addresses gives us the identity mapped virtual addresses */
    327	kernel_start = __pa_symbol(_text);
    328	kernel_end = ALIGN(__pa_symbol(_end), PMD_PAGE_SIZE);
    329	kernel_len = kernel_end - kernel_start;
    330
    331	initrd_start = 0;
    332	initrd_end = 0;
    333	initrd_len = 0;
    334#ifdef CONFIG_BLK_DEV_INITRD
    335	initrd_len = (unsigned long)bp->hdr.ramdisk_size |
    336		     ((unsigned long)bp->ext_ramdisk_size << 32);
    337	if (initrd_len) {
    338		initrd_start = (unsigned long)bp->hdr.ramdisk_image |
    339			       ((unsigned long)bp->ext_ramdisk_image << 32);
    340		initrd_end = PAGE_ALIGN(initrd_start + initrd_len);
    341		initrd_len = initrd_end - initrd_start;
    342	}
    343#endif
    344
    345	/*
    346	 * We're running identity mapped, so we must obtain the address to the
    347	 * SME encryption workarea using rip-relative addressing.
    348	 */
    349	asm ("lea sme_workarea(%%rip), %0"
    350	     : "=r" (workarea_start)
    351	     : "p" (sme_workarea));
    352
    353	/*
    354	 * Calculate required number of workarea bytes needed:
    355	 *   executable encryption area size:
    356	 *     stack page (PAGE_SIZE)
    357	 *     encryption routine page (PAGE_SIZE)
    358	 *     intermediate copy buffer (PMD_PAGE_SIZE)
    359	 *   pagetable structures for the encryption of the kernel
    360	 *   pagetable structures for workarea (in case not currently mapped)
    361	 */
    362	execute_start = workarea_start;
    363	execute_end = execute_start + (PAGE_SIZE * 2) + PMD_PAGE_SIZE;
    364	execute_len = execute_end - execute_start;
    365
    366	/*
    367	 * One PGD for both encrypted and decrypted mappings and a set of
    368	 * PUDs and PMDs for each of the encrypted and decrypted mappings.
    369	 */
    370	pgtable_area_len = sizeof(pgd_t) * PTRS_PER_PGD;
    371	pgtable_area_len += sme_pgtable_calc(execute_end - kernel_start) * 2;
    372	if (initrd_len)
    373		pgtable_area_len += sme_pgtable_calc(initrd_len) * 2;
    374
    375	/* PUDs and PMDs needed in the current pagetables for the workarea */
    376	pgtable_area_len += sme_pgtable_calc(execute_len + pgtable_area_len);
    377
    378	/*
    379	 * The total workarea includes the executable encryption area and
    380	 * the pagetable area. The start of the workarea is already 2MB
    381	 * aligned, align the end of the workarea on a 2MB boundary so that
    382	 * we don't try to create/allocate PTE entries from the workarea
    383	 * before it is mapped.
    384	 */
    385	workarea_len = execute_len + pgtable_area_len;
    386	workarea_end = ALIGN(workarea_start + workarea_len, PMD_PAGE_SIZE);
    387
    388	/*
    389	 * Set the address to the start of where newly created pagetable
    390	 * structures (PGDs, PUDs and PMDs) will be allocated. New pagetable
    391	 * structures are created when the workarea is added to the current
    392	 * pagetables and when the new encrypted and decrypted kernel
    393	 * mappings are populated.
    394	 */
    395	ppd.pgtable_area = (void *)execute_end;
    396
    397	/*
    398	 * Make sure the current pagetable structure has entries for
    399	 * addressing the workarea.
    400	 */
    401	ppd.pgd = (pgd_t *)native_read_cr3_pa();
    402	ppd.paddr = workarea_start;
    403	ppd.vaddr = workarea_start;
    404	ppd.vaddr_end = workarea_end;
    405	sme_map_range_decrypted(&ppd);
    406
    407	/* Flush the TLB - no globals so cr3 is enough */
    408	native_write_cr3(__native_read_cr3());
    409
    410	/*
    411	 * A new pagetable structure is being built to allow for the kernel
    412	 * and initrd to be encrypted. It starts with an empty PGD that will
    413	 * then be populated with new PUDs and PMDs as the encrypted and
    414	 * decrypted kernel mappings are created.
    415	 */
    416	ppd.pgd = ppd.pgtable_area;
    417	memset(ppd.pgd, 0, sizeof(pgd_t) * PTRS_PER_PGD);
    418	ppd.pgtable_area += sizeof(pgd_t) * PTRS_PER_PGD;
    419
    420	/*
    421	 * A different PGD index/entry must be used to get different
    422	 * pagetable entries for the decrypted mapping. Choose the next
    423	 * PGD index and convert it to a virtual address to be used as
    424	 * the base of the mapping.
    425	 */
    426	decrypted_base = (pgd_index(workarea_end) + 1) & (PTRS_PER_PGD - 1);
    427	if (initrd_len) {
    428		unsigned long check_base;
    429
    430		check_base = (pgd_index(initrd_end) + 1) & (PTRS_PER_PGD - 1);
    431		decrypted_base = max(decrypted_base, check_base);
    432	}
    433	decrypted_base <<= PGDIR_SHIFT;
    434
    435	/* Add encrypted kernel (identity) mappings */
    436	ppd.paddr = kernel_start;
    437	ppd.vaddr = kernel_start;
    438	ppd.vaddr_end = kernel_end;
    439	sme_map_range_encrypted(&ppd);
    440
    441	/* Add decrypted, write-protected kernel (non-identity) mappings */
    442	ppd.paddr = kernel_start;
    443	ppd.vaddr = kernel_start + decrypted_base;
    444	ppd.vaddr_end = kernel_end + decrypted_base;
    445	sme_map_range_decrypted_wp(&ppd);
    446
    447	if (initrd_len) {
    448		/* Add encrypted initrd (identity) mappings */
    449		ppd.paddr = initrd_start;
    450		ppd.vaddr = initrd_start;
    451		ppd.vaddr_end = initrd_end;
    452		sme_map_range_encrypted(&ppd);
    453		/*
    454		 * Add decrypted, write-protected initrd (non-identity) mappings
    455		 */
    456		ppd.paddr = initrd_start;
    457		ppd.vaddr = initrd_start + decrypted_base;
    458		ppd.vaddr_end = initrd_end + decrypted_base;
    459		sme_map_range_decrypted_wp(&ppd);
    460	}
    461
    462	/* Add decrypted workarea mappings to both kernel mappings */
    463	ppd.paddr = workarea_start;
    464	ppd.vaddr = workarea_start;
    465	ppd.vaddr_end = workarea_end;
    466	sme_map_range_decrypted(&ppd);
    467
    468	ppd.paddr = workarea_start;
    469	ppd.vaddr = workarea_start + decrypted_base;
    470	ppd.vaddr_end = workarea_end + decrypted_base;
    471	sme_map_range_decrypted(&ppd);
    472
    473	/* Perform the encryption */
    474	sme_encrypt_execute(kernel_start, kernel_start + decrypted_base,
    475			    kernel_len, workarea_start, (unsigned long)ppd.pgd);
    476
    477	if (initrd_len)
    478		sme_encrypt_execute(initrd_start, initrd_start + decrypted_base,
    479				    initrd_len, workarea_start,
    480				    (unsigned long)ppd.pgd);
    481
    482	/*
    483	 * At this point we are running encrypted.  Remove the mappings for
    484	 * the decrypted areas - all that is needed for this is to remove
    485	 * the PGD entry/entries.
    486	 */
    487	ppd.vaddr = kernel_start + decrypted_base;
    488	ppd.vaddr_end = kernel_end + decrypted_base;
    489	sme_clear_pgd(&ppd);
    490
    491	if (initrd_len) {
    492		ppd.vaddr = initrd_start + decrypted_base;
    493		ppd.vaddr_end = initrd_end + decrypted_base;
    494		sme_clear_pgd(&ppd);
    495	}
    496
    497	ppd.vaddr = workarea_start + decrypted_base;
    498	ppd.vaddr_end = workarea_end + decrypted_base;
    499	sme_clear_pgd(&ppd);
    500
    501	/* Flush the TLB - no globals so cr3 is enough */
    502	native_write_cr3(__native_read_cr3());
    503}
    504
    505void __init sme_enable(struct boot_params *bp)
    506{
    507	const char *cmdline_ptr, *cmdline_arg, *cmdline_on, *cmdline_off;
    508	unsigned int eax, ebx, ecx, edx;
    509	unsigned long feature_mask;
    510	bool active_by_default;
    511	unsigned long me_mask;
    512	char buffer[16];
    513	bool snp;
    514	u64 msr;
    515
    516	snp = snp_init(bp);
    517
    518	/* Check for the SME/SEV support leaf */
    519	eax = 0x80000000;
    520	ecx = 0;
    521	native_cpuid(&eax, &ebx, &ecx, &edx);
    522	if (eax < 0x8000001f)
    523		return;
    524
    525#define AMD_SME_BIT	BIT(0)
    526#define AMD_SEV_BIT	BIT(1)
    527
    528	/*
    529	 * Check for the SME/SEV feature:
    530	 *   CPUID Fn8000_001F[EAX]
    531	 *   - Bit 0 - Secure Memory Encryption support
    532	 *   - Bit 1 - Secure Encrypted Virtualization support
    533	 *   CPUID Fn8000_001F[EBX]
    534	 *   - Bits 5:0 - Pagetable bit position used to indicate encryption
    535	 */
    536	eax = 0x8000001f;
    537	ecx = 0;
    538	native_cpuid(&eax, &ebx, &ecx, &edx);
    539	/* Check whether SEV or SME is supported */
    540	if (!(eax & (AMD_SEV_BIT | AMD_SME_BIT)))
    541		return;
    542
    543	me_mask = 1UL << (ebx & 0x3f);
    544
    545	/* Check the SEV MSR whether SEV or SME is enabled */
    546	sev_status   = __rdmsr(MSR_AMD64_SEV);
    547	feature_mask = (sev_status & MSR_AMD64_SEV_ENABLED) ? AMD_SEV_BIT : AMD_SME_BIT;
    548
    549	/* The SEV-SNP CC blob should never be present unless SEV-SNP is enabled. */
    550	if (snp && !(sev_status & MSR_AMD64_SEV_SNP_ENABLED))
    551		snp_abort();
    552
    553	/* Check if memory encryption is enabled */
    554	if (feature_mask == AMD_SME_BIT) {
    555		/*
    556		 * No SME if Hypervisor bit is set. This check is here to
    557		 * prevent a guest from trying to enable SME. For running as a
    558		 * KVM guest the MSR_AMD64_SYSCFG will be sufficient, but there
    559		 * might be other hypervisors which emulate that MSR as non-zero
    560		 * or even pass it through to the guest.
    561		 * A malicious hypervisor can still trick a guest into this
    562		 * path, but there is no way to protect against that.
    563		 */
    564		eax = 1;
    565		ecx = 0;
    566		native_cpuid(&eax, &ebx, &ecx, &edx);
    567		if (ecx & BIT(31))
    568			return;
    569
    570		/* For SME, check the SYSCFG MSR */
    571		msr = __rdmsr(MSR_AMD64_SYSCFG);
    572		if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
    573			return;
    574	} else {
    575		/* SEV state cannot be controlled by a command line option */
    576		sme_me_mask = me_mask;
    577		goto out;
    578	}
    579
    580	/*
    581	 * Fixups have not been applied to phys_base yet and we're running
    582	 * identity mapped, so we must obtain the address to the SME command
    583	 * line argument data using rip-relative addressing.
    584	 */
    585	asm ("lea sme_cmdline_arg(%%rip), %0"
    586	     : "=r" (cmdline_arg)
    587	     : "p" (sme_cmdline_arg));
    588	asm ("lea sme_cmdline_on(%%rip), %0"
    589	     : "=r" (cmdline_on)
    590	     : "p" (sme_cmdline_on));
    591	asm ("lea sme_cmdline_off(%%rip), %0"
    592	     : "=r" (cmdline_off)
    593	     : "p" (sme_cmdline_off));
    594
    595	if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT))
    596		active_by_default = true;
    597	else
    598		active_by_default = false;
    599
    600	cmdline_ptr = (const char *)((u64)bp->hdr.cmd_line_ptr |
    601				     ((u64)bp->ext_cmd_line_ptr << 32));
    602
    603	cmdline_find_option(cmdline_ptr, cmdline_arg, buffer, sizeof(buffer));
    604
    605	if (!strncmp(buffer, cmdline_on, sizeof(buffer)))
    606		sme_me_mask = me_mask;
    607	else if (!strncmp(buffer, cmdline_off, sizeof(buffer)))
    608		sme_me_mask = 0;
    609	else
    610		sme_me_mask = active_by_default ? me_mask : 0;
    611out:
    612	if (sme_me_mask) {
    613		physical_mask &= ~sme_me_mask;
    614		cc_set_vendor(CC_VENDOR_AMD);
    615		cc_set_mask(sme_me_mask);
    616	}
    617}