cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

numa_emulation.c (15420B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * NUMA emulation
      4 */
      5#include <linux/kernel.h>
      6#include <linux/errno.h>
      7#include <linux/topology.h>
      8#include <linux/memblock.h>
      9#include <asm/dma.h>
     10
     11#include "numa_internal.h"
     12
     13static int emu_nid_to_phys[MAX_NUMNODES];
     14static char *emu_cmdline __initdata;
     15
     16int __init numa_emu_cmdline(char *str)
     17{
     18	emu_cmdline = str;
     19	return 0;
     20}
     21
     22static int __init emu_find_memblk_by_nid(int nid, const struct numa_meminfo *mi)
     23{
     24	int i;
     25
     26	for (i = 0; i < mi->nr_blks; i++)
     27		if (mi->blk[i].nid == nid)
     28			return i;
     29	return -ENOENT;
     30}
     31
     32static u64 __init mem_hole_size(u64 start, u64 end)
     33{
     34	unsigned long start_pfn = PFN_UP(start);
     35	unsigned long end_pfn = PFN_DOWN(end);
     36
     37	if (start_pfn < end_pfn)
     38		return PFN_PHYS(absent_pages_in_range(start_pfn, end_pfn));
     39	return 0;
     40}
     41
     42/*
     43 * Sets up nid to range from @start to @end.  The return value is -errno if
     44 * something went wrong, 0 otherwise.
     45 */
     46static int __init emu_setup_memblk(struct numa_meminfo *ei,
     47				   struct numa_meminfo *pi,
     48				   int nid, int phys_blk, u64 size)
     49{
     50	struct numa_memblk *eb = &ei->blk[ei->nr_blks];
     51	struct numa_memblk *pb = &pi->blk[phys_blk];
     52
     53	if (ei->nr_blks >= NR_NODE_MEMBLKS) {
     54		pr_err("NUMA: Too many emulated memblks, failing emulation\n");
     55		return -EINVAL;
     56	}
     57
     58	ei->nr_blks++;
     59	eb->start = pb->start;
     60	eb->end = pb->start + size;
     61	eb->nid = nid;
     62
     63	if (emu_nid_to_phys[nid] == NUMA_NO_NODE)
     64		emu_nid_to_phys[nid] = pb->nid;
     65
     66	pb->start += size;
     67	if (pb->start >= pb->end) {
     68		WARN_ON_ONCE(pb->start > pb->end);
     69		numa_remove_memblk_from(phys_blk, pi);
     70	}
     71
     72	printk(KERN_INFO "Faking node %d at [mem %#018Lx-%#018Lx] (%LuMB)\n",
     73	       nid, eb->start, eb->end - 1, (eb->end - eb->start) >> 20);
     74	return 0;
     75}
     76
     77/*
     78 * Sets up nr_nodes fake nodes interleaved over physical nodes ranging from addr
     79 * to max_addr.
     80 *
     81 * Returns zero on success or negative on error.
     82 */
     83static int __init split_nodes_interleave(struct numa_meminfo *ei,
     84					 struct numa_meminfo *pi,
     85					 u64 addr, u64 max_addr, int nr_nodes)
     86{
     87	nodemask_t physnode_mask = numa_nodes_parsed;
     88	u64 size;
     89	int big;
     90	int nid = 0;
     91	int i, ret;
     92
     93	if (nr_nodes <= 0)
     94		return -1;
     95	if (nr_nodes > MAX_NUMNODES) {
     96		pr_info("numa=fake=%d too large, reducing to %d\n",
     97			nr_nodes, MAX_NUMNODES);
     98		nr_nodes = MAX_NUMNODES;
     99	}
    100
    101	/*
    102	 * Calculate target node size.  x86_32 freaks on __udivdi3() so do
    103	 * the division in ulong number of pages and convert back.
    104	 */
    105	size = max_addr - addr - mem_hole_size(addr, max_addr);
    106	size = PFN_PHYS((unsigned long)(size >> PAGE_SHIFT) / nr_nodes);
    107
    108	/*
    109	 * Calculate the number of big nodes that can be allocated as a result
    110	 * of consolidating the remainder.
    111	 */
    112	big = ((size & ~FAKE_NODE_MIN_HASH_MASK) * nr_nodes) /
    113		FAKE_NODE_MIN_SIZE;
    114
    115	size &= FAKE_NODE_MIN_HASH_MASK;
    116	if (!size) {
    117		pr_err("Not enough memory for each node.  "
    118			"NUMA emulation disabled.\n");
    119		return -1;
    120	}
    121
    122	/*
    123	 * Continue to fill physical nodes with fake nodes until there is no
    124	 * memory left on any of them.
    125	 */
    126	while (!nodes_empty(physnode_mask)) {
    127		for_each_node_mask(i, physnode_mask) {
    128			u64 dma32_end = PFN_PHYS(MAX_DMA32_PFN);
    129			u64 start, limit, end;
    130			int phys_blk;
    131
    132			phys_blk = emu_find_memblk_by_nid(i, pi);
    133			if (phys_blk < 0) {
    134				node_clear(i, physnode_mask);
    135				continue;
    136			}
    137			start = pi->blk[phys_blk].start;
    138			limit = pi->blk[phys_blk].end;
    139			end = start + size;
    140
    141			if (nid < big)
    142				end += FAKE_NODE_MIN_SIZE;
    143
    144			/*
    145			 * Continue to add memory to this fake node if its
    146			 * non-reserved memory is less than the per-node size.
    147			 */
    148			while (end - start - mem_hole_size(start, end) < size) {
    149				end += FAKE_NODE_MIN_SIZE;
    150				if (end > limit) {
    151					end = limit;
    152					break;
    153				}
    154			}
    155
    156			/*
    157			 * If there won't be at least FAKE_NODE_MIN_SIZE of
    158			 * non-reserved memory in ZONE_DMA32 for the next node,
    159			 * this one must extend to the boundary.
    160			 */
    161			if (end < dma32_end && dma32_end - end -
    162			    mem_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE)
    163				end = dma32_end;
    164
    165			/*
    166			 * If there won't be enough non-reserved memory for the
    167			 * next node, this one must extend to the end of the
    168			 * physical node.
    169			 */
    170			if (limit - end - mem_hole_size(end, limit) < size)
    171				end = limit;
    172
    173			ret = emu_setup_memblk(ei, pi, nid++ % nr_nodes,
    174					       phys_blk,
    175					       min(end, limit) - start);
    176			if (ret < 0)
    177				return ret;
    178		}
    179	}
    180	return 0;
    181}
    182
    183/*
    184 * Returns the end address of a node so that there is at least `size' amount of
    185 * non-reserved memory or `max_addr' is reached.
    186 */
    187static u64 __init find_end_of_node(u64 start, u64 max_addr, u64 size)
    188{
    189	u64 end = start + size;
    190
    191	while (end - start - mem_hole_size(start, end) < size) {
    192		end += FAKE_NODE_MIN_SIZE;
    193		if (end > max_addr) {
    194			end = max_addr;
    195			break;
    196		}
    197	}
    198	return end;
    199}
    200
    201static u64 uniform_size(u64 max_addr, u64 base, u64 hole, int nr_nodes)
    202{
    203	unsigned long max_pfn = PHYS_PFN(max_addr);
    204	unsigned long base_pfn = PHYS_PFN(base);
    205	unsigned long hole_pfns = PHYS_PFN(hole);
    206
    207	return PFN_PHYS((max_pfn - base_pfn - hole_pfns) / nr_nodes);
    208}
    209
    210/*
    211 * Sets up fake nodes of `size' interleaved over physical nodes ranging from
    212 * `addr' to `max_addr'.
    213 *
    214 * Returns zero on success or negative on error.
    215 */
    216static int __init split_nodes_size_interleave_uniform(struct numa_meminfo *ei,
    217					      struct numa_meminfo *pi,
    218					      u64 addr, u64 max_addr, u64 size,
    219					      int nr_nodes, struct numa_memblk *pblk,
    220					      int nid)
    221{
    222	nodemask_t physnode_mask = numa_nodes_parsed;
    223	int i, ret, uniform = 0;
    224	u64 min_size;
    225
    226	if ((!size && !nr_nodes) || (nr_nodes && !pblk))
    227		return -1;
    228
    229	/*
    230	 * In the 'uniform' case split the passed in physical node by
    231	 * nr_nodes, in the non-uniform case, ignore the passed in
    232	 * physical block and try to create nodes of at least size
    233	 * @size.
    234	 *
    235	 * In the uniform case, split the nodes strictly by physical
    236	 * capacity, i.e. ignore holes. In the non-uniform case account
    237	 * for holes and treat @size as a minimum floor.
    238	 */
    239	if (!nr_nodes)
    240		nr_nodes = MAX_NUMNODES;
    241	else {
    242		nodes_clear(physnode_mask);
    243		node_set(pblk->nid, physnode_mask);
    244		uniform = 1;
    245	}
    246
    247	if (uniform) {
    248		min_size = uniform_size(max_addr, addr, 0, nr_nodes);
    249		size = min_size;
    250	} else {
    251		/*
    252		 * The limit on emulated nodes is MAX_NUMNODES, so the
    253		 * size per node is increased accordingly if the
    254		 * requested size is too small.  This creates a uniform
    255		 * distribution of node sizes across the entire machine
    256		 * (but not necessarily over physical nodes).
    257		 */
    258		min_size = uniform_size(max_addr, addr,
    259				mem_hole_size(addr, max_addr), nr_nodes);
    260	}
    261	min_size = ALIGN(max(min_size, FAKE_NODE_MIN_SIZE), FAKE_NODE_MIN_SIZE);
    262	if (size < min_size) {
    263		pr_err("Fake node size %LuMB too small, increasing to %LuMB\n",
    264			size >> 20, min_size >> 20);
    265		size = min_size;
    266	}
    267	size = ALIGN_DOWN(size, FAKE_NODE_MIN_SIZE);
    268
    269	/*
    270	 * Fill physical nodes with fake nodes of size until there is no memory
    271	 * left on any of them.
    272	 */
    273	while (!nodes_empty(physnode_mask)) {
    274		for_each_node_mask(i, physnode_mask) {
    275			u64 dma32_end = PFN_PHYS(MAX_DMA32_PFN);
    276			u64 start, limit, end;
    277			int phys_blk;
    278
    279			phys_blk = emu_find_memblk_by_nid(i, pi);
    280			if (phys_blk < 0) {
    281				node_clear(i, physnode_mask);
    282				continue;
    283			}
    284
    285			start = pi->blk[phys_blk].start;
    286			limit = pi->blk[phys_blk].end;
    287
    288			if (uniform)
    289				end = start + size;
    290			else
    291				end = find_end_of_node(start, limit, size);
    292			/*
    293			 * If there won't be at least FAKE_NODE_MIN_SIZE of
    294			 * non-reserved memory in ZONE_DMA32 for the next node,
    295			 * this one must extend to the boundary.
    296			 */
    297			if (end < dma32_end && dma32_end - end -
    298			    mem_hole_size(end, dma32_end) < FAKE_NODE_MIN_SIZE)
    299				end = dma32_end;
    300
    301			/*
    302			 * If there won't be enough non-reserved memory for the
    303			 * next node, this one must extend to the end of the
    304			 * physical node.
    305			 */
    306			if ((limit - end - mem_hole_size(end, limit) < size)
    307					&& !uniform)
    308				end = limit;
    309
    310			ret = emu_setup_memblk(ei, pi, nid++ % MAX_NUMNODES,
    311					       phys_blk,
    312					       min(end, limit) - start);
    313			if (ret < 0)
    314				return ret;
    315		}
    316	}
    317	return nid;
    318}
    319
    320static int __init split_nodes_size_interleave(struct numa_meminfo *ei,
    321					      struct numa_meminfo *pi,
    322					      u64 addr, u64 max_addr, u64 size)
    323{
    324	return split_nodes_size_interleave_uniform(ei, pi, addr, max_addr, size,
    325			0, NULL, 0);
    326}
    327
    328static int __init setup_emu2phys_nid(int *dfl_phys_nid)
    329{
    330	int i, max_emu_nid = 0;
    331
    332	*dfl_phys_nid = NUMA_NO_NODE;
    333	for (i = 0; i < ARRAY_SIZE(emu_nid_to_phys); i++) {
    334		if (emu_nid_to_phys[i] != NUMA_NO_NODE) {
    335			max_emu_nid = i;
    336			if (*dfl_phys_nid == NUMA_NO_NODE)
    337				*dfl_phys_nid = emu_nid_to_phys[i];
    338		}
    339	}
    340
    341	return max_emu_nid;
    342}
    343
    344/**
    345 * numa_emulation - Emulate NUMA nodes
    346 * @numa_meminfo: NUMA configuration to massage
    347 * @numa_dist_cnt: The size of the physical NUMA distance table
    348 *
    349 * Emulate NUMA nodes according to the numa=fake kernel parameter.
    350 * @numa_meminfo contains the physical memory configuration and is modified
    351 * to reflect the emulated configuration on success.  @numa_dist_cnt is
    352 * used to determine the size of the physical distance table.
    353 *
    354 * On success, the following modifications are made.
    355 *
    356 * - @numa_meminfo is updated to reflect the emulated nodes.
    357 *
    358 * - __apicid_to_node[] is updated such that APIC IDs are mapped to the
    359 *   emulated nodes.
    360 *
    361 * - NUMA distance table is rebuilt to represent distances between emulated
    362 *   nodes.  The distances are determined considering how emulated nodes
    363 *   are mapped to physical nodes and match the actual distances.
    364 *
    365 * - emu_nid_to_phys[] reflects how emulated nodes are mapped to physical
    366 *   nodes.  This is used by numa_add_cpu() and numa_remove_cpu().
    367 *
    368 * If emulation is not enabled or fails, emu_nid_to_phys[] is filled with
    369 * identity mapping and no other modification is made.
    370 */
    371void __init numa_emulation(struct numa_meminfo *numa_meminfo, int numa_dist_cnt)
    372{
    373	static struct numa_meminfo ei __initdata;
    374	static struct numa_meminfo pi __initdata;
    375	const u64 max_addr = PFN_PHYS(max_pfn);
    376	u8 *phys_dist = NULL;
    377	size_t phys_size = numa_dist_cnt * numa_dist_cnt * sizeof(phys_dist[0]);
    378	int max_emu_nid, dfl_phys_nid;
    379	int i, j, ret;
    380
    381	if (!emu_cmdline)
    382		goto no_emu;
    383
    384	memset(&ei, 0, sizeof(ei));
    385	pi = *numa_meminfo;
    386
    387	for (i = 0; i < MAX_NUMNODES; i++)
    388		emu_nid_to_phys[i] = NUMA_NO_NODE;
    389
    390	/*
    391	 * If the numa=fake command-line contains a 'M' or 'G', it represents
    392	 * the fixed node size.  Otherwise, if it is just a single number N,
    393	 * split the system RAM into N fake nodes.
    394	 */
    395	if (strchr(emu_cmdline, 'U')) {
    396		nodemask_t physnode_mask = numa_nodes_parsed;
    397		unsigned long n;
    398		int nid = 0;
    399
    400		n = simple_strtoul(emu_cmdline, &emu_cmdline, 0);
    401		ret = -1;
    402		for_each_node_mask(i, physnode_mask) {
    403			/*
    404			 * The reason we pass in blk[0] is due to
    405			 * numa_remove_memblk_from() called by
    406			 * emu_setup_memblk() will delete entry 0
    407			 * and then move everything else up in the pi.blk
    408			 * array. Therefore we should always be looking
    409			 * at blk[0].
    410			 */
    411			ret = split_nodes_size_interleave_uniform(&ei, &pi,
    412					pi.blk[0].start, pi.blk[0].end, 0,
    413					n, &pi.blk[0], nid);
    414			if (ret < 0)
    415				break;
    416			if (ret < n) {
    417				pr_info("%s: phys: %d only got %d of %ld nodes, failing\n",
    418						__func__, i, ret, n);
    419				ret = -1;
    420				break;
    421			}
    422			nid = ret;
    423		}
    424	} else if (strchr(emu_cmdline, 'M') || strchr(emu_cmdline, 'G')) {
    425		u64 size;
    426
    427		size = memparse(emu_cmdline, &emu_cmdline);
    428		ret = split_nodes_size_interleave(&ei, &pi, 0, max_addr, size);
    429	} else {
    430		unsigned long n;
    431
    432		n = simple_strtoul(emu_cmdline, &emu_cmdline, 0);
    433		ret = split_nodes_interleave(&ei, &pi, 0, max_addr, n);
    434	}
    435	if (*emu_cmdline == ':')
    436		emu_cmdline++;
    437
    438	if (ret < 0)
    439		goto no_emu;
    440
    441	if (numa_cleanup_meminfo(&ei) < 0) {
    442		pr_warn("NUMA: Warning: constructed meminfo invalid, disabling emulation\n");
    443		goto no_emu;
    444	}
    445
    446	/* copy the physical distance table */
    447	if (numa_dist_cnt) {
    448		u64 phys;
    449
    450		phys = memblock_phys_alloc_range(phys_size, PAGE_SIZE, 0,
    451						 PFN_PHYS(max_pfn_mapped));
    452		if (!phys) {
    453			pr_warn("NUMA: Warning: can't allocate copy of distance table, disabling emulation\n");
    454			goto no_emu;
    455		}
    456		phys_dist = __va(phys);
    457
    458		for (i = 0; i < numa_dist_cnt; i++)
    459			for (j = 0; j < numa_dist_cnt; j++)
    460				phys_dist[i * numa_dist_cnt + j] =
    461					node_distance(i, j);
    462	}
    463
    464	/*
    465	 * Determine the max emulated nid and the default phys nid to use
    466	 * for unmapped nodes.
    467	 */
    468	max_emu_nid = setup_emu2phys_nid(&dfl_phys_nid);
    469
    470	/* commit */
    471	*numa_meminfo = ei;
    472
    473	/* Make sure numa_nodes_parsed only contains emulated nodes */
    474	nodes_clear(numa_nodes_parsed);
    475	for (i = 0; i < ARRAY_SIZE(ei.blk); i++)
    476		if (ei.blk[i].start != ei.blk[i].end &&
    477		    ei.blk[i].nid != NUMA_NO_NODE)
    478			node_set(ei.blk[i].nid, numa_nodes_parsed);
    479
    480	/*
    481	 * Transform __apicid_to_node table to use emulated nids by
    482	 * reverse-mapping phys_nid.  The maps should always exist but fall
    483	 * back to zero just in case.
    484	 */
    485	for (i = 0; i < ARRAY_SIZE(__apicid_to_node); i++) {
    486		if (__apicid_to_node[i] == NUMA_NO_NODE)
    487			continue;
    488		for (j = 0; j < ARRAY_SIZE(emu_nid_to_phys); j++)
    489			if (__apicid_to_node[i] == emu_nid_to_phys[j])
    490				break;
    491		__apicid_to_node[i] = j < ARRAY_SIZE(emu_nid_to_phys) ? j : 0;
    492	}
    493
    494	/* make sure all emulated nodes are mapped to a physical node */
    495	for (i = 0; i < ARRAY_SIZE(emu_nid_to_phys); i++)
    496		if (emu_nid_to_phys[i] == NUMA_NO_NODE)
    497			emu_nid_to_phys[i] = dfl_phys_nid;
    498
    499	/* transform distance table */
    500	numa_reset_distance();
    501	for (i = 0; i < max_emu_nid + 1; i++) {
    502		for (j = 0; j < max_emu_nid + 1; j++) {
    503			int physi = emu_nid_to_phys[i];
    504			int physj = emu_nid_to_phys[j];
    505			int dist;
    506
    507			if (get_option(&emu_cmdline, &dist) == 2)
    508				;
    509			else if (physi >= numa_dist_cnt || physj >= numa_dist_cnt)
    510				dist = physi == physj ?
    511					LOCAL_DISTANCE : REMOTE_DISTANCE;
    512			else
    513				dist = phys_dist[physi * numa_dist_cnt + physj];
    514
    515			numa_set_distance(i, j, dist);
    516		}
    517	}
    518
    519	/* free the copied physical distance table */
    520	memblock_free(phys_dist, phys_size);
    521	return;
    522
    523no_emu:
    524	/* No emulation.  Build identity emu_nid_to_phys[] for numa_add_cpu() */
    525	for (i = 0; i < ARRAY_SIZE(emu_nid_to_phys); i++)
    526		emu_nid_to_phys[i] = i;
    527}
    528
    529#ifndef CONFIG_DEBUG_PER_CPU_MAPS
    530void numa_add_cpu(int cpu)
    531{
    532	int physnid, nid;
    533
    534	nid = early_cpu_to_node(cpu);
    535	BUG_ON(nid == NUMA_NO_NODE || !node_online(nid));
    536
    537	physnid = emu_nid_to_phys[nid];
    538
    539	/*
    540	 * Map the cpu to each emulated node that is allocated on the physical
    541	 * node of the cpu's apic id.
    542	 */
    543	for_each_online_node(nid)
    544		if (emu_nid_to_phys[nid] == physnid)
    545			cpumask_set_cpu(cpu, node_to_cpumask_map[nid]);
    546}
    547
    548void numa_remove_cpu(int cpu)
    549{
    550	int i;
    551
    552	for_each_online_node(i)
    553		cpumask_clear_cpu(cpu, node_to_cpumask_map[i]);
    554}
    555#else	/* !CONFIG_DEBUG_PER_CPU_MAPS */
    556static void numa_set_cpumask(int cpu, bool enable)
    557{
    558	int nid, physnid;
    559
    560	nid = early_cpu_to_node(cpu);
    561	if (nid == NUMA_NO_NODE) {
    562		/* early_cpu_to_node() already emits a warning and trace */
    563		return;
    564	}
    565
    566	physnid = emu_nid_to_phys[nid];
    567
    568	for_each_online_node(nid) {
    569		if (emu_nid_to_phys[nid] != physnid)
    570			continue;
    571
    572		debug_cpumask_set_cpu(cpu, nid, enable);
    573	}
    574}
    575
    576void numa_add_cpu(int cpu)
    577{
    578	numa_set_cpumask(cpu, true);
    579}
    580
    581void numa_remove_cpu(int cpu)
    582{
    583	numa_set_cpumask(cpu, false);
    584}
    585#endif	/* !CONFIG_DEBUG_PER_CPU_MAPS */