cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

memtype.c (32163B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Page Attribute Table (PAT) support: handle memory caching attributes in page tables.
      4 *
      5 * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
      6 *          Suresh B Siddha <suresh.b.siddha@intel.com>
      7 *
      8 * Loosely based on earlier PAT patchset from Eric Biederman and Andi Kleen.
      9 *
     10 * Basic principles:
     11 *
     12 * PAT is a CPU feature supported by all modern x86 CPUs, to allow the firmware and
     13 * the kernel to set one of a handful of 'caching type' attributes for physical
     14 * memory ranges: uncached, write-combining, write-through, write-protected,
     15 * and the most commonly used and default attribute: write-back caching.
     16 *
     17 * PAT support supercedes and augments MTRR support in a compatible fashion: MTRR is
     18 * a hardware interface to enumerate a limited number of physical memory ranges
     19 * and set their caching attributes explicitly, programmed into the CPU via MSRs.
     20 * Even modern CPUs have MTRRs enabled - but these are typically not touched
     21 * by the kernel or by user-space (such as the X server), we rely on PAT for any
     22 * additional cache attribute logic.
     23 *
     24 * PAT doesn't work via explicit memory ranges, but uses page table entries to add
     25 * cache attribute information to the mapped memory range: there's 3 bits used,
     26 * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT), with the 8 possible values mapped by the
     27 * CPU to actual cache attributes via an MSR loaded into the CPU (MSR_IA32_CR_PAT).
     28 *
     29 * ( There's a metric ton of finer details, such as compatibility with CPU quirks
     30 *   that only support 4 types of PAT entries, and interaction with MTRRs, see
     31 *   below for details. )
     32 */
     33
     34#include <linux/seq_file.h>
     35#include <linux/memblock.h>
     36#include <linux/debugfs.h>
     37#include <linux/ioport.h>
     38#include <linux/kernel.h>
     39#include <linux/pfn_t.h>
     40#include <linux/slab.h>
     41#include <linux/mm.h>
     42#include <linux/fs.h>
     43#include <linux/rbtree.h>
     44
     45#include <asm/cacheflush.h>
     46#include <asm/processor.h>
     47#include <asm/tlbflush.h>
     48#include <asm/x86_init.h>
     49#include <asm/fcntl.h>
     50#include <asm/e820/api.h>
     51#include <asm/mtrr.h>
     52#include <asm/page.h>
     53#include <asm/msr.h>
     54#include <asm/memtype.h>
     55#include <asm/io.h>
     56
     57#include "memtype.h"
     58#include "../mm_internal.h"
     59
     60#undef pr_fmt
     61#define pr_fmt(fmt) "" fmt
     62
     63static bool __read_mostly pat_bp_initialized;
     64static bool __read_mostly pat_disabled = !IS_ENABLED(CONFIG_X86_PAT);
     65static bool __read_mostly pat_bp_enabled;
     66static bool __read_mostly pat_cm_initialized;
     67
     68/*
     69 * PAT support is enabled by default, but can be disabled for
     70 * various user-requested or hardware-forced reasons:
     71 */
     72void pat_disable(const char *msg_reason)
     73{
     74	if (pat_disabled)
     75		return;
     76
     77	if (pat_bp_initialized) {
     78		WARN_ONCE(1, "x86/PAT: PAT cannot be disabled after initialization\n");
     79		return;
     80	}
     81
     82	pat_disabled = true;
     83	pr_info("x86/PAT: %s\n", msg_reason);
     84}
     85
     86static int __init nopat(char *str)
     87{
     88	pat_disable("PAT support disabled via boot option.");
     89	return 0;
     90}
     91early_param("nopat", nopat);
     92
     93bool pat_enabled(void)
     94{
     95	return pat_bp_enabled;
     96}
     97EXPORT_SYMBOL_GPL(pat_enabled);
     98
     99int pat_debug_enable;
    100
    101static int __init pat_debug_setup(char *str)
    102{
    103	pat_debug_enable = 1;
    104	return 1;
    105}
    106__setup("debugpat", pat_debug_setup);
    107
    108#ifdef CONFIG_X86_PAT
    109/*
    110 * X86 PAT uses page flags arch_1 and uncached together to keep track of
    111 * memory type of pages that have backing page struct.
    112 *
    113 * X86 PAT supports 4 different memory types:
    114 *  - _PAGE_CACHE_MODE_WB
    115 *  - _PAGE_CACHE_MODE_WC
    116 *  - _PAGE_CACHE_MODE_UC_MINUS
    117 *  - _PAGE_CACHE_MODE_WT
    118 *
    119 * _PAGE_CACHE_MODE_WB is the default type.
    120 */
    121
    122#define _PGMT_WB		0
    123#define _PGMT_WC		(1UL << PG_arch_1)
    124#define _PGMT_UC_MINUS		(1UL << PG_uncached)
    125#define _PGMT_WT		(1UL << PG_uncached | 1UL << PG_arch_1)
    126#define _PGMT_MASK		(1UL << PG_uncached | 1UL << PG_arch_1)
    127#define _PGMT_CLEAR_MASK	(~_PGMT_MASK)
    128
    129static inline enum page_cache_mode get_page_memtype(struct page *pg)
    130{
    131	unsigned long pg_flags = pg->flags & _PGMT_MASK;
    132
    133	if (pg_flags == _PGMT_WB)
    134		return _PAGE_CACHE_MODE_WB;
    135	else if (pg_flags == _PGMT_WC)
    136		return _PAGE_CACHE_MODE_WC;
    137	else if (pg_flags == _PGMT_UC_MINUS)
    138		return _PAGE_CACHE_MODE_UC_MINUS;
    139	else
    140		return _PAGE_CACHE_MODE_WT;
    141}
    142
    143static inline void set_page_memtype(struct page *pg,
    144				    enum page_cache_mode memtype)
    145{
    146	unsigned long memtype_flags;
    147	unsigned long old_flags;
    148	unsigned long new_flags;
    149
    150	switch (memtype) {
    151	case _PAGE_CACHE_MODE_WC:
    152		memtype_flags = _PGMT_WC;
    153		break;
    154	case _PAGE_CACHE_MODE_UC_MINUS:
    155		memtype_flags = _PGMT_UC_MINUS;
    156		break;
    157	case _PAGE_CACHE_MODE_WT:
    158		memtype_flags = _PGMT_WT;
    159		break;
    160	case _PAGE_CACHE_MODE_WB:
    161	default:
    162		memtype_flags = _PGMT_WB;
    163		break;
    164	}
    165
    166	do {
    167		old_flags = pg->flags;
    168		new_flags = (old_flags & _PGMT_CLEAR_MASK) | memtype_flags;
    169	} while (cmpxchg(&pg->flags, old_flags, new_flags) != old_flags);
    170}
    171#else
    172static inline enum page_cache_mode get_page_memtype(struct page *pg)
    173{
    174	return -1;
    175}
    176static inline void set_page_memtype(struct page *pg,
    177				    enum page_cache_mode memtype)
    178{
    179}
    180#endif
    181
    182enum {
    183	PAT_UC = 0,		/* uncached */
    184	PAT_WC = 1,		/* Write combining */
    185	PAT_WT = 4,		/* Write Through */
    186	PAT_WP = 5,		/* Write Protected */
    187	PAT_WB = 6,		/* Write Back (default) */
    188	PAT_UC_MINUS = 7,	/* UC, but can be overridden by MTRR */
    189};
    190
    191#define CM(c) (_PAGE_CACHE_MODE_ ## c)
    192
    193static enum page_cache_mode pat_get_cache_mode(unsigned pat_val, char *msg)
    194{
    195	enum page_cache_mode cache;
    196	char *cache_mode;
    197
    198	switch (pat_val) {
    199	case PAT_UC:       cache = CM(UC);       cache_mode = "UC  "; break;
    200	case PAT_WC:       cache = CM(WC);       cache_mode = "WC  "; break;
    201	case PAT_WT:       cache = CM(WT);       cache_mode = "WT  "; break;
    202	case PAT_WP:       cache = CM(WP);       cache_mode = "WP  "; break;
    203	case PAT_WB:       cache = CM(WB);       cache_mode = "WB  "; break;
    204	case PAT_UC_MINUS: cache = CM(UC_MINUS); cache_mode = "UC- "; break;
    205	default:           cache = CM(WB);       cache_mode = "WB  "; break;
    206	}
    207
    208	memcpy(msg, cache_mode, 4);
    209
    210	return cache;
    211}
    212
    213#undef CM
    214
    215/*
    216 * Update the cache mode to pgprot translation tables according to PAT
    217 * configuration.
    218 * Using lower indices is preferred, so we start with highest index.
    219 */
    220static void __init_cache_modes(u64 pat)
    221{
    222	enum page_cache_mode cache;
    223	char pat_msg[33];
    224	int i;
    225
    226	WARN_ON_ONCE(pat_cm_initialized);
    227
    228	pat_msg[32] = 0;
    229	for (i = 7; i >= 0; i--) {
    230		cache = pat_get_cache_mode((pat >> (i * 8)) & 7,
    231					   pat_msg + 4 * i);
    232		update_cache_mode_entry(i, cache);
    233	}
    234	pr_info("x86/PAT: Configuration [0-7]: %s\n", pat_msg);
    235
    236	pat_cm_initialized = true;
    237}
    238
    239#define PAT(x, y)	((u64)PAT_ ## y << ((x)*8))
    240
    241static void pat_bp_init(u64 pat)
    242{
    243	u64 tmp_pat;
    244
    245	if (!boot_cpu_has(X86_FEATURE_PAT)) {
    246		pat_disable("PAT not supported by the CPU.");
    247		return;
    248	}
    249
    250	rdmsrl(MSR_IA32_CR_PAT, tmp_pat);
    251	if (!tmp_pat) {
    252		pat_disable("PAT support disabled by the firmware.");
    253		return;
    254	}
    255
    256	wrmsrl(MSR_IA32_CR_PAT, pat);
    257	pat_bp_enabled = true;
    258
    259	__init_cache_modes(pat);
    260}
    261
    262static void pat_ap_init(u64 pat)
    263{
    264	if (!boot_cpu_has(X86_FEATURE_PAT)) {
    265		/*
    266		 * If this happens we are on a secondary CPU, but switched to
    267		 * PAT on the boot CPU. We have no way to undo PAT.
    268		 */
    269		panic("x86/PAT: PAT enabled, but not supported by secondary CPU\n");
    270	}
    271
    272	wrmsrl(MSR_IA32_CR_PAT, pat);
    273}
    274
    275void init_cache_modes(void)
    276{
    277	u64 pat = 0;
    278
    279	if (pat_cm_initialized)
    280		return;
    281
    282	if (boot_cpu_has(X86_FEATURE_PAT)) {
    283		/*
    284		 * CPU supports PAT. Set PAT table to be consistent with
    285		 * PAT MSR. This case supports "nopat" boot option, and
    286		 * virtual machine environments which support PAT without
    287		 * MTRRs. In specific, Xen has unique setup to PAT MSR.
    288		 *
    289		 * If PAT MSR returns 0, it is considered invalid and emulates
    290		 * as No PAT.
    291		 */
    292		rdmsrl(MSR_IA32_CR_PAT, pat);
    293	}
    294
    295	if (!pat) {
    296		/*
    297		 * No PAT. Emulate the PAT table that corresponds to the two
    298		 * cache bits, PWT (Write Through) and PCD (Cache Disable).
    299		 * This setup is also the same as the BIOS default setup.
    300		 *
    301		 * PTE encoding:
    302		 *
    303		 *       PCD
    304		 *       |PWT  PAT
    305		 *       ||    slot
    306		 *       00    0    WB : _PAGE_CACHE_MODE_WB
    307		 *       01    1    WT : _PAGE_CACHE_MODE_WT
    308		 *       10    2    UC-: _PAGE_CACHE_MODE_UC_MINUS
    309		 *       11    3    UC : _PAGE_CACHE_MODE_UC
    310		 *
    311		 * NOTE: When WC or WP is used, it is redirected to UC- per
    312		 * the default setup in __cachemode2pte_tbl[].
    313		 */
    314		pat = PAT(0, WB) | PAT(1, WT) | PAT(2, UC_MINUS) | PAT(3, UC) |
    315		      PAT(4, WB) | PAT(5, WT) | PAT(6, UC_MINUS) | PAT(7, UC);
    316	}
    317
    318	__init_cache_modes(pat);
    319}
    320
    321/**
    322 * pat_init - Initialize the PAT MSR and PAT table on the current CPU
    323 *
    324 * This function initializes PAT MSR and PAT table with an OS-defined value
    325 * to enable additional cache attributes, WC, WT and WP.
    326 *
    327 * This function must be called on all CPUs using the specific sequence of
    328 * operations defined in Intel SDM. mtrr_rendezvous_handler() provides this
    329 * procedure for PAT.
    330 */
    331void pat_init(void)
    332{
    333	u64 pat;
    334	struct cpuinfo_x86 *c = &boot_cpu_data;
    335
    336#ifndef CONFIG_X86_PAT
    337	pr_info_once("x86/PAT: PAT support disabled because CONFIG_X86_PAT is disabled in the kernel.\n");
    338#endif
    339
    340	if (pat_disabled)
    341		return;
    342
    343	if ((c->x86_vendor == X86_VENDOR_INTEL) &&
    344	    (((c->x86 == 0x6) && (c->x86_model <= 0xd)) ||
    345	     ((c->x86 == 0xf) && (c->x86_model <= 0x6)))) {
    346		/*
    347		 * PAT support with the lower four entries. Intel Pentium 2,
    348		 * 3, M, and 4 are affected by PAT errata, which makes the
    349		 * upper four entries unusable. To be on the safe side, we don't
    350		 * use those.
    351		 *
    352		 *  PTE encoding:
    353		 *      PAT
    354		 *      |PCD
    355		 *      ||PWT  PAT
    356		 *      |||    slot
    357		 *      000    0    WB : _PAGE_CACHE_MODE_WB
    358		 *      001    1    WC : _PAGE_CACHE_MODE_WC
    359		 *      010    2    UC-: _PAGE_CACHE_MODE_UC_MINUS
    360		 *      011    3    UC : _PAGE_CACHE_MODE_UC
    361		 * PAT bit unused
    362		 *
    363		 * NOTE: When WT or WP is used, it is redirected to UC- per
    364		 * the default setup in __cachemode2pte_tbl[].
    365		 */
    366		pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) |
    367		      PAT(4, WB) | PAT(5, WC) | PAT(6, UC_MINUS) | PAT(7, UC);
    368	} else {
    369		/*
    370		 * Full PAT support.  We put WT in slot 7 to improve
    371		 * robustness in the presence of errata that might cause
    372		 * the high PAT bit to be ignored.  This way, a buggy slot 7
    373		 * access will hit slot 3, and slot 3 is UC, so at worst
    374		 * we lose performance without causing a correctness issue.
    375		 * Pentium 4 erratum N46 is an example for such an erratum,
    376		 * although we try not to use PAT at all on affected CPUs.
    377		 *
    378		 *  PTE encoding:
    379		 *      PAT
    380		 *      |PCD
    381		 *      ||PWT  PAT
    382		 *      |||    slot
    383		 *      000    0    WB : _PAGE_CACHE_MODE_WB
    384		 *      001    1    WC : _PAGE_CACHE_MODE_WC
    385		 *      010    2    UC-: _PAGE_CACHE_MODE_UC_MINUS
    386		 *      011    3    UC : _PAGE_CACHE_MODE_UC
    387		 *      100    4    WB : Reserved
    388		 *      101    5    WP : _PAGE_CACHE_MODE_WP
    389		 *      110    6    UC-: Reserved
    390		 *      111    7    WT : _PAGE_CACHE_MODE_WT
    391		 *
    392		 * The reserved slots are unused, but mapped to their
    393		 * corresponding types in the presence of PAT errata.
    394		 */
    395		pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) |
    396		      PAT(4, WB) | PAT(5, WP) | PAT(6, UC_MINUS) | PAT(7, WT);
    397	}
    398
    399	if (!pat_bp_initialized) {
    400		pat_bp_init(pat);
    401		pat_bp_initialized = true;
    402	} else {
    403		pat_ap_init(pat);
    404	}
    405}
    406
    407#undef PAT
    408
    409static DEFINE_SPINLOCK(memtype_lock);	/* protects memtype accesses */
    410
    411/*
    412 * Does intersection of PAT memory type and MTRR memory type and returns
    413 * the resulting memory type as PAT understands it.
    414 * (Type in pat and mtrr will not have same value)
    415 * The intersection is based on "Effective Memory Type" tables in IA-32
    416 * SDM vol 3a
    417 */
    418static unsigned long pat_x_mtrr_type(u64 start, u64 end,
    419				     enum page_cache_mode req_type)
    420{
    421	/*
    422	 * Look for MTRR hint to get the effective type in case where PAT
    423	 * request is for WB.
    424	 */
    425	if (req_type == _PAGE_CACHE_MODE_WB) {
    426		u8 mtrr_type, uniform;
    427
    428		mtrr_type = mtrr_type_lookup(start, end, &uniform);
    429		if (mtrr_type != MTRR_TYPE_WRBACK)
    430			return _PAGE_CACHE_MODE_UC_MINUS;
    431
    432		return _PAGE_CACHE_MODE_WB;
    433	}
    434
    435	return req_type;
    436}
    437
    438struct pagerange_state {
    439	unsigned long		cur_pfn;
    440	int			ram;
    441	int			not_ram;
    442};
    443
    444static int
    445pagerange_is_ram_callback(unsigned long initial_pfn, unsigned long total_nr_pages, void *arg)
    446{
    447	struct pagerange_state *state = arg;
    448
    449	state->not_ram	|= initial_pfn > state->cur_pfn;
    450	state->ram	|= total_nr_pages > 0;
    451	state->cur_pfn	 = initial_pfn + total_nr_pages;
    452
    453	return state->ram && state->not_ram;
    454}
    455
    456static int pat_pagerange_is_ram(resource_size_t start, resource_size_t end)
    457{
    458	int ret = 0;
    459	unsigned long start_pfn = start >> PAGE_SHIFT;
    460	unsigned long end_pfn = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
    461	struct pagerange_state state = {start_pfn, 0, 0};
    462
    463	/*
    464	 * For legacy reasons, physical address range in the legacy ISA
    465	 * region is tracked as non-RAM. This will allow users of
    466	 * /dev/mem to map portions of legacy ISA region, even when
    467	 * some of those portions are listed(or not even listed) with
    468	 * different e820 types(RAM/reserved/..)
    469	 */
    470	if (start_pfn < ISA_END_ADDRESS >> PAGE_SHIFT)
    471		start_pfn = ISA_END_ADDRESS >> PAGE_SHIFT;
    472
    473	if (start_pfn < end_pfn) {
    474		ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn,
    475				&state, pagerange_is_ram_callback);
    476	}
    477
    478	return (ret > 0) ? -1 : (state.ram ? 1 : 0);
    479}
    480
    481/*
    482 * For RAM pages, we use page flags to mark the pages with appropriate type.
    483 * The page flags are limited to four types, WB (default), WC, WT and UC-.
    484 * WP request fails with -EINVAL, and UC gets redirected to UC-.  Setting
    485 * a new memory type is only allowed for a page mapped with the default WB
    486 * type.
    487 *
    488 * Here we do two passes:
    489 * - Find the memtype of all the pages in the range, look for any conflicts.
    490 * - In case of no conflicts, set the new memtype for pages in the range.
    491 */
    492static int reserve_ram_pages_type(u64 start, u64 end,
    493				  enum page_cache_mode req_type,
    494				  enum page_cache_mode *new_type)
    495{
    496	struct page *page;
    497	u64 pfn;
    498
    499	if (req_type == _PAGE_CACHE_MODE_WP) {
    500		if (new_type)
    501			*new_type = _PAGE_CACHE_MODE_UC_MINUS;
    502		return -EINVAL;
    503	}
    504
    505	if (req_type == _PAGE_CACHE_MODE_UC) {
    506		/* We do not support strong UC */
    507		WARN_ON_ONCE(1);
    508		req_type = _PAGE_CACHE_MODE_UC_MINUS;
    509	}
    510
    511	for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
    512		enum page_cache_mode type;
    513
    514		page = pfn_to_page(pfn);
    515		type = get_page_memtype(page);
    516		if (type != _PAGE_CACHE_MODE_WB) {
    517			pr_info("x86/PAT: reserve_ram_pages_type failed [mem %#010Lx-%#010Lx], track 0x%x, req 0x%x\n",
    518				start, end - 1, type, req_type);
    519			if (new_type)
    520				*new_type = type;
    521
    522			return -EBUSY;
    523		}
    524	}
    525
    526	if (new_type)
    527		*new_type = req_type;
    528
    529	for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
    530		page = pfn_to_page(pfn);
    531		set_page_memtype(page, req_type);
    532	}
    533	return 0;
    534}
    535
    536static int free_ram_pages_type(u64 start, u64 end)
    537{
    538	struct page *page;
    539	u64 pfn;
    540
    541	for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
    542		page = pfn_to_page(pfn);
    543		set_page_memtype(page, _PAGE_CACHE_MODE_WB);
    544	}
    545	return 0;
    546}
    547
    548static u64 sanitize_phys(u64 address)
    549{
    550	/*
    551	 * When changing the memtype for pages containing poison allow
    552	 * for a "decoy" virtual address (bit 63 clear) passed to
    553	 * set_memory_X(). __pa() on a "decoy" address results in a
    554	 * physical address with bit 63 set.
    555	 *
    556	 * Decoy addresses are not present for 32-bit builds, see
    557	 * set_mce_nospec().
    558	 */
    559	if (IS_ENABLED(CONFIG_X86_64))
    560		return address & __PHYSICAL_MASK;
    561	return address;
    562}
    563
    564/*
    565 * req_type typically has one of the:
    566 * - _PAGE_CACHE_MODE_WB
    567 * - _PAGE_CACHE_MODE_WC
    568 * - _PAGE_CACHE_MODE_UC_MINUS
    569 * - _PAGE_CACHE_MODE_UC
    570 * - _PAGE_CACHE_MODE_WT
    571 *
    572 * If new_type is NULL, function will return an error if it cannot reserve the
    573 * region with req_type. If new_type is non-NULL, function will return
    574 * available type in new_type in case of no error. In case of any error
    575 * it will return a negative return value.
    576 */
    577int memtype_reserve(u64 start, u64 end, enum page_cache_mode req_type,
    578		    enum page_cache_mode *new_type)
    579{
    580	struct memtype *entry_new;
    581	enum page_cache_mode actual_type;
    582	int is_range_ram;
    583	int err = 0;
    584
    585	start = sanitize_phys(start);
    586
    587	/*
    588	 * The end address passed into this function is exclusive, but
    589	 * sanitize_phys() expects an inclusive address.
    590	 */
    591	end = sanitize_phys(end - 1) + 1;
    592	if (start >= end) {
    593		WARN(1, "%s failed: [mem %#010Lx-%#010Lx], req %s\n", __func__,
    594				start, end - 1, cattr_name(req_type));
    595		return -EINVAL;
    596	}
    597
    598	if (!pat_enabled()) {
    599		/* This is identical to page table setting without PAT */
    600		if (new_type)
    601			*new_type = req_type;
    602		return 0;
    603	}
    604
    605	/* Low ISA region is always mapped WB in page table. No need to track */
    606	if (x86_platform.is_untracked_pat_range(start, end)) {
    607		if (new_type)
    608			*new_type = _PAGE_CACHE_MODE_WB;
    609		return 0;
    610	}
    611
    612	/*
    613	 * Call mtrr_lookup to get the type hint. This is an
    614	 * optimization for /dev/mem mmap'ers into WB memory (BIOS
    615	 * tools and ACPI tools). Use WB request for WB memory and use
    616	 * UC_MINUS otherwise.
    617	 */
    618	actual_type = pat_x_mtrr_type(start, end, req_type);
    619
    620	if (new_type)
    621		*new_type = actual_type;
    622
    623	is_range_ram = pat_pagerange_is_ram(start, end);
    624	if (is_range_ram == 1) {
    625
    626		err = reserve_ram_pages_type(start, end, req_type, new_type);
    627
    628		return err;
    629	} else if (is_range_ram < 0) {
    630		return -EINVAL;
    631	}
    632
    633	entry_new = kzalloc(sizeof(struct memtype), GFP_KERNEL);
    634	if (!entry_new)
    635		return -ENOMEM;
    636
    637	entry_new->start = start;
    638	entry_new->end	 = end;
    639	entry_new->type	 = actual_type;
    640
    641	spin_lock(&memtype_lock);
    642
    643	err = memtype_check_insert(entry_new, new_type);
    644	if (err) {
    645		pr_info("x86/PAT: memtype_reserve failed [mem %#010Lx-%#010Lx], track %s, req %s\n",
    646			start, end - 1,
    647			cattr_name(entry_new->type), cattr_name(req_type));
    648		kfree(entry_new);
    649		spin_unlock(&memtype_lock);
    650
    651		return err;
    652	}
    653
    654	spin_unlock(&memtype_lock);
    655
    656	dprintk("memtype_reserve added [mem %#010Lx-%#010Lx], track %s, req %s, ret %s\n",
    657		start, end - 1, cattr_name(entry_new->type), cattr_name(req_type),
    658		new_type ? cattr_name(*new_type) : "-");
    659
    660	return err;
    661}
    662
    663int memtype_free(u64 start, u64 end)
    664{
    665	int is_range_ram;
    666	struct memtype *entry_old;
    667
    668	if (!pat_enabled())
    669		return 0;
    670
    671	start = sanitize_phys(start);
    672	end = sanitize_phys(end);
    673
    674	/* Low ISA region is always mapped WB. No need to track */
    675	if (x86_platform.is_untracked_pat_range(start, end))
    676		return 0;
    677
    678	is_range_ram = pat_pagerange_is_ram(start, end);
    679	if (is_range_ram == 1)
    680		return free_ram_pages_type(start, end);
    681	if (is_range_ram < 0)
    682		return -EINVAL;
    683
    684	spin_lock(&memtype_lock);
    685	entry_old = memtype_erase(start, end);
    686	spin_unlock(&memtype_lock);
    687
    688	if (IS_ERR(entry_old)) {
    689		pr_info("x86/PAT: %s:%d freeing invalid memtype [mem %#010Lx-%#010Lx]\n",
    690			current->comm, current->pid, start, end - 1);
    691		return -EINVAL;
    692	}
    693
    694	kfree(entry_old);
    695
    696	dprintk("memtype_free request [mem %#010Lx-%#010Lx]\n", start, end - 1);
    697
    698	return 0;
    699}
    700
    701
    702/**
    703 * lookup_memtype - Looks up the memory type for a physical address
    704 * @paddr: physical address of which memory type needs to be looked up
    705 *
    706 * Only to be called when PAT is enabled
    707 *
    708 * Returns _PAGE_CACHE_MODE_WB, _PAGE_CACHE_MODE_WC, _PAGE_CACHE_MODE_UC_MINUS
    709 * or _PAGE_CACHE_MODE_WT.
    710 */
    711static enum page_cache_mode lookup_memtype(u64 paddr)
    712{
    713	enum page_cache_mode rettype = _PAGE_CACHE_MODE_WB;
    714	struct memtype *entry;
    715
    716	if (x86_platform.is_untracked_pat_range(paddr, paddr + PAGE_SIZE))
    717		return rettype;
    718
    719	if (pat_pagerange_is_ram(paddr, paddr + PAGE_SIZE)) {
    720		struct page *page;
    721
    722		page = pfn_to_page(paddr >> PAGE_SHIFT);
    723		return get_page_memtype(page);
    724	}
    725
    726	spin_lock(&memtype_lock);
    727
    728	entry = memtype_lookup(paddr);
    729	if (entry != NULL)
    730		rettype = entry->type;
    731	else
    732		rettype = _PAGE_CACHE_MODE_UC_MINUS;
    733
    734	spin_unlock(&memtype_lock);
    735
    736	return rettype;
    737}
    738
    739/**
    740 * pat_pfn_immune_to_uc_mtrr - Check whether the PAT memory type
    741 * of @pfn cannot be overridden by UC MTRR memory type.
    742 *
    743 * Only to be called when PAT is enabled.
    744 *
    745 * Returns true, if the PAT memory type of @pfn is UC, UC-, or WC.
    746 * Returns false in other cases.
    747 */
    748bool pat_pfn_immune_to_uc_mtrr(unsigned long pfn)
    749{
    750	enum page_cache_mode cm = lookup_memtype(PFN_PHYS(pfn));
    751
    752	return cm == _PAGE_CACHE_MODE_UC ||
    753	       cm == _PAGE_CACHE_MODE_UC_MINUS ||
    754	       cm == _PAGE_CACHE_MODE_WC;
    755}
    756EXPORT_SYMBOL_GPL(pat_pfn_immune_to_uc_mtrr);
    757
    758/**
    759 * memtype_reserve_io - Request a memory type mapping for a region of memory
    760 * @start: start (physical address) of the region
    761 * @end: end (physical address) of the region
    762 * @type: A pointer to memtype, with requested type. On success, requested
    763 * or any other compatible type that was available for the region is returned
    764 *
    765 * On success, returns 0
    766 * On failure, returns non-zero
    767 */
    768int memtype_reserve_io(resource_size_t start, resource_size_t end,
    769			enum page_cache_mode *type)
    770{
    771	resource_size_t size = end - start;
    772	enum page_cache_mode req_type = *type;
    773	enum page_cache_mode new_type;
    774	int ret;
    775
    776	WARN_ON_ONCE(iomem_map_sanity_check(start, size));
    777
    778	ret = memtype_reserve(start, end, req_type, &new_type);
    779	if (ret)
    780		goto out_err;
    781
    782	if (!is_new_memtype_allowed(start, size, req_type, new_type))
    783		goto out_free;
    784
    785	if (memtype_kernel_map_sync(start, size, new_type) < 0)
    786		goto out_free;
    787
    788	*type = new_type;
    789	return 0;
    790
    791out_free:
    792	memtype_free(start, end);
    793	ret = -EBUSY;
    794out_err:
    795	return ret;
    796}
    797
    798/**
    799 * memtype_free_io - Release a memory type mapping for a region of memory
    800 * @start: start (physical address) of the region
    801 * @end: end (physical address) of the region
    802 */
    803void memtype_free_io(resource_size_t start, resource_size_t end)
    804{
    805	memtype_free(start, end);
    806}
    807
    808#ifdef CONFIG_X86_PAT
    809int arch_io_reserve_memtype_wc(resource_size_t start, resource_size_t size)
    810{
    811	enum page_cache_mode type = _PAGE_CACHE_MODE_WC;
    812
    813	return memtype_reserve_io(start, start + size, &type);
    814}
    815EXPORT_SYMBOL(arch_io_reserve_memtype_wc);
    816
    817void arch_io_free_memtype_wc(resource_size_t start, resource_size_t size)
    818{
    819	memtype_free_io(start, start + size);
    820}
    821EXPORT_SYMBOL(arch_io_free_memtype_wc);
    822#endif
    823
    824pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
    825				unsigned long size, pgprot_t vma_prot)
    826{
    827	if (!phys_mem_access_encrypted(pfn << PAGE_SHIFT, size))
    828		vma_prot = pgprot_decrypted(vma_prot);
    829
    830	return vma_prot;
    831}
    832
    833#ifdef CONFIG_STRICT_DEVMEM
    834/* This check is done in drivers/char/mem.c in case of STRICT_DEVMEM */
    835static inline int range_is_allowed(unsigned long pfn, unsigned long size)
    836{
    837	return 1;
    838}
    839#else
    840/* This check is needed to avoid cache aliasing when PAT is enabled */
    841static inline int range_is_allowed(unsigned long pfn, unsigned long size)
    842{
    843	u64 from = ((u64)pfn) << PAGE_SHIFT;
    844	u64 to = from + size;
    845	u64 cursor = from;
    846
    847	if (!pat_enabled())
    848		return 1;
    849
    850	while (cursor < to) {
    851		if (!devmem_is_allowed(pfn))
    852			return 0;
    853		cursor += PAGE_SIZE;
    854		pfn++;
    855	}
    856	return 1;
    857}
    858#endif /* CONFIG_STRICT_DEVMEM */
    859
    860int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
    861				unsigned long size, pgprot_t *vma_prot)
    862{
    863	enum page_cache_mode pcm = _PAGE_CACHE_MODE_WB;
    864
    865	if (!range_is_allowed(pfn, size))
    866		return 0;
    867
    868	if (file->f_flags & O_DSYNC)
    869		pcm = _PAGE_CACHE_MODE_UC_MINUS;
    870
    871	*vma_prot = __pgprot((pgprot_val(*vma_prot) & ~_PAGE_CACHE_MASK) |
    872			     cachemode2protval(pcm));
    873	return 1;
    874}
    875
    876/*
    877 * Change the memory type for the physical address range in kernel identity
    878 * mapping space if that range is a part of identity map.
    879 */
    880int memtype_kernel_map_sync(u64 base, unsigned long size,
    881			    enum page_cache_mode pcm)
    882{
    883	unsigned long id_sz;
    884
    885	if (base > __pa(high_memory-1))
    886		return 0;
    887
    888	/*
    889	 * Some areas in the middle of the kernel identity range
    890	 * are not mapped, for example the PCI space.
    891	 */
    892	if (!page_is_ram(base >> PAGE_SHIFT))
    893		return 0;
    894
    895	id_sz = (__pa(high_memory-1) <= base + size) ?
    896				__pa(high_memory) - base : size;
    897
    898	if (ioremap_change_attr((unsigned long)__va(base), id_sz, pcm) < 0) {
    899		pr_info("x86/PAT: %s:%d ioremap_change_attr failed %s for [mem %#010Lx-%#010Lx]\n",
    900			current->comm, current->pid,
    901			cattr_name(pcm),
    902			base, (unsigned long long)(base + size-1));
    903		return -EINVAL;
    904	}
    905	return 0;
    906}
    907
    908/*
    909 * Internal interface to reserve a range of physical memory with prot.
    910 * Reserved non RAM regions only and after successful memtype_reserve,
    911 * this func also keeps identity mapping (if any) in sync with this new prot.
    912 */
    913static int reserve_pfn_range(u64 paddr, unsigned long size, pgprot_t *vma_prot,
    914				int strict_prot)
    915{
    916	int is_ram = 0;
    917	int ret;
    918	enum page_cache_mode want_pcm = pgprot2cachemode(*vma_prot);
    919	enum page_cache_mode pcm = want_pcm;
    920
    921	is_ram = pat_pagerange_is_ram(paddr, paddr + size);
    922
    923	/*
    924	 * reserve_pfn_range() for RAM pages. We do not refcount to keep
    925	 * track of number of mappings of RAM pages. We can assert that
    926	 * the type requested matches the type of first page in the range.
    927	 */
    928	if (is_ram) {
    929		if (!pat_enabled())
    930			return 0;
    931
    932		pcm = lookup_memtype(paddr);
    933		if (want_pcm != pcm) {
    934			pr_warn("x86/PAT: %s:%d map pfn RAM range req %s for [mem %#010Lx-%#010Lx], got %s\n",
    935				current->comm, current->pid,
    936				cattr_name(want_pcm),
    937				(unsigned long long)paddr,
    938				(unsigned long long)(paddr + size - 1),
    939				cattr_name(pcm));
    940			*vma_prot = __pgprot((pgprot_val(*vma_prot) &
    941					     (~_PAGE_CACHE_MASK)) |
    942					     cachemode2protval(pcm));
    943		}
    944		return 0;
    945	}
    946
    947	ret = memtype_reserve(paddr, paddr + size, want_pcm, &pcm);
    948	if (ret)
    949		return ret;
    950
    951	if (pcm != want_pcm) {
    952		if (strict_prot ||
    953		    !is_new_memtype_allowed(paddr, size, want_pcm, pcm)) {
    954			memtype_free(paddr, paddr + size);
    955			pr_err("x86/PAT: %s:%d map pfn expected mapping type %s for [mem %#010Lx-%#010Lx], got %s\n",
    956			       current->comm, current->pid,
    957			       cattr_name(want_pcm),
    958			       (unsigned long long)paddr,
    959			       (unsigned long long)(paddr + size - 1),
    960			       cattr_name(pcm));
    961			return -EINVAL;
    962		}
    963		/*
    964		 * We allow returning different type than the one requested in
    965		 * non strict case.
    966		 */
    967		*vma_prot = __pgprot((pgprot_val(*vma_prot) &
    968				      (~_PAGE_CACHE_MASK)) |
    969				     cachemode2protval(pcm));
    970	}
    971
    972	if (memtype_kernel_map_sync(paddr, size, pcm) < 0) {
    973		memtype_free(paddr, paddr + size);
    974		return -EINVAL;
    975	}
    976	return 0;
    977}
    978
    979/*
    980 * Internal interface to free a range of physical memory.
    981 * Frees non RAM regions only.
    982 */
    983static void free_pfn_range(u64 paddr, unsigned long size)
    984{
    985	int is_ram;
    986
    987	is_ram = pat_pagerange_is_ram(paddr, paddr + size);
    988	if (is_ram == 0)
    989		memtype_free(paddr, paddr + size);
    990}
    991
    992/*
    993 * track_pfn_copy is called when vma that is covering the pfnmap gets
    994 * copied through copy_page_range().
    995 *
    996 * If the vma has a linear pfn mapping for the entire range, we get the prot
    997 * from pte and reserve the entire vma range with single reserve_pfn_range call.
    998 */
    999int track_pfn_copy(struct vm_area_struct *vma)
   1000{
   1001	resource_size_t paddr;
   1002	unsigned long prot;
   1003	unsigned long vma_size = vma->vm_end - vma->vm_start;
   1004	pgprot_t pgprot;
   1005
   1006	if (vma->vm_flags & VM_PAT) {
   1007		/*
   1008		 * reserve the whole chunk covered by vma. We need the
   1009		 * starting address and protection from pte.
   1010		 */
   1011		if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) {
   1012			WARN_ON_ONCE(1);
   1013			return -EINVAL;
   1014		}
   1015		pgprot = __pgprot(prot);
   1016		return reserve_pfn_range(paddr, vma_size, &pgprot, 1);
   1017	}
   1018
   1019	return 0;
   1020}
   1021
   1022/*
   1023 * prot is passed in as a parameter for the new mapping. If the vma has
   1024 * a linear pfn mapping for the entire range, or no vma is provided,
   1025 * reserve the entire pfn + size range with single reserve_pfn_range
   1026 * call.
   1027 */
   1028int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
   1029		    unsigned long pfn, unsigned long addr, unsigned long size)
   1030{
   1031	resource_size_t paddr = (resource_size_t)pfn << PAGE_SHIFT;
   1032	enum page_cache_mode pcm;
   1033
   1034	/* reserve the whole chunk starting from paddr */
   1035	if (!vma || (addr == vma->vm_start
   1036				&& size == (vma->vm_end - vma->vm_start))) {
   1037		int ret;
   1038
   1039		ret = reserve_pfn_range(paddr, size, prot, 0);
   1040		if (ret == 0 && vma)
   1041			vma->vm_flags |= VM_PAT;
   1042		return ret;
   1043	}
   1044
   1045	if (!pat_enabled())
   1046		return 0;
   1047
   1048	/*
   1049	 * For anything smaller than the vma size we set prot based on the
   1050	 * lookup.
   1051	 */
   1052	pcm = lookup_memtype(paddr);
   1053
   1054	/* Check memtype for the remaining pages */
   1055	while (size > PAGE_SIZE) {
   1056		size -= PAGE_SIZE;
   1057		paddr += PAGE_SIZE;
   1058		if (pcm != lookup_memtype(paddr))
   1059			return -EINVAL;
   1060	}
   1061
   1062	*prot = __pgprot((pgprot_val(*prot) & (~_PAGE_CACHE_MASK)) |
   1063			 cachemode2protval(pcm));
   1064
   1065	return 0;
   1066}
   1067
   1068void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, pfn_t pfn)
   1069{
   1070	enum page_cache_mode pcm;
   1071
   1072	if (!pat_enabled())
   1073		return;
   1074
   1075	/* Set prot based on lookup */
   1076	pcm = lookup_memtype(pfn_t_to_phys(pfn));
   1077	*prot = __pgprot((pgprot_val(*prot) & (~_PAGE_CACHE_MASK)) |
   1078			 cachemode2protval(pcm));
   1079}
   1080
   1081/*
   1082 * untrack_pfn is called while unmapping a pfnmap for a region.
   1083 * untrack can be called for a specific region indicated by pfn and size or
   1084 * can be for the entire vma (in which case pfn, size are zero).
   1085 */
   1086void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
   1087		 unsigned long size)
   1088{
   1089	resource_size_t paddr;
   1090	unsigned long prot;
   1091
   1092	if (vma && !(vma->vm_flags & VM_PAT))
   1093		return;
   1094
   1095	/* free the chunk starting from pfn or the whole chunk */
   1096	paddr = (resource_size_t)pfn << PAGE_SHIFT;
   1097	if (!paddr && !size) {
   1098		if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) {
   1099			WARN_ON_ONCE(1);
   1100			return;
   1101		}
   1102
   1103		size = vma->vm_end - vma->vm_start;
   1104	}
   1105	free_pfn_range(paddr, size);
   1106	if (vma)
   1107		vma->vm_flags &= ~VM_PAT;
   1108}
   1109
   1110/*
   1111 * untrack_pfn_moved is called, while mremapping a pfnmap for a new region,
   1112 * with the old vma after its pfnmap page table has been removed.  The new
   1113 * vma has a new pfnmap to the same pfn & cache type with VM_PAT set.
   1114 */
   1115void untrack_pfn_moved(struct vm_area_struct *vma)
   1116{
   1117	vma->vm_flags &= ~VM_PAT;
   1118}
   1119
   1120pgprot_t pgprot_writecombine(pgprot_t prot)
   1121{
   1122	return __pgprot(pgprot_val(prot) |
   1123				cachemode2protval(_PAGE_CACHE_MODE_WC));
   1124}
   1125EXPORT_SYMBOL_GPL(pgprot_writecombine);
   1126
   1127pgprot_t pgprot_writethrough(pgprot_t prot)
   1128{
   1129	return __pgprot(pgprot_val(prot) |
   1130				cachemode2protval(_PAGE_CACHE_MODE_WT));
   1131}
   1132EXPORT_SYMBOL_GPL(pgprot_writethrough);
   1133
   1134#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_X86_PAT)
   1135
   1136/*
   1137 * We are allocating a temporary printout-entry to be passed
   1138 * between seq_start()/next() and seq_show():
   1139 */
   1140static struct memtype *memtype_get_idx(loff_t pos)
   1141{
   1142	struct memtype *entry_print;
   1143	int ret;
   1144
   1145	entry_print  = kzalloc(sizeof(struct memtype), GFP_KERNEL);
   1146	if (!entry_print)
   1147		return NULL;
   1148
   1149	spin_lock(&memtype_lock);
   1150	ret = memtype_copy_nth_element(entry_print, pos);
   1151	spin_unlock(&memtype_lock);
   1152
   1153	/* Free it on error: */
   1154	if (ret) {
   1155		kfree(entry_print);
   1156		return NULL;
   1157	}
   1158
   1159	return entry_print;
   1160}
   1161
   1162static void *memtype_seq_start(struct seq_file *seq, loff_t *pos)
   1163{
   1164	if (*pos == 0) {
   1165		++*pos;
   1166		seq_puts(seq, "PAT memtype list:\n");
   1167	}
   1168
   1169	return memtype_get_idx(*pos);
   1170}
   1171
   1172static void *memtype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
   1173{
   1174	kfree(v);
   1175	++*pos;
   1176	return memtype_get_idx(*pos);
   1177}
   1178
   1179static void memtype_seq_stop(struct seq_file *seq, void *v)
   1180{
   1181	kfree(v);
   1182}
   1183
   1184static int memtype_seq_show(struct seq_file *seq, void *v)
   1185{
   1186	struct memtype *entry_print = (struct memtype *)v;
   1187
   1188	seq_printf(seq, "PAT: [mem 0x%016Lx-0x%016Lx] %s\n",
   1189			entry_print->start,
   1190			entry_print->end,
   1191			cattr_name(entry_print->type));
   1192
   1193	return 0;
   1194}
   1195
   1196static const struct seq_operations memtype_seq_ops = {
   1197	.start = memtype_seq_start,
   1198	.next  = memtype_seq_next,
   1199	.stop  = memtype_seq_stop,
   1200	.show  = memtype_seq_show,
   1201};
   1202
   1203static int memtype_seq_open(struct inode *inode, struct file *file)
   1204{
   1205	return seq_open(file, &memtype_seq_ops);
   1206}
   1207
   1208static const struct file_operations memtype_fops = {
   1209	.open    = memtype_seq_open,
   1210	.read    = seq_read,
   1211	.llseek  = seq_lseek,
   1212	.release = seq_release,
   1213};
   1214
   1215static int __init pat_memtype_list_init(void)
   1216{
   1217	if (pat_enabled()) {
   1218		debugfs_create_file("pat_memtype_list", S_IRUSR,
   1219				    arch_debugfs_dir, NULL, &memtype_fops);
   1220	}
   1221	return 0;
   1222}
   1223late_initcall(pat_memtype_list_init);
   1224
   1225#endif /* CONFIG_DEBUG_FS && CONFIG_X86_PAT */