cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

tlb.c (38703B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2#include <linux/init.h>
      3
      4#include <linux/mm.h>
      5#include <linux/spinlock.h>
      6#include <linux/smp.h>
      7#include <linux/interrupt.h>
      8#include <linux/export.h>
      9#include <linux/cpu.h>
     10#include <linux/debugfs.h>
     11#include <linux/sched/smt.h>
     12#include <linux/task_work.h>
     13
     14#include <asm/tlbflush.h>
     15#include <asm/mmu_context.h>
     16#include <asm/nospec-branch.h>
     17#include <asm/cache.h>
     18#include <asm/cacheflush.h>
     19#include <asm/apic.h>
     20#include <asm/perf_event.h>
     21
     22#include "mm_internal.h"
     23
     24#ifdef CONFIG_PARAVIRT
     25# define STATIC_NOPV
     26#else
     27# define STATIC_NOPV			static
     28# define __flush_tlb_local		native_flush_tlb_local
     29# define __flush_tlb_global		native_flush_tlb_global
     30# define __flush_tlb_one_user(addr)	native_flush_tlb_one_user(addr)
     31# define __flush_tlb_multi(msk, info)	native_flush_tlb_multi(msk, info)
     32#endif
     33
     34/*
     35 *	TLB flushing, formerly SMP-only
     36 *		c/o Linus Torvalds.
     37 *
     38 *	These mean you can really definitely utterly forget about
     39 *	writing to user space from interrupts. (Its not allowed anyway).
     40 *
     41 *	Optimizations Manfred Spraul <manfred@colorfullife.com>
     42 *
     43 *	More scalable flush, from Andi Kleen
     44 *
     45 *	Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
     46 */
     47
     48/*
     49 * Bits to mangle the TIF_SPEC_* state into the mm pointer which is
     50 * stored in cpu_tlb_state.last_user_mm_spec.
     51 */
     52#define LAST_USER_MM_IBPB	0x1UL
     53#define LAST_USER_MM_L1D_FLUSH	0x2UL
     54#define LAST_USER_MM_SPEC_MASK	(LAST_USER_MM_IBPB | LAST_USER_MM_L1D_FLUSH)
     55
     56/* Bits to set when tlbstate and flush is (re)initialized */
     57#define LAST_USER_MM_INIT	LAST_USER_MM_IBPB
     58
     59/*
     60 * The x86 feature is called PCID (Process Context IDentifier). It is similar
     61 * to what is traditionally called ASID on the RISC processors.
     62 *
     63 * We don't use the traditional ASID implementation, where each process/mm gets
     64 * its own ASID and flush/restart when we run out of ASID space.
     65 *
     66 * Instead we have a small per-cpu array of ASIDs and cache the last few mm's
     67 * that came by on this CPU, allowing cheaper switch_mm between processes on
     68 * this CPU.
     69 *
     70 * We end up with different spaces for different things. To avoid confusion we
     71 * use different names for each of them:
     72 *
     73 * ASID  - [0, TLB_NR_DYN_ASIDS-1]
     74 *         the canonical identifier for an mm
     75 *
     76 * kPCID - [1, TLB_NR_DYN_ASIDS]
     77 *         the value we write into the PCID part of CR3; corresponds to the
     78 *         ASID+1, because PCID 0 is special.
     79 *
     80 * uPCID - [2048 + 1, 2048 + TLB_NR_DYN_ASIDS]
     81 *         for KPTI each mm has two address spaces and thus needs two
     82 *         PCID values, but we can still do with a single ASID denomination
     83 *         for each mm. Corresponds to kPCID + 2048.
     84 *
     85 */
     86
     87/* There are 12 bits of space for ASIDS in CR3 */
     88#define CR3_HW_ASID_BITS		12
     89
     90/*
     91 * When enabled, PAGE_TABLE_ISOLATION consumes a single bit for
     92 * user/kernel switches
     93 */
     94#ifdef CONFIG_PAGE_TABLE_ISOLATION
     95# define PTI_CONSUMED_PCID_BITS	1
     96#else
     97# define PTI_CONSUMED_PCID_BITS	0
     98#endif
     99
    100#define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS)
    101
    102/*
    103 * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid.  -1 below to account
    104 * for them being zero-based.  Another -1 is because PCID 0 is reserved for
    105 * use by non-PCID-aware users.
    106 */
    107#define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2)
    108
    109/*
    110 * Given @asid, compute kPCID
    111 */
    112static inline u16 kern_pcid(u16 asid)
    113{
    114	VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
    115
    116#ifdef CONFIG_PAGE_TABLE_ISOLATION
    117	/*
    118	 * Make sure that the dynamic ASID space does not conflict with the
    119	 * bit we are using to switch between user and kernel ASIDs.
    120	 */
    121	BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT));
    122
    123	/*
    124	 * The ASID being passed in here should have respected the
    125	 * MAX_ASID_AVAILABLE and thus never have the switch bit set.
    126	 */
    127	VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT));
    128#endif
    129	/*
    130	 * The dynamically-assigned ASIDs that get passed in are small
    131	 * (<TLB_NR_DYN_ASIDS).  They never have the high switch bit set,
    132	 * so do not bother to clear it.
    133	 *
    134	 * If PCID is on, ASID-aware code paths put the ASID+1 into the
    135	 * PCID bits.  This serves two purposes.  It prevents a nasty
    136	 * situation in which PCID-unaware code saves CR3, loads some other
    137	 * value (with PCID == 0), and then restores CR3, thus corrupting
    138	 * the TLB for ASID 0 if the saved ASID was nonzero.  It also means
    139	 * that any bugs involving loading a PCID-enabled CR3 with
    140	 * CR4.PCIDE off will trigger deterministically.
    141	 */
    142	return asid + 1;
    143}
    144
    145/*
    146 * Given @asid, compute uPCID
    147 */
    148static inline u16 user_pcid(u16 asid)
    149{
    150	u16 ret = kern_pcid(asid);
    151#ifdef CONFIG_PAGE_TABLE_ISOLATION
    152	ret |= 1 << X86_CR3_PTI_PCID_USER_BIT;
    153#endif
    154	return ret;
    155}
    156
    157static inline unsigned long build_cr3(pgd_t *pgd, u16 asid)
    158{
    159	if (static_cpu_has(X86_FEATURE_PCID)) {
    160		return __sme_pa(pgd) | kern_pcid(asid);
    161	} else {
    162		VM_WARN_ON_ONCE(asid != 0);
    163		return __sme_pa(pgd);
    164	}
    165}
    166
    167static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid)
    168{
    169	VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
    170	/*
    171	 * Use boot_cpu_has() instead of this_cpu_has() as this function
    172	 * might be called during early boot. This should work even after
    173	 * boot because all CPU's the have same capabilities:
    174	 */
    175	VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID));
    176	return __sme_pa(pgd) | kern_pcid(asid) | CR3_NOFLUSH;
    177}
    178
    179/*
    180 * We get here when we do something requiring a TLB invalidation
    181 * but could not go invalidate all of the contexts.  We do the
    182 * necessary invalidation by clearing out the 'ctx_id' which
    183 * forces a TLB flush when the context is loaded.
    184 */
    185static void clear_asid_other(void)
    186{
    187	u16 asid;
    188
    189	/*
    190	 * This is only expected to be set if we have disabled
    191	 * kernel _PAGE_GLOBAL pages.
    192	 */
    193	if (!static_cpu_has(X86_FEATURE_PTI)) {
    194		WARN_ON_ONCE(1);
    195		return;
    196	}
    197
    198	for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
    199		/* Do not need to flush the current asid */
    200		if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
    201			continue;
    202		/*
    203		 * Make sure the next time we go to switch to
    204		 * this asid, we do a flush:
    205		 */
    206		this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
    207	}
    208	this_cpu_write(cpu_tlbstate.invalidate_other, false);
    209}
    210
    211atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
    212
    213
    214static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
    215			    u16 *new_asid, bool *need_flush)
    216{
    217	u16 asid;
    218
    219	if (!static_cpu_has(X86_FEATURE_PCID)) {
    220		*new_asid = 0;
    221		*need_flush = true;
    222		return;
    223	}
    224
    225	if (this_cpu_read(cpu_tlbstate.invalidate_other))
    226		clear_asid_other();
    227
    228	for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
    229		if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
    230		    next->context.ctx_id)
    231			continue;
    232
    233		*new_asid = asid;
    234		*need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
    235			       next_tlb_gen);
    236		return;
    237	}
    238
    239	/*
    240	 * We don't currently own an ASID slot on this CPU.
    241	 * Allocate a slot.
    242	 */
    243	*new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
    244	if (*new_asid >= TLB_NR_DYN_ASIDS) {
    245		*new_asid = 0;
    246		this_cpu_write(cpu_tlbstate.next_asid, 1);
    247	}
    248	*need_flush = true;
    249}
    250
    251/*
    252 * Given an ASID, flush the corresponding user ASID.  We can delay this
    253 * until the next time we switch to it.
    254 *
    255 * See SWITCH_TO_USER_CR3.
    256 */
    257static inline void invalidate_user_asid(u16 asid)
    258{
    259	/* There is no user ASID if address space separation is off */
    260	if (!IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION))
    261		return;
    262
    263	/*
    264	 * We only have a single ASID if PCID is off and the CR3
    265	 * write will have flushed it.
    266	 */
    267	if (!cpu_feature_enabled(X86_FEATURE_PCID))
    268		return;
    269
    270	if (!static_cpu_has(X86_FEATURE_PTI))
    271		return;
    272
    273	__set_bit(kern_pcid(asid),
    274		  (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask));
    275}
    276
    277static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush)
    278{
    279	unsigned long new_mm_cr3;
    280
    281	if (need_flush) {
    282		invalidate_user_asid(new_asid);
    283		new_mm_cr3 = build_cr3(pgdir, new_asid);
    284	} else {
    285		new_mm_cr3 = build_cr3_noflush(pgdir, new_asid);
    286	}
    287
    288	/*
    289	 * Caution: many callers of this function expect
    290	 * that load_cr3() is serializing and orders TLB
    291	 * fills with respect to the mm_cpumask writes.
    292	 */
    293	write_cr3(new_mm_cr3);
    294}
    295
    296void leave_mm(int cpu)
    297{
    298	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
    299
    300	/*
    301	 * It's plausible that we're in lazy TLB mode while our mm is init_mm.
    302	 * If so, our callers still expect us to flush the TLB, but there
    303	 * aren't any user TLB entries in init_mm to worry about.
    304	 *
    305	 * This needs to happen before any other sanity checks due to
    306	 * intel_idle's shenanigans.
    307	 */
    308	if (loaded_mm == &init_mm)
    309		return;
    310
    311	/* Warn if we're not lazy. */
    312	WARN_ON(!this_cpu_read(cpu_tlbstate_shared.is_lazy));
    313
    314	switch_mm(NULL, &init_mm, NULL);
    315}
    316EXPORT_SYMBOL_GPL(leave_mm);
    317
    318void switch_mm(struct mm_struct *prev, struct mm_struct *next,
    319	       struct task_struct *tsk)
    320{
    321	unsigned long flags;
    322
    323	local_irq_save(flags);
    324	switch_mm_irqs_off(prev, next, tsk);
    325	local_irq_restore(flags);
    326}
    327
    328/*
    329 * Invoked from return to user/guest by a task that opted-in to L1D
    330 * flushing but ended up running on an SMT enabled core due to wrong
    331 * affinity settings or CPU hotplug. This is part of the paranoid L1D flush
    332 * contract which this task requested.
    333 */
    334static void l1d_flush_force_sigbus(struct callback_head *ch)
    335{
    336	force_sig(SIGBUS);
    337}
    338
    339static void l1d_flush_evaluate(unsigned long prev_mm, unsigned long next_mm,
    340				struct task_struct *next)
    341{
    342	/* Flush L1D if the outgoing task requests it */
    343	if (prev_mm & LAST_USER_MM_L1D_FLUSH)
    344		wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
    345
    346	/* Check whether the incoming task opted in for L1D flush */
    347	if (likely(!(next_mm & LAST_USER_MM_L1D_FLUSH)))
    348		return;
    349
    350	/*
    351	 * Validate that it is not running on an SMT sibling as this would
    352	 * make the excercise pointless because the siblings share L1D. If
    353	 * it runs on a SMT sibling, notify it with SIGBUS on return to
    354	 * user/guest
    355	 */
    356	if (this_cpu_read(cpu_info.smt_active)) {
    357		clear_ti_thread_flag(&next->thread_info, TIF_SPEC_L1D_FLUSH);
    358		next->l1d_flush_kill.func = l1d_flush_force_sigbus;
    359		task_work_add(next, &next->l1d_flush_kill, TWA_RESUME);
    360	}
    361}
    362
    363static unsigned long mm_mangle_tif_spec_bits(struct task_struct *next)
    364{
    365	unsigned long next_tif = read_task_thread_flags(next);
    366	unsigned long spec_bits = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_SPEC_MASK;
    367
    368	/*
    369	 * Ensure that the bit shift above works as expected and the two flags
    370	 * end up in bit 0 and 1.
    371	 */
    372	BUILD_BUG_ON(TIF_SPEC_L1D_FLUSH != TIF_SPEC_IB + 1);
    373
    374	return (unsigned long)next->mm | spec_bits;
    375}
    376
    377static void cond_mitigation(struct task_struct *next)
    378{
    379	unsigned long prev_mm, next_mm;
    380
    381	if (!next || !next->mm)
    382		return;
    383
    384	next_mm = mm_mangle_tif_spec_bits(next);
    385	prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_spec);
    386
    387	/*
    388	 * Avoid user/user BTB poisoning by flushing the branch predictor
    389	 * when switching between processes. This stops one process from
    390	 * doing Spectre-v2 attacks on another.
    391	 *
    392	 * Both, the conditional and the always IBPB mode use the mm
    393	 * pointer to avoid the IBPB when switching between tasks of the
    394	 * same process. Using the mm pointer instead of mm->context.ctx_id
    395	 * opens a hypothetical hole vs. mm_struct reuse, which is more or
    396	 * less impossible to control by an attacker. Aside of that it
    397	 * would only affect the first schedule so the theoretically
    398	 * exposed data is not really interesting.
    399	 */
    400	if (static_branch_likely(&switch_mm_cond_ibpb)) {
    401		/*
    402		 * This is a bit more complex than the always mode because
    403		 * it has to handle two cases:
    404		 *
    405		 * 1) Switch from a user space task (potential attacker)
    406		 *    which has TIF_SPEC_IB set to a user space task
    407		 *    (potential victim) which has TIF_SPEC_IB not set.
    408		 *
    409		 * 2) Switch from a user space task (potential attacker)
    410		 *    which has TIF_SPEC_IB not set to a user space task
    411		 *    (potential victim) which has TIF_SPEC_IB set.
    412		 *
    413		 * This could be done by unconditionally issuing IBPB when
    414		 * a task which has TIF_SPEC_IB set is either scheduled in
    415		 * or out. Though that results in two flushes when:
    416		 *
    417		 * - the same user space task is scheduled out and later
    418		 *   scheduled in again and only a kernel thread ran in
    419		 *   between.
    420		 *
    421		 * - a user space task belonging to the same process is
    422		 *   scheduled in after a kernel thread ran in between
    423		 *
    424		 * - a user space task belonging to the same process is
    425		 *   scheduled in immediately.
    426		 *
    427		 * Optimize this with reasonably small overhead for the
    428		 * above cases. Mangle the TIF_SPEC_IB bit into the mm
    429		 * pointer of the incoming task which is stored in
    430		 * cpu_tlbstate.last_user_mm_spec for comparison.
    431		 *
    432		 * Issue IBPB only if the mm's are different and one or
    433		 * both have the IBPB bit set.
    434		 */
    435		if (next_mm != prev_mm &&
    436		    (next_mm | prev_mm) & LAST_USER_MM_IBPB)
    437			indirect_branch_prediction_barrier();
    438	}
    439
    440	if (static_branch_unlikely(&switch_mm_always_ibpb)) {
    441		/*
    442		 * Only flush when switching to a user space task with a
    443		 * different context than the user space task which ran
    444		 * last on this CPU.
    445		 */
    446		if ((prev_mm & ~LAST_USER_MM_SPEC_MASK) !=
    447					(unsigned long)next->mm)
    448			indirect_branch_prediction_barrier();
    449	}
    450
    451	if (static_branch_unlikely(&switch_mm_cond_l1d_flush)) {
    452		/*
    453		 * Flush L1D when the outgoing task requested it and/or
    454		 * check whether the incoming task requested L1D flushing
    455		 * and ended up on an SMT sibling.
    456		 */
    457		if (unlikely((prev_mm | next_mm) & LAST_USER_MM_L1D_FLUSH))
    458			l1d_flush_evaluate(prev_mm, next_mm, next);
    459	}
    460
    461	this_cpu_write(cpu_tlbstate.last_user_mm_spec, next_mm);
    462}
    463
    464#ifdef CONFIG_PERF_EVENTS
    465static inline void cr4_update_pce_mm(struct mm_struct *mm)
    466{
    467	if (static_branch_unlikely(&rdpmc_always_available_key) ||
    468	    (!static_branch_unlikely(&rdpmc_never_available_key) &&
    469	     atomic_read(&mm->context.perf_rdpmc_allowed))) {
    470		/*
    471		 * Clear the existing dirty counters to
    472		 * prevent the leak for an RDPMC task.
    473		 */
    474		perf_clear_dirty_counters();
    475		cr4_set_bits_irqsoff(X86_CR4_PCE);
    476	} else
    477		cr4_clear_bits_irqsoff(X86_CR4_PCE);
    478}
    479
    480void cr4_update_pce(void *ignored)
    481{
    482	cr4_update_pce_mm(this_cpu_read(cpu_tlbstate.loaded_mm));
    483}
    484
    485#else
    486static inline void cr4_update_pce_mm(struct mm_struct *mm) { }
    487#endif
    488
    489void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
    490			struct task_struct *tsk)
    491{
    492	struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
    493	u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
    494	bool was_lazy = this_cpu_read(cpu_tlbstate_shared.is_lazy);
    495	unsigned cpu = smp_processor_id();
    496	u64 next_tlb_gen;
    497	bool need_flush;
    498	u16 new_asid;
    499
    500	/*
    501	 * NB: The scheduler will call us with prev == next when switching
    502	 * from lazy TLB mode to normal mode if active_mm isn't changing.
    503	 * When this happens, we don't assume that CR3 (and hence
    504	 * cpu_tlbstate.loaded_mm) matches next.
    505	 *
    506	 * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
    507	 */
    508
    509	/* We don't want flush_tlb_func() to run concurrently with us. */
    510	if (IS_ENABLED(CONFIG_PROVE_LOCKING))
    511		WARN_ON_ONCE(!irqs_disabled());
    512
    513	/*
    514	 * Verify that CR3 is what we think it is.  This will catch
    515	 * hypothetical buggy code that directly switches to swapper_pg_dir
    516	 * without going through leave_mm() / switch_mm_irqs_off() or that
    517	 * does something like write_cr3(read_cr3_pa()).
    518	 *
    519	 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
    520	 * isn't free.
    521	 */
    522#ifdef CONFIG_DEBUG_VM
    523	if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid))) {
    524		/*
    525		 * If we were to BUG here, we'd be very likely to kill
    526		 * the system so hard that we don't see the call trace.
    527		 * Try to recover instead by ignoring the error and doing
    528		 * a global flush to minimize the chance of corruption.
    529		 *
    530		 * (This is far from being a fully correct recovery.
    531		 *  Architecturally, the CPU could prefetch something
    532		 *  back into an incorrect ASID slot and leave it there
    533		 *  to cause trouble down the road.  It's better than
    534		 *  nothing, though.)
    535		 */
    536		__flush_tlb_all();
    537	}
    538#endif
    539	if (was_lazy)
    540		this_cpu_write(cpu_tlbstate_shared.is_lazy, false);
    541
    542	/*
    543	 * The membarrier system call requires a full memory barrier and
    544	 * core serialization before returning to user-space, after
    545	 * storing to rq->curr, when changing mm.  This is because
    546	 * membarrier() sends IPIs to all CPUs that are in the target mm
    547	 * to make them issue memory barriers.  However, if another CPU
    548	 * switches to/from the target mm concurrently with
    549	 * membarrier(), it can cause that CPU not to receive an IPI
    550	 * when it really should issue a memory barrier.  Writing to CR3
    551	 * provides that full memory barrier and core serializing
    552	 * instruction.
    553	 */
    554	if (real_prev == next) {
    555		VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
    556			   next->context.ctx_id);
    557
    558		/*
    559		 * Even in lazy TLB mode, the CPU should stay set in the
    560		 * mm_cpumask. The TLB shootdown code can figure out from
    561		 * cpu_tlbstate_shared.is_lazy whether or not to send an IPI.
    562		 */
    563		if (WARN_ON_ONCE(real_prev != &init_mm &&
    564				 !cpumask_test_cpu(cpu, mm_cpumask(next))))
    565			cpumask_set_cpu(cpu, mm_cpumask(next));
    566
    567		/*
    568		 * If the CPU is not in lazy TLB mode, we are just switching
    569		 * from one thread in a process to another thread in the same
    570		 * process. No TLB flush required.
    571		 */
    572		if (!was_lazy)
    573			return;
    574
    575		/*
    576		 * Read the tlb_gen to check whether a flush is needed.
    577		 * If the TLB is up to date, just use it.
    578		 * The barrier synchronizes with the tlb_gen increment in
    579		 * the TLB shootdown code.
    580		 */
    581		smp_mb();
    582		next_tlb_gen = atomic64_read(&next->context.tlb_gen);
    583		if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) ==
    584				next_tlb_gen)
    585			return;
    586
    587		/*
    588		 * TLB contents went out of date while we were in lazy
    589		 * mode. Fall through to the TLB switching code below.
    590		 */
    591		new_asid = prev_asid;
    592		need_flush = true;
    593	} else {
    594		/*
    595		 * Apply process to process speculation vulnerability
    596		 * mitigations if applicable.
    597		 */
    598		cond_mitigation(tsk);
    599
    600		/*
    601		 * Stop remote flushes for the previous mm.
    602		 * Skip kernel threads; we never send init_mm TLB flushing IPIs,
    603		 * but the bitmap manipulation can cause cache line contention.
    604		 */
    605		if (real_prev != &init_mm) {
    606			VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu,
    607						mm_cpumask(real_prev)));
    608			cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
    609		}
    610
    611		/*
    612		 * Start remote flushes and then read tlb_gen.
    613		 */
    614		if (next != &init_mm)
    615			cpumask_set_cpu(cpu, mm_cpumask(next));
    616		next_tlb_gen = atomic64_read(&next->context.tlb_gen);
    617
    618		choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
    619
    620		/* Let nmi_uaccess_okay() know that we're changing CR3. */
    621		this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING);
    622		barrier();
    623	}
    624
    625	if (need_flush) {
    626		this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
    627		this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
    628		load_new_mm_cr3(next->pgd, new_asid, true);
    629
    630		trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
    631	} else {
    632		/* The new ASID is already up to date. */
    633		load_new_mm_cr3(next->pgd, new_asid, false);
    634
    635		trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, 0);
    636	}
    637
    638	/* Make sure we write CR3 before loaded_mm. */
    639	barrier();
    640
    641	this_cpu_write(cpu_tlbstate.loaded_mm, next);
    642	this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
    643
    644	if (next != real_prev) {
    645		cr4_update_pce_mm(next);
    646		switch_ldt(real_prev, next);
    647	}
    648}
    649
    650/*
    651 * Please ignore the name of this function.  It should be called
    652 * switch_to_kernel_thread().
    653 *
    654 * enter_lazy_tlb() is a hint from the scheduler that we are entering a
    655 * kernel thread or other context without an mm.  Acceptable implementations
    656 * include doing nothing whatsoever, switching to init_mm, or various clever
    657 * lazy tricks to try to minimize TLB flushes.
    658 *
    659 * The scheduler reserves the right to call enter_lazy_tlb() several times
    660 * in a row.  It will notify us that we're going back to a real mm by
    661 * calling switch_mm_irqs_off().
    662 */
    663void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
    664{
    665	if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
    666		return;
    667
    668	this_cpu_write(cpu_tlbstate_shared.is_lazy, true);
    669}
    670
    671/*
    672 * Call this when reinitializing a CPU.  It fixes the following potential
    673 * problems:
    674 *
    675 * - The ASID changed from what cpu_tlbstate thinks it is (most likely
    676 *   because the CPU was taken down and came back up with CR3's PCID
    677 *   bits clear.  CPU hotplug can do this.
    678 *
    679 * - The TLB contains junk in slots corresponding to inactive ASIDs.
    680 *
    681 * - The CPU went so far out to lunch that it may have missed a TLB
    682 *   flush.
    683 */
    684void initialize_tlbstate_and_flush(void)
    685{
    686	int i;
    687	struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
    688	u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
    689	unsigned long cr3 = __read_cr3();
    690
    691	/* Assert that CR3 already references the right mm. */
    692	WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
    693
    694	/*
    695	 * Assert that CR4.PCIDE is set if needed.  (CR4.PCIDE initialization
    696	 * doesn't work like other CR4 bits because it can only be set from
    697	 * long mode.)
    698	 */
    699	WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
    700		!(cr4_read_shadow() & X86_CR4_PCIDE));
    701
    702	/* Force ASID 0 and force a TLB flush. */
    703	write_cr3(build_cr3(mm->pgd, 0));
    704
    705	/* Reinitialize tlbstate. */
    706	this_cpu_write(cpu_tlbstate.last_user_mm_spec, LAST_USER_MM_INIT);
    707	this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
    708	this_cpu_write(cpu_tlbstate.next_asid, 1);
    709	this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
    710	this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
    711
    712	for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
    713		this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
    714}
    715
    716/*
    717 * flush_tlb_func()'s memory ordering requirement is that any
    718 * TLB fills that happen after we flush the TLB are ordered after we
    719 * read active_mm's tlb_gen.  We don't need any explicit barriers
    720 * because all x86 flush operations are serializing and the
    721 * atomic64_read operation won't be reordered by the compiler.
    722 */
    723static void flush_tlb_func(void *info)
    724{
    725	/*
    726	 * We have three different tlb_gen values in here.  They are:
    727	 *
    728	 * - mm_tlb_gen:     the latest generation.
    729	 * - local_tlb_gen:  the generation that this CPU has already caught
    730	 *                   up to.
    731	 * - f->new_tlb_gen: the generation that the requester of the flush
    732	 *                   wants us to catch up to.
    733	 */
    734	const struct flush_tlb_info *f = info;
    735	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
    736	u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
    737	u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
    738	u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
    739	bool local = smp_processor_id() == f->initiating_cpu;
    740	unsigned long nr_invalidate = 0;
    741
    742	/* This code cannot presently handle being reentered. */
    743	VM_WARN_ON(!irqs_disabled());
    744
    745	if (!local) {
    746		inc_irq_stat(irq_tlb_count);
    747		count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
    748
    749		/* Can only happen on remote CPUs */
    750		if (f->mm && f->mm != loaded_mm)
    751			return;
    752	}
    753
    754	if (unlikely(loaded_mm == &init_mm))
    755		return;
    756
    757	VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
    758		   loaded_mm->context.ctx_id);
    759
    760	if (this_cpu_read(cpu_tlbstate_shared.is_lazy)) {
    761		/*
    762		 * We're in lazy mode.  We need to at least flush our
    763		 * paging-structure cache to avoid speculatively reading
    764		 * garbage into our TLB.  Since switching to init_mm is barely
    765		 * slower than a minimal flush, just switch to init_mm.
    766		 *
    767		 * This should be rare, with native_flush_tlb_multi() skipping
    768		 * IPIs to lazy TLB mode CPUs.
    769		 */
    770		switch_mm_irqs_off(NULL, &init_mm, NULL);
    771		return;
    772	}
    773
    774	if (unlikely(local_tlb_gen == mm_tlb_gen)) {
    775		/*
    776		 * There's nothing to do: we're already up to date.  This can
    777		 * happen if two concurrent flushes happen -- the first flush to
    778		 * be handled can catch us all the way up, leaving no work for
    779		 * the second flush.
    780		 */
    781		goto done;
    782	}
    783
    784	WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
    785	WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
    786
    787	/*
    788	 * If we get to this point, we know that our TLB is out of date.
    789	 * This does not strictly imply that we need to flush (it's
    790	 * possible that f->new_tlb_gen <= local_tlb_gen), but we're
    791	 * going to need to flush in the very near future, so we might
    792	 * as well get it over with.
    793	 *
    794	 * The only question is whether to do a full or partial flush.
    795	 *
    796	 * We do a partial flush if requested and two extra conditions
    797	 * are met:
    798	 *
    799	 * 1. f->new_tlb_gen == local_tlb_gen + 1.  We have an invariant that
    800	 *    we've always done all needed flushes to catch up to
    801	 *    local_tlb_gen.  If, for example, local_tlb_gen == 2 and
    802	 *    f->new_tlb_gen == 3, then we know that the flush needed to bring
    803	 *    us up to date for tlb_gen 3 is the partial flush we're
    804	 *    processing.
    805	 *
    806	 *    As an example of why this check is needed, suppose that there
    807	 *    are two concurrent flushes.  The first is a full flush that
    808	 *    changes context.tlb_gen from 1 to 2.  The second is a partial
    809	 *    flush that changes context.tlb_gen from 2 to 3.  If they get
    810	 *    processed on this CPU in reverse order, we'll see
    811	 *     local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
    812	 *    If we were to use __flush_tlb_one_user() and set local_tlb_gen to
    813	 *    3, we'd be break the invariant: we'd update local_tlb_gen above
    814	 *    1 without the full flush that's needed for tlb_gen 2.
    815	 *
    816	 * 2. f->new_tlb_gen == mm_tlb_gen.  This is purely an optimization.
    817	 *    Partial TLB flushes are not all that much cheaper than full TLB
    818	 *    flushes, so it seems unlikely that it would be a performance win
    819	 *    to do a partial flush if that won't bring our TLB fully up to
    820	 *    date.  By doing a full flush instead, we can increase
    821	 *    local_tlb_gen all the way to mm_tlb_gen and we can probably
    822	 *    avoid another flush in the very near future.
    823	 */
    824	if (f->end != TLB_FLUSH_ALL &&
    825	    f->new_tlb_gen == local_tlb_gen + 1 &&
    826	    f->new_tlb_gen == mm_tlb_gen) {
    827		/* Partial flush */
    828		unsigned long addr = f->start;
    829
    830		nr_invalidate = (f->end - f->start) >> f->stride_shift;
    831
    832		while (addr < f->end) {
    833			flush_tlb_one_user(addr);
    834			addr += 1UL << f->stride_shift;
    835		}
    836		if (local)
    837			count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate);
    838	} else {
    839		/* Full flush. */
    840		nr_invalidate = TLB_FLUSH_ALL;
    841
    842		flush_tlb_local();
    843		if (local)
    844			count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
    845	}
    846
    847	/* Both paths above update our state to mm_tlb_gen. */
    848	this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
    849
    850	/* Tracing is done in a unified manner to reduce the code size */
    851done:
    852	trace_tlb_flush(!local ? TLB_REMOTE_SHOOTDOWN :
    853				(f->mm == NULL) ? TLB_LOCAL_SHOOTDOWN :
    854						  TLB_LOCAL_MM_SHOOTDOWN,
    855			nr_invalidate);
    856}
    857
    858static bool tlb_is_not_lazy(int cpu, void *data)
    859{
    860	return !per_cpu(cpu_tlbstate_shared.is_lazy, cpu);
    861}
    862
    863DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state_shared, cpu_tlbstate_shared);
    864EXPORT_PER_CPU_SYMBOL(cpu_tlbstate_shared);
    865
    866STATIC_NOPV void native_flush_tlb_multi(const struct cpumask *cpumask,
    867					 const struct flush_tlb_info *info)
    868{
    869	/*
    870	 * Do accounting and tracing. Note that there are (and have always been)
    871	 * cases in which a remote TLB flush will be traced, but eventually
    872	 * would not happen.
    873	 */
    874	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
    875	if (info->end == TLB_FLUSH_ALL)
    876		trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
    877	else
    878		trace_tlb_flush(TLB_REMOTE_SEND_IPI,
    879				(info->end - info->start) >> PAGE_SHIFT);
    880
    881	/*
    882	 * If no page tables were freed, we can skip sending IPIs to
    883	 * CPUs in lazy TLB mode. They will flush the CPU themselves
    884	 * at the next context switch.
    885	 *
    886	 * However, if page tables are getting freed, we need to send the
    887	 * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping
    888	 * up on the new contents of what used to be page tables, while
    889	 * doing a speculative memory access.
    890	 */
    891	if (info->freed_tables)
    892		on_each_cpu_mask(cpumask, flush_tlb_func, (void *)info, true);
    893	else
    894		on_each_cpu_cond_mask(tlb_is_not_lazy, flush_tlb_func,
    895				(void *)info, 1, cpumask);
    896}
    897
    898void flush_tlb_multi(const struct cpumask *cpumask,
    899		      const struct flush_tlb_info *info)
    900{
    901	__flush_tlb_multi(cpumask, info);
    902}
    903
    904/*
    905 * See Documentation/x86/tlb.rst for details.  We choose 33
    906 * because it is large enough to cover the vast majority (at
    907 * least 95%) of allocations, and is small enough that we are
    908 * confident it will not cause too much overhead.  Each single
    909 * flush is about 100 ns, so this caps the maximum overhead at
    910 * _about_ 3,000 ns.
    911 *
    912 * This is in units of pages.
    913 */
    914unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
    915
    916static DEFINE_PER_CPU_SHARED_ALIGNED(struct flush_tlb_info, flush_tlb_info);
    917
    918#ifdef CONFIG_DEBUG_VM
    919static DEFINE_PER_CPU(unsigned int, flush_tlb_info_idx);
    920#endif
    921
    922static struct flush_tlb_info *get_flush_tlb_info(struct mm_struct *mm,
    923			unsigned long start, unsigned long end,
    924			unsigned int stride_shift, bool freed_tables,
    925			u64 new_tlb_gen)
    926{
    927	struct flush_tlb_info *info = this_cpu_ptr(&flush_tlb_info);
    928
    929#ifdef CONFIG_DEBUG_VM
    930	/*
    931	 * Ensure that the following code is non-reentrant and flush_tlb_info
    932	 * is not overwritten. This means no TLB flushing is initiated by
    933	 * interrupt handlers and machine-check exception handlers.
    934	 */
    935	BUG_ON(this_cpu_inc_return(flush_tlb_info_idx) != 1);
    936#endif
    937
    938	info->start		= start;
    939	info->end		= end;
    940	info->mm		= mm;
    941	info->stride_shift	= stride_shift;
    942	info->freed_tables	= freed_tables;
    943	info->new_tlb_gen	= new_tlb_gen;
    944	info->initiating_cpu	= smp_processor_id();
    945
    946	return info;
    947}
    948
    949static void put_flush_tlb_info(void)
    950{
    951#ifdef CONFIG_DEBUG_VM
    952	/* Complete reentrancy prevention checks */
    953	barrier();
    954	this_cpu_dec(flush_tlb_info_idx);
    955#endif
    956}
    957
    958void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
    959				unsigned long end, unsigned int stride_shift,
    960				bool freed_tables)
    961{
    962	struct flush_tlb_info *info;
    963	u64 new_tlb_gen;
    964	int cpu;
    965
    966	cpu = get_cpu();
    967
    968	/* Should we flush just the requested range? */
    969	if ((end == TLB_FLUSH_ALL) ||
    970	    ((end - start) >> stride_shift) > tlb_single_page_flush_ceiling) {
    971		start = 0;
    972		end = TLB_FLUSH_ALL;
    973	}
    974
    975	/* This is also a barrier that synchronizes with switch_mm(). */
    976	new_tlb_gen = inc_mm_tlb_gen(mm);
    977
    978	info = get_flush_tlb_info(mm, start, end, stride_shift, freed_tables,
    979				  new_tlb_gen);
    980
    981	/*
    982	 * flush_tlb_multi() is not optimized for the common case in which only
    983	 * a local TLB flush is needed. Optimize this use-case by calling
    984	 * flush_tlb_func_local() directly in this case.
    985	 */
    986	if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids) {
    987		flush_tlb_multi(mm_cpumask(mm), info);
    988	} else if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
    989		lockdep_assert_irqs_enabled();
    990		local_irq_disable();
    991		flush_tlb_func(info);
    992		local_irq_enable();
    993	}
    994
    995	put_flush_tlb_info();
    996	put_cpu();
    997}
    998
    999
   1000static void do_flush_tlb_all(void *info)
   1001{
   1002	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
   1003	__flush_tlb_all();
   1004}
   1005
   1006void flush_tlb_all(void)
   1007{
   1008	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
   1009	on_each_cpu(do_flush_tlb_all, NULL, 1);
   1010}
   1011
   1012static void do_kernel_range_flush(void *info)
   1013{
   1014	struct flush_tlb_info *f = info;
   1015	unsigned long addr;
   1016
   1017	/* flush range by one by one 'invlpg' */
   1018	for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
   1019		flush_tlb_one_kernel(addr);
   1020}
   1021
   1022void flush_tlb_kernel_range(unsigned long start, unsigned long end)
   1023{
   1024	/* Balance as user space task's flush, a bit conservative */
   1025	if (end == TLB_FLUSH_ALL ||
   1026	    (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
   1027		on_each_cpu(do_flush_tlb_all, NULL, 1);
   1028	} else {
   1029		struct flush_tlb_info *info;
   1030
   1031		preempt_disable();
   1032		info = get_flush_tlb_info(NULL, start, end, 0, false, 0);
   1033
   1034		on_each_cpu(do_kernel_range_flush, info, 1);
   1035
   1036		put_flush_tlb_info();
   1037		preempt_enable();
   1038	}
   1039}
   1040
   1041/*
   1042 * This can be used from process context to figure out what the value of
   1043 * CR3 is without needing to do a (slow) __read_cr3().
   1044 *
   1045 * It's intended to be used for code like KVM that sneakily changes CR3
   1046 * and needs to restore it.  It needs to be used very carefully.
   1047 */
   1048unsigned long __get_current_cr3_fast(void)
   1049{
   1050	unsigned long cr3 = build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd,
   1051		this_cpu_read(cpu_tlbstate.loaded_mm_asid));
   1052
   1053	/* For now, be very restrictive about when this can be called. */
   1054	VM_WARN_ON(in_nmi() || preemptible());
   1055
   1056	VM_BUG_ON(cr3 != __read_cr3());
   1057	return cr3;
   1058}
   1059EXPORT_SYMBOL_GPL(__get_current_cr3_fast);
   1060
   1061/*
   1062 * Flush one page in the kernel mapping
   1063 */
   1064void flush_tlb_one_kernel(unsigned long addr)
   1065{
   1066	count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
   1067
   1068	/*
   1069	 * If PTI is off, then __flush_tlb_one_user() is just INVLPG or its
   1070	 * paravirt equivalent.  Even with PCID, this is sufficient: we only
   1071	 * use PCID if we also use global PTEs for the kernel mapping, and
   1072	 * INVLPG flushes global translations across all address spaces.
   1073	 *
   1074	 * If PTI is on, then the kernel is mapped with non-global PTEs, and
   1075	 * __flush_tlb_one_user() will flush the given address for the current
   1076	 * kernel address space and for its usermode counterpart, but it does
   1077	 * not flush it for other address spaces.
   1078	 */
   1079	flush_tlb_one_user(addr);
   1080
   1081	if (!static_cpu_has(X86_FEATURE_PTI))
   1082		return;
   1083
   1084	/*
   1085	 * See above.  We need to propagate the flush to all other address
   1086	 * spaces.  In principle, we only need to propagate it to kernelmode
   1087	 * address spaces, but the extra bookkeeping we would need is not
   1088	 * worth it.
   1089	 */
   1090	this_cpu_write(cpu_tlbstate.invalidate_other, true);
   1091}
   1092
   1093/*
   1094 * Flush one page in the user mapping
   1095 */
   1096STATIC_NOPV void native_flush_tlb_one_user(unsigned long addr)
   1097{
   1098	u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
   1099
   1100	asm volatile("invlpg (%0)" ::"r" (addr) : "memory");
   1101
   1102	if (!static_cpu_has(X86_FEATURE_PTI))
   1103		return;
   1104
   1105	/*
   1106	 * Some platforms #GP if we call invpcid(type=1/2) before CR4.PCIDE=1.
   1107	 * Just use invalidate_user_asid() in case we are called early.
   1108	 */
   1109	if (!this_cpu_has(X86_FEATURE_INVPCID_SINGLE))
   1110		invalidate_user_asid(loaded_mm_asid);
   1111	else
   1112		invpcid_flush_one(user_pcid(loaded_mm_asid), addr);
   1113}
   1114
   1115void flush_tlb_one_user(unsigned long addr)
   1116{
   1117	__flush_tlb_one_user(addr);
   1118}
   1119
   1120/*
   1121 * Flush everything
   1122 */
   1123STATIC_NOPV void native_flush_tlb_global(void)
   1124{
   1125	unsigned long flags;
   1126
   1127	if (static_cpu_has(X86_FEATURE_INVPCID)) {
   1128		/*
   1129		 * Using INVPCID is considerably faster than a pair of writes
   1130		 * to CR4 sandwiched inside an IRQ flag save/restore.
   1131		 *
   1132		 * Note, this works with CR4.PCIDE=0 or 1.
   1133		 */
   1134		invpcid_flush_all();
   1135		return;
   1136	}
   1137
   1138	/*
   1139	 * Read-modify-write to CR4 - protect it from preemption and
   1140	 * from interrupts. (Use the raw variant because this code can
   1141	 * be called from deep inside debugging code.)
   1142	 */
   1143	raw_local_irq_save(flags);
   1144
   1145	__native_tlb_flush_global(this_cpu_read(cpu_tlbstate.cr4));
   1146
   1147	raw_local_irq_restore(flags);
   1148}
   1149
   1150/*
   1151 * Flush the entire current user mapping
   1152 */
   1153STATIC_NOPV void native_flush_tlb_local(void)
   1154{
   1155	/*
   1156	 * Preemption or interrupts must be disabled to protect the access
   1157	 * to the per CPU variable and to prevent being preempted between
   1158	 * read_cr3() and write_cr3().
   1159	 */
   1160	WARN_ON_ONCE(preemptible());
   1161
   1162	invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid));
   1163
   1164	/* If current->mm == NULL then the read_cr3() "borrows" an mm */
   1165	native_write_cr3(__native_read_cr3());
   1166}
   1167
   1168void flush_tlb_local(void)
   1169{
   1170	__flush_tlb_local();
   1171}
   1172
   1173/*
   1174 * Flush everything
   1175 */
   1176void __flush_tlb_all(void)
   1177{
   1178	/*
   1179	 * This is to catch users with enabled preemption and the PGE feature
   1180	 * and don't trigger the warning in __native_flush_tlb().
   1181	 */
   1182	VM_WARN_ON_ONCE(preemptible());
   1183
   1184	if (boot_cpu_has(X86_FEATURE_PGE)) {
   1185		__flush_tlb_global();
   1186	} else {
   1187		/*
   1188		 * !PGE -> !PCID (setup_pcid()), thus every flush is total.
   1189		 */
   1190		flush_tlb_local();
   1191	}
   1192}
   1193EXPORT_SYMBOL_GPL(__flush_tlb_all);
   1194
   1195void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
   1196{
   1197	struct flush_tlb_info *info;
   1198
   1199	int cpu = get_cpu();
   1200
   1201	info = get_flush_tlb_info(NULL, 0, TLB_FLUSH_ALL, 0, false, 0);
   1202	/*
   1203	 * flush_tlb_multi() is not optimized for the common case in which only
   1204	 * a local TLB flush is needed. Optimize this use-case by calling
   1205	 * flush_tlb_func_local() directly in this case.
   1206	 */
   1207	if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids) {
   1208		flush_tlb_multi(&batch->cpumask, info);
   1209	} else if (cpumask_test_cpu(cpu, &batch->cpumask)) {
   1210		lockdep_assert_irqs_enabled();
   1211		local_irq_disable();
   1212		flush_tlb_func(info);
   1213		local_irq_enable();
   1214	}
   1215
   1216	cpumask_clear(&batch->cpumask);
   1217
   1218	put_flush_tlb_info();
   1219	put_cpu();
   1220}
   1221
   1222/*
   1223 * Blindly accessing user memory from NMI context can be dangerous
   1224 * if we're in the middle of switching the current user task or
   1225 * switching the loaded mm.  It can also be dangerous if we
   1226 * interrupted some kernel code that was temporarily using a
   1227 * different mm.
   1228 */
   1229bool nmi_uaccess_okay(void)
   1230{
   1231	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
   1232	struct mm_struct *current_mm = current->mm;
   1233
   1234	VM_WARN_ON_ONCE(!loaded_mm);
   1235
   1236	/*
   1237	 * The condition we want to check is
   1238	 * current_mm->pgd == __va(read_cr3_pa()).  This may be slow, though,
   1239	 * if we're running in a VM with shadow paging, and nmi_uaccess_okay()
   1240	 * is supposed to be reasonably fast.
   1241	 *
   1242	 * Instead, we check the almost equivalent but somewhat conservative
   1243	 * condition below, and we rely on the fact that switch_mm_irqs_off()
   1244	 * sets loaded_mm to LOADED_MM_SWITCHING before writing to CR3.
   1245	 */
   1246	if (loaded_mm != current_mm)
   1247		return false;
   1248
   1249	VM_WARN_ON_ONCE(current_mm->pgd != __va(read_cr3_pa()));
   1250
   1251	return true;
   1252}
   1253
   1254static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
   1255			     size_t count, loff_t *ppos)
   1256{
   1257	char buf[32];
   1258	unsigned int len;
   1259
   1260	len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
   1261	return simple_read_from_buffer(user_buf, count, ppos, buf, len);
   1262}
   1263
   1264static ssize_t tlbflush_write_file(struct file *file,
   1265		 const char __user *user_buf, size_t count, loff_t *ppos)
   1266{
   1267	char buf[32];
   1268	ssize_t len;
   1269	int ceiling;
   1270
   1271	len = min(count, sizeof(buf) - 1);
   1272	if (copy_from_user(buf, user_buf, len))
   1273		return -EFAULT;
   1274
   1275	buf[len] = '\0';
   1276	if (kstrtoint(buf, 0, &ceiling))
   1277		return -EINVAL;
   1278
   1279	if (ceiling < 0)
   1280		return -EINVAL;
   1281
   1282	tlb_single_page_flush_ceiling = ceiling;
   1283	return count;
   1284}
   1285
   1286static const struct file_operations fops_tlbflush = {
   1287	.read = tlbflush_read_file,
   1288	.write = tlbflush_write_file,
   1289	.llseek = default_llseek,
   1290};
   1291
   1292static int __init create_tlb_single_page_flush_ceiling(void)
   1293{
   1294	debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
   1295			    arch_debugfs_dir, NULL, &fops_tlbflush);
   1296	return 0;
   1297}
   1298late_initcall(create_tlb_single_page_flush_ceiling);