cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

olpc.c (9411B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 * Low-level PCI config space access for OLPC systems who lack the VSA
      4 * PCI virtualization software.
      5 *
      6 * Copyright © 2006  Advanced Micro Devices, Inc.
      7 *
      8 * The AMD Geode chipset (ie: GX2 processor, cs5536 I/O companion device)
      9 * has some I/O functions (display, southbridge, sound, USB HCIs, etc)
     10 * that more or less behave like PCI devices, but the hardware doesn't
     11 * directly implement the PCI configuration space headers.  AMD provides
     12 * "VSA" (Virtual System Architecture) software that emulates PCI config
     13 * space for these devices, by trapping I/O accesses to PCI config register
     14 * (CF8/CFC) and running some code in System Management Mode interrupt state.
     15 * On the OLPC platform, we don't want to use that VSA code because
     16 * (a) it slows down suspend/resume, and (b) recompiling it requires special
     17 * compilers that are hard to get.  So instead of letting the complex VSA
     18 * code simulate the PCI config registers for the on-chip devices, we
     19 * just simulate them the easy way, by inserting the code into the
     20 * pci_write_config and pci_read_config path.  Most of the config registers
     21 * are read-only anyway, so the bulk of the simulation is just table lookup.
     22 */
     23
     24#include <linux/pci.h>
     25#include <linux/init.h>
     26#include <asm/olpc.h>
     27#include <asm/geode.h>
     28#include <asm/pci_x86.h>
     29
     30/*
     31 * In the tables below, the first two line (8 longwords) are the
     32 * size masks that are used when the higher level PCI code determines
     33 * the size of the region by writing ~0 to a base address register
     34 * and reading back the result.
     35 *
     36 * The following lines are the values that are read during normal
     37 * PCI config access cycles, i.e. not after just having written
     38 * ~0 to a base address register.
     39 */
     40
     41static const uint32_t lxnb_hdr[] = {  /* dev 1 function 0 - devfn = 8 */
     42	0x0,	0x0,	0x0,	0x0,
     43	0x0,	0x0,	0x0,	0x0,
     44
     45	0x281022, 0x2200005, 0x6000021, 0x80f808,	/* AMD Vendor ID */
     46	0x0,	0x0,	0x0,	0x0,   /* No virtual registers, hence no BAR */
     47	0x0,	0x0,	0x0,	0x28100b,
     48	0x0,	0x0,	0x0,	0x0,
     49	0x0,	0x0,	0x0,	0x0,
     50	0x0,	0x0,	0x0,	0x0,
     51	0x0,	0x0,	0x0,	0x0,
     52};
     53
     54static const uint32_t gxnb_hdr[] = {  /* dev 1 function 0 - devfn = 8 */
     55	0xfffffffd, 0x0, 0x0,	0x0,
     56	0x0,	0x0,	0x0,	0x0,
     57
     58	0x28100b, 0x2200005, 0x6000021, 0x80f808,	/* NSC Vendor ID */
     59	0xac1d,	0x0,	0x0,	0x0,  /* I/O BAR - base of virtual registers */
     60	0x0,	0x0,	0x0,	0x28100b,
     61	0x0,	0x0,	0x0,	0x0,
     62	0x0,	0x0,	0x0,	0x0,
     63	0x0,	0x0,	0x0,	0x0,
     64	0x0,	0x0,	0x0,	0x0,
     65};
     66
     67static const uint32_t lxfb_hdr[] = {  /* dev 1 function 1 - devfn = 9 */
     68	0xff000008, 0xffffc000, 0xffffc000, 0xffffc000,
     69	0xffffc000,	0x0,	0x0,	0x0,
     70
     71	0x20811022, 0x2200003, 0x3000000, 0x0,		/* AMD Vendor ID */
     72	0xfd000000, 0xfe000000, 0xfe004000, 0xfe008000, /* FB, GP, VG, DF */
     73	0xfe00c000, 0x0, 0x0,	0x30100b,		/* VIP */
     74	0x0,	0x0,	0x0,	0x10e,	   /* INTA, IRQ14 for graphics accel */
     75	0x0,	0x0,	0x0,	0x0,
     76	0x3d0,	0x3c0,	0xa0000, 0x0,	    /* VG IO, VG IO, EGA FB, MONO FB */
     77	0x0,	0x0,	0x0,	0x0,
     78};
     79
     80static const uint32_t gxfb_hdr[] = {  /* dev 1 function 1 - devfn = 9 */
     81	0xff800008, 0xffffc000, 0xffffc000, 0xffffc000,
     82	0x0,	0x0,	0x0,	0x0,
     83
     84	0x30100b, 0x2200003, 0x3000000, 0x0,		/* NSC Vendor ID */
     85	0xfd000000, 0xfe000000, 0xfe004000, 0xfe008000,	/* FB, GP, VG, DF */
     86	0x0,	0x0,	0x0,	0x30100b,
     87	0x0,	0x0,	0x0,	0x0,
     88	0x0,	0x0,	0x0,	0x0,
     89	0x3d0,	0x3c0,	0xa0000, 0x0,  	    /* VG IO, VG IO, EGA FB, MONO FB */
     90	0x0,	0x0,	0x0,	0x0,
     91};
     92
     93static const uint32_t aes_hdr[] = {	/* dev 1 function 2 - devfn = 0xa */
     94	0xffffc000, 0x0, 0x0,	0x0,
     95	0x0,	0x0,	0x0,	0x0,
     96
     97	0x20821022, 0x2a00006, 0x10100000, 0x8,		/* NSC Vendor ID */
     98	0xfe010000, 0x0, 0x0,	0x0,			/* AES registers */
     99	0x0,	0x0,	0x0,	0x20821022,
    100	0x0,	0x0,	0x0,	0x0,
    101	0x0,	0x0,	0x0,	0x0,
    102	0x0,	0x0,	0x0,	0x0,
    103	0x0,	0x0,	0x0,	0x0,
    104};
    105
    106
    107static const uint32_t isa_hdr[] = {  /* dev f function 0 - devfn = 78 */
    108	0xfffffff9, 0xffffff01, 0xffffffc1, 0xffffffe1,
    109	0xffffff81, 0xffffffc1, 0x0, 0x0,
    110
    111	0x20901022, 0x2a00049, 0x6010003, 0x802000,
    112	0x18b1,	0x1001,	0x1801,	0x1881,	/* SMB-8   GPIO-256 MFGPT-64  IRQ-32 */
    113	0x1401,	0x1841,	0x0,	0x20901022,		/* PMS-128 ACPI-64 */
    114	0x0,	0x0,	0x0,	0x0,
    115	0x0,	0x0,	0x0,	0x0,
    116	0x0,	0x0,	0x0,	0xaa5b,			/* IRQ steering */
    117	0x0,	0x0,	0x0,	0x0,
    118};
    119
    120static const uint32_t ac97_hdr[] = {  /* dev f function 3 - devfn = 7b */
    121	0xffffff81, 0x0, 0x0,	0x0,
    122	0x0,	0x0,	0x0,	0x0,
    123
    124	0x20931022, 0x2a00041, 0x4010001, 0x0,
    125	0x1481,	0x0,	0x0,	0x0,			/* I/O BAR-128 */
    126	0x0,	0x0,	0x0,	0x20931022,
    127	0x0,	0x0,	0x0,	0x205,			/* IntB, IRQ5 */
    128	0x0,	0x0,	0x0,	0x0,
    129	0x0,	0x0,	0x0,	0x0,
    130	0x0,	0x0,	0x0,	0x0,
    131};
    132
    133static const uint32_t ohci_hdr[] = {  /* dev f function 4 - devfn = 7c */
    134	0xfffff000, 0x0, 0x0,	0x0,
    135	0x0,	0x0,	0x0,	0x0,
    136
    137	0x20941022, 0x2300006, 0xc031002, 0x0,
    138	0xfe01a000, 0x0, 0x0,	0x0,			/* MEMBAR-1000 */
    139	0x0,	0x0,	0x0,	0x20941022,
    140	0x0,	0x40,	0x0,	0x40a,			/* CapPtr INT-D, IRQA */
    141	0xc8020001, 0x0, 0x0,	0x0,	/* Capabilities - 40 is R/O,
    142					   44 is mask 8103 (power control) */
    143	0x0,	0x0,	0x0,	0x0,
    144	0x0,	0x0,	0x0,	0x0,
    145};
    146
    147static const uint32_t ehci_hdr[] = {  /* dev f function 4 - devfn = 7d */
    148	0xfffff000, 0x0, 0x0,	0x0,
    149	0x0,	0x0,	0x0,	0x0,
    150
    151	0x20951022, 0x2300006, 0xc032002, 0x0,
    152	0xfe01b000, 0x0, 0x0,	0x0,			/* MEMBAR-1000 */
    153	0x0,	0x0,	0x0,	0x20951022,
    154	0x0,	0x40,	0x0,	0x40a,			/* CapPtr INT-D, IRQA */
    155	0xc8020001, 0x0, 0x0,	0x0,	/* Capabilities - 40 is R/O, 44 is
    156					   mask 8103 (power control) */
    157#if 0
    158	0x1,	0x40080000, 0x0, 0x0,	/* EECP - see EHCI spec section 2.1.7 */
    159#endif
    160	0x01000001, 0x0, 0x0,	0x0,	/* EECP - see EHCI spec section 2.1.7 */
    161	0x2020,	0x0,	0x0,	0x0,	/* (EHCI page 8) 60 SBRN (R/O),
    162					   61 FLADJ (R/W), PORTWAKECAP  */
    163};
    164
    165static uint32_t ff_loc = ~0;
    166static uint32_t zero_loc;
    167static int bar_probing;		/* Set after a write of ~0 to a BAR */
    168static int is_lx;
    169
    170#define NB_SLOT 0x1	/* Northbridge - GX chip - Device 1 */
    171#define SB_SLOT 0xf	/* Southbridge - CS5536 chip - Device F */
    172
    173static int is_simulated(unsigned int bus, unsigned int devfn)
    174{
    175	return (!bus && ((PCI_SLOT(devfn) == NB_SLOT) ||
    176			(PCI_SLOT(devfn) == SB_SLOT)));
    177}
    178
    179static uint32_t *hdr_addr(const uint32_t *hdr, int reg)
    180{
    181	uint32_t addr;
    182
    183	/*
    184	 * This is a little bit tricky.  The header maps consist of
    185	 * 0x20 bytes of size masks, followed by 0x70 bytes of header data.
    186	 * In the normal case, when not probing a BAR's size, we want
    187	 * to access the header data, so we add 0x20 to the reg offset,
    188	 * thus skipping the size mask area.
    189	 * In the BAR probing case, we want to access the size mask for
    190	 * the BAR, so we subtract 0x10 (the config header offset for
    191	 * BAR0), and don't skip the size mask area.
    192	 */
    193
    194	addr = (uint32_t)hdr + reg + (bar_probing ? -0x10 : 0x20);
    195
    196	bar_probing = 0;
    197	return (uint32_t *)addr;
    198}
    199
    200static int pci_olpc_read(unsigned int seg, unsigned int bus,
    201		unsigned int devfn, int reg, int len, uint32_t *value)
    202{
    203	uint32_t *addr;
    204
    205	WARN_ON(seg);
    206
    207	/* Use the hardware mechanism for non-simulated devices */
    208	if (!is_simulated(bus, devfn))
    209		return pci_direct_conf1.read(seg, bus, devfn, reg, len, value);
    210
    211	/*
    212	 * No device has config registers past 0x70, so we save table space
    213	 * by not storing entries for the nonexistent registers
    214	 */
    215	if (reg >= 0x70)
    216		addr = &zero_loc;
    217	else {
    218		switch (devfn) {
    219		case  0x8:
    220			addr = hdr_addr(is_lx ? lxnb_hdr : gxnb_hdr, reg);
    221			break;
    222		case  0x9:
    223			addr = hdr_addr(is_lx ? lxfb_hdr : gxfb_hdr, reg);
    224			break;
    225		case  0xa:
    226			addr = is_lx ? hdr_addr(aes_hdr, reg) : &ff_loc;
    227			break;
    228		case 0x78:
    229			addr = hdr_addr(isa_hdr, reg);
    230			break;
    231		case 0x7b:
    232			addr = hdr_addr(ac97_hdr, reg);
    233			break;
    234		case 0x7c:
    235			addr = hdr_addr(ohci_hdr, reg);
    236			break;
    237		case 0x7d:
    238			addr = hdr_addr(ehci_hdr, reg);
    239			break;
    240		default:
    241			addr = &ff_loc;
    242			break;
    243		}
    244	}
    245	switch (len) {
    246	case 1:
    247		*value = *(uint8_t *)addr;
    248		break;
    249	case 2:
    250		*value = *(uint16_t *)addr;
    251		break;
    252	case 4:
    253		*value = *addr;
    254		break;
    255	default:
    256		BUG();
    257	}
    258
    259	return 0;
    260}
    261
    262static int pci_olpc_write(unsigned int seg, unsigned int bus,
    263		unsigned int devfn, int reg, int len, uint32_t value)
    264{
    265	WARN_ON(seg);
    266
    267	/* Use the hardware mechanism for non-simulated devices */
    268	if (!is_simulated(bus, devfn))
    269		return pci_direct_conf1.write(seg, bus, devfn, reg, len, value);
    270
    271	/* XXX we may want to extend this to simulate EHCI power management */
    272
    273	/*
    274	 * Mostly we just discard writes, but if the write is a size probe
    275	 * (i.e. writing ~0 to a BAR), we remember it and arrange to return
    276	 * the appropriate size mask on the next read.  This is cheating
    277	 * to some extent, because it depends on the fact that the next
    278	 * access after such a write will always be a read to the same BAR.
    279	 */
    280
    281	if ((reg >= 0x10) && (reg < 0x2c)) {
    282		/* write is to a BAR */
    283		if (value == ~0)
    284			bar_probing = 1;
    285	} else {
    286		/*
    287		 * No warning on writes to ROM BAR, CMD, LATENCY_TIMER,
    288		 * CACHE_LINE_SIZE, or PM registers.
    289		 */
    290		if ((reg != PCI_ROM_ADDRESS) && (reg != PCI_COMMAND_MASTER) &&
    291				(reg != PCI_LATENCY_TIMER) &&
    292				(reg != PCI_CACHE_LINE_SIZE) && (reg != 0x44))
    293			printk(KERN_WARNING "OLPC PCI: Config write to devfn"
    294				" %x reg %x value %x\n", devfn, reg, value);
    295	}
    296
    297	return 0;
    298}
    299
    300static const struct pci_raw_ops pci_olpc_conf = {
    301	.read =	pci_olpc_read,
    302	.write = pci_olpc_write,
    303};
    304
    305int __init pci_olpc_init(void)
    306{
    307	printk(KERN_INFO "PCI: Using configuration type OLPC XO-1\n");
    308	raw_pci_ops = &pci_olpc_conf;
    309	is_lx = is_geode_lx();
    310	return 0;
    311}