cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

efi.c (22968B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * Common EFI (Extensible Firmware Interface) support functions
      4 * Based on Extensible Firmware Interface Specification version 1.0
      5 *
      6 * Copyright (C) 1999 VA Linux Systems
      7 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
      8 * Copyright (C) 1999-2002 Hewlett-Packard Co.
      9 *	David Mosberger-Tang <davidm@hpl.hp.com>
     10 *	Stephane Eranian <eranian@hpl.hp.com>
     11 * Copyright (C) 2005-2008 Intel Co.
     12 *	Fenghua Yu <fenghua.yu@intel.com>
     13 *	Bibo Mao <bibo.mao@intel.com>
     14 *	Chandramouli Narayanan <mouli@linux.intel.com>
     15 *	Huang Ying <ying.huang@intel.com>
     16 * Copyright (C) 2013 SuSE Labs
     17 *	Borislav Petkov <bp@suse.de> - runtime services VA mapping
     18 *
     19 * Copied from efi_32.c to eliminate the duplicated code between EFI
     20 * 32/64 support code. --ying 2007-10-26
     21 *
     22 * All EFI Runtime Services are not implemented yet as EFI only
     23 * supports physical mode addressing on SoftSDV. This is to be fixed
     24 * in a future version.  --drummond 1999-07-20
     25 *
     26 * Implemented EFI runtime services and virtual mode calls.  --davidm
     27 *
     28 * Goutham Rao: <goutham.rao@intel.com>
     29 *	Skip non-WB memory and ignore empty memory ranges.
     30 */
     31
     32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
     33
     34#include <linux/kernel.h>
     35#include <linux/init.h>
     36#include <linux/efi.h>
     37#include <linux/efi-bgrt.h>
     38#include <linux/export.h>
     39#include <linux/memblock.h>
     40#include <linux/slab.h>
     41#include <linux/spinlock.h>
     42#include <linux/uaccess.h>
     43#include <linux/time.h>
     44#include <linux/io.h>
     45#include <linux/reboot.h>
     46#include <linux/bcd.h>
     47
     48#include <asm/setup.h>
     49#include <asm/efi.h>
     50#include <asm/e820/api.h>
     51#include <asm/time.h>
     52#include <asm/tlbflush.h>
     53#include <asm/x86_init.h>
     54#include <asm/uv/uv.h>
     55
     56static unsigned long efi_systab_phys __initdata;
     57static unsigned long prop_phys = EFI_INVALID_TABLE_ADDR;
     58static unsigned long uga_phys = EFI_INVALID_TABLE_ADDR;
     59static unsigned long efi_runtime, efi_nr_tables;
     60
     61unsigned long efi_fw_vendor, efi_config_table;
     62
     63static const efi_config_table_type_t arch_tables[] __initconst = {
     64	{EFI_PROPERTIES_TABLE_GUID,	&prop_phys,		"PROP"		},
     65	{UGA_IO_PROTOCOL_GUID,		&uga_phys,		"UGA"		},
     66#ifdef CONFIG_X86_UV
     67	{UV_SYSTEM_TABLE_GUID,		&uv_systab_phys,	"UVsystab"	},
     68#endif
     69	{},
     70};
     71
     72static const unsigned long * const efi_tables[] = {
     73	&efi.acpi,
     74	&efi.acpi20,
     75	&efi.smbios,
     76	&efi.smbios3,
     77	&uga_phys,
     78#ifdef CONFIG_X86_UV
     79	&uv_systab_phys,
     80#endif
     81	&efi_fw_vendor,
     82	&efi_runtime,
     83	&efi_config_table,
     84	&efi.esrt,
     85	&prop_phys,
     86	&efi_mem_attr_table,
     87#ifdef CONFIG_EFI_RCI2_TABLE
     88	&rci2_table_phys,
     89#endif
     90	&efi.tpm_log,
     91	&efi.tpm_final_log,
     92	&efi_rng_seed,
     93#ifdef CONFIG_LOAD_UEFI_KEYS
     94	&efi.mokvar_table,
     95#endif
     96#ifdef CONFIG_EFI_COCO_SECRET
     97	&efi.coco_secret,
     98#endif
     99};
    100
    101u64 efi_setup;		/* efi setup_data physical address */
    102
    103static int add_efi_memmap __initdata;
    104static int __init setup_add_efi_memmap(char *arg)
    105{
    106	add_efi_memmap = 1;
    107	return 0;
    108}
    109early_param("add_efi_memmap", setup_add_efi_memmap);
    110
    111void __init efi_find_mirror(void)
    112{
    113	efi_memory_desc_t *md;
    114	u64 mirror_size = 0, total_size = 0;
    115
    116	if (!efi_enabled(EFI_MEMMAP))
    117		return;
    118
    119	for_each_efi_memory_desc(md) {
    120		unsigned long long start = md->phys_addr;
    121		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
    122
    123		total_size += size;
    124		if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
    125			memblock_mark_mirror(start, size);
    126			mirror_size += size;
    127		}
    128	}
    129	if (mirror_size)
    130		pr_info("Memory: %lldM/%lldM mirrored memory\n",
    131			mirror_size>>20, total_size>>20);
    132}
    133
    134/*
    135 * Tell the kernel about the EFI memory map.  This might include
    136 * more than the max 128 entries that can fit in the passed in e820
    137 * legacy (zeropage) memory map, but the kernel's e820 table can hold
    138 * E820_MAX_ENTRIES.
    139 */
    140
    141static void __init do_add_efi_memmap(void)
    142{
    143	efi_memory_desc_t *md;
    144
    145	if (!efi_enabled(EFI_MEMMAP))
    146		return;
    147
    148	for_each_efi_memory_desc(md) {
    149		unsigned long long start = md->phys_addr;
    150		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
    151		int e820_type;
    152
    153		switch (md->type) {
    154		case EFI_LOADER_CODE:
    155		case EFI_LOADER_DATA:
    156		case EFI_BOOT_SERVICES_CODE:
    157		case EFI_BOOT_SERVICES_DATA:
    158		case EFI_CONVENTIONAL_MEMORY:
    159			if (efi_soft_reserve_enabled()
    160			    && (md->attribute & EFI_MEMORY_SP))
    161				e820_type = E820_TYPE_SOFT_RESERVED;
    162			else if (md->attribute & EFI_MEMORY_WB)
    163				e820_type = E820_TYPE_RAM;
    164			else
    165				e820_type = E820_TYPE_RESERVED;
    166			break;
    167		case EFI_ACPI_RECLAIM_MEMORY:
    168			e820_type = E820_TYPE_ACPI;
    169			break;
    170		case EFI_ACPI_MEMORY_NVS:
    171			e820_type = E820_TYPE_NVS;
    172			break;
    173		case EFI_UNUSABLE_MEMORY:
    174			e820_type = E820_TYPE_UNUSABLE;
    175			break;
    176		case EFI_PERSISTENT_MEMORY:
    177			e820_type = E820_TYPE_PMEM;
    178			break;
    179		default:
    180			/*
    181			 * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
    182			 * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
    183			 * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
    184			 */
    185			e820_type = E820_TYPE_RESERVED;
    186			break;
    187		}
    188
    189		e820__range_add(start, size, e820_type);
    190	}
    191	e820__update_table(e820_table);
    192}
    193
    194/*
    195 * Given add_efi_memmap defaults to 0 and there there is no alternative
    196 * e820 mechanism for soft-reserved memory, import the full EFI memory
    197 * map if soft reservations are present and enabled. Otherwise, the
    198 * mechanism to disable the kernel's consideration of EFI_MEMORY_SP is
    199 * the efi=nosoftreserve option.
    200 */
    201static bool do_efi_soft_reserve(void)
    202{
    203	efi_memory_desc_t *md;
    204
    205	if (!efi_enabled(EFI_MEMMAP))
    206		return false;
    207
    208	if (!efi_soft_reserve_enabled())
    209		return false;
    210
    211	for_each_efi_memory_desc(md)
    212		if (md->type == EFI_CONVENTIONAL_MEMORY &&
    213		    (md->attribute & EFI_MEMORY_SP))
    214			return true;
    215	return false;
    216}
    217
    218int __init efi_memblock_x86_reserve_range(void)
    219{
    220	struct efi_info *e = &boot_params.efi_info;
    221	struct efi_memory_map_data data;
    222	phys_addr_t pmap;
    223	int rv;
    224
    225	if (efi_enabled(EFI_PARAVIRT))
    226		return 0;
    227
    228	/* Can't handle firmware tables above 4GB on i386 */
    229	if (IS_ENABLED(CONFIG_X86_32) && e->efi_memmap_hi > 0) {
    230		pr_err("Memory map is above 4GB, disabling EFI.\n");
    231		return -EINVAL;
    232	}
    233	pmap = (phys_addr_t)(e->efi_memmap | ((u64)e->efi_memmap_hi << 32));
    234
    235	data.phys_map		= pmap;
    236	data.size 		= e->efi_memmap_size;
    237	data.desc_size		= e->efi_memdesc_size;
    238	data.desc_version	= e->efi_memdesc_version;
    239
    240	rv = efi_memmap_init_early(&data);
    241	if (rv)
    242		return rv;
    243
    244	if (add_efi_memmap || do_efi_soft_reserve())
    245		do_add_efi_memmap();
    246
    247	efi_fake_memmap_early();
    248
    249	WARN(efi.memmap.desc_version != 1,
    250	     "Unexpected EFI_MEMORY_DESCRIPTOR version %ld",
    251	     efi.memmap.desc_version);
    252
    253	memblock_reserve(pmap, efi.memmap.nr_map * efi.memmap.desc_size);
    254	set_bit(EFI_PRESERVE_BS_REGIONS, &efi.flags);
    255
    256	return 0;
    257}
    258
    259#define OVERFLOW_ADDR_SHIFT	(64 - EFI_PAGE_SHIFT)
    260#define OVERFLOW_ADDR_MASK	(U64_MAX << OVERFLOW_ADDR_SHIFT)
    261#define U64_HIGH_BIT		(~(U64_MAX >> 1))
    262
    263static bool __init efi_memmap_entry_valid(const efi_memory_desc_t *md, int i)
    264{
    265	u64 end = (md->num_pages << EFI_PAGE_SHIFT) + md->phys_addr - 1;
    266	u64 end_hi = 0;
    267	char buf[64];
    268
    269	if (md->num_pages == 0) {
    270		end = 0;
    271	} else if (md->num_pages > EFI_PAGES_MAX ||
    272		   EFI_PAGES_MAX - md->num_pages <
    273		   (md->phys_addr >> EFI_PAGE_SHIFT)) {
    274		end_hi = (md->num_pages & OVERFLOW_ADDR_MASK)
    275			>> OVERFLOW_ADDR_SHIFT;
    276
    277		if ((md->phys_addr & U64_HIGH_BIT) && !(end & U64_HIGH_BIT))
    278			end_hi += 1;
    279	} else {
    280		return true;
    281	}
    282
    283	pr_warn_once(FW_BUG "Invalid EFI memory map entries:\n");
    284
    285	if (end_hi) {
    286		pr_warn("mem%02u: %s range=[0x%016llx-0x%llx%016llx] (invalid)\n",
    287			i, efi_md_typeattr_format(buf, sizeof(buf), md),
    288			md->phys_addr, end_hi, end);
    289	} else {
    290		pr_warn("mem%02u: %s range=[0x%016llx-0x%016llx] (invalid)\n",
    291			i, efi_md_typeattr_format(buf, sizeof(buf), md),
    292			md->phys_addr, end);
    293	}
    294	return false;
    295}
    296
    297static void __init efi_clean_memmap(void)
    298{
    299	efi_memory_desc_t *out = efi.memmap.map;
    300	const efi_memory_desc_t *in = out;
    301	const efi_memory_desc_t *end = efi.memmap.map_end;
    302	int i, n_removal;
    303
    304	for (i = n_removal = 0; in < end; i++) {
    305		if (efi_memmap_entry_valid(in, i)) {
    306			if (out != in)
    307				memcpy(out, in, efi.memmap.desc_size);
    308			out = (void *)out + efi.memmap.desc_size;
    309		} else {
    310			n_removal++;
    311		}
    312		in = (void *)in + efi.memmap.desc_size;
    313	}
    314
    315	if (n_removal > 0) {
    316		struct efi_memory_map_data data = {
    317			.phys_map	= efi.memmap.phys_map,
    318			.desc_version	= efi.memmap.desc_version,
    319			.desc_size	= efi.memmap.desc_size,
    320			.size		= efi.memmap.desc_size * (efi.memmap.nr_map - n_removal),
    321			.flags		= 0,
    322		};
    323
    324		pr_warn("Removing %d invalid memory map entries.\n", n_removal);
    325		efi_memmap_install(&data);
    326	}
    327}
    328
    329void __init efi_print_memmap(void)
    330{
    331	efi_memory_desc_t *md;
    332	int i = 0;
    333
    334	for_each_efi_memory_desc(md) {
    335		char buf[64];
    336
    337		pr_info("mem%02u: %s range=[0x%016llx-0x%016llx] (%lluMB)\n",
    338			i++, efi_md_typeattr_format(buf, sizeof(buf), md),
    339			md->phys_addr,
    340			md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1,
    341			(md->num_pages >> (20 - EFI_PAGE_SHIFT)));
    342	}
    343}
    344
    345static int __init efi_systab_init(unsigned long phys)
    346{
    347	int size = efi_enabled(EFI_64BIT) ? sizeof(efi_system_table_64_t)
    348					  : sizeof(efi_system_table_32_t);
    349	const efi_table_hdr_t *hdr;
    350	bool over4g = false;
    351	void *p;
    352	int ret;
    353
    354	hdr = p = early_memremap_ro(phys, size);
    355	if (p == NULL) {
    356		pr_err("Couldn't map the system table!\n");
    357		return -ENOMEM;
    358	}
    359
    360	ret = efi_systab_check_header(hdr, 1);
    361	if (ret) {
    362		early_memunmap(p, size);
    363		return ret;
    364	}
    365
    366	if (efi_enabled(EFI_64BIT)) {
    367		const efi_system_table_64_t *systab64 = p;
    368
    369		efi_runtime	= systab64->runtime;
    370		over4g		= systab64->runtime > U32_MAX;
    371
    372		if (efi_setup) {
    373			struct efi_setup_data *data;
    374
    375			data = early_memremap_ro(efi_setup, sizeof(*data));
    376			if (!data) {
    377				early_memunmap(p, size);
    378				return -ENOMEM;
    379			}
    380
    381			efi_fw_vendor		= (unsigned long)data->fw_vendor;
    382			efi_config_table	= (unsigned long)data->tables;
    383
    384			over4g |= data->fw_vendor	> U32_MAX ||
    385				  data->tables		> U32_MAX;
    386
    387			early_memunmap(data, sizeof(*data));
    388		} else {
    389			efi_fw_vendor		= systab64->fw_vendor;
    390			efi_config_table	= systab64->tables;
    391
    392			over4g |= systab64->fw_vendor	> U32_MAX ||
    393				  systab64->tables	> U32_MAX;
    394		}
    395		efi_nr_tables = systab64->nr_tables;
    396	} else {
    397		const efi_system_table_32_t *systab32 = p;
    398
    399		efi_fw_vendor		= systab32->fw_vendor;
    400		efi_runtime		= systab32->runtime;
    401		efi_config_table	= systab32->tables;
    402		efi_nr_tables		= systab32->nr_tables;
    403	}
    404
    405	efi.runtime_version = hdr->revision;
    406
    407	efi_systab_report_header(hdr, efi_fw_vendor);
    408	early_memunmap(p, size);
    409
    410	if (IS_ENABLED(CONFIG_X86_32) && over4g) {
    411		pr_err("EFI data located above 4GB, disabling EFI.\n");
    412		return -EINVAL;
    413	}
    414
    415	return 0;
    416}
    417
    418static int __init efi_config_init(const efi_config_table_type_t *arch_tables)
    419{
    420	void *config_tables;
    421	int sz, ret;
    422
    423	if (efi_nr_tables == 0)
    424		return 0;
    425
    426	if (efi_enabled(EFI_64BIT))
    427		sz = sizeof(efi_config_table_64_t);
    428	else
    429		sz = sizeof(efi_config_table_32_t);
    430
    431	/*
    432	 * Let's see what config tables the firmware passed to us.
    433	 */
    434	config_tables = early_memremap(efi_config_table, efi_nr_tables * sz);
    435	if (config_tables == NULL) {
    436		pr_err("Could not map Configuration table!\n");
    437		return -ENOMEM;
    438	}
    439
    440	ret = efi_config_parse_tables(config_tables, efi_nr_tables,
    441				      arch_tables);
    442
    443	early_memunmap(config_tables, efi_nr_tables * sz);
    444	return ret;
    445}
    446
    447void __init efi_init(void)
    448{
    449	if (IS_ENABLED(CONFIG_X86_32) &&
    450	    (boot_params.efi_info.efi_systab_hi ||
    451	     boot_params.efi_info.efi_memmap_hi)) {
    452		pr_info("Table located above 4GB, disabling EFI.\n");
    453		return;
    454	}
    455
    456	efi_systab_phys = boot_params.efi_info.efi_systab |
    457			  ((__u64)boot_params.efi_info.efi_systab_hi << 32);
    458
    459	if (efi_systab_init(efi_systab_phys))
    460		return;
    461
    462	if (efi_reuse_config(efi_config_table, efi_nr_tables))
    463		return;
    464
    465	if (efi_config_init(arch_tables))
    466		return;
    467
    468	/*
    469	 * Note: We currently don't support runtime services on an EFI
    470	 * that doesn't match the kernel 32/64-bit mode.
    471	 */
    472
    473	if (!efi_runtime_supported())
    474		pr_err("No EFI runtime due to 32/64-bit mismatch with kernel\n");
    475
    476	if (!efi_runtime_supported() || efi_runtime_disabled()) {
    477		efi_memmap_unmap();
    478		return;
    479	}
    480
    481	/* Parse the EFI Properties table if it exists */
    482	if (prop_phys != EFI_INVALID_TABLE_ADDR) {
    483		efi_properties_table_t *tbl;
    484
    485		tbl = early_memremap_ro(prop_phys, sizeof(*tbl));
    486		if (tbl == NULL) {
    487			pr_err("Could not map Properties table!\n");
    488		} else {
    489			if (tbl->memory_protection_attribute &
    490			    EFI_PROPERTIES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE_DATA)
    491				set_bit(EFI_NX_PE_DATA, &efi.flags);
    492
    493			early_memunmap(tbl, sizeof(*tbl));
    494		}
    495	}
    496
    497	set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
    498	efi_clean_memmap();
    499
    500	if (efi_enabled(EFI_DBG))
    501		efi_print_memmap();
    502}
    503
    504/* Merge contiguous regions of the same type and attribute */
    505static void __init efi_merge_regions(void)
    506{
    507	efi_memory_desc_t *md, *prev_md = NULL;
    508
    509	for_each_efi_memory_desc(md) {
    510		u64 prev_size;
    511
    512		if (!prev_md) {
    513			prev_md = md;
    514			continue;
    515		}
    516
    517		if (prev_md->type != md->type ||
    518		    prev_md->attribute != md->attribute) {
    519			prev_md = md;
    520			continue;
    521		}
    522
    523		prev_size = prev_md->num_pages << EFI_PAGE_SHIFT;
    524
    525		if (md->phys_addr == (prev_md->phys_addr + prev_size)) {
    526			prev_md->num_pages += md->num_pages;
    527			md->type = EFI_RESERVED_TYPE;
    528			md->attribute = 0;
    529			continue;
    530		}
    531		prev_md = md;
    532	}
    533}
    534
    535static void *realloc_pages(void *old_memmap, int old_shift)
    536{
    537	void *ret;
    538
    539	ret = (void *)__get_free_pages(GFP_KERNEL, old_shift + 1);
    540	if (!ret)
    541		goto out;
    542
    543	/*
    544	 * A first-time allocation doesn't have anything to copy.
    545	 */
    546	if (!old_memmap)
    547		return ret;
    548
    549	memcpy(ret, old_memmap, PAGE_SIZE << old_shift);
    550
    551out:
    552	free_pages((unsigned long)old_memmap, old_shift);
    553	return ret;
    554}
    555
    556/*
    557 * Iterate the EFI memory map in reverse order because the regions
    558 * will be mapped top-down. The end result is the same as if we had
    559 * mapped things forward, but doesn't require us to change the
    560 * existing implementation of efi_map_region().
    561 */
    562static inline void *efi_map_next_entry_reverse(void *entry)
    563{
    564	/* Initial call */
    565	if (!entry)
    566		return efi.memmap.map_end - efi.memmap.desc_size;
    567
    568	entry -= efi.memmap.desc_size;
    569	if (entry < efi.memmap.map)
    570		return NULL;
    571
    572	return entry;
    573}
    574
    575/*
    576 * efi_map_next_entry - Return the next EFI memory map descriptor
    577 * @entry: Previous EFI memory map descriptor
    578 *
    579 * This is a helper function to iterate over the EFI memory map, which
    580 * we do in different orders depending on the current configuration.
    581 *
    582 * To begin traversing the memory map @entry must be %NULL.
    583 *
    584 * Returns %NULL when we reach the end of the memory map.
    585 */
    586static void *efi_map_next_entry(void *entry)
    587{
    588	if (efi_enabled(EFI_64BIT)) {
    589		/*
    590		 * Starting in UEFI v2.5 the EFI_PROPERTIES_TABLE
    591		 * config table feature requires us to map all entries
    592		 * in the same order as they appear in the EFI memory
    593		 * map. That is to say, entry N must have a lower
    594		 * virtual address than entry N+1. This is because the
    595		 * firmware toolchain leaves relative references in
    596		 * the code/data sections, which are split and become
    597		 * separate EFI memory regions. Mapping things
    598		 * out-of-order leads to the firmware accessing
    599		 * unmapped addresses.
    600		 *
    601		 * Since we need to map things this way whether or not
    602		 * the kernel actually makes use of
    603		 * EFI_PROPERTIES_TABLE, let's just switch to this
    604		 * scheme by default for 64-bit.
    605		 */
    606		return efi_map_next_entry_reverse(entry);
    607	}
    608
    609	/* Initial call */
    610	if (!entry)
    611		return efi.memmap.map;
    612
    613	entry += efi.memmap.desc_size;
    614	if (entry >= efi.memmap.map_end)
    615		return NULL;
    616
    617	return entry;
    618}
    619
    620static bool should_map_region(efi_memory_desc_t *md)
    621{
    622	/*
    623	 * Runtime regions always require runtime mappings (obviously).
    624	 */
    625	if (md->attribute & EFI_MEMORY_RUNTIME)
    626		return true;
    627
    628	/*
    629	 * 32-bit EFI doesn't suffer from the bug that requires us to
    630	 * reserve boot services regions, and mixed mode support
    631	 * doesn't exist for 32-bit kernels.
    632	 */
    633	if (IS_ENABLED(CONFIG_X86_32))
    634		return false;
    635
    636	/*
    637	 * EFI specific purpose memory may be reserved by default
    638	 * depending on kernel config and boot options.
    639	 */
    640	if (md->type == EFI_CONVENTIONAL_MEMORY &&
    641	    efi_soft_reserve_enabled() &&
    642	    (md->attribute & EFI_MEMORY_SP))
    643		return false;
    644
    645	/*
    646	 * Map all of RAM so that we can access arguments in the 1:1
    647	 * mapping when making EFI runtime calls.
    648	 */
    649	if (efi_is_mixed()) {
    650		if (md->type == EFI_CONVENTIONAL_MEMORY ||
    651		    md->type == EFI_LOADER_DATA ||
    652		    md->type == EFI_LOADER_CODE)
    653			return true;
    654	}
    655
    656	/*
    657	 * Map boot services regions as a workaround for buggy
    658	 * firmware that accesses them even when they shouldn't.
    659	 *
    660	 * See efi_{reserve,free}_boot_services().
    661	 */
    662	if (md->type == EFI_BOOT_SERVICES_CODE ||
    663	    md->type == EFI_BOOT_SERVICES_DATA)
    664		return true;
    665
    666	return false;
    667}
    668
    669/*
    670 * Map the efi memory ranges of the runtime services and update new_mmap with
    671 * virtual addresses.
    672 */
    673static void * __init efi_map_regions(int *count, int *pg_shift)
    674{
    675	void *p, *new_memmap = NULL;
    676	unsigned long left = 0;
    677	unsigned long desc_size;
    678	efi_memory_desc_t *md;
    679
    680	desc_size = efi.memmap.desc_size;
    681
    682	p = NULL;
    683	while ((p = efi_map_next_entry(p))) {
    684		md = p;
    685
    686		if (!should_map_region(md))
    687			continue;
    688
    689		efi_map_region(md);
    690
    691		if (left < desc_size) {
    692			new_memmap = realloc_pages(new_memmap, *pg_shift);
    693			if (!new_memmap)
    694				return NULL;
    695
    696			left += PAGE_SIZE << *pg_shift;
    697			(*pg_shift)++;
    698		}
    699
    700		memcpy(new_memmap + (*count * desc_size), md, desc_size);
    701
    702		left -= desc_size;
    703		(*count)++;
    704	}
    705
    706	return new_memmap;
    707}
    708
    709static void __init kexec_enter_virtual_mode(void)
    710{
    711#ifdef CONFIG_KEXEC_CORE
    712	efi_memory_desc_t *md;
    713	unsigned int num_pages;
    714
    715	/*
    716	 * We don't do virtual mode, since we don't do runtime services, on
    717	 * non-native EFI.
    718	 */
    719	if (efi_is_mixed()) {
    720		efi_memmap_unmap();
    721		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
    722		return;
    723	}
    724
    725	if (efi_alloc_page_tables()) {
    726		pr_err("Failed to allocate EFI page tables\n");
    727		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
    728		return;
    729	}
    730
    731	/*
    732	* Map efi regions which were passed via setup_data. The virt_addr is a
    733	* fixed addr which was used in first kernel of a kexec boot.
    734	*/
    735	for_each_efi_memory_desc(md)
    736		efi_map_region_fixed(md); /* FIXME: add error handling */
    737
    738	/*
    739	 * Unregister the early EFI memmap from efi_init() and install
    740	 * the new EFI memory map.
    741	 */
    742	efi_memmap_unmap();
    743
    744	if (efi_memmap_init_late(efi.memmap.phys_map,
    745				 efi.memmap.desc_size * efi.memmap.nr_map)) {
    746		pr_err("Failed to remap late EFI memory map\n");
    747		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
    748		return;
    749	}
    750
    751	num_pages = ALIGN(efi.memmap.nr_map * efi.memmap.desc_size, PAGE_SIZE);
    752	num_pages >>= PAGE_SHIFT;
    753
    754	if (efi_setup_page_tables(efi.memmap.phys_map, num_pages)) {
    755		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
    756		return;
    757	}
    758
    759	efi_sync_low_kernel_mappings();
    760	efi_native_runtime_setup();
    761#endif
    762}
    763
    764/*
    765 * This function will switch the EFI runtime services to virtual mode.
    766 * Essentially, we look through the EFI memmap and map every region that
    767 * has the runtime attribute bit set in its memory descriptor into the
    768 * efi_pgd page table.
    769 *
    770 * The new method does a pagetable switch in a preemption-safe manner
    771 * so that we're in a different address space when calling a runtime
    772 * function. For function arguments passing we do copy the PUDs of the
    773 * kernel page table into efi_pgd prior to each call.
    774 *
    775 * Specially for kexec boot, efi runtime maps in previous kernel should
    776 * be passed in via setup_data. In that case runtime ranges will be mapped
    777 * to the same virtual addresses as the first kernel, see
    778 * kexec_enter_virtual_mode().
    779 */
    780static void __init __efi_enter_virtual_mode(void)
    781{
    782	int count = 0, pg_shift = 0;
    783	void *new_memmap = NULL;
    784	efi_status_t status;
    785	unsigned long pa;
    786
    787	if (efi_alloc_page_tables()) {
    788		pr_err("Failed to allocate EFI page tables\n");
    789		goto err;
    790	}
    791
    792	efi_merge_regions();
    793	new_memmap = efi_map_regions(&count, &pg_shift);
    794	if (!new_memmap) {
    795		pr_err("Error reallocating memory, EFI runtime non-functional!\n");
    796		goto err;
    797	}
    798
    799	pa = __pa(new_memmap);
    800
    801	/*
    802	 * Unregister the early EFI memmap from efi_init() and install
    803	 * the new EFI memory map that we are about to pass to the
    804	 * firmware via SetVirtualAddressMap().
    805	 */
    806	efi_memmap_unmap();
    807
    808	if (efi_memmap_init_late(pa, efi.memmap.desc_size * count)) {
    809		pr_err("Failed to remap late EFI memory map\n");
    810		goto err;
    811	}
    812
    813	if (efi_enabled(EFI_DBG)) {
    814		pr_info("EFI runtime memory map:\n");
    815		efi_print_memmap();
    816	}
    817
    818	if (efi_setup_page_tables(pa, 1 << pg_shift))
    819		goto err;
    820
    821	efi_sync_low_kernel_mappings();
    822
    823	status = efi_set_virtual_address_map(efi.memmap.desc_size * count,
    824					     efi.memmap.desc_size,
    825					     efi.memmap.desc_version,
    826					     (efi_memory_desc_t *)pa,
    827					     efi_systab_phys);
    828	if (status != EFI_SUCCESS) {
    829		pr_err("Unable to switch EFI into virtual mode (status=%lx)!\n",
    830		       status);
    831		goto err;
    832	}
    833
    834	efi_check_for_embedded_firmwares();
    835	efi_free_boot_services();
    836
    837	if (!efi_is_mixed())
    838		efi_native_runtime_setup();
    839	else
    840		efi_thunk_runtime_setup();
    841
    842	/*
    843	 * Apply more restrictive page table mapping attributes now that
    844	 * SVAM() has been called and the firmware has performed all
    845	 * necessary relocation fixups for the new virtual addresses.
    846	 */
    847	efi_runtime_update_mappings();
    848
    849	/* clean DUMMY object */
    850	efi_delete_dummy_variable();
    851	return;
    852
    853err:
    854	clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
    855}
    856
    857void __init efi_enter_virtual_mode(void)
    858{
    859	if (efi_enabled(EFI_PARAVIRT))
    860		return;
    861
    862	efi.runtime = (efi_runtime_services_t *)efi_runtime;
    863
    864	if (efi_setup)
    865		kexec_enter_virtual_mode();
    866	else
    867		__efi_enter_virtual_mode();
    868
    869	efi_dump_pagetable();
    870}
    871
    872bool efi_is_table_address(unsigned long phys_addr)
    873{
    874	unsigned int i;
    875
    876	if (phys_addr == EFI_INVALID_TABLE_ADDR)
    877		return false;
    878
    879	for (i = 0; i < ARRAY_SIZE(efi_tables); i++)
    880		if (*(efi_tables[i]) == phys_addr)
    881			return true;
    882
    883	return false;
    884}
    885
    886char *efi_systab_show_arch(char *str)
    887{
    888	if (uga_phys != EFI_INVALID_TABLE_ADDR)
    889		str += sprintf(str, "UGA=0x%lx\n", uga_phys);
    890	return str;
    891}
    892
    893#define EFI_FIELD(var) efi_ ## var
    894
    895#define EFI_ATTR_SHOW(name) \
    896static ssize_t name##_show(struct kobject *kobj, \
    897				struct kobj_attribute *attr, char *buf) \
    898{ \
    899	return sprintf(buf, "0x%lx\n", EFI_FIELD(name)); \
    900}
    901
    902EFI_ATTR_SHOW(fw_vendor);
    903EFI_ATTR_SHOW(runtime);
    904EFI_ATTR_SHOW(config_table);
    905
    906struct kobj_attribute efi_attr_fw_vendor = __ATTR_RO(fw_vendor);
    907struct kobj_attribute efi_attr_runtime = __ATTR_RO(runtime);
    908struct kobj_attribute efi_attr_config_table = __ATTR_RO(config_table);
    909
    910umode_t efi_attr_is_visible(struct kobject *kobj, struct attribute *attr, int n)
    911{
    912	if (attr == &efi_attr_fw_vendor.attr) {
    913		if (efi_enabled(EFI_PARAVIRT) ||
    914				efi_fw_vendor == EFI_INVALID_TABLE_ADDR)
    915			return 0;
    916	} else if (attr == &efi_attr_runtime.attr) {
    917		if (efi_runtime == EFI_INVALID_TABLE_ADDR)
    918			return 0;
    919	} else if (attr == &efi_attr_config_table.attr) {
    920		if (efi_config_table == EFI_INVALID_TABLE_ADDR)
    921			return 0;
    922	}
    923	return attr->mode;
    924}