efi_64.c (22831B)
1// SPDX-License-Identifier: GPL-2.0 2/* 3 * x86_64 specific EFI support functions 4 * Based on Extensible Firmware Interface Specification version 1.0 5 * 6 * Copyright (C) 2005-2008 Intel Co. 7 * Fenghua Yu <fenghua.yu@intel.com> 8 * Bibo Mao <bibo.mao@intel.com> 9 * Chandramouli Narayanan <mouli@linux.intel.com> 10 * Huang Ying <ying.huang@intel.com> 11 * 12 * Code to convert EFI to E820 map has been implemented in elilo bootloader 13 * based on a EFI patch by Edgar Hucek. Based on the E820 map, the page table 14 * is setup appropriately for EFI runtime code. 15 * - mouli 06/14/2007. 16 * 17 */ 18 19#define pr_fmt(fmt) "efi: " fmt 20 21#include <linux/kernel.h> 22#include <linux/init.h> 23#include <linux/mm.h> 24#include <linux/types.h> 25#include <linux/spinlock.h> 26#include <linux/memblock.h> 27#include <linux/ioport.h> 28#include <linux/mc146818rtc.h> 29#include <linux/efi.h> 30#include <linux/export.h> 31#include <linux/uaccess.h> 32#include <linux/io.h> 33#include <linux/reboot.h> 34#include <linux/slab.h> 35#include <linux/ucs2_string.h> 36#include <linux/cc_platform.h> 37#include <linux/sched/task.h> 38 39#include <asm/setup.h> 40#include <asm/page.h> 41#include <asm/e820/api.h> 42#include <asm/tlbflush.h> 43#include <asm/proto.h> 44#include <asm/efi.h> 45#include <asm/cacheflush.h> 46#include <asm/fixmap.h> 47#include <asm/realmode.h> 48#include <asm/time.h> 49#include <asm/pgalloc.h> 50#include <asm/sev.h> 51 52/* 53 * We allocate runtime services regions top-down, starting from -4G, i.e. 54 * 0xffff_ffff_0000_0000 and limit EFI VA mapping space to 64G. 55 */ 56static u64 efi_va = EFI_VA_START; 57static struct mm_struct *efi_prev_mm; 58 59/* 60 * We need our own copy of the higher levels of the page tables 61 * because we want to avoid inserting EFI region mappings (EFI_VA_END 62 * to EFI_VA_START) into the standard kernel page tables. Everything 63 * else can be shared, see efi_sync_low_kernel_mappings(). 64 * 65 * We don't want the pgd on the pgd_list and cannot use pgd_alloc() for the 66 * allocation. 67 */ 68int __init efi_alloc_page_tables(void) 69{ 70 pgd_t *pgd, *efi_pgd; 71 p4d_t *p4d; 72 pud_t *pud; 73 gfp_t gfp_mask; 74 75 gfp_mask = GFP_KERNEL | __GFP_ZERO; 76 efi_pgd = (pgd_t *)__get_free_pages(gfp_mask, PGD_ALLOCATION_ORDER); 77 if (!efi_pgd) 78 goto fail; 79 80 pgd = efi_pgd + pgd_index(EFI_VA_END); 81 p4d = p4d_alloc(&init_mm, pgd, EFI_VA_END); 82 if (!p4d) 83 goto free_pgd; 84 85 pud = pud_alloc(&init_mm, p4d, EFI_VA_END); 86 if (!pud) 87 goto free_p4d; 88 89 efi_mm.pgd = efi_pgd; 90 mm_init_cpumask(&efi_mm); 91 init_new_context(NULL, &efi_mm); 92 93 return 0; 94 95free_p4d: 96 if (pgtable_l5_enabled()) 97 free_page((unsigned long)pgd_page_vaddr(*pgd)); 98free_pgd: 99 free_pages((unsigned long)efi_pgd, PGD_ALLOCATION_ORDER); 100fail: 101 return -ENOMEM; 102} 103 104/* 105 * Add low kernel mappings for passing arguments to EFI functions. 106 */ 107void efi_sync_low_kernel_mappings(void) 108{ 109 unsigned num_entries; 110 pgd_t *pgd_k, *pgd_efi; 111 p4d_t *p4d_k, *p4d_efi; 112 pud_t *pud_k, *pud_efi; 113 pgd_t *efi_pgd = efi_mm.pgd; 114 115 pgd_efi = efi_pgd + pgd_index(PAGE_OFFSET); 116 pgd_k = pgd_offset_k(PAGE_OFFSET); 117 118 num_entries = pgd_index(EFI_VA_END) - pgd_index(PAGE_OFFSET); 119 memcpy(pgd_efi, pgd_k, sizeof(pgd_t) * num_entries); 120 121 pgd_efi = efi_pgd + pgd_index(EFI_VA_END); 122 pgd_k = pgd_offset_k(EFI_VA_END); 123 p4d_efi = p4d_offset(pgd_efi, 0); 124 p4d_k = p4d_offset(pgd_k, 0); 125 126 num_entries = p4d_index(EFI_VA_END); 127 memcpy(p4d_efi, p4d_k, sizeof(p4d_t) * num_entries); 128 129 /* 130 * We share all the PUD entries apart from those that map the 131 * EFI regions. Copy around them. 132 */ 133 BUILD_BUG_ON((EFI_VA_START & ~PUD_MASK) != 0); 134 BUILD_BUG_ON((EFI_VA_END & ~PUD_MASK) != 0); 135 136 p4d_efi = p4d_offset(pgd_efi, EFI_VA_END); 137 p4d_k = p4d_offset(pgd_k, EFI_VA_END); 138 pud_efi = pud_offset(p4d_efi, 0); 139 pud_k = pud_offset(p4d_k, 0); 140 141 num_entries = pud_index(EFI_VA_END); 142 memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries); 143 144 pud_efi = pud_offset(p4d_efi, EFI_VA_START); 145 pud_k = pud_offset(p4d_k, EFI_VA_START); 146 147 num_entries = PTRS_PER_PUD - pud_index(EFI_VA_START); 148 memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries); 149} 150 151/* 152 * Wrapper for slow_virt_to_phys() that handles NULL addresses. 153 */ 154static inline phys_addr_t 155virt_to_phys_or_null_size(void *va, unsigned long size) 156{ 157 phys_addr_t pa; 158 159 if (!va) 160 return 0; 161 162 if (virt_addr_valid(va)) 163 return virt_to_phys(va); 164 165 pa = slow_virt_to_phys(va); 166 167 /* check if the object crosses a page boundary */ 168 if (WARN_ON((pa ^ (pa + size - 1)) & PAGE_MASK)) 169 return 0; 170 171 return pa; 172} 173 174#define virt_to_phys_or_null(addr) \ 175 virt_to_phys_or_null_size((addr), sizeof(*(addr))) 176 177int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages) 178{ 179 unsigned long pfn, text, pf, rodata; 180 struct page *page; 181 unsigned npages; 182 pgd_t *pgd = efi_mm.pgd; 183 184 /* 185 * It can happen that the physical address of new_memmap lands in memory 186 * which is not mapped in the EFI page table. Therefore we need to go 187 * and ident-map those pages containing the map before calling 188 * phys_efi_set_virtual_address_map(). 189 */ 190 pfn = pa_memmap >> PAGE_SHIFT; 191 pf = _PAGE_NX | _PAGE_RW | _PAGE_ENC; 192 if (kernel_map_pages_in_pgd(pgd, pfn, pa_memmap, num_pages, pf)) { 193 pr_err("Error ident-mapping new memmap (0x%lx)!\n", pa_memmap); 194 return 1; 195 } 196 197 /* 198 * Certain firmware versions are way too sentimental and still believe 199 * they are exclusive and unquestionable owners of the first physical page, 200 * even though they explicitly mark it as EFI_CONVENTIONAL_MEMORY 201 * (but then write-access it later during SetVirtualAddressMap()). 202 * 203 * Create a 1:1 mapping for this page, to avoid triple faults during early 204 * boot with such firmware. We are free to hand this page to the BIOS, 205 * as trim_bios_range() will reserve the first page and isolate it away 206 * from memory allocators anyway. 207 */ 208 if (kernel_map_pages_in_pgd(pgd, 0x0, 0x0, 1, pf)) { 209 pr_err("Failed to create 1:1 mapping for the first page!\n"); 210 return 1; 211 } 212 213 /* 214 * When SEV-ES is active, the GHCB as set by the kernel will be used 215 * by firmware. Create a 1:1 unencrypted mapping for each GHCB. 216 */ 217 if (sev_es_efi_map_ghcbs(pgd)) { 218 pr_err("Failed to create 1:1 mapping for the GHCBs!\n"); 219 return 1; 220 } 221 222 /* 223 * When making calls to the firmware everything needs to be 1:1 224 * mapped and addressable with 32-bit pointers. Map the kernel 225 * text and allocate a new stack because we can't rely on the 226 * stack pointer being < 4GB. 227 */ 228 if (!efi_is_mixed()) 229 return 0; 230 231 page = alloc_page(GFP_KERNEL|__GFP_DMA32); 232 if (!page) { 233 pr_err("Unable to allocate EFI runtime stack < 4GB\n"); 234 return 1; 235 } 236 237 efi_mixed_mode_stack_pa = page_to_phys(page + 1); /* stack grows down */ 238 239 npages = (_etext - _text) >> PAGE_SHIFT; 240 text = __pa(_text); 241 pfn = text >> PAGE_SHIFT; 242 243 pf = _PAGE_ENC; 244 if (kernel_map_pages_in_pgd(pgd, pfn, text, npages, pf)) { 245 pr_err("Failed to map kernel text 1:1\n"); 246 return 1; 247 } 248 249 npages = (__end_rodata - __start_rodata) >> PAGE_SHIFT; 250 rodata = __pa(__start_rodata); 251 pfn = rodata >> PAGE_SHIFT; 252 253 pf = _PAGE_NX | _PAGE_ENC; 254 if (kernel_map_pages_in_pgd(pgd, pfn, rodata, npages, pf)) { 255 pr_err("Failed to map kernel rodata 1:1\n"); 256 return 1; 257 } 258 259 return 0; 260} 261 262static void __init __map_region(efi_memory_desc_t *md, u64 va) 263{ 264 unsigned long flags = _PAGE_RW; 265 unsigned long pfn; 266 pgd_t *pgd = efi_mm.pgd; 267 268 /* 269 * EFI_RUNTIME_SERVICES_CODE regions typically cover PE/COFF 270 * executable images in memory that consist of both R-X and 271 * RW- sections, so we cannot apply read-only or non-exec 272 * permissions just yet. However, modern EFI systems provide 273 * a memory attributes table that describes those sections 274 * with the appropriate restricted permissions, which are 275 * applied in efi_runtime_update_mappings() below. All other 276 * regions can be mapped non-executable at this point, with 277 * the exception of boot services code regions, but those will 278 * be unmapped again entirely in efi_free_boot_services(). 279 */ 280 if (md->type != EFI_BOOT_SERVICES_CODE && 281 md->type != EFI_RUNTIME_SERVICES_CODE) 282 flags |= _PAGE_NX; 283 284 if (!(md->attribute & EFI_MEMORY_WB)) 285 flags |= _PAGE_PCD; 286 287 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT) && 288 md->type != EFI_MEMORY_MAPPED_IO) 289 flags |= _PAGE_ENC; 290 291 pfn = md->phys_addr >> PAGE_SHIFT; 292 if (kernel_map_pages_in_pgd(pgd, pfn, va, md->num_pages, flags)) 293 pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n", 294 md->phys_addr, va); 295} 296 297void __init efi_map_region(efi_memory_desc_t *md) 298{ 299 unsigned long size = md->num_pages << PAGE_SHIFT; 300 u64 pa = md->phys_addr; 301 302 /* 303 * Make sure the 1:1 mappings are present as a catch-all for b0rked 304 * firmware which doesn't update all internal pointers after switching 305 * to virtual mode and would otherwise crap on us. 306 */ 307 __map_region(md, md->phys_addr); 308 309 /* 310 * Enforce the 1:1 mapping as the default virtual address when 311 * booting in EFI mixed mode, because even though we may be 312 * running a 64-bit kernel, the firmware may only be 32-bit. 313 */ 314 if (efi_is_mixed()) { 315 md->virt_addr = md->phys_addr; 316 return; 317 } 318 319 efi_va -= size; 320 321 /* Is PA 2M-aligned? */ 322 if (!(pa & (PMD_SIZE - 1))) { 323 efi_va &= PMD_MASK; 324 } else { 325 u64 pa_offset = pa & (PMD_SIZE - 1); 326 u64 prev_va = efi_va; 327 328 /* get us the same offset within this 2M page */ 329 efi_va = (efi_va & PMD_MASK) + pa_offset; 330 331 if (efi_va > prev_va) 332 efi_va -= PMD_SIZE; 333 } 334 335 if (efi_va < EFI_VA_END) { 336 pr_warn(FW_WARN "VA address range overflow!\n"); 337 return; 338 } 339 340 /* Do the VA map */ 341 __map_region(md, efi_va); 342 md->virt_addr = efi_va; 343} 344 345/* 346 * kexec kernel will use efi_map_region_fixed to map efi runtime memory ranges. 347 * md->virt_addr is the original virtual address which had been mapped in kexec 348 * 1st kernel. 349 */ 350void __init efi_map_region_fixed(efi_memory_desc_t *md) 351{ 352 __map_region(md, md->phys_addr); 353 __map_region(md, md->virt_addr); 354} 355 356void __init parse_efi_setup(u64 phys_addr, u32 data_len) 357{ 358 efi_setup = phys_addr + sizeof(struct setup_data); 359} 360 361static int __init efi_update_mappings(efi_memory_desc_t *md, unsigned long pf) 362{ 363 unsigned long pfn; 364 pgd_t *pgd = efi_mm.pgd; 365 int err1, err2; 366 367 /* Update the 1:1 mapping */ 368 pfn = md->phys_addr >> PAGE_SHIFT; 369 err1 = kernel_map_pages_in_pgd(pgd, pfn, md->phys_addr, md->num_pages, pf); 370 if (err1) { 371 pr_err("Error while updating 1:1 mapping PA 0x%llx -> VA 0x%llx!\n", 372 md->phys_addr, md->virt_addr); 373 } 374 375 err2 = kernel_map_pages_in_pgd(pgd, pfn, md->virt_addr, md->num_pages, pf); 376 if (err2) { 377 pr_err("Error while updating VA mapping PA 0x%llx -> VA 0x%llx!\n", 378 md->phys_addr, md->virt_addr); 379 } 380 381 return err1 || err2; 382} 383 384static int __init efi_update_mem_attr(struct mm_struct *mm, efi_memory_desc_t *md) 385{ 386 unsigned long pf = 0; 387 388 if (md->attribute & EFI_MEMORY_XP) 389 pf |= _PAGE_NX; 390 391 if (!(md->attribute & EFI_MEMORY_RO)) 392 pf |= _PAGE_RW; 393 394 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) 395 pf |= _PAGE_ENC; 396 397 return efi_update_mappings(md, pf); 398} 399 400void __init efi_runtime_update_mappings(void) 401{ 402 efi_memory_desc_t *md; 403 404 /* 405 * Use the EFI Memory Attribute Table for mapping permissions if it 406 * exists, since it is intended to supersede EFI_PROPERTIES_TABLE. 407 */ 408 if (efi_enabled(EFI_MEM_ATTR)) { 409 efi_memattr_apply_permissions(NULL, efi_update_mem_attr); 410 return; 411 } 412 413 /* 414 * EFI_MEMORY_ATTRIBUTES_TABLE is intended to replace 415 * EFI_PROPERTIES_TABLE. So, use EFI_PROPERTIES_TABLE to update 416 * permissions only if EFI_MEMORY_ATTRIBUTES_TABLE is not 417 * published by the firmware. Even if we find a buggy implementation of 418 * EFI_MEMORY_ATTRIBUTES_TABLE, don't fall back to 419 * EFI_PROPERTIES_TABLE, because of the same reason. 420 */ 421 422 if (!efi_enabled(EFI_NX_PE_DATA)) 423 return; 424 425 for_each_efi_memory_desc(md) { 426 unsigned long pf = 0; 427 428 if (!(md->attribute & EFI_MEMORY_RUNTIME)) 429 continue; 430 431 if (!(md->attribute & EFI_MEMORY_WB)) 432 pf |= _PAGE_PCD; 433 434 if ((md->attribute & EFI_MEMORY_XP) || 435 (md->type == EFI_RUNTIME_SERVICES_DATA)) 436 pf |= _PAGE_NX; 437 438 if (!(md->attribute & EFI_MEMORY_RO) && 439 (md->type != EFI_RUNTIME_SERVICES_CODE)) 440 pf |= _PAGE_RW; 441 442 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) 443 pf |= _PAGE_ENC; 444 445 efi_update_mappings(md, pf); 446 } 447} 448 449void __init efi_dump_pagetable(void) 450{ 451#ifdef CONFIG_EFI_PGT_DUMP 452 ptdump_walk_pgd_level(NULL, &efi_mm); 453#endif 454} 455 456/* 457 * Makes the calling thread switch to/from efi_mm context. Can be used 458 * in a kernel thread and user context. Preemption needs to remain disabled 459 * while the EFI-mm is borrowed. mmgrab()/mmdrop() is not used because the mm 460 * can not change under us. 461 * It should be ensured that there are no concurrent calls to this function. 462 */ 463void efi_enter_mm(void) 464{ 465 efi_prev_mm = current->active_mm; 466 current->active_mm = &efi_mm; 467 switch_mm(efi_prev_mm, &efi_mm, NULL); 468} 469 470void efi_leave_mm(void) 471{ 472 current->active_mm = efi_prev_mm; 473 switch_mm(&efi_mm, efi_prev_mm, NULL); 474} 475 476static DEFINE_SPINLOCK(efi_runtime_lock); 477 478/* 479 * DS and ES contain user values. We need to save them. 480 * The 32-bit EFI code needs a valid DS, ES, and SS. There's no 481 * need to save the old SS: __KERNEL_DS is always acceptable. 482 */ 483#define __efi_thunk(func, ...) \ 484({ \ 485 unsigned short __ds, __es; \ 486 efi_status_t ____s; \ 487 \ 488 savesegment(ds, __ds); \ 489 savesegment(es, __es); \ 490 \ 491 loadsegment(ss, __KERNEL_DS); \ 492 loadsegment(ds, __KERNEL_DS); \ 493 loadsegment(es, __KERNEL_DS); \ 494 \ 495 ____s = efi64_thunk(efi.runtime->mixed_mode.func, __VA_ARGS__); \ 496 \ 497 loadsegment(ds, __ds); \ 498 loadsegment(es, __es); \ 499 \ 500 ____s ^= (____s & BIT(31)) | (____s & BIT_ULL(31)) << 32; \ 501 ____s; \ 502}) 503 504/* 505 * Switch to the EFI page tables early so that we can access the 1:1 506 * runtime services mappings which are not mapped in any other page 507 * tables. 508 * 509 * Also, disable interrupts because the IDT points to 64-bit handlers, 510 * which aren't going to function correctly when we switch to 32-bit. 511 */ 512#define efi_thunk(func...) \ 513({ \ 514 efi_status_t __s; \ 515 \ 516 arch_efi_call_virt_setup(); \ 517 \ 518 __s = __efi_thunk(func); \ 519 \ 520 arch_efi_call_virt_teardown(); \ 521 \ 522 __s; \ 523}) 524 525static efi_status_t __init __no_sanitize_address 526efi_thunk_set_virtual_address_map(unsigned long memory_map_size, 527 unsigned long descriptor_size, 528 u32 descriptor_version, 529 efi_memory_desc_t *virtual_map) 530{ 531 efi_status_t status; 532 unsigned long flags; 533 534 efi_sync_low_kernel_mappings(); 535 local_irq_save(flags); 536 537 efi_enter_mm(); 538 539 status = __efi_thunk(set_virtual_address_map, memory_map_size, 540 descriptor_size, descriptor_version, virtual_map); 541 542 efi_leave_mm(); 543 local_irq_restore(flags); 544 545 return status; 546} 547 548static efi_status_t efi_thunk_get_time(efi_time_t *tm, efi_time_cap_t *tc) 549{ 550 return EFI_UNSUPPORTED; 551} 552 553static efi_status_t efi_thunk_set_time(efi_time_t *tm) 554{ 555 return EFI_UNSUPPORTED; 556} 557 558static efi_status_t 559efi_thunk_get_wakeup_time(efi_bool_t *enabled, efi_bool_t *pending, 560 efi_time_t *tm) 561{ 562 return EFI_UNSUPPORTED; 563} 564 565static efi_status_t 566efi_thunk_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm) 567{ 568 return EFI_UNSUPPORTED; 569} 570 571static unsigned long efi_name_size(efi_char16_t *name) 572{ 573 return ucs2_strsize(name, EFI_VAR_NAME_LEN) + 1; 574} 575 576static efi_status_t 577efi_thunk_get_variable(efi_char16_t *name, efi_guid_t *vendor, 578 u32 *attr, unsigned long *data_size, void *data) 579{ 580 u8 buf[24] __aligned(8); 581 efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd)); 582 efi_status_t status; 583 u32 phys_name, phys_vendor, phys_attr; 584 u32 phys_data_size, phys_data; 585 unsigned long flags; 586 587 spin_lock_irqsave(&efi_runtime_lock, flags); 588 589 *vnd = *vendor; 590 591 phys_data_size = virt_to_phys_or_null(data_size); 592 phys_vendor = virt_to_phys_or_null(vnd); 593 phys_name = virt_to_phys_or_null_size(name, efi_name_size(name)); 594 phys_attr = virt_to_phys_or_null(attr); 595 phys_data = virt_to_phys_or_null_size(data, *data_size); 596 597 if (!phys_name || (data && !phys_data)) 598 status = EFI_INVALID_PARAMETER; 599 else 600 status = efi_thunk(get_variable, phys_name, phys_vendor, 601 phys_attr, phys_data_size, phys_data); 602 603 spin_unlock_irqrestore(&efi_runtime_lock, flags); 604 605 return status; 606} 607 608static efi_status_t 609efi_thunk_set_variable(efi_char16_t *name, efi_guid_t *vendor, 610 u32 attr, unsigned long data_size, void *data) 611{ 612 u8 buf[24] __aligned(8); 613 efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd)); 614 u32 phys_name, phys_vendor, phys_data; 615 efi_status_t status; 616 unsigned long flags; 617 618 spin_lock_irqsave(&efi_runtime_lock, flags); 619 620 *vnd = *vendor; 621 622 phys_name = virt_to_phys_or_null_size(name, efi_name_size(name)); 623 phys_vendor = virt_to_phys_or_null(vnd); 624 phys_data = virt_to_phys_or_null_size(data, data_size); 625 626 if (!phys_name || (data && !phys_data)) 627 status = EFI_INVALID_PARAMETER; 628 else 629 status = efi_thunk(set_variable, phys_name, phys_vendor, 630 attr, data_size, phys_data); 631 632 spin_unlock_irqrestore(&efi_runtime_lock, flags); 633 634 return status; 635} 636 637static efi_status_t 638efi_thunk_set_variable_nonblocking(efi_char16_t *name, efi_guid_t *vendor, 639 u32 attr, unsigned long data_size, 640 void *data) 641{ 642 u8 buf[24] __aligned(8); 643 efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd)); 644 u32 phys_name, phys_vendor, phys_data; 645 efi_status_t status; 646 unsigned long flags; 647 648 if (!spin_trylock_irqsave(&efi_runtime_lock, flags)) 649 return EFI_NOT_READY; 650 651 *vnd = *vendor; 652 653 phys_name = virt_to_phys_or_null_size(name, efi_name_size(name)); 654 phys_vendor = virt_to_phys_or_null(vnd); 655 phys_data = virt_to_phys_or_null_size(data, data_size); 656 657 if (!phys_name || (data && !phys_data)) 658 status = EFI_INVALID_PARAMETER; 659 else 660 status = efi_thunk(set_variable, phys_name, phys_vendor, 661 attr, data_size, phys_data); 662 663 spin_unlock_irqrestore(&efi_runtime_lock, flags); 664 665 return status; 666} 667 668static efi_status_t 669efi_thunk_get_next_variable(unsigned long *name_size, 670 efi_char16_t *name, 671 efi_guid_t *vendor) 672{ 673 u8 buf[24] __aligned(8); 674 efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd)); 675 efi_status_t status; 676 u32 phys_name_size, phys_name, phys_vendor; 677 unsigned long flags; 678 679 spin_lock_irqsave(&efi_runtime_lock, flags); 680 681 *vnd = *vendor; 682 683 phys_name_size = virt_to_phys_or_null(name_size); 684 phys_vendor = virt_to_phys_or_null(vnd); 685 phys_name = virt_to_phys_or_null_size(name, *name_size); 686 687 if (!phys_name) 688 status = EFI_INVALID_PARAMETER; 689 else 690 status = efi_thunk(get_next_variable, phys_name_size, 691 phys_name, phys_vendor); 692 693 spin_unlock_irqrestore(&efi_runtime_lock, flags); 694 695 *vendor = *vnd; 696 return status; 697} 698 699static efi_status_t 700efi_thunk_get_next_high_mono_count(u32 *count) 701{ 702 return EFI_UNSUPPORTED; 703} 704 705static void 706efi_thunk_reset_system(int reset_type, efi_status_t status, 707 unsigned long data_size, efi_char16_t *data) 708{ 709 u32 phys_data; 710 unsigned long flags; 711 712 spin_lock_irqsave(&efi_runtime_lock, flags); 713 714 phys_data = virt_to_phys_or_null_size(data, data_size); 715 716 efi_thunk(reset_system, reset_type, status, data_size, phys_data); 717 718 spin_unlock_irqrestore(&efi_runtime_lock, flags); 719} 720 721static efi_status_t 722efi_thunk_update_capsule(efi_capsule_header_t **capsules, 723 unsigned long count, unsigned long sg_list) 724{ 725 /* 726 * To properly support this function we would need to repackage 727 * 'capsules' because the firmware doesn't understand 64-bit 728 * pointers. 729 */ 730 return EFI_UNSUPPORTED; 731} 732 733static efi_status_t 734efi_thunk_query_variable_info(u32 attr, u64 *storage_space, 735 u64 *remaining_space, 736 u64 *max_variable_size) 737{ 738 efi_status_t status; 739 u32 phys_storage, phys_remaining, phys_max; 740 unsigned long flags; 741 742 if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION) 743 return EFI_UNSUPPORTED; 744 745 spin_lock_irqsave(&efi_runtime_lock, flags); 746 747 phys_storage = virt_to_phys_or_null(storage_space); 748 phys_remaining = virt_to_phys_or_null(remaining_space); 749 phys_max = virt_to_phys_or_null(max_variable_size); 750 751 status = efi_thunk(query_variable_info, attr, phys_storage, 752 phys_remaining, phys_max); 753 754 spin_unlock_irqrestore(&efi_runtime_lock, flags); 755 756 return status; 757} 758 759static efi_status_t 760efi_thunk_query_variable_info_nonblocking(u32 attr, u64 *storage_space, 761 u64 *remaining_space, 762 u64 *max_variable_size) 763{ 764 efi_status_t status; 765 u32 phys_storage, phys_remaining, phys_max; 766 unsigned long flags; 767 768 if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION) 769 return EFI_UNSUPPORTED; 770 771 if (!spin_trylock_irqsave(&efi_runtime_lock, flags)) 772 return EFI_NOT_READY; 773 774 phys_storage = virt_to_phys_or_null(storage_space); 775 phys_remaining = virt_to_phys_or_null(remaining_space); 776 phys_max = virt_to_phys_or_null(max_variable_size); 777 778 status = efi_thunk(query_variable_info, attr, phys_storage, 779 phys_remaining, phys_max); 780 781 spin_unlock_irqrestore(&efi_runtime_lock, flags); 782 783 return status; 784} 785 786static efi_status_t 787efi_thunk_query_capsule_caps(efi_capsule_header_t **capsules, 788 unsigned long count, u64 *max_size, 789 int *reset_type) 790{ 791 /* 792 * To properly support this function we would need to repackage 793 * 'capsules' because the firmware doesn't understand 64-bit 794 * pointers. 795 */ 796 return EFI_UNSUPPORTED; 797} 798 799void __init efi_thunk_runtime_setup(void) 800{ 801 if (!IS_ENABLED(CONFIG_EFI_MIXED)) 802 return; 803 804 efi.get_time = efi_thunk_get_time; 805 efi.set_time = efi_thunk_set_time; 806 efi.get_wakeup_time = efi_thunk_get_wakeup_time; 807 efi.set_wakeup_time = efi_thunk_set_wakeup_time; 808 efi.get_variable = efi_thunk_get_variable; 809 efi.get_next_variable = efi_thunk_get_next_variable; 810 efi.set_variable = efi_thunk_set_variable; 811 efi.set_variable_nonblocking = efi_thunk_set_variable_nonblocking; 812 efi.get_next_high_mono_count = efi_thunk_get_next_high_mono_count; 813 efi.reset_system = efi_thunk_reset_system; 814 efi.query_variable_info = efi_thunk_query_variable_info; 815 efi.query_variable_info_nonblocking = efi_thunk_query_variable_info_nonblocking; 816 efi.update_capsule = efi_thunk_update_capsule; 817 efi.query_capsule_caps = efi_thunk_query_capsule_caps; 818} 819 820efi_status_t __init __no_sanitize_address 821efi_set_virtual_address_map(unsigned long memory_map_size, 822 unsigned long descriptor_size, 823 u32 descriptor_version, 824 efi_memory_desc_t *virtual_map, 825 unsigned long systab_phys) 826{ 827 const efi_system_table_t *systab = (efi_system_table_t *)systab_phys; 828 efi_status_t status; 829 unsigned long flags; 830 831 if (efi_is_mixed()) 832 return efi_thunk_set_virtual_address_map(memory_map_size, 833 descriptor_size, 834 descriptor_version, 835 virtual_map); 836 efi_enter_mm(); 837 838 efi_fpu_begin(); 839 840 /* Disable interrupts around EFI calls: */ 841 local_irq_save(flags); 842 status = efi_call(efi.runtime->set_virtual_address_map, 843 memory_map_size, descriptor_size, 844 descriptor_version, virtual_map); 845 local_irq_restore(flags); 846 847 efi_fpu_end(); 848 849 /* grab the virtually remapped EFI runtime services table pointer */ 850 efi.runtime = READ_ONCE(systab->runtime); 851 852 efi_leave_mm(); 853 854 return status; 855}