cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

uv_time.c (9236B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 * SGI RTC clock/timer routines.
      4 *
      5 *  (C) Copyright 2020 Hewlett Packard Enterprise Development LP
      6 *  Copyright (c) 2009-2013 Silicon Graphics, Inc.  All Rights Reserved.
      7 *  Copyright (c) Dimitri Sivanich
      8 */
      9#include <linux/clockchips.h>
     10#include <linux/slab.h>
     11
     12#include <asm/uv/uv_mmrs.h>
     13#include <asm/uv/uv_hub.h>
     14#include <asm/uv/bios.h>
     15#include <asm/uv/uv.h>
     16#include <asm/apic.h>
     17#include <asm/cpu.h>
     18
     19#define RTC_NAME		"sgi_rtc"
     20
     21static u64 uv_read_rtc(struct clocksource *cs);
     22static int uv_rtc_next_event(unsigned long, struct clock_event_device *);
     23static int uv_rtc_shutdown(struct clock_event_device *evt);
     24
     25static struct clocksource clocksource_uv = {
     26	.name		= RTC_NAME,
     27	.rating		= 299,
     28	.read		= uv_read_rtc,
     29	.mask		= (u64)UVH_RTC_REAL_TIME_CLOCK_MASK,
     30	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
     31};
     32
     33static struct clock_event_device clock_event_device_uv = {
     34	.name			= RTC_NAME,
     35	.features		= CLOCK_EVT_FEAT_ONESHOT,
     36	.shift			= 20,
     37	.rating			= 400,
     38	.irq			= -1,
     39	.set_next_event		= uv_rtc_next_event,
     40	.set_state_shutdown	= uv_rtc_shutdown,
     41	.event_handler		= NULL,
     42};
     43
     44static DEFINE_PER_CPU(struct clock_event_device, cpu_ced);
     45
     46/* There is one of these allocated per node */
     47struct uv_rtc_timer_head {
     48	spinlock_t	lock;
     49	/* next cpu waiting for timer, local node relative: */
     50	int		next_cpu;
     51	/* number of cpus on this node: */
     52	int		ncpus;
     53	struct {
     54		int	lcpu;		/* systemwide logical cpu number */
     55		u64	expires;	/* next timer expiration for this cpu */
     56	} cpu[];
     57};
     58
     59/*
     60 * Access to uv_rtc_timer_head via blade id.
     61 */
     62static struct uv_rtc_timer_head		**blade_info __read_mostly;
     63
     64static int				uv_rtc_evt_enable;
     65
     66/*
     67 * Hardware interface routines
     68 */
     69
     70/* Send IPIs to another node */
     71static void uv_rtc_send_IPI(int cpu)
     72{
     73	unsigned long apicid, val;
     74	int pnode;
     75
     76	apicid = cpu_physical_id(cpu);
     77	pnode = uv_apicid_to_pnode(apicid);
     78	val = (1UL << UVH_IPI_INT_SEND_SHFT) |
     79	      (apicid << UVH_IPI_INT_APIC_ID_SHFT) |
     80	      (X86_PLATFORM_IPI_VECTOR << UVH_IPI_INT_VECTOR_SHFT);
     81
     82	uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
     83}
     84
     85/* Check for an RTC interrupt pending */
     86static int uv_intr_pending(int pnode)
     87{
     88	return uv_read_global_mmr64(pnode, UVH_EVENT_OCCURRED2) &
     89		UVH_EVENT_OCCURRED2_RTC_1_MASK;
     90}
     91
     92/* Setup interrupt and return non-zero if early expiration occurred. */
     93static int uv_setup_intr(int cpu, u64 expires)
     94{
     95	u64 val;
     96	unsigned long apicid = cpu_physical_id(cpu);
     97	int pnode = uv_cpu_to_pnode(cpu);
     98
     99	uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
    100		UVH_RTC1_INT_CONFIG_M_MASK);
    101	uv_write_global_mmr64(pnode, UVH_INT_CMPB, -1L);
    102
    103	uv_write_global_mmr64(pnode, UVH_EVENT_OCCURRED2_ALIAS,
    104			      UVH_EVENT_OCCURRED2_RTC_1_MASK);
    105
    106	val = (X86_PLATFORM_IPI_VECTOR << UVH_RTC1_INT_CONFIG_VECTOR_SHFT) |
    107		((u64)apicid << UVH_RTC1_INT_CONFIG_APIC_ID_SHFT);
    108
    109	/* Set configuration */
    110	uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG, val);
    111	/* Initialize comparator value */
    112	uv_write_global_mmr64(pnode, UVH_INT_CMPB, expires);
    113
    114	if (uv_read_rtc(NULL) <= expires)
    115		return 0;
    116
    117	return !uv_intr_pending(pnode);
    118}
    119
    120/*
    121 * Per-cpu timer tracking routines
    122 */
    123
    124static __init void uv_rtc_deallocate_timers(void)
    125{
    126	int bid;
    127
    128	for_each_possible_blade(bid) {
    129		kfree(blade_info[bid]);
    130	}
    131	kfree(blade_info);
    132}
    133
    134/* Allocate per-node list of cpu timer expiration times. */
    135static __init int uv_rtc_allocate_timers(void)
    136{
    137	int cpu;
    138
    139	blade_info = kcalloc(uv_possible_blades, sizeof(void *), GFP_KERNEL);
    140	if (!blade_info)
    141		return -ENOMEM;
    142
    143	for_each_present_cpu(cpu) {
    144		int nid = cpu_to_node(cpu);
    145		int bid = uv_cpu_to_blade_id(cpu);
    146		int bcpu = uv_cpu_blade_processor_id(cpu);
    147		struct uv_rtc_timer_head *head = blade_info[bid];
    148
    149		if (!head) {
    150			head = kmalloc_node(struct_size(head, cpu,
    151				uv_blade_nr_possible_cpus(bid)),
    152				GFP_KERNEL, nid);
    153			if (!head) {
    154				uv_rtc_deallocate_timers();
    155				return -ENOMEM;
    156			}
    157			spin_lock_init(&head->lock);
    158			head->ncpus = uv_blade_nr_possible_cpus(bid);
    159			head->next_cpu = -1;
    160			blade_info[bid] = head;
    161		}
    162
    163		head->cpu[bcpu].lcpu = cpu;
    164		head->cpu[bcpu].expires = ULLONG_MAX;
    165	}
    166
    167	return 0;
    168}
    169
    170/* Find and set the next expiring timer.  */
    171static void uv_rtc_find_next_timer(struct uv_rtc_timer_head *head, int pnode)
    172{
    173	u64 lowest = ULLONG_MAX;
    174	int c, bcpu = -1;
    175
    176	head->next_cpu = -1;
    177	for (c = 0; c < head->ncpus; c++) {
    178		u64 exp = head->cpu[c].expires;
    179		if (exp < lowest) {
    180			bcpu = c;
    181			lowest = exp;
    182		}
    183	}
    184	if (bcpu >= 0) {
    185		head->next_cpu = bcpu;
    186		c = head->cpu[bcpu].lcpu;
    187		if (uv_setup_intr(c, lowest))
    188			/* If we didn't set it up in time, trigger */
    189			uv_rtc_send_IPI(c);
    190	} else {
    191		uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
    192			UVH_RTC1_INT_CONFIG_M_MASK);
    193	}
    194}
    195
    196/*
    197 * Set expiration time for current cpu.
    198 *
    199 * Returns 1 if we missed the expiration time.
    200 */
    201static int uv_rtc_set_timer(int cpu, u64 expires)
    202{
    203	int pnode = uv_cpu_to_pnode(cpu);
    204	int bid = uv_cpu_to_blade_id(cpu);
    205	struct uv_rtc_timer_head *head = blade_info[bid];
    206	int bcpu = uv_cpu_blade_processor_id(cpu);
    207	u64 *t = &head->cpu[bcpu].expires;
    208	unsigned long flags;
    209	int next_cpu;
    210
    211	spin_lock_irqsave(&head->lock, flags);
    212
    213	next_cpu = head->next_cpu;
    214	*t = expires;
    215
    216	/* Will this one be next to go off? */
    217	if (next_cpu < 0 || bcpu == next_cpu ||
    218			expires < head->cpu[next_cpu].expires) {
    219		head->next_cpu = bcpu;
    220		if (uv_setup_intr(cpu, expires)) {
    221			*t = ULLONG_MAX;
    222			uv_rtc_find_next_timer(head, pnode);
    223			spin_unlock_irqrestore(&head->lock, flags);
    224			return -ETIME;
    225		}
    226	}
    227
    228	spin_unlock_irqrestore(&head->lock, flags);
    229	return 0;
    230}
    231
    232/*
    233 * Unset expiration time for current cpu.
    234 *
    235 * Returns 1 if this timer was pending.
    236 */
    237static int uv_rtc_unset_timer(int cpu, int force)
    238{
    239	int pnode = uv_cpu_to_pnode(cpu);
    240	int bid = uv_cpu_to_blade_id(cpu);
    241	struct uv_rtc_timer_head *head = blade_info[bid];
    242	int bcpu = uv_cpu_blade_processor_id(cpu);
    243	u64 *t = &head->cpu[bcpu].expires;
    244	unsigned long flags;
    245	int rc = 0;
    246
    247	spin_lock_irqsave(&head->lock, flags);
    248
    249	if ((head->next_cpu == bcpu && uv_read_rtc(NULL) >= *t) || force)
    250		rc = 1;
    251
    252	if (rc) {
    253		*t = ULLONG_MAX;
    254		/* Was the hardware setup for this timer? */
    255		if (head->next_cpu == bcpu)
    256			uv_rtc_find_next_timer(head, pnode);
    257	}
    258
    259	spin_unlock_irqrestore(&head->lock, flags);
    260
    261	return rc;
    262}
    263
    264
    265/*
    266 * Kernel interface routines.
    267 */
    268
    269/*
    270 * Read the RTC.
    271 *
    272 * Starting with HUB rev 2.0, the UV RTC register is replicated across all
    273 * cachelines of it's own page.  This allows faster simultaneous reads
    274 * from a given socket.
    275 */
    276static u64 uv_read_rtc(struct clocksource *cs)
    277{
    278	unsigned long offset;
    279
    280	if (uv_get_min_hub_revision_id() == 1)
    281		offset = 0;
    282	else
    283		offset = (uv_blade_processor_id() * L1_CACHE_BYTES) % PAGE_SIZE;
    284
    285	return (u64)uv_read_local_mmr(UVH_RTC | offset);
    286}
    287
    288/*
    289 * Program the next event, relative to now
    290 */
    291static int uv_rtc_next_event(unsigned long delta,
    292			     struct clock_event_device *ced)
    293{
    294	int ced_cpu = cpumask_first(ced->cpumask);
    295
    296	return uv_rtc_set_timer(ced_cpu, delta + uv_read_rtc(NULL));
    297}
    298
    299/*
    300 * Shutdown the RTC timer
    301 */
    302static int uv_rtc_shutdown(struct clock_event_device *evt)
    303{
    304	int ced_cpu = cpumask_first(evt->cpumask);
    305
    306	uv_rtc_unset_timer(ced_cpu, 1);
    307	return 0;
    308}
    309
    310static void uv_rtc_interrupt(void)
    311{
    312	int cpu = smp_processor_id();
    313	struct clock_event_device *ced = &per_cpu(cpu_ced, cpu);
    314
    315	if (!ced || !ced->event_handler)
    316		return;
    317
    318	if (uv_rtc_unset_timer(cpu, 0) != 1)
    319		return;
    320
    321	ced->event_handler(ced);
    322}
    323
    324static int __init uv_enable_evt_rtc(char *str)
    325{
    326	uv_rtc_evt_enable = 1;
    327
    328	return 1;
    329}
    330__setup("uvrtcevt", uv_enable_evt_rtc);
    331
    332static __init void uv_rtc_register_clockevents(struct work_struct *dummy)
    333{
    334	struct clock_event_device *ced = this_cpu_ptr(&cpu_ced);
    335
    336	*ced = clock_event_device_uv;
    337	ced->cpumask = cpumask_of(smp_processor_id());
    338	clockevents_register_device(ced);
    339}
    340
    341static __init int uv_rtc_setup_clock(void)
    342{
    343	int rc;
    344
    345	if (!is_uv_system())
    346		return -ENODEV;
    347
    348	rc = clocksource_register_hz(&clocksource_uv, sn_rtc_cycles_per_second);
    349	if (rc)
    350		printk(KERN_INFO "UV RTC clocksource failed rc %d\n", rc);
    351	else
    352		printk(KERN_INFO "UV RTC clocksource registered freq %lu MHz\n",
    353			sn_rtc_cycles_per_second/(unsigned long)1E6);
    354
    355	if (rc || !uv_rtc_evt_enable || x86_platform_ipi_callback)
    356		return rc;
    357
    358	/* Setup and register clockevents */
    359	rc = uv_rtc_allocate_timers();
    360	if (rc)
    361		goto error;
    362
    363	x86_platform_ipi_callback = uv_rtc_interrupt;
    364
    365	clock_event_device_uv.mult = div_sc(sn_rtc_cycles_per_second,
    366				NSEC_PER_SEC, clock_event_device_uv.shift);
    367
    368	clock_event_device_uv.min_delta_ns = NSEC_PER_SEC /
    369						sn_rtc_cycles_per_second;
    370	clock_event_device_uv.min_delta_ticks = 1;
    371
    372	clock_event_device_uv.max_delta_ns = clocksource_uv.mask *
    373				(NSEC_PER_SEC / sn_rtc_cycles_per_second);
    374	clock_event_device_uv.max_delta_ticks = clocksource_uv.mask;
    375
    376	rc = schedule_on_each_cpu(uv_rtc_register_clockevents);
    377	if (rc) {
    378		x86_platform_ipi_callback = NULL;
    379		uv_rtc_deallocate_timers();
    380		goto error;
    381	}
    382
    383	printk(KERN_INFO "UV RTC clockevents registered\n");
    384
    385	return 0;
    386
    387error:
    388	clocksource_unregister(&clocksource_uv);
    389	printk(KERN_INFO "UV RTC clockevents failed rc %d\n", rc);
    390
    391	return rc;
    392}
    393arch_initcall(uv_rtc_setup_clock);