cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

cpu.c (14319B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Suspend support specific for i386/x86-64.
      4 *
      5 * Copyright (c) 2007 Rafael J. Wysocki <rjw@sisk.pl>
      6 * Copyright (c) 2002 Pavel Machek <pavel@ucw.cz>
      7 * Copyright (c) 2001 Patrick Mochel <mochel@osdl.org>
      8 */
      9
     10#include <linux/suspend.h>
     11#include <linux/export.h>
     12#include <linux/smp.h>
     13#include <linux/perf_event.h>
     14#include <linux/tboot.h>
     15#include <linux/dmi.h>
     16#include <linux/pgtable.h>
     17
     18#include <asm/proto.h>
     19#include <asm/mtrr.h>
     20#include <asm/page.h>
     21#include <asm/mce.h>
     22#include <asm/suspend.h>
     23#include <asm/fpu/api.h>
     24#include <asm/debugreg.h>
     25#include <asm/cpu.h>
     26#include <asm/mmu_context.h>
     27#include <asm/cpu_device_id.h>
     28#include <asm/microcode.h>
     29
     30#ifdef CONFIG_X86_32
     31__visible unsigned long saved_context_ebx;
     32__visible unsigned long saved_context_esp, saved_context_ebp;
     33__visible unsigned long saved_context_esi, saved_context_edi;
     34__visible unsigned long saved_context_eflags;
     35#endif
     36struct saved_context saved_context;
     37
     38static void msr_save_context(struct saved_context *ctxt)
     39{
     40	struct saved_msr *msr = ctxt->saved_msrs.array;
     41	struct saved_msr *end = msr + ctxt->saved_msrs.num;
     42
     43	while (msr < end) {
     44		if (msr->valid)
     45			rdmsrl(msr->info.msr_no, msr->info.reg.q);
     46		msr++;
     47	}
     48}
     49
     50static void msr_restore_context(struct saved_context *ctxt)
     51{
     52	struct saved_msr *msr = ctxt->saved_msrs.array;
     53	struct saved_msr *end = msr + ctxt->saved_msrs.num;
     54
     55	while (msr < end) {
     56		if (msr->valid)
     57			wrmsrl(msr->info.msr_no, msr->info.reg.q);
     58		msr++;
     59	}
     60}
     61
     62/**
     63 * __save_processor_state() - Save CPU registers before creating a
     64 *                             hibernation image and before restoring
     65 *                             the memory state from it
     66 * @ctxt: Structure to store the registers contents in.
     67 *
     68 * NOTE: If there is a CPU register the modification of which by the
     69 * boot kernel (ie. the kernel used for loading the hibernation image)
     70 * might affect the operations of the restored target kernel (ie. the one
     71 * saved in the hibernation image), then its contents must be saved by this
     72 * function.  In other words, if kernel A is hibernated and different
     73 * kernel B is used for loading the hibernation image into memory, the
     74 * kernel A's __save_processor_state() function must save all registers
     75 * needed by kernel A, so that it can operate correctly after the resume
     76 * regardless of what kernel B does in the meantime.
     77 */
     78static void __save_processor_state(struct saved_context *ctxt)
     79{
     80#ifdef CONFIG_X86_32
     81	mtrr_save_fixed_ranges(NULL);
     82#endif
     83	kernel_fpu_begin();
     84
     85	/*
     86	 * descriptor tables
     87	 */
     88	store_idt(&ctxt->idt);
     89
     90	/*
     91	 * We save it here, but restore it only in the hibernate case.
     92	 * For ACPI S3 resume, this is loaded via 'early_gdt_desc' in 64-bit
     93	 * mode in "secondary_startup_64". In 32-bit mode it is done via
     94	 * 'pmode_gdt' in wakeup_start.
     95	 */
     96	ctxt->gdt_desc.size = GDT_SIZE - 1;
     97	ctxt->gdt_desc.address = (unsigned long)get_cpu_gdt_rw(smp_processor_id());
     98
     99	store_tr(ctxt->tr);
    100
    101	/* XMM0..XMM15 should be handled by kernel_fpu_begin(). */
    102	/*
    103	 * segment registers
    104	 */
    105	savesegment(gs, ctxt->gs);
    106#ifdef CONFIG_X86_64
    107	savesegment(fs, ctxt->fs);
    108	savesegment(ds, ctxt->ds);
    109	savesegment(es, ctxt->es);
    110
    111	rdmsrl(MSR_FS_BASE, ctxt->fs_base);
    112	rdmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base);
    113	rdmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base);
    114	mtrr_save_fixed_ranges(NULL);
    115
    116	rdmsrl(MSR_EFER, ctxt->efer);
    117#endif
    118
    119	/*
    120	 * control registers
    121	 */
    122	ctxt->cr0 = read_cr0();
    123	ctxt->cr2 = read_cr2();
    124	ctxt->cr3 = __read_cr3();
    125	ctxt->cr4 = __read_cr4();
    126	ctxt->misc_enable_saved = !rdmsrl_safe(MSR_IA32_MISC_ENABLE,
    127					       &ctxt->misc_enable);
    128	msr_save_context(ctxt);
    129}
    130
    131/* Needed by apm.c */
    132void save_processor_state(void)
    133{
    134	__save_processor_state(&saved_context);
    135	x86_platform.save_sched_clock_state();
    136}
    137#ifdef CONFIG_X86_32
    138EXPORT_SYMBOL(save_processor_state);
    139#endif
    140
    141static void do_fpu_end(void)
    142{
    143	/*
    144	 * Restore FPU regs if necessary.
    145	 */
    146	kernel_fpu_end();
    147}
    148
    149static void fix_processor_context(void)
    150{
    151	int cpu = smp_processor_id();
    152#ifdef CONFIG_X86_64
    153	struct desc_struct *desc = get_cpu_gdt_rw(cpu);
    154	tss_desc tss;
    155#endif
    156
    157	/*
    158	 * We need to reload TR, which requires that we change the
    159	 * GDT entry to indicate "available" first.
    160	 *
    161	 * XXX: This could probably all be replaced by a call to
    162	 * force_reload_TR().
    163	 */
    164	set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
    165
    166#ifdef CONFIG_X86_64
    167	memcpy(&tss, &desc[GDT_ENTRY_TSS], sizeof(tss_desc));
    168	tss.type = 0x9; /* The available 64-bit TSS (see AMD vol 2, pg 91 */
    169	write_gdt_entry(desc, GDT_ENTRY_TSS, &tss, DESC_TSS);
    170
    171	syscall_init();				/* This sets MSR_*STAR and related */
    172#else
    173	if (boot_cpu_has(X86_FEATURE_SEP))
    174		enable_sep_cpu();
    175#endif
    176	load_TR_desc();				/* This does ltr */
    177	load_mm_ldt(current->active_mm);	/* This does lldt */
    178	initialize_tlbstate_and_flush();
    179
    180	fpu__resume_cpu();
    181
    182	/* The processor is back on the direct GDT, load back the fixmap */
    183	load_fixmap_gdt(cpu);
    184}
    185
    186/**
    187 * __restore_processor_state() - Restore the contents of CPU registers saved
    188 *                               by __save_processor_state()
    189 * @ctxt: Structure to load the registers contents from.
    190 *
    191 * The asm code that gets us here will have restored a usable GDT, although
    192 * it will be pointing to the wrong alias.
    193 */
    194static void notrace __restore_processor_state(struct saved_context *ctxt)
    195{
    196	struct cpuinfo_x86 *c;
    197
    198	if (ctxt->misc_enable_saved)
    199		wrmsrl(MSR_IA32_MISC_ENABLE, ctxt->misc_enable);
    200	/*
    201	 * control registers
    202	 */
    203	/* cr4 was introduced in the Pentium CPU */
    204#ifdef CONFIG_X86_32
    205	if (ctxt->cr4)
    206		__write_cr4(ctxt->cr4);
    207#else
    208/* CONFIG X86_64 */
    209	wrmsrl(MSR_EFER, ctxt->efer);
    210	__write_cr4(ctxt->cr4);
    211#endif
    212	write_cr3(ctxt->cr3);
    213	write_cr2(ctxt->cr2);
    214	write_cr0(ctxt->cr0);
    215
    216	/* Restore the IDT. */
    217	load_idt(&ctxt->idt);
    218
    219	/*
    220	 * Just in case the asm code got us here with the SS, DS, or ES
    221	 * out of sync with the GDT, update them.
    222	 */
    223	loadsegment(ss, __KERNEL_DS);
    224	loadsegment(ds, __USER_DS);
    225	loadsegment(es, __USER_DS);
    226
    227	/*
    228	 * Restore percpu access.  Percpu access can happen in exception
    229	 * handlers or in complicated helpers like load_gs_index().
    230	 */
    231#ifdef CONFIG_X86_64
    232	wrmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base);
    233#else
    234	loadsegment(fs, __KERNEL_PERCPU);
    235#endif
    236
    237	/* Restore the TSS, RO GDT, LDT, and usermode-relevant MSRs. */
    238	fix_processor_context();
    239
    240	/*
    241	 * Now that we have descriptor tables fully restored and working
    242	 * exception handling, restore the usermode segments.
    243	 */
    244#ifdef CONFIG_X86_64
    245	loadsegment(ds, ctxt->es);
    246	loadsegment(es, ctxt->es);
    247	loadsegment(fs, ctxt->fs);
    248	load_gs_index(ctxt->gs);
    249
    250	/*
    251	 * Restore FSBASE and GSBASE after restoring the selectors, since
    252	 * restoring the selectors clobbers the bases.  Keep in mind
    253	 * that MSR_KERNEL_GS_BASE is horribly misnamed.
    254	 */
    255	wrmsrl(MSR_FS_BASE, ctxt->fs_base);
    256	wrmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base);
    257#else
    258	loadsegment(gs, ctxt->gs);
    259#endif
    260
    261	do_fpu_end();
    262	tsc_verify_tsc_adjust(true);
    263	x86_platform.restore_sched_clock_state();
    264	mtrr_bp_restore();
    265	perf_restore_debug_store();
    266
    267	c = &cpu_data(smp_processor_id());
    268	if (cpu_has(c, X86_FEATURE_MSR_IA32_FEAT_CTL))
    269		init_ia32_feat_ctl(c);
    270
    271	microcode_bsp_resume();
    272
    273	/*
    274	 * This needs to happen after the microcode has been updated upon resume
    275	 * because some of the MSRs are "emulated" in microcode.
    276	 */
    277	msr_restore_context(ctxt);
    278}
    279
    280/* Needed by apm.c */
    281void notrace restore_processor_state(void)
    282{
    283	__restore_processor_state(&saved_context);
    284}
    285#ifdef CONFIG_X86_32
    286EXPORT_SYMBOL(restore_processor_state);
    287#endif
    288
    289#if defined(CONFIG_HIBERNATION) && defined(CONFIG_HOTPLUG_CPU)
    290static void resume_play_dead(void)
    291{
    292	play_dead_common();
    293	tboot_shutdown(TB_SHUTDOWN_WFS);
    294	hlt_play_dead();
    295}
    296
    297int hibernate_resume_nonboot_cpu_disable(void)
    298{
    299	void (*play_dead)(void) = smp_ops.play_dead;
    300	int ret;
    301
    302	/*
    303	 * Ensure that MONITOR/MWAIT will not be used in the "play dead" loop
    304	 * during hibernate image restoration, because it is likely that the
    305	 * monitored address will be actually written to at that time and then
    306	 * the "dead" CPU will attempt to execute instructions again, but the
    307	 * address in its instruction pointer may not be possible to resolve
    308	 * any more at that point (the page tables used by it previously may
    309	 * have been overwritten by hibernate image data).
    310	 *
    311	 * First, make sure that we wake up all the potentially disabled SMT
    312	 * threads which have been initially brought up and then put into
    313	 * mwait/cpuidle sleep.
    314	 * Those will be put to proper (not interfering with hibernation
    315	 * resume) sleep afterwards, and the resumed kernel will decide itself
    316	 * what to do with them.
    317	 */
    318	ret = cpuhp_smt_enable();
    319	if (ret)
    320		return ret;
    321	smp_ops.play_dead = resume_play_dead;
    322	ret = freeze_secondary_cpus(0);
    323	smp_ops.play_dead = play_dead;
    324	return ret;
    325}
    326#endif
    327
    328/*
    329 * When bsp_check() is called in hibernate and suspend, cpu hotplug
    330 * is disabled already. So it's unnecessary to handle race condition between
    331 * cpumask query and cpu hotplug.
    332 */
    333static int bsp_check(void)
    334{
    335	if (cpumask_first(cpu_online_mask) != 0) {
    336		pr_warn("CPU0 is offline.\n");
    337		return -ENODEV;
    338	}
    339
    340	return 0;
    341}
    342
    343static int bsp_pm_callback(struct notifier_block *nb, unsigned long action,
    344			   void *ptr)
    345{
    346	int ret = 0;
    347
    348	switch (action) {
    349	case PM_SUSPEND_PREPARE:
    350	case PM_HIBERNATION_PREPARE:
    351		ret = bsp_check();
    352		break;
    353#ifdef CONFIG_DEBUG_HOTPLUG_CPU0
    354	case PM_RESTORE_PREPARE:
    355		/*
    356		 * When system resumes from hibernation, online CPU0 because
    357		 * 1. it's required for resume and
    358		 * 2. the CPU was online before hibernation
    359		 */
    360		if (!cpu_online(0))
    361			_debug_hotplug_cpu(0, 1);
    362		break;
    363	case PM_POST_RESTORE:
    364		/*
    365		 * When a resume really happens, this code won't be called.
    366		 *
    367		 * This code is called only when user space hibernation software
    368		 * prepares for snapshot device during boot time. So we just
    369		 * call _debug_hotplug_cpu() to restore to CPU0's state prior to
    370		 * preparing the snapshot device.
    371		 *
    372		 * This works for normal boot case in our CPU0 hotplug debug
    373		 * mode, i.e. CPU0 is offline and user mode hibernation
    374		 * software initializes during boot time.
    375		 *
    376		 * If CPU0 is online and user application accesses snapshot
    377		 * device after boot time, this will offline CPU0 and user may
    378		 * see different CPU0 state before and after accessing
    379		 * the snapshot device. But hopefully this is not a case when
    380		 * user debugging CPU0 hotplug. Even if users hit this case,
    381		 * they can easily online CPU0 back.
    382		 *
    383		 * To simplify this debug code, we only consider normal boot
    384		 * case. Otherwise we need to remember CPU0's state and restore
    385		 * to that state and resolve racy conditions etc.
    386		 */
    387		_debug_hotplug_cpu(0, 0);
    388		break;
    389#endif
    390	default:
    391		break;
    392	}
    393	return notifier_from_errno(ret);
    394}
    395
    396static int __init bsp_pm_check_init(void)
    397{
    398	/*
    399	 * Set this bsp_pm_callback as lower priority than
    400	 * cpu_hotplug_pm_callback. So cpu_hotplug_pm_callback will be called
    401	 * earlier to disable cpu hotplug before bsp online check.
    402	 */
    403	pm_notifier(bsp_pm_callback, -INT_MAX);
    404	return 0;
    405}
    406
    407core_initcall(bsp_pm_check_init);
    408
    409static int msr_build_context(const u32 *msr_id, const int num)
    410{
    411	struct saved_msrs *saved_msrs = &saved_context.saved_msrs;
    412	struct saved_msr *msr_array;
    413	int total_num;
    414	int i, j;
    415
    416	total_num = saved_msrs->num + num;
    417
    418	msr_array = kmalloc_array(total_num, sizeof(struct saved_msr), GFP_KERNEL);
    419	if (!msr_array) {
    420		pr_err("x86/pm: Can not allocate memory to save/restore MSRs during suspend.\n");
    421		return -ENOMEM;
    422	}
    423
    424	if (saved_msrs->array) {
    425		/*
    426		 * Multiple callbacks can invoke this function, so copy any
    427		 * MSR save requests from previous invocations.
    428		 */
    429		memcpy(msr_array, saved_msrs->array,
    430		       sizeof(struct saved_msr) * saved_msrs->num);
    431
    432		kfree(saved_msrs->array);
    433	}
    434
    435	for (i = saved_msrs->num, j = 0; i < total_num; i++, j++) {
    436		u64 dummy;
    437
    438		msr_array[i].info.msr_no	= msr_id[j];
    439		msr_array[i].valid		= !rdmsrl_safe(msr_id[j], &dummy);
    440		msr_array[i].info.reg.q		= 0;
    441	}
    442	saved_msrs->num   = total_num;
    443	saved_msrs->array = msr_array;
    444
    445	return 0;
    446}
    447
    448/*
    449 * The following sections are a quirk framework for problematic BIOSen:
    450 * Sometimes MSRs are modified by the BIOSen after suspended to
    451 * RAM, this might cause unexpected behavior after wakeup.
    452 * Thus we save/restore these specified MSRs across suspend/resume
    453 * in order to work around it.
    454 *
    455 * For any further problematic BIOSen/platforms,
    456 * please add your own function similar to msr_initialize_bdw.
    457 */
    458static int msr_initialize_bdw(const struct dmi_system_id *d)
    459{
    460	/* Add any extra MSR ids into this array. */
    461	u32 bdw_msr_id[] = { MSR_IA32_THERM_CONTROL };
    462
    463	pr_info("x86/pm: %s detected, MSR saving is needed during suspending.\n", d->ident);
    464	return msr_build_context(bdw_msr_id, ARRAY_SIZE(bdw_msr_id));
    465}
    466
    467static const struct dmi_system_id msr_save_dmi_table[] = {
    468	{
    469	 .callback = msr_initialize_bdw,
    470	 .ident = "BROADWELL BDX_EP",
    471	 .matches = {
    472		DMI_MATCH(DMI_PRODUCT_NAME, "GRANTLEY"),
    473		DMI_MATCH(DMI_PRODUCT_VERSION, "E63448-400"),
    474		},
    475	},
    476	{}
    477};
    478
    479static int msr_save_cpuid_features(const struct x86_cpu_id *c)
    480{
    481	u32 cpuid_msr_id[] = {
    482		MSR_AMD64_CPUID_FN_1,
    483	};
    484
    485	pr_info("x86/pm: family %#hx cpu detected, MSR saving is needed during suspending.\n",
    486		c->family);
    487
    488	return msr_build_context(cpuid_msr_id, ARRAY_SIZE(cpuid_msr_id));
    489}
    490
    491static const struct x86_cpu_id msr_save_cpu_table[] = {
    492	X86_MATCH_VENDOR_FAM(AMD, 0x15, &msr_save_cpuid_features),
    493	X86_MATCH_VENDOR_FAM(AMD, 0x16, &msr_save_cpuid_features),
    494	{}
    495};
    496
    497typedef int (*pm_cpu_match_t)(const struct x86_cpu_id *);
    498static int pm_cpu_check(const struct x86_cpu_id *c)
    499{
    500	const struct x86_cpu_id *m;
    501	int ret = 0;
    502
    503	m = x86_match_cpu(msr_save_cpu_table);
    504	if (m) {
    505		pm_cpu_match_t fn;
    506
    507		fn = (pm_cpu_match_t)m->driver_data;
    508		ret = fn(m);
    509	}
    510
    511	return ret;
    512}
    513
    514static void pm_save_spec_msr(void)
    515{
    516	u32 spec_msr_id[] = {
    517		MSR_IA32_SPEC_CTRL,
    518		MSR_IA32_TSX_CTRL,
    519		MSR_TSX_FORCE_ABORT,
    520		MSR_IA32_MCU_OPT_CTRL,
    521		MSR_AMD64_LS_CFG,
    522	};
    523
    524	msr_build_context(spec_msr_id, ARRAY_SIZE(spec_msr_id));
    525}
    526
    527static int pm_check_save_msr(void)
    528{
    529	dmi_check_system(msr_save_dmi_table);
    530	pm_cpu_check(msr_save_cpu_table);
    531	pm_save_spec_msr();
    532
    533	return 0;
    534}
    535
    536device_initcall(pm_check_save_msr);