cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

Kconfig (24413B)


      1# SPDX-License-Identifier: GPL-2.0
      2config XTENSA
      3	def_bool y
      4	select ARCH_32BIT_OFF_T
      5	select ARCH_HAS_BINFMT_FLAT if !MMU
      6	select ARCH_HAS_CURRENT_STACK_POINTER
      7	select ARCH_HAS_DEBUG_VM_PGTABLE
      8	select ARCH_HAS_DMA_PREP_COHERENT if MMU
      9	select ARCH_HAS_SYNC_DMA_FOR_CPU if MMU
     10	select ARCH_HAS_SYNC_DMA_FOR_DEVICE if MMU
     11	select ARCH_HAS_DMA_SET_UNCACHED if MMU
     12	select ARCH_HAS_STRNCPY_FROM_USER if !KASAN
     13	select ARCH_HAS_STRNLEN_USER
     14	select ARCH_USE_MEMTEST
     15	select ARCH_USE_QUEUED_RWLOCKS
     16	select ARCH_USE_QUEUED_SPINLOCKS
     17	select ARCH_WANT_FRAME_POINTERS
     18	select ARCH_WANT_IPC_PARSE_VERSION
     19	select BUILDTIME_TABLE_SORT
     20	select CLONE_BACKWARDS
     21	select COMMON_CLK
     22	select DMA_NONCOHERENT_MMAP if MMU
     23	select GENERIC_ATOMIC64
     24	select GENERIC_IRQ_SHOW
     25	select GENERIC_LIB_CMPDI2
     26	select GENERIC_LIB_MULDI3
     27	select GENERIC_LIB_UCMPDI2
     28	select GENERIC_PCI_IOMAP
     29	select GENERIC_SCHED_CLOCK
     30	select HAVE_ARCH_AUDITSYSCALL
     31	select HAVE_ARCH_JUMP_LABEL if !XIP_KERNEL
     32	select HAVE_ARCH_KASAN if MMU && !XIP_KERNEL
     33	select HAVE_ARCH_KCSAN
     34	select HAVE_ARCH_SECCOMP_FILTER
     35	select HAVE_ARCH_TRACEHOOK
     36	select HAVE_CONTEXT_TRACKING
     37	select HAVE_DEBUG_KMEMLEAK
     38	select HAVE_DMA_CONTIGUOUS
     39	select HAVE_EXIT_THREAD
     40	select HAVE_FUNCTION_TRACER
     41	select HAVE_GCC_PLUGINS if GCC_VERSION >= 120000
     42	select HAVE_HW_BREAKPOINT if PERF_EVENTS
     43	select HAVE_IRQ_TIME_ACCOUNTING
     44	select HAVE_PCI
     45	select HAVE_PERF_EVENTS
     46	select HAVE_STACKPROTECTOR
     47	select HAVE_SYSCALL_TRACEPOINTS
     48	select HAVE_VIRT_CPU_ACCOUNTING_GEN
     49	select IRQ_DOMAIN
     50	select MODULES_USE_ELF_RELA
     51	select PERF_USE_VMALLOC
     52	select TRACE_IRQFLAGS_SUPPORT
     53	select VIRT_TO_BUS
     54	help
     55	  Xtensa processors are 32-bit RISC machines designed by Tensilica
     56	  primarily for embedded systems.  These processors are both
     57	  configurable and extensible.  The Linux port to the Xtensa
     58	  architecture supports all processor configurations and extensions,
     59	  with reasonable minimum requirements.  The Xtensa Linux project has
     60	  a home page at <http://www.linux-xtensa.org/>.
     61
     62config GENERIC_HWEIGHT
     63	def_bool y
     64
     65config ARCH_HAS_ILOG2_U32
     66	def_bool n
     67
     68config ARCH_HAS_ILOG2_U64
     69	def_bool n
     70
     71config NO_IOPORT_MAP
     72	def_bool n
     73
     74config HZ
     75	int
     76	default 100
     77
     78config LOCKDEP_SUPPORT
     79	def_bool y
     80
     81config STACKTRACE_SUPPORT
     82	def_bool y
     83
     84config MMU
     85	def_bool n
     86	select PFAULT
     87
     88config HAVE_XTENSA_GPIO32
     89	def_bool n
     90
     91config KASAN_SHADOW_OFFSET
     92	hex
     93	default 0x6e400000
     94
     95config CPU_BIG_ENDIAN
     96	def_bool $(success,test "$(shell,echo __XTENSA_EB__ | $(CC) -E -P -)" = 1)
     97
     98config CPU_LITTLE_ENDIAN
     99	def_bool !CPU_BIG_ENDIAN
    100
    101config CC_HAVE_CALL0_ABI
    102	def_bool $(success,test "$(shell,echo __XTENSA_CALL0_ABI__ | $(CC) -mabi=call0 -E -P - 2>/dev/null)" = 1)
    103
    104menu "Processor type and features"
    105
    106choice
    107	prompt "Xtensa Processor Configuration"
    108	default XTENSA_VARIANT_FSF
    109
    110config XTENSA_VARIANT_FSF
    111	bool "fsf - default (not generic) configuration"
    112	select MMU
    113
    114config XTENSA_VARIANT_DC232B
    115	bool "dc232b - Diamond 232L Standard Core Rev.B (LE)"
    116	select MMU
    117	select HAVE_XTENSA_GPIO32
    118	help
    119	  This variant refers to Tensilica's Diamond 232L Standard core Rev.B (LE).
    120
    121config XTENSA_VARIANT_DC233C
    122	bool "dc233c - Diamond 233L Standard Core Rev.C (LE)"
    123	select MMU
    124	select HAVE_XTENSA_GPIO32
    125	help
    126	  This variant refers to Tensilica's Diamond 233L Standard core Rev.C (LE).
    127
    128config XTENSA_VARIANT_CUSTOM
    129	bool "Custom Xtensa processor configuration"
    130	select HAVE_XTENSA_GPIO32
    131	help
    132	  Select this variant to use a custom Xtensa processor configuration.
    133	  You will be prompted for a processor variant CORENAME.
    134endchoice
    135
    136config XTENSA_VARIANT_CUSTOM_NAME
    137	string "Xtensa Processor Custom Core Variant Name"
    138	depends on XTENSA_VARIANT_CUSTOM
    139	help
    140	  Provide the name of a custom Xtensa processor variant.
    141	  This CORENAME selects arch/xtensa/variant/CORENAME.
    142	  Don't forget you have to select MMU if you have one.
    143
    144config XTENSA_VARIANT_NAME
    145	string
    146	default "dc232b"			if XTENSA_VARIANT_DC232B
    147	default "dc233c"			if XTENSA_VARIANT_DC233C
    148	default "fsf"				if XTENSA_VARIANT_FSF
    149	default XTENSA_VARIANT_CUSTOM_NAME	if XTENSA_VARIANT_CUSTOM
    150
    151config XTENSA_VARIANT_MMU
    152	bool "Core variant has a Full MMU (TLB, Pages, Protection, etc)"
    153	depends on XTENSA_VARIANT_CUSTOM
    154	default y
    155	select MMU
    156	help
    157	  Build a Conventional Kernel with full MMU support,
    158	  ie: it supports a TLB with auto-loading, page protection.
    159
    160config XTENSA_VARIANT_HAVE_PERF_EVENTS
    161	bool "Core variant has Performance Monitor Module"
    162	depends on XTENSA_VARIANT_CUSTOM
    163	default n
    164	help
    165	  Enable if core variant has Performance Monitor Module with
    166	  External Registers Interface.
    167
    168	  If unsure, say N.
    169
    170config XTENSA_FAKE_NMI
    171	bool "Treat PMM IRQ as NMI"
    172	depends on XTENSA_VARIANT_HAVE_PERF_EVENTS
    173	default n
    174	help
    175	  If PMM IRQ is the only IRQ at EXCM level it is safe to
    176	  treat it as NMI, which improves accuracy of profiling.
    177
    178	  If there are other interrupts at or above PMM IRQ priority level
    179	  but not above the EXCM level, PMM IRQ still may be treated as NMI,
    180	  but only if these IRQs are not used. There will be a build warning
    181	  saying that this is not safe, and a bugcheck if one of these IRQs
    182	  actually fire.
    183
    184	  If unsure, say N.
    185
    186config PFAULT
    187	bool "Handle protection faults" if EXPERT && !MMU
    188	default y
    189	help
    190	  Handle protection faults. MMU configurations must enable it.
    191	  noMMU configurations may disable it if used memory map never
    192	  generates protection faults or faults are always fatal.
    193
    194	  If unsure, say Y.
    195
    196config XTENSA_UNALIGNED_USER
    197	bool "Unaligned memory access in user space"
    198	help
    199	  The Xtensa architecture currently does not handle unaligned
    200	  memory accesses in hardware but through an exception handler.
    201	  Per default, unaligned memory accesses are disabled in user space.
    202
    203	  Say Y here to enable unaligned memory access in user space.
    204
    205config HAVE_SMP
    206	bool "System Supports SMP (MX)"
    207	depends on XTENSA_VARIANT_CUSTOM
    208	select XTENSA_MX
    209	help
    210	  This option is used to indicate that the system-on-a-chip (SOC)
    211	  supports Multiprocessing. Multiprocessor support implemented above
    212	  the CPU core definition and currently needs to be selected manually.
    213
    214	  Multiprocessor support is implemented with external cache and
    215	  interrupt controllers.
    216
    217	  The MX interrupt distributer adds Interprocessor Interrupts
    218	  and causes the IRQ numbers to be increased by 4 for devices
    219	  like the open cores ethernet driver and the serial interface.
    220
    221	  You still have to select "Enable SMP" to enable SMP on this SOC.
    222
    223config SMP
    224	bool "Enable Symmetric multi-processing support"
    225	depends on HAVE_SMP
    226	select GENERIC_SMP_IDLE_THREAD
    227	help
    228	  Enabled SMP Software; allows more than one CPU/CORE
    229	  to be activated during startup.
    230
    231config NR_CPUS
    232	depends on SMP
    233	int "Maximum number of CPUs (2-32)"
    234	range 2 32
    235	default "4"
    236
    237config HOTPLUG_CPU
    238	bool "Enable CPU hotplug support"
    239	depends on SMP
    240	help
    241	  Say Y here to allow turning CPUs off and on. CPUs can be
    242	  controlled through /sys/devices/system/cpu.
    243
    244	  Say N if you want to disable CPU hotplug.
    245
    246config SECONDARY_RESET_VECTOR
    247	bool "Secondary cores use alternative reset vector"
    248	default y
    249	depends on HAVE_SMP
    250	help
    251	  Secondary cores may be configured to use alternative reset vector,
    252	  or all cores may use primary reset vector.
    253	  Say Y here to supply handler for the alternative reset location.
    254
    255config FAST_SYSCALL_XTENSA
    256	bool "Enable fast atomic syscalls"
    257	default n
    258	help
    259	  fast_syscall_xtensa is a syscall that can make atomic operations
    260	  on UP kernel when processor has no s32c1i support.
    261
    262	  This syscall is deprecated. It may have issues when called with
    263	  invalid arguments. It is provided only for backwards compatibility.
    264	  Only enable it if your userspace software requires it.
    265
    266	  If unsure, say N.
    267
    268config FAST_SYSCALL_SPILL_REGISTERS
    269	bool "Enable spill registers syscall"
    270	default n
    271	help
    272	  fast_syscall_spill_registers is a syscall that spills all active
    273	  register windows of a calling userspace task onto its stack.
    274
    275	  This syscall is deprecated. It may have issues when called with
    276	  invalid arguments. It is provided only for backwards compatibility.
    277	  Only enable it if your userspace software requires it.
    278
    279	  If unsure, say N.
    280
    281choice
    282	prompt "Kernel ABI"
    283	default KERNEL_ABI_DEFAULT
    284	help
    285	  Select ABI for the kernel code. This ABI is independent of the
    286	  supported userspace ABI and any combination of the
    287	  kernel/userspace ABI is possible and should work.
    288
    289	  In case both kernel and userspace support only call0 ABI
    290	  all register windows support code will be omitted from the
    291	  build.
    292
    293	  If unsure, choose the default ABI.
    294
    295config KERNEL_ABI_DEFAULT
    296	bool "Default ABI"
    297	help
    298	  Select this option to compile kernel code with the default ABI
    299	  selected for the toolchain.
    300	  Normally cores with windowed registers option use windowed ABI and
    301	  cores without it use call0 ABI.
    302
    303config KERNEL_ABI_CALL0
    304	bool "Call0 ABI" if CC_HAVE_CALL0_ABI
    305	help
    306	  Select this option to compile kernel code with call0 ABI even with
    307	  toolchain that defaults to windowed ABI.
    308	  When this option is not selected the default toolchain ABI will
    309	  be used for the kernel code.
    310
    311endchoice
    312
    313config USER_ABI_CALL0
    314	bool
    315
    316choice
    317	prompt "Userspace ABI"
    318	default USER_ABI_DEFAULT
    319	help
    320	  Select supported userspace ABI.
    321
    322	  If unsure, choose the default ABI.
    323
    324config USER_ABI_DEFAULT
    325	bool "Default ABI only"
    326	help
    327	  Assume default userspace ABI. For XEA2 cores it is windowed ABI.
    328	  call0 ABI binaries may be run on such kernel, but signal delivery
    329	  will not work correctly for them.
    330
    331config USER_ABI_CALL0_ONLY
    332	bool "Call0 ABI only"
    333	select USER_ABI_CALL0
    334	help
    335	  Select this option to support only call0 ABI in userspace.
    336	  Windowed ABI binaries will crash with a segfault caused by
    337	  an illegal instruction exception on the first 'entry' opcode.
    338
    339	  Choose this option if you're planning to run only user code
    340	  built with call0 ABI.
    341
    342config USER_ABI_CALL0_PROBE
    343	bool "Support both windowed and call0 ABI by probing"
    344	select USER_ABI_CALL0
    345	help
    346	  Select this option to support both windowed and call0 userspace
    347	  ABIs. When enabled all processes are started with PS.WOE disabled
    348	  and a fast user exception handler for an illegal instruction is
    349	  used to turn on PS.WOE bit on the first 'entry' opcode executed by
    350	  the userspace.
    351
    352	  This option should be enabled for the kernel that must support
    353	  both call0 and windowed ABIs in userspace at the same time.
    354
    355	  Note that Xtensa ISA does not guarantee that entry opcode will
    356	  raise an illegal instruction exception on cores with XEA2 when
    357	  PS.WOE is disabled, check whether the target core supports it.
    358
    359endchoice
    360
    361endmenu
    362
    363config XTENSA_CALIBRATE_CCOUNT
    364	def_bool n
    365	help
    366	  On some platforms (XT2000, for example), the CPU clock rate can
    367	  vary.  The frequency can be determined, however, by measuring
    368	  against a well known, fixed frequency, such as an UART oscillator.
    369
    370config SERIAL_CONSOLE
    371	def_bool n
    372
    373config PLATFORM_HAVE_XIP
    374	def_bool n
    375
    376menu "Platform options"
    377
    378choice
    379	prompt "Xtensa System Type"
    380	default XTENSA_PLATFORM_ISS
    381
    382config XTENSA_PLATFORM_ISS
    383	bool "ISS"
    384	select XTENSA_CALIBRATE_CCOUNT
    385	select SERIAL_CONSOLE
    386	help
    387	  ISS is an acronym for Tensilica's Instruction Set Simulator.
    388
    389config XTENSA_PLATFORM_XT2000
    390	bool "XT2000"
    391	help
    392	  XT2000 is the name of Tensilica's feature-rich emulation platform.
    393	  This hardware is capable of running a full Linux distribution.
    394
    395config XTENSA_PLATFORM_XTFPGA
    396	bool "XTFPGA"
    397	select ETHOC if ETHERNET
    398	select PLATFORM_WANT_DEFAULT_MEM if !MMU
    399	select SERIAL_CONSOLE
    400	select XTENSA_CALIBRATE_CCOUNT
    401	select PLATFORM_HAVE_XIP
    402	help
    403	  XTFPGA is the name of Tensilica board family (LX60, LX110, LX200, ML605).
    404	  This hardware is capable of running a full Linux distribution.
    405
    406endchoice
    407
    408config PLATFORM_NR_IRQS
    409	int
    410	default 3 if XTENSA_PLATFORM_XT2000
    411	default 0
    412
    413config XTENSA_CPU_CLOCK
    414	int "CPU clock rate [MHz]"
    415	depends on !XTENSA_CALIBRATE_CCOUNT
    416	default 16
    417
    418config GENERIC_CALIBRATE_DELAY
    419	bool "Auto calibration of the BogoMIPS value"
    420	help
    421	  The BogoMIPS value can easily be derived from the CPU frequency.
    422
    423config CMDLINE_BOOL
    424	bool "Default bootloader kernel arguments"
    425
    426config CMDLINE
    427	string "Initial kernel command string"
    428	depends on CMDLINE_BOOL
    429	default "console=ttyS0,38400 root=/dev/ram"
    430	help
    431	  On some architectures (EBSA110 and CATS), there is currently no way
    432	  for the boot loader to pass arguments to the kernel. For these
    433	  architectures, you should supply some command-line options at build
    434	  time by entering them here. As a minimum, you should specify the
    435	  memory size and the root device (e.g., mem=64M root=/dev/nfs).
    436
    437config USE_OF
    438	bool "Flattened Device Tree support"
    439	select OF
    440	select OF_EARLY_FLATTREE
    441	help
    442	  Include support for flattened device tree machine descriptions.
    443
    444config BUILTIN_DTB_SOURCE
    445	string "DTB to build into the kernel image"
    446	depends on OF
    447
    448config PARSE_BOOTPARAM
    449	bool "Parse bootparam block"
    450	default y
    451	help
    452	  Parse parameters passed to the kernel from the bootloader. It may
    453	  be disabled if the kernel is known to run without the bootloader.
    454
    455	  If unsure, say Y.
    456
    457choice
    458	prompt "Semihosting interface"
    459	default XTENSA_SIMCALL_ISS
    460	depends on XTENSA_PLATFORM_ISS
    461	help
    462	  Choose semihosting interface that will be used for serial port,
    463	  block device and networking.
    464
    465config XTENSA_SIMCALL_ISS
    466	bool "simcall"
    467	help
    468	  Use simcall instruction. simcall is only available on simulators,
    469	  it does nothing on hardware.
    470
    471config XTENSA_SIMCALL_GDBIO
    472	bool "GDBIO"
    473	help
    474	  Use break instruction. It is available on real hardware when GDB
    475	  is attached to it via JTAG.
    476
    477endchoice
    478
    479config BLK_DEV_SIMDISK
    480	tristate "Host file-based simulated block device support"
    481	default n
    482	depends on XTENSA_PLATFORM_ISS && BLOCK
    483	help
    484	  Create block devices that map to files in the host file system.
    485	  Device binding to host file may be changed at runtime via proc
    486	  interface provided the device is not in use.
    487
    488config BLK_DEV_SIMDISK_COUNT
    489	int "Number of host file-based simulated block devices"
    490	range 1 10
    491	depends on BLK_DEV_SIMDISK
    492	default 2
    493	help
    494	  This is the default minimal number of created block devices.
    495	  Kernel/module parameter 'simdisk_count' may be used to change this
    496	  value at runtime. More file names (but no more than 10) may be
    497	  specified as parameters, simdisk_count grows accordingly.
    498
    499config SIMDISK0_FILENAME
    500	string "Host filename for the first simulated device"
    501	depends on BLK_DEV_SIMDISK = y
    502	default ""
    503	help
    504	  Attach a first simdisk to a host file. Conventionally, this file
    505	  contains a root file system.
    506
    507config SIMDISK1_FILENAME
    508	string "Host filename for the second simulated device"
    509	depends on BLK_DEV_SIMDISK = y && BLK_DEV_SIMDISK_COUNT != 1
    510	default ""
    511	help
    512	  Another simulated disk in a host file for a buildroot-independent
    513	  storage.
    514
    515config XTFPGA_LCD
    516	bool "Enable XTFPGA LCD driver"
    517	depends on XTENSA_PLATFORM_XTFPGA
    518	default n
    519	help
    520	  There's a 2x16 LCD on most of XTFPGA boards, kernel may output
    521	  progress messages there during bootup/shutdown. It may be useful
    522	  during board bringup.
    523
    524	  If unsure, say N.
    525
    526config XTFPGA_LCD_BASE_ADDR
    527	hex "XTFPGA LCD base address"
    528	depends on XTFPGA_LCD
    529	default "0x0d0c0000"
    530	help
    531	  Base address of the LCD controller inside KIO region.
    532	  Different boards from XTFPGA family have LCD controller at different
    533	  addresses. Please consult prototyping user guide for your board for
    534	  the correct address. Wrong address here may lead to hardware lockup.
    535
    536config XTFPGA_LCD_8BIT_ACCESS
    537	bool "Use 8-bit access to XTFPGA LCD"
    538	depends on XTFPGA_LCD
    539	default n
    540	help
    541	  LCD may be connected with 4- or 8-bit interface, 8-bit access may
    542	  only be used with 8-bit interface. Please consult prototyping user
    543	  guide for your board for the correct interface width.
    544
    545comment "Kernel memory layout"
    546
    547config INITIALIZE_XTENSA_MMU_INSIDE_VMLINUX
    548	bool "Initialize Xtensa MMU inside the Linux kernel code"
    549	depends on !XTENSA_VARIANT_FSF && !XTENSA_VARIANT_DC232B
    550	default y if XTENSA_VARIANT_DC233C || XTENSA_VARIANT_CUSTOM
    551	help
    552	  Earlier version initialized the MMU in the exception vector
    553	  before jumping to _startup in head.S and had an advantage that
    554	  it was possible to place a software breakpoint at 'reset' and
    555	  then enter your normal kernel breakpoints once the MMU was mapped
    556	  to the kernel mappings (0XC0000000).
    557
    558	  This unfortunately won't work for U-Boot and likely also won't
    559	  work for using KEXEC to have a hot kernel ready for doing a
    560	  KDUMP.
    561
    562	  So now the MMU is initialized in head.S but it's necessary to
    563	  use hardware breakpoints (gdb 'hbreak' cmd) to break at _startup.
    564	  xt-gdb can't place a Software Breakpoint in the  0XD region prior
    565	  to mapping the MMU and after mapping even if the area of low memory
    566	  was mapped gdb wouldn't remove the breakpoint on hitting it as the
    567	  PC wouldn't match. Since Hardware Breakpoints are recommended for
    568	  Linux configurations it seems reasonable to just assume they exist
    569	  and leave this older mechanism for unfortunate souls that choose
    570	  not to follow Tensilica's recommendation.
    571
    572	  Selecting this will cause U-Boot to set the KERNEL Load and Entry
    573	  address at 0x00003000 instead of the mapped std of 0xD0003000.
    574
    575	  If in doubt, say Y.
    576
    577config XIP_KERNEL
    578	bool "Kernel Execute-In-Place from ROM"
    579	depends on PLATFORM_HAVE_XIP
    580	help
    581	  Execute-In-Place allows the kernel to run from non-volatile storage
    582	  directly addressable by the CPU, such as NOR flash. This saves RAM
    583	  space since the text section of the kernel is not loaded from flash
    584	  to RAM. Read-write sections, such as the data section and stack,
    585	  are still copied to RAM. The XIP kernel is not compressed since
    586	  it has to run directly from flash, so it will take more space to
    587	  store it. The flash address used to link the kernel object files,
    588	  and for storing it, is configuration dependent. Therefore, if you
    589	  say Y here, you must know the proper physical address where to
    590	  store the kernel image depending on your own flash memory usage.
    591
    592	  Also note that the make target becomes "make xipImage" rather than
    593	  "make Image" or "make uImage". The final kernel binary to put in
    594	  ROM memory will be arch/xtensa/boot/xipImage.
    595
    596	  If unsure, say N.
    597
    598config MEMMAP_CACHEATTR
    599	hex "Cache attributes for the memory address space"
    600	depends on !MMU
    601	default 0x22222222
    602	help
    603	  These cache attributes are set up for noMMU systems. Each hex digit
    604	  specifies cache attributes for the corresponding 512MB memory
    605	  region: bits 0..3 -- for addresses 0x00000000..0x1fffffff,
    606	  bits 4..7 -- for addresses 0x20000000..0x3fffffff, and so on.
    607
    608	  Cache attribute values are specific for the MMU type.
    609	  For region protection MMUs:
    610	    1: WT cached,
    611	    2: cache bypass,
    612	    4: WB cached,
    613	    f: illegal.
    614	  For full MMU:
    615	    bit 0: executable,
    616	    bit 1: writable,
    617	    bits 2..3:
    618	      0: cache bypass,
    619	      1: WB cache,
    620	      2: WT cache,
    621	      3: special (c and e are illegal, f is reserved).
    622	  For MPU:
    623	    0: illegal,
    624	    1: WB cache,
    625	    2: WB, no-write-allocate cache,
    626	    3: WT cache,
    627	    4: cache bypass.
    628
    629config KSEG_PADDR
    630	hex "Physical address of the KSEG mapping"
    631	depends on INITIALIZE_XTENSA_MMU_INSIDE_VMLINUX && MMU
    632	default 0x00000000
    633	help
    634	  This is the physical address where KSEG is mapped. Please refer to
    635	  the chosen KSEG layout help for the required address alignment.
    636	  Unpacked kernel image (including vectors) must be located completely
    637	  within KSEG.
    638	  Physical memory below this address is not available to linux.
    639
    640	  If unsure, leave the default value here.
    641
    642config KERNEL_VIRTUAL_ADDRESS
    643	hex "Kernel virtual address"
    644	depends on MMU && XIP_KERNEL
    645	default 0xd0003000
    646	help
    647	  This is the virtual address where the XIP kernel is mapped.
    648	  XIP kernel may be mapped into KSEG or KIO region, virtual address
    649	  provided here must match kernel load address provided in
    650	  KERNEL_LOAD_ADDRESS.
    651
    652config KERNEL_LOAD_ADDRESS
    653	hex "Kernel load address"
    654	default 0x60003000 if !MMU
    655	default 0x00003000 if MMU && INITIALIZE_XTENSA_MMU_INSIDE_VMLINUX
    656	default 0xd0003000 if MMU && !INITIALIZE_XTENSA_MMU_INSIDE_VMLINUX
    657	help
    658	  This is the address where the kernel is loaded.
    659	  It is virtual address for MMUv2 configurations and physical address
    660	  for all other configurations.
    661
    662	  If unsure, leave the default value here.
    663
    664choice
    665	prompt "Relocatable vectors location"
    666	default XTENSA_VECTORS_IN_TEXT
    667	help
    668	  Choose whether relocatable vectors are merged into the kernel .text
    669	  or placed separately at runtime. This option does not affect
    670	  configurations without VECBASE register where vectors are always
    671	  placed at their hardware-defined locations.
    672
    673config XTENSA_VECTORS_IN_TEXT
    674	bool "Merge relocatable vectors into kernel text"
    675	depends on !MTD_XIP
    676	help
    677	  This option puts relocatable vectors into the kernel .text section
    678	  with proper alignment.
    679	  This is a safe choice for most configurations.
    680
    681config XTENSA_VECTORS_SEPARATE
    682	bool "Put relocatable vectors at fixed address"
    683	help
    684	  This option puts relocatable vectors at specific virtual address.
    685	  Vectors are merged with the .init data in the kernel image and
    686	  are copied into their designated location during kernel startup.
    687	  Use it to put vectors into IRAM or out of FLASH on kernels with
    688	  XIP-aware MTD support.
    689
    690endchoice
    691
    692config VECTORS_ADDR
    693	hex "Kernel vectors virtual address"
    694	default 0x00000000
    695	depends on XTENSA_VECTORS_SEPARATE
    696	help
    697	  This is the virtual address of the (relocatable) vectors base.
    698	  It must be within KSEG if MMU is used.
    699
    700config XIP_DATA_ADDR
    701	hex "XIP kernel data virtual address"
    702	depends on XIP_KERNEL
    703	default 0x00000000
    704	help
    705	  This is the virtual address where XIP kernel data is copied.
    706	  It must be within KSEG if MMU is used.
    707
    708config PLATFORM_WANT_DEFAULT_MEM
    709	def_bool n
    710
    711config DEFAULT_MEM_START
    712	hex
    713	prompt "PAGE_OFFSET/PHYS_OFFSET" if !MMU && PLATFORM_WANT_DEFAULT_MEM
    714	default 0x60000000 if PLATFORM_WANT_DEFAULT_MEM
    715	default 0x00000000
    716	help
    717	  This is the base address used for both PAGE_OFFSET and PHYS_OFFSET
    718	  in noMMU configurations.
    719
    720	  If unsure, leave the default value here.
    721
    722choice
    723	prompt "KSEG layout"
    724	depends on MMU
    725	default XTENSA_KSEG_MMU_V2
    726
    727config XTENSA_KSEG_MMU_V2
    728	bool "MMUv2: 128MB cached + 128MB uncached"
    729	help
    730	  MMUv2 compatible kernel memory map: TLB way 5 maps 128MB starting
    731	  at KSEG_PADDR to 0xd0000000 with cache and to 0xd8000000
    732	  without cache.
    733	  KSEG_PADDR must be aligned to 128MB.
    734
    735config XTENSA_KSEG_256M
    736	bool "256MB cached + 256MB uncached"
    737	depends on INITIALIZE_XTENSA_MMU_INSIDE_VMLINUX
    738	help
    739	  TLB way 6 maps 256MB starting at KSEG_PADDR to 0xb0000000
    740	  with cache and to 0xc0000000 without cache.
    741	  KSEG_PADDR must be aligned to 256MB.
    742
    743config XTENSA_KSEG_512M
    744	bool "512MB cached + 512MB uncached"
    745	depends on INITIALIZE_XTENSA_MMU_INSIDE_VMLINUX
    746	help
    747	  TLB way 6 maps 512MB starting at KSEG_PADDR to 0xa0000000
    748	  with cache and to 0xc0000000 without cache.
    749	  KSEG_PADDR must be aligned to 256MB.
    750
    751endchoice
    752
    753config HIGHMEM
    754	bool "High Memory Support"
    755	depends on MMU
    756	select KMAP_LOCAL
    757	help
    758	  Linux can use the full amount of RAM in the system by
    759	  default. However, the default MMUv2 setup only maps the
    760	  lowermost 128 MB of memory linearly to the areas starting
    761	  at 0xd0000000 (cached) and 0xd8000000 (uncached).
    762	  When there are more than 128 MB memory in the system not
    763	  all of it can be "permanently mapped" by the kernel.
    764	  The physical memory that's not permanently mapped is called
    765	  "high memory".
    766
    767	  If you are compiling a kernel which will never run on a
    768	  machine with more than 128 MB total physical RAM, answer
    769	  N here.
    770
    771	  If unsure, say Y.
    772
    773config FORCE_MAX_ZONEORDER
    774	int "Maximum zone order"
    775	default "11"
    776	help
    777	  The kernel memory allocator divides physically contiguous memory
    778	  blocks into "zones", where each zone is a power of two number of
    779	  pages.  This option selects the largest power of two that the kernel
    780	  keeps in the memory allocator.  If you need to allocate very large
    781	  blocks of physically contiguous memory, then you may need to
    782	  increase this value.
    783
    784	  This config option is actually maximum order plus one. For example,
    785	  a value of 11 means that the largest free memory block is 2^10 pages.
    786
    787endmenu
    788
    789menu "Power management options"
    790
    791config ARCH_HIBERNATION_POSSIBLE
    792	def_bool y
    793
    794source "kernel/power/Kconfig"
    795
    796endmenu