cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

bfq-iosched.h (38519B)


      1/* SPDX-License-Identifier: GPL-2.0-or-later */
      2/*
      3 * Header file for the BFQ I/O scheduler: data structures and
      4 * prototypes of interface functions among BFQ components.
      5 */
      6#ifndef _BFQ_H
      7#define _BFQ_H
      8
      9#include <linux/blktrace_api.h>
     10#include <linux/hrtimer.h>
     11
     12#include "blk-cgroup-rwstat.h"
     13
     14#define BFQ_IOPRIO_CLASSES	3
     15#define BFQ_CL_IDLE_TIMEOUT	(HZ/5)
     16
     17#define BFQ_MIN_WEIGHT			1
     18#define BFQ_MAX_WEIGHT			1000
     19#define BFQ_WEIGHT_CONVERSION_COEFF	10
     20
     21#define BFQ_DEFAULT_QUEUE_IOPRIO	4
     22
     23#define BFQ_WEIGHT_LEGACY_DFL	100
     24#define BFQ_DEFAULT_GRP_IOPRIO	0
     25#define BFQ_DEFAULT_GRP_CLASS	IOPRIO_CLASS_BE
     26
     27#define MAX_BFQQ_NAME_LENGTH 16
     28
     29/*
     30 * Soft real-time applications are extremely more latency sensitive
     31 * than interactive ones. Over-raise the weight of the former to
     32 * privilege them against the latter.
     33 */
     34#define BFQ_SOFTRT_WEIGHT_FACTOR	100
     35
     36struct bfq_entity;
     37
     38/**
     39 * struct bfq_service_tree - per ioprio_class service tree.
     40 *
     41 * Each service tree represents a B-WF2Q+ scheduler on its own.  Each
     42 * ioprio_class has its own independent scheduler, and so its own
     43 * bfq_service_tree.  All the fields are protected by the queue lock
     44 * of the containing bfqd.
     45 */
     46struct bfq_service_tree {
     47	/* tree for active entities (i.e., those backlogged) */
     48	struct rb_root active;
     49	/* tree for idle entities (i.e., not backlogged, with V < F_i)*/
     50	struct rb_root idle;
     51
     52	/* idle entity with minimum F_i */
     53	struct bfq_entity *first_idle;
     54	/* idle entity with maximum F_i */
     55	struct bfq_entity *last_idle;
     56
     57	/* scheduler virtual time */
     58	u64 vtime;
     59	/* scheduler weight sum; active and idle entities contribute to it */
     60	unsigned long wsum;
     61};
     62
     63/**
     64 * struct bfq_sched_data - multi-class scheduler.
     65 *
     66 * bfq_sched_data is the basic scheduler queue.  It supports three
     67 * ioprio_classes, and can be used either as a toplevel queue or as an
     68 * intermediate queue in a hierarchical setup.
     69 *
     70 * The supported ioprio_classes are the same as in CFQ, in descending
     71 * priority order, IOPRIO_CLASS_RT, IOPRIO_CLASS_BE, IOPRIO_CLASS_IDLE.
     72 * Requests from higher priority queues are served before all the
     73 * requests from lower priority queues; among requests of the same
     74 * queue requests are served according to B-WF2Q+.
     75 *
     76 * The schedule is implemented by the service trees, plus the field
     77 * @next_in_service, which points to the entity on the active trees
     78 * that will be served next, if 1) no changes in the schedule occurs
     79 * before the current in-service entity is expired, 2) the in-service
     80 * queue becomes idle when it expires, and 3) if the entity pointed by
     81 * in_service_entity is not a queue, then the in-service child entity
     82 * of the entity pointed by in_service_entity becomes idle on
     83 * expiration. This peculiar definition allows for the following
     84 * optimization, not yet exploited: while a given entity is still in
     85 * service, we already know which is the best candidate for next
     86 * service among the other active entities in the same parent
     87 * entity. We can then quickly compare the timestamps of the
     88 * in-service entity with those of such best candidate.
     89 *
     90 * All fields are protected by the lock of the containing bfqd.
     91 */
     92struct bfq_sched_data {
     93	/* entity in service */
     94	struct bfq_entity *in_service_entity;
     95	/* head-of-line entity (see comments above) */
     96	struct bfq_entity *next_in_service;
     97	/* array of service trees, one per ioprio_class */
     98	struct bfq_service_tree service_tree[BFQ_IOPRIO_CLASSES];
     99	/* last time CLASS_IDLE was served */
    100	unsigned long bfq_class_idle_last_service;
    101
    102};
    103
    104/**
    105 * struct bfq_weight_counter - counter of the number of all active queues
    106 *                             with a given weight.
    107 */
    108struct bfq_weight_counter {
    109	unsigned int weight; /* weight of the queues this counter refers to */
    110	unsigned int num_active; /* nr of active queues with this weight */
    111	/*
    112	 * Weights tree member (see bfq_data's @queue_weights_tree)
    113	 */
    114	struct rb_node weights_node;
    115};
    116
    117/**
    118 * struct bfq_entity - schedulable entity.
    119 *
    120 * A bfq_entity is used to represent either a bfq_queue (leaf node in the
    121 * cgroup hierarchy) or a bfq_group into the upper level scheduler.  Each
    122 * entity belongs to the sched_data of the parent group in the cgroup
    123 * hierarchy.  Non-leaf entities have also their own sched_data, stored
    124 * in @my_sched_data.
    125 *
    126 * Each entity stores independently its priority values; this would
    127 * allow different weights on different devices, but this
    128 * functionality is not exported to userspace by now.  Priorities and
    129 * weights are updated lazily, first storing the new values into the
    130 * new_* fields, then setting the @prio_changed flag.  As soon as
    131 * there is a transition in the entity state that allows the priority
    132 * update to take place the effective and the requested priority
    133 * values are synchronized.
    134 *
    135 * Unless cgroups are used, the weight value is calculated from the
    136 * ioprio to export the same interface as CFQ.  When dealing with
    137 * "well-behaved" queues (i.e., queues that do not spend too much
    138 * time to consume their budget and have true sequential behavior, and
    139 * when there are no external factors breaking anticipation) the
    140 * relative weights at each level of the cgroups hierarchy should be
    141 * guaranteed.  All the fields are protected by the queue lock of the
    142 * containing bfqd.
    143 */
    144struct bfq_entity {
    145	/* service_tree member */
    146	struct rb_node rb_node;
    147
    148	/*
    149	 * Flag, true if the entity is on a tree (either the active or
    150	 * the idle one of its service_tree) or is in service.
    151	 */
    152	bool on_st_or_in_serv;
    153
    154	/* B-WF2Q+ start and finish timestamps [sectors/weight] */
    155	u64 start, finish;
    156
    157	/* tree the entity is enqueued into; %NULL if not on a tree */
    158	struct rb_root *tree;
    159
    160	/*
    161	 * minimum start time of the (active) subtree rooted at this
    162	 * entity; used for O(log N) lookups into active trees
    163	 */
    164	u64 min_start;
    165
    166	/* amount of service received during the last service slot */
    167	int service;
    168
    169	/* budget, used also to calculate F_i: F_i = S_i + @budget / @weight */
    170	int budget;
    171
    172	/* Number of requests allocated in the subtree of this entity */
    173	int allocated;
    174
    175	/* device weight, if non-zero, it overrides the default weight of
    176	 * bfq_group_data */
    177	int dev_weight;
    178	/* weight of the queue */
    179	int weight;
    180	/* next weight if a change is in progress */
    181	int new_weight;
    182
    183	/* original weight, used to implement weight boosting */
    184	int orig_weight;
    185
    186	/* parent entity, for hierarchical scheduling */
    187	struct bfq_entity *parent;
    188
    189	/*
    190	 * For non-leaf nodes in the hierarchy, the associated
    191	 * scheduler queue, %NULL on leaf nodes.
    192	 */
    193	struct bfq_sched_data *my_sched_data;
    194	/* the scheduler queue this entity belongs to */
    195	struct bfq_sched_data *sched_data;
    196
    197	/* flag, set to request a weight, ioprio or ioprio_class change  */
    198	int prio_changed;
    199
    200	/* flag, set if the entity is counted in groups_with_pending_reqs */
    201	bool in_groups_with_pending_reqs;
    202
    203	/* last child queue of entity created (for non-leaf entities) */
    204	struct bfq_queue *last_bfqq_created;
    205};
    206
    207struct bfq_group;
    208
    209/**
    210 * struct bfq_ttime - per process thinktime stats.
    211 */
    212struct bfq_ttime {
    213	/* completion time of the last request */
    214	u64 last_end_request;
    215
    216	/* total process thinktime */
    217	u64 ttime_total;
    218	/* number of thinktime samples */
    219	unsigned long ttime_samples;
    220	/* average process thinktime */
    221	u64 ttime_mean;
    222};
    223
    224/**
    225 * struct bfq_queue - leaf schedulable entity.
    226 *
    227 * A bfq_queue is a leaf request queue; it can be associated with an
    228 * io_context or more, if it  is  async or shared  between  cooperating
    229 * processes. @cgroup holds a reference to the cgroup, to be sure that it
    230 * does not disappear while a bfqq still references it (mostly to avoid
    231 * races between request issuing and task migration followed by cgroup
    232 * destruction).
    233 * All the fields are protected by the queue lock of the containing bfqd.
    234 */
    235struct bfq_queue {
    236	/* reference counter */
    237	int ref;
    238	/* counter of references from other queues for delayed stable merge */
    239	int stable_ref;
    240	/* parent bfq_data */
    241	struct bfq_data *bfqd;
    242
    243	/* current ioprio and ioprio class */
    244	unsigned short ioprio, ioprio_class;
    245	/* next ioprio and ioprio class if a change is in progress */
    246	unsigned short new_ioprio, new_ioprio_class;
    247
    248	/* last total-service-time sample, see bfq_update_inject_limit() */
    249	u64 last_serv_time_ns;
    250	/* limit for request injection */
    251	unsigned int inject_limit;
    252	/* last time the inject limit has been decreased, in jiffies */
    253	unsigned long decrease_time_jif;
    254
    255	/*
    256	 * Shared bfq_queue if queue is cooperating with one or more
    257	 * other queues.
    258	 */
    259	struct bfq_queue *new_bfqq;
    260	/* request-position tree member (see bfq_group's @rq_pos_tree) */
    261	struct rb_node pos_node;
    262	/* request-position tree root (see bfq_group's @rq_pos_tree) */
    263	struct rb_root *pos_root;
    264
    265	/* sorted list of pending requests */
    266	struct rb_root sort_list;
    267	/* if fifo isn't expired, next request to serve */
    268	struct request *next_rq;
    269	/* number of sync and async requests queued */
    270	int queued[2];
    271	/* number of pending metadata requests */
    272	int meta_pending;
    273	/* fifo list of requests in sort_list */
    274	struct list_head fifo;
    275
    276	/* entity representing this queue in the scheduler */
    277	struct bfq_entity entity;
    278
    279	/* pointer to the weight counter associated with this entity */
    280	struct bfq_weight_counter *weight_counter;
    281
    282	/* maximum budget allowed from the feedback mechanism */
    283	int max_budget;
    284	/* budget expiration (in jiffies) */
    285	unsigned long budget_timeout;
    286
    287	/* number of requests on the dispatch list or inside driver */
    288	int dispatched;
    289
    290	/* status flags */
    291	unsigned long flags;
    292
    293	/* node for active/idle bfqq list inside parent bfqd */
    294	struct list_head bfqq_list;
    295
    296	/* associated @bfq_ttime struct */
    297	struct bfq_ttime ttime;
    298
    299	/* when bfqq started to do I/O within the last observation window */
    300	u64 io_start_time;
    301	/* how long bfqq has remained empty during the last observ. window */
    302	u64 tot_idle_time;
    303
    304	/* bit vector: a 1 for each seeky requests in history */
    305	u32 seek_history;
    306
    307	/* node for the device's burst list */
    308	struct hlist_node burst_list_node;
    309
    310	/* position of the last request enqueued */
    311	sector_t last_request_pos;
    312
    313	/* Number of consecutive pairs of request completion and
    314	 * arrival, such that the queue becomes idle after the
    315	 * completion, but the next request arrives within an idle
    316	 * time slice; used only if the queue's IO_bound flag has been
    317	 * cleared.
    318	 */
    319	unsigned int requests_within_timer;
    320
    321	/* pid of the process owning the queue, used for logging purposes */
    322	pid_t pid;
    323
    324	/*
    325	 * Pointer to the bfq_io_cq owning the bfq_queue, set to %NULL
    326	 * if the queue is shared.
    327	 */
    328	struct bfq_io_cq *bic;
    329
    330	/* current maximum weight-raising time for this queue */
    331	unsigned long wr_cur_max_time;
    332	/*
    333	 * Minimum time instant such that, only if a new request is
    334	 * enqueued after this time instant in an idle @bfq_queue with
    335	 * no outstanding requests, then the task associated with the
    336	 * queue it is deemed as soft real-time (see the comments on
    337	 * the function bfq_bfqq_softrt_next_start())
    338	 */
    339	unsigned long soft_rt_next_start;
    340	/*
    341	 * Start time of the current weight-raising period if
    342	 * the @bfq-queue is being weight-raised, otherwise
    343	 * finish time of the last weight-raising period.
    344	 */
    345	unsigned long last_wr_start_finish;
    346	/* factor by which the weight of this queue is multiplied */
    347	unsigned int wr_coeff;
    348	/*
    349	 * Time of the last transition of the @bfq_queue from idle to
    350	 * backlogged.
    351	 */
    352	unsigned long last_idle_bklogged;
    353	/*
    354	 * Cumulative service received from the @bfq_queue since the
    355	 * last transition from idle to backlogged.
    356	 */
    357	unsigned long service_from_backlogged;
    358	/*
    359	 * Cumulative service received from the @bfq_queue since its
    360	 * last transition to weight-raised state.
    361	 */
    362	unsigned long service_from_wr;
    363
    364	/*
    365	 * Value of wr start time when switching to soft rt
    366	 */
    367	unsigned long wr_start_at_switch_to_srt;
    368
    369	unsigned long split_time; /* time of last split */
    370
    371	unsigned long first_IO_time; /* time of first I/O for this queue */
    372
    373	unsigned long creation_time; /* when this queue is created */
    374
    375	/* max service rate measured so far */
    376	u32 max_service_rate;
    377
    378	/*
    379	 * Pointer to the waker queue for this queue, i.e., to the
    380	 * queue Q such that this queue happens to get new I/O right
    381	 * after some I/O request of Q is completed. For details, see
    382	 * the comments on the choice of the queue for injection in
    383	 * bfq_select_queue().
    384	 */
    385	struct bfq_queue *waker_bfqq;
    386	/* pointer to the curr. tentative waker queue, see bfq_check_waker() */
    387	struct bfq_queue *tentative_waker_bfqq;
    388	/* number of times the same tentative waker has been detected */
    389	unsigned int num_waker_detections;
    390	/* time when we started considering this waker */
    391	u64 waker_detection_started;
    392
    393	/* node for woken_list, see below */
    394	struct hlist_node woken_list_node;
    395	/*
    396	 * Head of the list of the woken queues for this queue, i.e.,
    397	 * of the list of the queues for which this queue is a waker
    398	 * queue. This list is used to reset the waker_bfqq pointer in
    399	 * the woken queues when this queue exits.
    400	 */
    401	struct hlist_head woken_list;
    402};
    403
    404/**
    405 * struct bfq_io_cq - per (request_queue, io_context) structure.
    406 */
    407struct bfq_io_cq {
    408	/* associated io_cq structure */
    409	struct io_cq icq; /* must be the first member */
    410	/* array of two process queues, the sync and the async */
    411	struct bfq_queue *bfqq[2];
    412	/* per (request_queue, blkcg) ioprio */
    413	int ioprio;
    414#ifdef CONFIG_BFQ_GROUP_IOSCHED
    415	uint64_t blkcg_serial_nr; /* the current blkcg serial */
    416#endif
    417	/*
    418	 * Snapshot of the has_short_time flag before merging; taken
    419	 * to remember its value while the queue is merged, so as to
    420	 * be able to restore it in case of split.
    421	 */
    422	bool saved_has_short_ttime;
    423	/*
    424	 * Same purpose as the previous two fields for the I/O bound
    425	 * classification of a queue.
    426	 */
    427	bool saved_IO_bound;
    428
    429	u64 saved_io_start_time;
    430	u64 saved_tot_idle_time;
    431
    432	/*
    433	 * Same purpose as the previous fields for the value of the
    434	 * field keeping the queue's belonging to a large burst
    435	 */
    436	bool saved_in_large_burst;
    437	/*
    438	 * True if the queue belonged to a burst list before its merge
    439	 * with another cooperating queue.
    440	 */
    441	bool was_in_burst_list;
    442
    443	/*
    444	 * Save the weight when a merge occurs, to be able
    445	 * to restore it in case of split. If the weight is not
    446	 * correctly resumed when the queue is recycled,
    447	 * then the weight of the recycled queue could differ
    448	 * from the weight of the original queue.
    449	 */
    450	unsigned int saved_weight;
    451
    452	/*
    453	 * Similar to previous fields: save wr information.
    454	 */
    455	unsigned long saved_wr_coeff;
    456	unsigned long saved_last_wr_start_finish;
    457	unsigned long saved_service_from_wr;
    458	unsigned long saved_wr_start_at_switch_to_srt;
    459	unsigned int saved_wr_cur_max_time;
    460	struct bfq_ttime saved_ttime;
    461
    462	/* Save also injection state */
    463	u64 saved_last_serv_time_ns;
    464	unsigned int saved_inject_limit;
    465	unsigned long saved_decrease_time_jif;
    466
    467	/* candidate queue for a stable merge (due to close creation time) */
    468	struct bfq_queue *stable_merge_bfqq;
    469
    470	bool stably_merged;	/* non splittable if true */
    471	unsigned int requests;	/* Number of requests this process has in flight */
    472};
    473
    474/**
    475 * struct bfq_data - per-device data structure.
    476 *
    477 * All the fields are protected by @lock.
    478 */
    479struct bfq_data {
    480	/* device request queue */
    481	struct request_queue *queue;
    482	/* dispatch queue */
    483	struct list_head dispatch;
    484
    485	/* root bfq_group for the device */
    486	struct bfq_group *root_group;
    487
    488	/*
    489	 * rbtree of weight counters of @bfq_queues, sorted by
    490	 * weight. Used to keep track of whether all @bfq_queues have
    491	 * the same weight. The tree contains one counter for each
    492	 * distinct weight associated to some active and not
    493	 * weight-raised @bfq_queue (see the comments to the functions
    494	 * bfq_weights_tree_[add|remove] for further details).
    495	 */
    496	struct rb_root_cached queue_weights_tree;
    497
    498	/*
    499	 * Number of groups with at least one descendant process that
    500	 * has at least one request waiting for completion. Note that
    501	 * this accounts for also requests already dispatched, but not
    502	 * yet completed. Therefore this number of groups may differ
    503	 * (be larger) than the number of active groups, as a group is
    504	 * considered active only if its corresponding entity has
    505	 * descendant queues with at least one request queued. This
    506	 * number is used to decide whether a scenario is symmetric.
    507	 * For a detailed explanation see comments on the computation
    508	 * of the variable asymmetric_scenario in the function
    509	 * bfq_better_to_idle().
    510	 *
    511	 * However, it is hard to compute this number exactly, for
    512	 * groups with multiple descendant processes. Consider a group
    513	 * that is inactive, i.e., that has no descendant process with
    514	 * pending I/O inside BFQ queues. Then suppose that
    515	 * num_groups_with_pending_reqs is still accounting for this
    516	 * group, because the group has descendant processes with some
    517	 * I/O request still in flight. num_groups_with_pending_reqs
    518	 * should be decremented when the in-flight request of the
    519	 * last descendant process is finally completed (assuming that
    520	 * nothing else has changed for the group in the meantime, in
    521	 * terms of composition of the group and active/inactive state of child
    522	 * groups and processes). To accomplish this, an additional
    523	 * pending-request counter must be added to entities, and must
    524	 * be updated correctly. To avoid this additional field and operations,
    525	 * we resort to the following tradeoff between simplicity and
    526	 * accuracy: for an inactive group that is still counted in
    527	 * num_groups_with_pending_reqs, we decrement
    528	 * num_groups_with_pending_reqs when the first descendant
    529	 * process of the group remains with no request waiting for
    530	 * completion.
    531	 *
    532	 * Even this simpler decrement strategy requires a little
    533	 * carefulness: to avoid multiple decrements, we flag a group,
    534	 * more precisely an entity representing a group, as still
    535	 * counted in num_groups_with_pending_reqs when it becomes
    536	 * inactive. Then, when the first descendant queue of the
    537	 * entity remains with no request waiting for completion,
    538	 * num_groups_with_pending_reqs is decremented, and this flag
    539	 * is reset. After this flag is reset for the entity,
    540	 * num_groups_with_pending_reqs won't be decremented any
    541	 * longer in case a new descendant queue of the entity remains
    542	 * with no request waiting for completion.
    543	 */
    544	unsigned int num_groups_with_pending_reqs;
    545
    546	/*
    547	 * Per-class (RT, BE, IDLE) number of bfq_queues containing
    548	 * requests (including the queue in service, even if it is
    549	 * idling).
    550	 */
    551	unsigned int busy_queues[3];
    552	/* number of weight-raised busy @bfq_queues */
    553	int wr_busy_queues;
    554	/* number of queued requests */
    555	int queued;
    556	/* number of requests dispatched and waiting for completion */
    557	int rq_in_driver;
    558
    559	/* true if the device is non rotational and performs queueing */
    560	bool nonrot_with_queueing;
    561
    562	/*
    563	 * Maximum number of requests in driver in the last
    564	 * @hw_tag_samples completed requests.
    565	 */
    566	int max_rq_in_driver;
    567	/* number of samples used to calculate hw_tag */
    568	int hw_tag_samples;
    569	/* flag set to one if the driver is showing a queueing behavior */
    570	int hw_tag;
    571
    572	/* number of budgets assigned */
    573	int budgets_assigned;
    574
    575	/*
    576	 * Timer set when idling (waiting) for the next request from
    577	 * the queue in service.
    578	 */
    579	struct hrtimer idle_slice_timer;
    580
    581	/* bfq_queue in service */
    582	struct bfq_queue *in_service_queue;
    583
    584	/* on-disk position of the last served request */
    585	sector_t last_position;
    586
    587	/* position of the last served request for the in-service queue */
    588	sector_t in_serv_last_pos;
    589
    590	/* time of last request completion (ns) */
    591	u64 last_completion;
    592
    593	/* bfqq owning the last completed rq */
    594	struct bfq_queue *last_completed_rq_bfqq;
    595
    596	/* last bfqq created, among those in the root group */
    597	struct bfq_queue *last_bfqq_created;
    598
    599	/* time of last transition from empty to non-empty (ns) */
    600	u64 last_empty_occupied_ns;
    601
    602	/*
    603	 * Flag set to activate the sampling of the total service time
    604	 * of a just-arrived first I/O request (see
    605	 * bfq_update_inject_limit()). This will cause the setting of
    606	 * waited_rq when the request is finally dispatched.
    607	 */
    608	bool wait_dispatch;
    609	/*
    610	 *  If set, then bfq_update_inject_limit() is invoked when
    611	 *  waited_rq is eventually completed.
    612	 */
    613	struct request *waited_rq;
    614	/*
    615	 * True if some request has been injected during the last service hole.
    616	 */
    617	bool rqs_injected;
    618
    619	/* time of first rq dispatch in current observation interval (ns) */
    620	u64 first_dispatch;
    621	/* time of last rq dispatch in current observation interval (ns) */
    622	u64 last_dispatch;
    623
    624	/* beginning of the last budget */
    625	ktime_t last_budget_start;
    626	/* beginning of the last idle slice */
    627	ktime_t last_idling_start;
    628	unsigned long last_idling_start_jiffies;
    629
    630	/* number of samples in current observation interval */
    631	int peak_rate_samples;
    632	/* num of samples of seq dispatches in current observation interval */
    633	u32 sequential_samples;
    634	/* total num of sectors transferred in current observation interval */
    635	u64 tot_sectors_dispatched;
    636	/* max rq size seen during current observation interval (sectors) */
    637	u32 last_rq_max_size;
    638	/* time elapsed from first dispatch in current observ. interval (us) */
    639	u64 delta_from_first;
    640	/*
    641	 * Current estimate of the device peak rate, measured in
    642	 * [(sectors/usec) / 2^BFQ_RATE_SHIFT]. The left-shift by
    643	 * BFQ_RATE_SHIFT is performed to increase precision in
    644	 * fixed-point calculations.
    645	 */
    646	u32 peak_rate;
    647
    648	/* maximum budget allotted to a bfq_queue before rescheduling */
    649	int bfq_max_budget;
    650
    651	/* list of all the bfq_queues active on the device */
    652	struct list_head active_list;
    653	/* list of all the bfq_queues idle on the device */
    654	struct list_head idle_list;
    655
    656	/*
    657	 * Timeout for async/sync requests; when it fires, requests
    658	 * are served in fifo order.
    659	 */
    660	u64 bfq_fifo_expire[2];
    661	/* weight of backward seeks wrt forward ones */
    662	unsigned int bfq_back_penalty;
    663	/* maximum allowed backward seek */
    664	unsigned int bfq_back_max;
    665	/* maximum idling time */
    666	u32 bfq_slice_idle;
    667
    668	/* user-configured max budget value (0 for auto-tuning) */
    669	int bfq_user_max_budget;
    670	/*
    671	 * Timeout for bfq_queues to consume their budget; used to
    672	 * prevent seeky queues from imposing long latencies to
    673	 * sequential or quasi-sequential ones (this also implies that
    674	 * seeky queues cannot receive guarantees in the service
    675	 * domain; after a timeout they are charged for the time they
    676	 * have been in service, to preserve fairness among them, but
    677	 * without service-domain guarantees).
    678	 */
    679	unsigned int bfq_timeout;
    680
    681	/*
    682	 * Force device idling whenever needed to provide accurate
    683	 * service guarantees, without caring about throughput
    684	 * issues. CAVEAT: this may even increase latencies, in case
    685	 * of useless idling for processes that did stop doing I/O.
    686	 */
    687	bool strict_guarantees;
    688
    689	/*
    690	 * Last time at which a queue entered the current burst of
    691	 * queues being activated shortly after each other; for more
    692	 * details about this and the following parameters related to
    693	 * a burst of activations, see the comments on the function
    694	 * bfq_handle_burst.
    695	 */
    696	unsigned long last_ins_in_burst;
    697	/*
    698	 * Reference time interval used to decide whether a queue has
    699	 * been activated shortly after @last_ins_in_burst.
    700	 */
    701	unsigned long bfq_burst_interval;
    702	/* number of queues in the current burst of queue activations */
    703	int burst_size;
    704
    705	/* common parent entity for the queues in the burst */
    706	struct bfq_entity *burst_parent_entity;
    707	/* Maximum burst size above which the current queue-activation
    708	 * burst is deemed as 'large'.
    709	 */
    710	unsigned long bfq_large_burst_thresh;
    711	/* true if a large queue-activation burst is in progress */
    712	bool large_burst;
    713	/*
    714	 * Head of the burst list (as for the above fields, more
    715	 * details in the comments on the function bfq_handle_burst).
    716	 */
    717	struct hlist_head burst_list;
    718
    719	/* if set to true, low-latency heuristics are enabled */
    720	bool low_latency;
    721	/*
    722	 * Maximum factor by which the weight of a weight-raised queue
    723	 * is multiplied.
    724	 */
    725	unsigned int bfq_wr_coeff;
    726	/* maximum duration of a weight-raising period (jiffies) */
    727	unsigned int bfq_wr_max_time;
    728
    729	/* Maximum weight-raising duration for soft real-time processes */
    730	unsigned int bfq_wr_rt_max_time;
    731	/*
    732	 * Minimum idle period after which weight-raising may be
    733	 * reactivated for a queue (in jiffies).
    734	 */
    735	unsigned int bfq_wr_min_idle_time;
    736	/*
    737	 * Minimum period between request arrivals after which
    738	 * weight-raising may be reactivated for an already busy async
    739	 * queue (in jiffies).
    740	 */
    741	unsigned long bfq_wr_min_inter_arr_async;
    742
    743	/* Max service-rate for a soft real-time queue, in sectors/sec */
    744	unsigned int bfq_wr_max_softrt_rate;
    745	/*
    746	 * Cached value of the product ref_rate*ref_wr_duration, used
    747	 * for computing the maximum duration of weight raising
    748	 * automatically.
    749	 */
    750	u64 rate_dur_prod;
    751
    752	/* fallback dummy bfqq for extreme OOM conditions */
    753	struct bfq_queue oom_bfqq;
    754
    755	spinlock_t lock;
    756
    757	/*
    758	 * bic associated with the task issuing current bio for
    759	 * merging. This and the next field are used as a support to
    760	 * be able to perform the bic lookup, needed by bio-merge
    761	 * functions, before the scheduler lock is taken, and thus
    762	 * avoid taking the request-queue lock while the scheduler
    763	 * lock is being held.
    764	 */
    765	struct bfq_io_cq *bio_bic;
    766	/* bfqq associated with the task issuing current bio for merging */
    767	struct bfq_queue *bio_bfqq;
    768
    769	/*
    770	 * Depth limits used in bfq_limit_depth (see comments on the
    771	 * function)
    772	 */
    773	unsigned int word_depths[2][2];
    774	unsigned int full_depth_shift;
    775};
    776
    777enum bfqq_state_flags {
    778	BFQQF_just_created = 0,	/* queue just allocated */
    779	BFQQF_busy,		/* has requests or is in service */
    780	BFQQF_wait_request,	/* waiting for a request */
    781	BFQQF_non_blocking_wait_rq, /*
    782				     * waiting for a request
    783				     * without idling the device
    784				     */
    785	BFQQF_fifo_expire,	/* FIFO checked in this slice */
    786	BFQQF_has_short_ttime,	/* queue has a short think time */
    787	BFQQF_sync,		/* synchronous queue */
    788	BFQQF_IO_bound,		/*
    789				 * bfqq has timed-out at least once
    790				 * having consumed at most 2/10 of
    791				 * its budget
    792				 */
    793	BFQQF_in_large_burst,	/*
    794				 * bfqq activated in a large burst,
    795				 * see comments to bfq_handle_burst.
    796				 */
    797	BFQQF_softrt_update,	/*
    798				 * may need softrt-next-start
    799				 * update
    800				 */
    801	BFQQF_coop,		/* bfqq is shared */
    802	BFQQF_split_coop,	/* shared bfqq will be split */
    803};
    804
    805#define BFQ_BFQQ_FNS(name)						\
    806void bfq_mark_bfqq_##name(struct bfq_queue *bfqq);			\
    807void bfq_clear_bfqq_##name(struct bfq_queue *bfqq);			\
    808int bfq_bfqq_##name(const struct bfq_queue *bfqq);
    809
    810BFQ_BFQQ_FNS(just_created);
    811BFQ_BFQQ_FNS(busy);
    812BFQ_BFQQ_FNS(wait_request);
    813BFQ_BFQQ_FNS(non_blocking_wait_rq);
    814BFQ_BFQQ_FNS(fifo_expire);
    815BFQ_BFQQ_FNS(has_short_ttime);
    816BFQ_BFQQ_FNS(sync);
    817BFQ_BFQQ_FNS(IO_bound);
    818BFQ_BFQQ_FNS(in_large_burst);
    819BFQ_BFQQ_FNS(coop);
    820BFQ_BFQQ_FNS(split_coop);
    821BFQ_BFQQ_FNS(softrt_update);
    822#undef BFQ_BFQQ_FNS
    823
    824/* Expiration reasons. */
    825enum bfqq_expiration {
    826	BFQQE_TOO_IDLE = 0,		/*
    827					 * queue has been idling for
    828					 * too long
    829					 */
    830	BFQQE_BUDGET_TIMEOUT,	/* budget took too long to be used */
    831	BFQQE_BUDGET_EXHAUSTED,	/* budget consumed */
    832	BFQQE_NO_MORE_REQUESTS,	/* the queue has no more requests */
    833	BFQQE_PREEMPTED		/* preemption in progress */
    834};
    835
    836struct bfq_stat {
    837	struct percpu_counter		cpu_cnt;
    838	atomic64_t			aux_cnt;
    839};
    840
    841struct bfqg_stats {
    842	/* basic stats */
    843	struct blkg_rwstat		bytes;
    844	struct blkg_rwstat		ios;
    845#ifdef CONFIG_BFQ_CGROUP_DEBUG
    846	/* number of ios merged */
    847	struct blkg_rwstat		merged;
    848	/* total time spent on device in ns, may not be accurate w/ queueing */
    849	struct blkg_rwstat		service_time;
    850	/* total time spent waiting in scheduler queue in ns */
    851	struct blkg_rwstat		wait_time;
    852	/* number of IOs queued up */
    853	struct blkg_rwstat		queued;
    854	/* total disk time and nr sectors dispatched by this group */
    855	struct bfq_stat		time;
    856	/* sum of number of ios queued across all samples */
    857	struct bfq_stat		avg_queue_size_sum;
    858	/* count of samples taken for average */
    859	struct bfq_stat		avg_queue_size_samples;
    860	/* how many times this group has been removed from service tree */
    861	struct bfq_stat		dequeue;
    862	/* total time spent waiting for it to be assigned a timeslice. */
    863	struct bfq_stat		group_wait_time;
    864	/* time spent idling for this blkcg_gq */
    865	struct bfq_stat		idle_time;
    866	/* total time with empty current active q with other requests queued */
    867	struct bfq_stat		empty_time;
    868	/* fields after this shouldn't be cleared on stat reset */
    869	u64				start_group_wait_time;
    870	u64				start_idle_time;
    871	u64				start_empty_time;
    872	uint16_t			flags;
    873#endif /* CONFIG_BFQ_CGROUP_DEBUG */
    874};
    875
    876#ifdef CONFIG_BFQ_GROUP_IOSCHED
    877
    878/*
    879 * struct bfq_group_data - per-blkcg storage for the blkio subsystem.
    880 *
    881 * @ps: @blkcg_policy_storage that this structure inherits
    882 * @weight: weight of the bfq_group
    883 */
    884struct bfq_group_data {
    885	/* must be the first member */
    886	struct blkcg_policy_data pd;
    887
    888	unsigned int weight;
    889};
    890
    891/**
    892 * struct bfq_group - per (device, cgroup) data structure.
    893 * @entity: schedulable entity to insert into the parent group sched_data.
    894 * @sched_data: own sched_data, to contain child entities (they may be
    895 *              both bfq_queues and bfq_groups).
    896 * @bfqd: the bfq_data for the device this group acts upon.
    897 * @async_bfqq: array of async queues for all the tasks belonging to
    898 *              the group, one queue per ioprio value per ioprio_class,
    899 *              except for the idle class that has only one queue.
    900 * @async_idle_bfqq: async queue for the idle class (ioprio is ignored).
    901 * @my_entity: pointer to @entity, %NULL for the toplevel group; used
    902 *             to avoid too many special cases during group creation/
    903 *             migration.
    904 * @stats: stats for this bfqg.
    905 * @active_entities: number of active entities belonging to the group;
    906 *                   unused for the root group. Used to know whether there
    907 *                   are groups with more than one active @bfq_entity
    908 *                   (see the comments to the function
    909 *                   bfq_bfqq_may_idle()).
    910 * @rq_pos_tree: rbtree sorted by next_request position, used when
    911 *               determining if two or more queues have interleaving
    912 *               requests (see bfq_find_close_cooperator()).
    913 *
    914 * Each (device, cgroup) pair has its own bfq_group, i.e., for each cgroup
    915 * there is a set of bfq_groups, each one collecting the lower-level
    916 * entities belonging to the group that are acting on the same device.
    917 *
    918 * Locking works as follows:
    919 *    o @bfqd is protected by the queue lock, RCU is used to access it
    920 *      from the readers.
    921 *    o All the other fields are protected by the @bfqd queue lock.
    922 */
    923struct bfq_group {
    924	/* must be the first member */
    925	struct blkg_policy_data pd;
    926
    927	/* cached path for this blkg (see comments in bfq_bic_update_cgroup) */
    928	char blkg_path[128];
    929
    930	/* reference counter (see comments in bfq_bic_update_cgroup) */
    931	int ref;
    932	/* Is bfq_group still online? */
    933	bool online;
    934
    935	struct bfq_entity entity;
    936	struct bfq_sched_data sched_data;
    937
    938	void *bfqd;
    939
    940	struct bfq_queue *async_bfqq[2][IOPRIO_NR_LEVELS];
    941	struct bfq_queue *async_idle_bfqq;
    942
    943	struct bfq_entity *my_entity;
    944
    945	int active_entities;
    946
    947	struct rb_root rq_pos_tree;
    948
    949	struct bfqg_stats stats;
    950};
    951
    952#else
    953struct bfq_group {
    954	struct bfq_entity entity;
    955	struct bfq_sched_data sched_data;
    956
    957	struct bfq_queue *async_bfqq[2][IOPRIO_NR_LEVELS];
    958	struct bfq_queue *async_idle_bfqq;
    959
    960	struct rb_root rq_pos_tree;
    961};
    962#endif
    963
    964/* --------------- main algorithm interface ----------------- */
    965
    966#define BFQ_SERVICE_TREE_INIT	((struct bfq_service_tree)		\
    967				{ RB_ROOT, RB_ROOT, NULL, NULL, 0, 0 })
    968
    969extern const int bfq_timeout;
    970
    971struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync);
    972void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, bool is_sync);
    973struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic);
    974void bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq);
    975void bfq_weights_tree_add(struct bfq_data *bfqd, struct bfq_queue *bfqq,
    976			  struct rb_root_cached *root);
    977void __bfq_weights_tree_remove(struct bfq_data *bfqd,
    978			       struct bfq_queue *bfqq,
    979			       struct rb_root_cached *root);
    980void bfq_weights_tree_remove(struct bfq_data *bfqd,
    981			     struct bfq_queue *bfqq);
    982void bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq,
    983		     bool compensate, enum bfqq_expiration reason);
    984void bfq_put_queue(struct bfq_queue *bfqq);
    985void bfq_put_cooperator(struct bfq_queue *bfqq);
    986void bfq_end_wr_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg);
    987void bfq_release_process_ref(struct bfq_data *bfqd, struct bfq_queue *bfqq);
    988void bfq_schedule_dispatch(struct bfq_data *bfqd);
    989void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg);
    990
    991/* ------------ end of main algorithm interface -------------- */
    992
    993/* ---------------- cgroups-support interface ---------------- */
    994
    995void bfqg_stats_update_legacy_io(struct request_queue *q, struct request *rq);
    996void bfqg_stats_update_io_add(struct bfq_group *bfqg, struct bfq_queue *bfqq,
    997			      unsigned int op);
    998void bfqg_stats_update_io_remove(struct bfq_group *bfqg, unsigned int op);
    999void bfqg_stats_update_io_merged(struct bfq_group *bfqg, unsigned int op);
   1000void bfqg_stats_update_completion(struct bfq_group *bfqg, u64 start_time_ns,
   1001				  u64 io_start_time_ns, unsigned int op);
   1002void bfqg_stats_update_dequeue(struct bfq_group *bfqg);
   1003void bfqg_stats_set_start_empty_time(struct bfq_group *bfqg);
   1004void bfqg_stats_update_idle_time(struct bfq_group *bfqg);
   1005void bfqg_stats_set_start_idle_time(struct bfq_group *bfqg);
   1006void bfqg_stats_update_avg_queue_size(struct bfq_group *bfqg);
   1007void bfq_bfqq_move(struct bfq_data *bfqd, struct bfq_queue *bfqq,
   1008		   struct bfq_group *bfqg);
   1009
   1010void bfq_init_entity(struct bfq_entity *entity, struct bfq_group *bfqg);
   1011void bfq_bic_update_cgroup(struct bfq_io_cq *bic, struct bio *bio);
   1012void bfq_end_wr_async(struct bfq_data *bfqd);
   1013struct bfq_group *bfq_bio_bfqg(struct bfq_data *bfqd, struct bio *bio);
   1014struct blkcg_gq *bfqg_to_blkg(struct bfq_group *bfqg);
   1015struct bfq_group *bfqq_group(struct bfq_queue *bfqq);
   1016struct bfq_group *bfq_create_group_hierarchy(struct bfq_data *bfqd, int node);
   1017void bfqg_and_blkg_put(struct bfq_group *bfqg);
   1018
   1019#ifdef CONFIG_BFQ_GROUP_IOSCHED
   1020extern struct cftype bfq_blkcg_legacy_files[];
   1021extern struct cftype bfq_blkg_files[];
   1022extern struct blkcg_policy blkcg_policy_bfq;
   1023#endif
   1024
   1025/* ------------- end of cgroups-support interface ------------- */
   1026
   1027/* - interface of the internal hierarchical B-WF2Q+ scheduler - */
   1028
   1029#ifdef CONFIG_BFQ_GROUP_IOSCHED
   1030/* both next loops stop at one of the child entities of the root group */
   1031#define for_each_entity(entity)	\
   1032	for (; entity ; entity = entity->parent)
   1033
   1034/*
   1035 * For each iteration, compute parent in advance, so as to be safe if
   1036 * entity is deallocated during the iteration. Such a deallocation may
   1037 * happen as a consequence of a bfq_put_queue that frees the bfq_queue
   1038 * containing entity.
   1039 */
   1040#define for_each_entity_safe(entity, parent) \
   1041	for (; entity && ({ parent = entity->parent; 1; }); entity = parent)
   1042
   1043#else /* CONFIG_BFQ_GROUP_IOSCHED */
   1044/*
   1045 * Next two macros are fake loops when cgroups support is not
   1046 * enabled. I fact, in such a case, there is only one level to go up
   1047 * (to reach the root group).
   1048 */
   1049#define for_each_entity(entity)	\
   1050	for (; entity ; entity = NULL)
   1051
   1052#define for_each_entity_safe(entity, parent) \
   1053	for (parent = NULL; entity ; entity = parent)
   1054#endif /* CONFIG_BFQ_GROUP_IOSCHED */
   1055
   1056struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity);
   1057unsigned int bfq_tot_busy_queues(struct bfq_data *bfqd);
   1058struct bfq_service_tree *bfq_entity_service_tree(struct bfq_entity *entity);
   1059struct bfq_entity *bfq_entity_of(struct rb_node *node);
   1060unsigned short bfq_ioprio_to_weight(int ioprio);
   1061void bfq_put_idle_entity(struct bfq_service_tree *st,
   1062			 struct bfq_entity *entity);
   1063struct bfq_service_tree *
   1064__bfq_entity_update_weight_prio(struct bfq_service_tree *old_st,
   1065				struct bfq_entity *entity,
   1066				bool update_class_too);
   1067void bfq_bfqq_served(struct bfq_queue *bfqq, int served);
   1068void bfq_bfqq_charge_time(struct bfq_data *bfqd, struct bfq_queue *bfqq,
   1069			  unsigned long time_ms);
   1070bool __bfq_deactivate_entity(struct bfq_entity *entity,
   1071			     bool ins_into_idle_tree);
   1072bool next_queue_may_preempt(struct bfq_data *bfqd);
   1073struct bfq_queue *bfq_get_next_queue(struct bfq_data *bfqd);
   1074bool __bfq_bfqd_reset_in_service(struct bfq_data *bfqd);
   1075void bfq_deactivate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
   1076			 bool ins_into_idle_tree, bool expiration);
   1077void bfq_activate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq);
   1078void bfq_requeue_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
   1079		      bool expiration);
   1080void bfq_del_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq,
   1081		       bool expiration);
   1082void bfq_add_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq);
   1083
   1084/* --------------- end of interface of B-WF2Q+ ---------------- */
   1085
   1086/* Logging facilities. */
   1087static inline void bfq_bfqq_name(struct bfq_queue *bfqq, char *str, int len)
   1088{
   1089	char type = bfq_bfqq_sync(bfqq) ? 'S' : 'A';
   1090
   1091	if (bfqq->pid != -1)
   1092		snprintf(str, len, "bfq%d%c", bfqq->pid, type);
   1093	else
   1094		snprintf(str, len, "bfqSHARED-%c", type);
   1095}
   1096
   1097#ifdef CONFIG_BFQ_GROUP_IOSCHED
   1098struct bfq_group *bfqq_group(struct bfq_queue *bfqq);
   1099
   1100#define bfq_log_bfqq(bfqd, bfqq, fmt, args...)	do {			\
   1101	char pid_str[MAX_BFQQ_NAME_LENGTH];				\
   1102	if (likely(!blk_trace_note_message_enabled((bfqd)->queue)))	\
   1103		break;							\
   1104	bfq_bfqq_name((bfqq), pid_str, MAX_BFQQ_NAME_LENGTH);		\
   1105	blk_add_cgroup_trace_msg((bfqd)->queue,				\
   1106			&bfqg_to_blkg(bfqq_group(bfqq))->blkcg->css,	\
   1107			"%s " fmt, pid_str, ##args);			\
   1108} while (0)
   1109
   1110#define bfq_log_bfqg(bfqd, bfqg, fmt, args...)	do {			\
   1111	blk_add_cgroup_trace_msg((bfqd)->queue,				\
   1112		&bfqg_to_blkg(bfqg)->blkcg->css, fmt, ##args);		\
   1113} while (0)
   1114
   1115#else /* CONFIG_BFQ_GROUP_IOSCHED */
   1116
   1117#define bfq_log_bfqq(bfqd, bfqq, fmt, args...) do {	\
   1118	char pid_str[MAX_BFQQ_NAME_LENGTH];				\
   1119	if (likely(!blk_trace_note_message_enabled((bfqd)->queue)))	\
   1120		break;							\
   1121	bfq_bfqq_name((bfqq), pid_str, MAX_BFQQ_NAME_LENGTH);		\
   1122	blk_add_trace_msg((bfqd)->queue, "%s " fmt, pid_str, ##args);	\
   1123} while (0)
   1124#define bfq_log_bfqg(bfqd, bfqg, fmt, args...)		do {} while (0)
   1125
   1126#endif /* CONFIG_BFQ_GROUP_IOSCHED */
   1127
   1128#define bfq_log(bfqd, fmt, args...) \
   1129	blk_add_trace_msg((bfqd)->queue, "bfq " fmt, ##args)
   1130
   1131#endif /* _BFQ_H */