bio-integrity.c (12629B)
1// SPDX-License-Identifier: GPL-2.0 2/* 3 * bio-integrity.c - bio data integrity extensions 4 * 5 * Copyright (C) 2007, 2008, 2009 Oracle Corporation 6 * Written by: Martin K. Petersen <martin.petersen@oracle.com> 7 */ 8 9#include <linux/blk-integrity.h> 10#include <linux/mempool.h> 11#include <linux/export.h> 12#include <linux/bio.h> 13#include <linux/workqueue.h> 14#include <linux/slab.h> 15#include "blk.h" 16 17static struct kmem_cache *bip_slab; 18static struct workqueue_struct *kintegrityd_wq; 19 20void blk_flush_integrity(void) 21{ 22 flush_workqueue(kintegrityd_wq); 23} 24 25static void __bio_integrity_free(struct bio_set *bs, 26 struct bio_integrity_payload *bip) 27{ 28 if (bs && mempool_initialized(&bs->bio_integrity_pool)) { 29 if (bip->bip_vec) 30 bvec_free(&bs->bvec_integrity_pool, bip->bip_vec, 31 bip->bip_max_vcnt); 32 mempool_free(bip, &bs->bio_integrity_pool); 33 } else { 34 kfree(bip); 35 } 36} 37 38/** 39 * bio_integrity_alloc - Allocate integrity payload and attach it to bio 40 * @bio: bio to attach integrity metadata to 41 * @gfp_mask: Memory allocation mask 42 * @nr_vecs: Number of integrity metadata scatter-gather elements 43 * 44 * Description: This function prepares a bio for attaching integrity 45 * metadata. nr_vecs specifies the maximum number of pages containing 46 * integrity metadata that can be attached. 47 */ 48struct bio_integrity_payload *bio_integrity_alloc(struct bio *bio, 49 gfp_t gfp_mask, 50 unsigned int nr_vecs) 51{ 52 struct bio_integrity_payload *bip; 53 struct bio_set *bs = bio->bi_pool; 54 unsigned inline_vecs; 55 56 if (WARN_ON_ONCE(bio_has_crypt_ctx(bio))) 57 return ERR_PTR(-EOPNOTSUPP); 58 59 if (!bs || !mempool_initialized(&bs->bio_integrity_pool)) { 60 bip = kmalloc(struct_size(bip, bip_inline_vecs, nr_vecs), gfp_mask); 61 inline_vecs = nr_vecs; 62 } else { 63 bip = mempool_alloc(&bs->bio_integrity_pool, gfp_mask); 64 inline_vecs = BIO_INLINE_VECS; 65 } 66 67 if (unlikely(!bip)) 68 return ERR_PTR(-ENOMEM); 69 70 memset(bip, 0, sizeof(*bip)); 71 72 if (nr_vecs > inline_vecs) { 73 bip->bip_max_vcnt = nr_vecs; 74 bip->bip_vec = bvec_alloc(&bs->bvec_integrity_pool, 75 &bip->bip_max_vcnt, gfp_mask); 76 if (!bip->bip_vec) 77 goto err; 78 } else { 79 bip->bip_vec = bip->bip_inline_vecs; 80 bip->bip_max_vcnt = inline_vecs; 81 } 82 83 bip->bip_bio = bio; 84 bio->bi_integrity = bip; 85 bio->bi_opf |= REQ_INTEGRITY; 86 87 return bip; 88err: 89 __bio_integrity_free(bs, bip); 90 return ERR_PTR(-ENOMEM); 91} 92EXPORT_SYMBOL(bio_integrity_alloc); 93 94/** 95 * bio_integrity_free - Free bio integrity payload 96 * @bio: bio containing bip to be freed 97 * 98 * Description: Used to free the integrity portion of a bio. Usually 99 * called from bio_free(). 100 */ 101void bio_integrity_free(struct bio *bio) 102{ 103 struct bio_integrity_payload *bip = bio_integrity(bio); 104 struct bio_set *bs = bio->bi_pool; 105 106 if (bip->bip_flags & BIP_BLOCK_INTEGRITY) 107 kfree(bvec_virt(bip->bip_vec)); 108 109 __bio_integrity_free(bs, bip); 110 bio->bi_integrity = NULL; 111 bio->bi_opf &= ~REQ_INTEGRITY; 112} 113 114/** 115 * bio_integrity_add_page - Attach integrity metadata 116 * @bio: bio to update 117 * @page: page containing integrity metadata 118 * @len: number of bytes of integrity metadata in page 119 * @offset: start offset within page 120 * 121 * Description: Attach a page containing integrity metadata to bio. 122 */ 123int bio_integrity_add_page(struct bio *bio, struct page *page, 124 unsigned int len, unsigned int offset) 125{ 126 struct bio_integrity_payload *bip = bio_integrity(bio); 127 struct bio_vec *iv; 128 129 if (bip->bip_vcnt >= bip->bip_max_vcnt) { 130 printk(KERN_ERR "%s: bip_vec full\n", __func__); 131 return 0; 132 } 133 134 iv = bip->bip_vec + bip->bip_vcnt; 135 136 if (bip->bip_vcnt && 137 bvec_gap_to_prev(bdev_get_queue(bio->bi_bdev), 138 &bip->bip_vec[bip->bip_vcnt - 1], offset)) 139 return 0; 140 141 iv->bv_page = page; 142 iv->bv_len = len; 143 iv->bv_offset = offset; 144 bip->bip_vcnt++; 145 146 return len; 147} 148EXPORT_SYMBOL(bio_integrity_add_page); 149 150/** 151 * bio_integrity_process - Process integrity metadata for a bio 152 * @bio: bio to generate/verify integrity metadata for 153 * @proc_iter: iterator to process 154 * @proc_fn: Pointer to the relevant processing function 155 */ 156static blk_status_t bio_integrity_process(struct bio *bio, 157 struct bvec_iter *proc_iter, integrity_processing_fn *proc_fn) 158{ 159 struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk); 160 struct blk_integrity_iter iter; 161 struct bvec_iter bviter; 162 struct bio_vec bv; 163 struct bio_integrity_payload *bip = bio_integrity(bio); 164 blk_status_t ret = BLK_STS_OK; 165 166 iter.disk_name = bio->bi_bdev->bd_disk->disk_name; 167 iter.interval = 1 << bi->interval_exp; 168 iter.tuple_size = bi->tuple_size; 169 iter.seed = proc_iter->bi_sector; 170 iter.prot_buf = bvec_virt(bip->bip_vec); 171 172 __bio_for_each_segment(bv, bio, bviter, *proc_iter) { 173 void *kaddr = bvec_kmap_local(&bv); 174 175 iter.data_buf = kaddr; 176 iter.data_size = bv.bv_len; 177 ret = proc_fn(&iter); 178 kunmap_local(kaddr); 179 180 if (ret) 181 break; 182 183 } 184 return ret; 185} 186 187/** 188 * bio_integrity_prep - Prepare bio for integrity I/O 189 * @bio: bio to prepare 190 * 191 * Description: Checks if the bio already has an integrity payload attached. 192 * If it does, the payload has been generated by another kernel subsystem, 193 * and we just pass it through. Otherwise allocates integrity payload. 194 * The bio must have data direction, target device and start sector set priot 195 * to calling. In the WRITE case, integrity metadata will be generated using 196 * the block device's integrity function. In the READ case, the buffer 197 * will be prepared for DMA and a suitable end_io handler set up. 198 */ 199bool bio_integrity_prep(struct bio *bio) 200{ 201 struct bio_integrity_payload *bip; 202 struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk); 203 void *buf; 204 unsigned long start, end; 205 unsigned int len, nr_pages; 206 unsigned int bytes, offset, i; 207 unsigned int intervals; 208 blk_status_t status; 209 210 if (!bi) 211 return true; 212 213 if (bio_op(bio) != REQ_OP_READ && bio_op(bio) != REQ_OP_WRITE) 214 return true; 215 216 if (!bio_sectors(bio)) 217 return true; 218 219 /* Already protected? */ 220 if (bio_integrity(bio)) 221 return true; 222 223 if (bio_data_dir(bio) == READ) { 224 if (!bi->profile->verify_fn || 225 !(bi->flags & BLK_INTEGRITY_VERIFY)) 226 return true; 227 } else { 228 if (!bi->profile->generate_fn || 229 !(bi->flags & BLK_INTEGRITY_GENERATE)) 230 return true; 231 } 232 intervals = bio_integrity_intervals(bi, bio_sectors(bio)); 233 234 /* Allocate kernel buffer for protection data */ 235 len = intervals * bi->tuple_size; 236 buf = kmalloc(len, GFP_NOIO); 237 status = BLK_STS_RESOURCE; 238 if (unlikely(buf == NULL)) { 239 printk(KERN_ERR "could not allocate integrity buffer\n"); 240 goto err_end_io; 241 } 242 243 end = (((unsigned long) buf) + len + PAGE_SIZE - 1) >> PAGE_SHIFT; 244 start = ((unsigned long) buf) >> PAGE_SHIFT; 245 nr_pages = end - start; 246 247 /* Allocate bio integrity payload and integrity vectors */ 248 bip = bio_integrity_alloc(bio, GFP_NOIO, nr_pages); 249 if (IS_ERR(bip)) { 250 printk(KERN_ERR "could not allocate data integrity bioset\n"); 251 kfree(buf); 252 status = BLK_STS_RESOURCE; 253 goto err_end_io; 254 } 255 256 bip->bip_flags |= BIP_BLOCK_INTEGRITY; 257 bip->bip_iter.bi_size = len; 258 bip_set_seed(bip, bio->bi_iter.bi_sector); 259 260 if (bi->flags & BLK_INTEGRITY_IP_CHECKSUM) 261 bip->bip_flags |= BIP_IP_CHECKSUM; 262 263 /* Map it */ 264 offset = offset_in_page(buf); 265 for (i = 0 ; i < nr_pages ; i++) { 266 int ret; 267 bytes = PAGE_SIZE - offset; 268 269 if (len <= 0) 270 break; 271 272 if (bytes > len) 273 bytes = len; 274 275 ret = bio_integrity_add_page(bio, virt_to_page(buf), 276 bytes, offset); 277 278 if (ret == 0) { 279 printk(KERN_ERR "could not attach integrity payload\n"); 280 status = BLK_STS_RESOURCE; 281 goto err_end_io; 282 } 283 284 if (ret < bytes) 285 break; 286 287 buf += bytes; 288 len -= bytes; 289 offset = 0; 290 } 291 292 /* Auto-generate integrity metadata if this is a write */ 293 if (bio_data_dir(bio) == WRITE) { 294 bio_integrity_process(bio, &bio->bi_iter, 295 bi->profile->generate_fn); 296 } else { 297 bip->bio_iter = bio->bi_iter; 298 } 299 return true; 300 301err_end_io: 302 bio->bi_status = status; 303 bio_endio(bio); 304 return false; 305 306} 307EXPORT_SYMBOL(bio_integrity_prep); 308 309/** 310 * bio_integrity_verify_fn - Integrity I/O completion worker 311 * @work: Work struct stored in bio to be verified 312 * 313 * Description: This workqueue function is called to complete a READ 314 * request. The function verifies the transferred integrity metadata 315 * and then calls the original bio end_io function. 316 */ 317static void bio_integrity_verify_fn(struct work_struct *work) 318{ 319 struct bio_integrity_payload *bip = 320 container_of(work, struct bio_integrity_payload, bip_work); 321 struct bio *bio = bip->bip_bio; 322 struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk); 323 324 /* 325 * At the moment verify is called bio's iterator was advanced 326 * during split and completion, we need to rewind iterator to 327 * it's original position. 328 */ 329 bio->bi_status = bio_integrity_process(bio, &bip->bio_iter, 330 bi->profile->verify_fn); 331 bio_integrity_free(bio); 332 bio_endio(bio); 333} 334 335/** 336 * __bio_integrity_endio - Integrity I/O completion function 337 * @bio: Protected bio 338 * 339 * Description: Completion for integrity I/O 340 * 341 * Normally I/O completion is done in interrupt context. However, 342 * verifying I/O integrity is a time-consuming task which must be run 343 * in process context. This function postpones completion 344 * accordingly. 345 */ 346bool __bio_integrity_endio(struct bio *bio) 347{ 348 struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk); 349 struct bio_integrity_payload *bip = bio_integrity(bio); 350 351 if (bio_op(bio) == REQ_OP_READ && !bio->bi_status && 352 (bip->bip_flags & BIP_BLOCK_INTEGRITY) && bi->profile->verify_fn) { 353 INIT_WORK(&bip->bip_work, bio_integrity_verify_fn); 354 queue_work(kintegrityd_wq, &bip->bip_work); 355 return false; 356 } 357 358 bio_integrity_free(bio); 359 return true; 360} 361 362/** 363 * bio_integrity_advance - Advance integrity vector 364 * @bio: bio whose integrity vector to update 365 * @bytes_done: number of data bytes that have been completed 366 * 367 * Description: This function calculates how many integrity bytes the 368 * number of completed data bytes correspond to and advances the 369 * integrity vector accordingly. 370 */ 371void bio_integrity_advance(struct bio *bio, unsigned int bytes_done) 372{ 373 struct bio_integrity_payload *bip = bio_integrity(bio); 374 struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk); 375 unsigned bytes = bio_integrity_bytes(bi, bytes_done >> 9); 376 377 bip->bip_iter.bi_sector += bio_integrity_intervals(bi, bytes_done >> 9); 378 bvec_iter_advance(bip->bip_vec, &bip->bip_iter, bytes); 379} 380 381/** 382 * bio_integrity_trim - Trim integrity vector 383 * @bio: bio whose integrity vector to update 384 * 385 * Description: Used to trim the integrity vector in a cloned bio. 386 */ 387void bio_integrity_trim(struct bio *bio) 388{ 389 struct bio_integrity_payload *bip = bio_integrity(bio); 390 struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk); 391 392 bip->bip_iter.bi_size = bio_integrity_bytes(bi, bio_sectors(bio)); 393} 394EXPORT_SYMBOL(bio_integrity_trim); 395 396/** 397 * bio_integrity_clone - Callback for cloning bios with integrity metadata 398 * @bio: New bio 399 * @bio_src: Original bio 400 * @gfp_mask: Memory allocation mask 401 * 402 * Description: Called to allocate a bip when cloning a bio 403 */ 404int bio_integrity_clone(struct bio *bio, struct bio *bio_src, 405 gfp_t gfp_mask) 406{ 407 struct bio_integrity_payload *bip_src = bio_integrity(bio_src); 408 struct bio_integrity_payload *bip; 409 410 BUG_ON(bip_src == NULL); 411 412 bip = bio_integrity_alloc(bio, gfp_mask, bip_src->bip_vcnt); 413 if (IS_ERR(bip)) 414 return PTR_ERR(bip); 415 416 memcpy(bip->bip_vec, bip_src->bip_vec, 417 bip_src->bip_vcnt * sizeof(struct bio_vec)); 418 419 bip->bip_vcnt = bip_src->bip_vcnt; 420 bip->bip_iter = bip_src->bip_iter; 421 422 return 0; 423} 424 425int bioset_integrity_create(struct bio_set *bs, int pool_size) 426{ 427 if (mempool_initialized(&bs->bio_integrity_pool)) 428 return 0; 429 430 if (mempool_init_slab_pool(&bs->bio_integrity_pool, 431 pool_size, bip_slab)) 432 return -1; 433 434 if (biovec_init_pool(&bs->bvec_integrity_pool, pool_size)) { 435 mempool_exit(&bs->bio_integrity_pool); 436 return -1; 437 } 438 439 return 0; 440} 441EXPORT_SYMBOL(bioset_integrity_create); 442 443void bioset_integrity_free(struct bio_set *bs) 444{ 445 mempool_exit(&bs->bio_integrity_pool); 446 mempool_exit(&bs->bvec_integrity_pool); 447} 448 449void __init bio_integrity_init(void) 450{ 451 /* 452 * kintegrityd won't block much but may burn a lot of CPU cycles. 453 * Make it highpri CPU intensive wq with max concurrency of 1. 454 */ 455 kintegrityd_wq = alloc_workqueue("kintegrityd", WQ_MEM_RECLAIM | 456 WQ_HIGHPRI | WQ_CPU_INTENSIVE, 1); 457 if (!kintegrityd_wq) 458 panic("Failed to create kintegrityd\n"); 459 460 bip_slab = kmem_cache_create("bio_integrity_payload", 461 sizeof(struct bio_integrity_payload) + 462 sizeof(struct bio_vec) * BIO_INLINE_VECS, 463 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 464}