cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

bio.c (49449B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
      4 */
      5#include <linux/mm.h>
      6#include <linux/swap.h>
      7#include <linux/bio.h>
      8#include <linux/blkdev.h>
      9#include <linux/uio.h>
     10#include <linux/iocontext.h>
     11#include <linux/slab.h>
     12#include <linux/init.h>
     13#include <linux/kernel.h>
     14#include <linux/export.h>
     15#include <linux/mempool.h>
     16#include <linux/workqueue.h>
     17#include <linux/cgroup.h>
     18#include <linux/highmem.h>
     19#include <linux/sched/sysctl.h>
     20#include <linux/blk-crypto.h>
     21#include <linux/xarray.h>
     22
     23#include <trace/events/block.h>
     24#include "blk.h"
     25#include "blk-rq-qos.h"
     26#include "blk-cgroup.h"
     27
     28struct bio_alloc_cache {
     29	struct bio		*free_list;
     30	unsigned int		nr;
     31};
     32
     33static struct biovec_slab {
     34	int nr_vecs;
     35	char *name;
     36	struct kmem_cache *slab;
     37} bvec_slabs[] __read_mostly = {
     38	{ .nr_vecs = 16, .name = "biovec-16" },
     39	{ .nr_vecs = 64, .name = "biovec-64" },
     40	{ .nr_vecs = 128, .name = "biovec-128" },
     41	{ .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
     42};
     43
     44static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
     45{
     46	switch (nr_vecs) {
     47	/* smaller bios use inline vecs */
     48	case 5 ... 16:
     49		return &bvec_slabs[0];
     50	case 17 ... 64:
     51		return &bvec_slabs[1];
     52	case 65 ... 128:
     53		return &bvec_slabs[2];
     54	case 129 ... BIO_MAX_VECS:
     55		return &bvec_slabs[3];
     56	default:
     57		BUG();
     58		return NULL;
     59	}
     60}
     61
     62/*
     63 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
     64 * IO code that does not need private memory pools.
     65 */
     66struct bio_set fs_bio_set;
     67EXPORT_SYMBOL(fs_bio_set);
     68
     69/*
     70 * Our slab pool management
     71 */
     72struct bio_slab {
     73	struct kmem_cache *slab;
     74	unsigned int slab_ref;
     75	unsigned int slab_size;
     76	char name[8];
     77};
     78static DEFINE_MUTEX(bio_slab_lock);
     79static DEFINE_XARRAY(bio_slabs);
     80
     81static struct bio_slab *create_bio_slab(unsigned int size)
     82{
     83	struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
     84
     85	if (!bslab)
     86		return NULL;
     87
     88	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
     89	bslab->slab = kmem_cache_create(bslab->name, size,
     90			ARCH_KMALLOC_MINALIGN,
     91			SLAB_HWCACHE_ALIGN | SLAB_TYPESAFE_BY_RCU, NULL);
     92	if (!bslab->slab)
     93		goto fail_alloc_slab;
     94
     95	bslab->slab_ref = 1;
     96	bslab->slab_size = size;
     97
     98	if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
     99		return bslab;
    100
    101	kmem_cache_destroy(bslab->slab);
    102
    103fail_alloc_slab:
    104	kfree(bslab);
    105	return NULL;
    106}
    107
    108static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
    109{
    110	return bs->front_pad + sizeof(struct bio) + bs->back_pad;
    111}
    112
    113static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
    114{
    115	unsigned int size = bs_bio_slab_size(bs);
    116	struct bio_slab *bslab;
    117
    118	mutex_lock(&bio_slab_lock);
    119	bslab = xa_load(&bio_slabs, size);
    120	if (bslab)
    121		bslab->slab_ref++;
    122	else
    123		bslab = create_bio_slab(size);
    124	mutex_unlock(&bio_slab_lock);
    125
    126	if (bslab)
    127		return bslab->slab;
    128	return NULL;
    129}
    130
    131static void bio_put_slab(struct bio_set *bs)
    132{
    133	struct bio_slab *bslab = NULL;
    134	unsigned int slab_size = bs_bio_slab_size(bs);
    135
    136	mutex_lock(&bio_slab_lock);
    137
    138	bslab = xa_load(&bio_slabs, slab_size);
    139	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
    140		goto out;
    141
    142	WARN_ON_ONCE(bslab->slab != bs->bio_slab);
    143
    144	WARN_ON(!bslab->slab_ref);
    145
    146	if (--bslab->slab_ref)
    147		goto out;
    148
    149	xa_erase(&bio_slabs, slab_size);
    150
    151	kmem_cache_destroy(bslab->slab);
    152	kfree(bslab);
    153
    154out:
    155	mutex_unlock(&bio_slab_lock);
    156}
    157
    158void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
    159{
    160	BUG_ON(nr_vecs > BIO_MAX_VECS);
    161
    162	if (nr_vecs == BIO_MAX_VECS)
    163		mempool_free(bv, pool);
    164	else if (nr_vecs > BIO_INLINE_VECS)
    165		kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
    166}
    167
    168/*
    169 * Make the first allocation restricted and don't dump info on allocation
    170 * failures, since we'll fall back to the mempool in case of failure.
    171 */
    172static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
    173{
    174	return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
    175		__GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
    176}
    177
    178struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
    179		gfp_t gfp_mask)
    180{
    181	struct biovec_slab *bvs = biovec_slab(*nr_vecs);
    182
    183	if (WARN_ON_ONCE(!bvs))
    184		return NULL;
    185
    186	/*
    187	 * Upgrade the nr_vecs request to take full advantage of the allocation.
    188	 * We also rely on this in the bvec_free path.
    189	 */
    190	*nr_vecs = bvs->nr_vecs;
    191
    192	/*
    193	 * Try a slab allocation first for all smaller allocations.  If that
    194	 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
    195	 * The mempool is sized to handle up to BIO_MAX_VECS entries.
    196	 */
    197	if (*nr_vecs < BIO_MAX_VECS) {
    198		struct bio_vec *bvl;
    199
    200		bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
    201		if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
    202			return bvl;
    203		*nr_vecs = BIO_MAX_VECS;
    204	}
    205
    206	return mempool_alloc(pool, gfp_mask);
    207}
    208
    209void bio_uninit(struct bio *bio)
    210{
    211#ifdef CONFIG_BLK_CGROUP
    212	if (bio->bi_blkg) {
    213		blkg_put(bio->bi_blkg);
    214		bio->bi_blkg = NULL;
    215	}
    216#endif
    217	if (bio_integrity(bio))
    218		bio_integrity_free(bio);
    219
    220	bio_crypt_free_ctx(bio);
    221}
    222EXPORT_SYMBOL(bio_uninit);
    223
    224static void bio_free(struct bio *bio)
    225{
    226	struct bio_set *bs = bio->bi_pool;
    227	void *p = bio;
    228
    229	WARN_ON_ONCE(!bs);
    230
    231	bio_uninit(bio);
    232	bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
    233	mempool_free(p - bs->front_pad, &bs->bio_pool);
    234}
    235
    236/*
    237 * Users of this function have their own bio allocation. Subsequently,
    238 * they must remember to pair any call to bio_init() with bio_uninit()
    239 * when IO has completed, or when the bio is released.
    240 */
    241void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table,
    242	      unsigned short max_vecs, unsigned int opf)
    243{
    244	bio->bi_next = NULL;
    245	bio->bi_bdev = bdev;
    246	bio->bi_opf = opf;
    247	bio->bi_flags = 0;
    248	bio->bi_ioprio = 0;
    249	bio->bi_status = 0;
    250	bio->bi_iter.bi_sector = 0;
    251	bio->bi_iter.bi_size = 0;
    252	bio->bi_iter.bi_idx = 0;
    253	bio->bi_iter.bi_bvec_done = 0;
    254	bio->bi_end_io = NULL;
    255	bio->bi_private = NULL;
    256#ifdef CONFIG_BLK_CGROUP
    257	bio->bi_blkg = NULL;
    258	bio->bi_issue.value = 0;
    259	if (bdev)
    260		bio_associate_blkg(bio);
    261#ifdef CONFIG_BLK_CGROUP_IOCOST
    262	bio->bi_iocost_cost = 0;
    263#endif
    264#endif
    265#ifdef CONFIG_BLK_INLINE_ENCRYPTION
    266	bio->bi_crypt_context = NULL;
    267#endif
    268#ifdef CONFIG_BLK_DEV_INTEGRITY
    269	bio->bi_integrity = NULL;
    270#endif
    271	bio->bi_vcnt = 0;
    272
    273	atomic_set(&bio->__bi_remaining, 1);
    274	atomic_set(&bio->__bi_cnt, 1);
    275	bio->bi_cookie = BLK_QC_T_NONE;
    276
    277	bio->bi_max_vecs = max_vecs;
    278	bio->bi_io_vec = table;
    279	bio->bi_pool = NULL;
    280}
    281EXPORT_SYMBOL(bio_init);
    282
    283/**
    284 * bio_reset - reinitialize a bio
    285 * @bio:	bio to reset
    286 * @bdev:	block device to use the bio for
    287 * @opf:	operation and flags for bio
    288 *
    289 * Description:
    290 *   After calling bio_reset(), @bio will be in the same state as a freshly
    291 *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
    292 *   preserved are the ones that are initialized by bio_alloc_bioset(). See
    293 *   comment in struct bio.
    294 */
    295void bio_reset(struct bio *bio, struct block_device *bdev, unsigned int opf)
    296{
    297	bio_uninit(bio);
    298	memset(bio, 0, BIO_RESET_BYTES);
    299	atomic_set(&bio->__bi_remaining, 1);
    300	bio->bi_bdev = bdev;
    301	if (bio->bi_bdev)
    302		bio_associate_blkg(bio);
    303	bio->bi_opf = opf;
    304}
    305EXPORT_SYMBOL(bio_reset);
    306
    307static struct bio *__bio_chain_endio(struct bio *bio)
    308{
    309	struct bio *parent = bio->bi_private;
    310
    311	if (bio->bi_status && !parent->bi_status)
    312		parent->bi_status = bio->bi_status;
    313	bio_put(bio);
    314	return parent;
    315}
    316
    317static void bio_chain_endio(struct bio *bio)
    318{
    319	bio_endio(__bio_chain_endio(bio));
    320}
    321
    322/**
    323 * bio_chain - chain bio completions
    324 * @bio: the target bio
    325 * @parent: the parent bio of @bio
    326 *
    327 * The caller won't have a bi_end_io called when @bio completes - instead,
    328 * @parent's bi_end_io won't be called until both @parent and @bio have
    329 * completed; the chained bio will also be freed when it completes.
    330 *
    331 * The caller must not set bi_private or bi_end_io in @bio.
    332 */
    333void bio_chain(struct bio *bio, struct bio *parent)
    334{
    335	BUG_ON(bio->bi_private || bio->bi_end_io);
    336
    337	bio->bi_private = parent;
    338	bio->bi_end_io	= bio_chain_endio;
    339	bio_inc_remaining(parent);
    340}
    341EXPORT_SYMBOL(bio_chain);
    342
    343struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev,
    344		unsigned int nr_pages, unsigned int opf, gfp_t gfp)
    345{
    346	struct bio *new = bio_alloc(bdev, nr_pages, opf, gfp);
    347
    348	if (bio) {
    349		bio_chain(bio, new);
    350		submit_bio(bio);
    351	}
    352
    353	return new;
    354}
    355EXPORT_SYMBOL_GPL(blk_next_bio);
    356
    357static void bio_alloc_rescue(struct work_struct *work)
    358{
    359	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
    360	struct bio *bio;
    361
    362	while (1) {
    363		spin_lock(&bs->rescue_lock);
    364		bio = bio_list_pop(&bs->rescue_list);
    365		spin_unlock(&bs->rescue_lock);
    366
    367		if (!bio)
    368			break;
    369
    370		submit_bio_noacct(bio);
    371	}
    372}
    373
    374static void punt_bios_to_rescuer(struct bio_set *bs)
    375{
    376	struct bio_list punt, nopunt;
    377	struct bio *bio;
    378
    379	if (WARN_ON_ONCE(!bs->rescue_workqueue))
    380		return;
    381	/*
    382	 * In order to guarantee forward progress we must punt only bios that
    383	 * were allocated from this bio_set; otherwise, if there was a bio on
    384	 * there for a stacking driver higher up in the stack, processing it
    385	 * could require allocating bios from this bio_set, and doing that from
    386	 * our own rescuer would be bad.
    387	 *
    388	 * Since bio lists are singly linked, pop them all instead of trying to
    389	 * remove from the middle of the list:
    390	 */
    391
    392	bio_list_init(&punt);
    393	bio_list_init(&nopunt);
    394
    395	while ((bio = bio_list_pop(&current->bio_list[0])))
    396		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
    397	current->bio_list[0] = nopunt;
    398
    399	bio_list_init(&nopunt);
    400	while ((bio = bio_list_pop(&current->bio_list[1])))
    401		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
    402	current->bio_list[1] = nopunt;
    403
    404	spin_lock(&bs->rescue_lock);
    405	bio_list_merge(&bs->rescue_list, &punt);
    406	spin_unlock(&bs->rescue_lock);
    407
    408	queue_work(bs->rescue_workqueue, &bs->rescue_work);
    409}
    410
    411static struct bio *bio_alloc_percpu_cache(struct block_device *bdev,
    412		unsigned short nr_vecs, unsigned int opf, gfp_t gfp,
    413		struct bio_set *bs)
    414{
    415	struct bio_alloc_cache *cache;
    416	struct bio *bio;
    417
    418	cache = per_cpu_ptr(bs->cache, get_cpu());
    419	if (!cache->free_list) {
    420		put_cpu();
    421		return NULL;
    422	}
    423	bio = cache->free_list;
    424	cache->free_list = bio->bi_next;
    425	cache->nr--;
    426	put_cpu();
    427
    428	bio_init(bio, bdev, nr_vecs ? bio->bi_inline_vecs : NULL, nr_vecs, opf);
    429	bio->bi_pool = bs;
    430	return bio;
    431}
    432
    433/**
    434 * bio_alloc_bioset - allocate a bio for I/O
    435 * @bdev:	block device to allocate the bio for (can be %NULL)
    436 * @nr_vecs:	number of bvecs to pre-allocate
    437 * @opf:	operation and flags for bio
    438 * @gfp_mask:   the GFP_* mask given to the slab allocator
    439 * @bs:		the bio_set to allocate from.
    440 *
    441 * Allocate a bio from the mempools in @bs.
    442 *
    443 * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
    444 * allocate a bio.  This is due to the mempool guarantees.  To make this work,
    445 * callers must never allocate more than 1 bio at a time from the general pool.
    446 * Callers that need to allocate more than 1 bio must always submit the
    447 * previously allocated bio for IO before attempting to allocate a new one.
    448 * Failure to do so can cause deadlocks under memory pressure.
    449 *
    450 * Note that when running under submit_bio_noacct() (i.e. any block driver),
    451 * bios are not submitted until after you return - see the code in
    452 * submit_bio_noacct() that converts recursion into iteration, to prevent
    453 * stack overflows.
    454 *
    455 * This would normally mean allocating multiple bios under submit_bio_noacct()
    456 * would be susceptible to deadlocks, but we have
    457 * deadlock avoidance code that resubmits any blocked bios from a rescuer
    458 * thread.
    459 *
    460 * However, we do not guarantee forward progress for allocations from other
    461 * mempools. Doing multiple allocations from the same mempool under
    462 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
    463 * for per bio allocations.
    464 *
    465 * If REQ_ALLOC_CACHE is set, the final put of the bio MUST be done from process
    466 * context, not hard/soft IRQ.
    467 *
    468 * Returns: Pointer to new bio on success, NULL on failure.
    469 */
    470struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs,
    471			     unsigned int opf, gfp_t gfp_mask,
    472			     struct bio_set *bs)
    473{
    474	gfp_t saved_gfp = gfp_mask;
    475	struct bio *bio;
    476	void *p;
    477
    478	/* should not use nobvec bioset for nr_vecs > 0 */
    479	if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_vecs > 0))
    480		return NULL;
    481
    482	if (opf & REQ_ALLOC_CACHE) {
    483		if (bs->cache && nr_vecs <= BIO_INLINE_VECS) {
    484			bio = bio_alloc_percpu_cache(bdev, nr_vecs, opf,
    485						     gfp_mask, bs);
    486			if (bio)
    487				return bio;
    488			/*
    489			 * No cached bio available, bio returned below marked with
    490			 * REQ_ALLOC_CACHE to particpate in per-cpu alloc cache.
    491			 */
    492		} else {
    493			opf &= ~REQ_ALLOC_CACHE;
    494		}
    495	}
    496
    497	/*
    498	 * submit_bio_noacct() converts recursion to iteration; this means if
    499	 * we're running beneath it, any bios we allocate and submit will not be
    500	 * submitted (and thus freed) until after we return.
    501	 *
    502	 * This exposes us to a potential deadlock if we allocate multiple bios
    503	 * from the same bio_set() while running underneath submit_bio_noacct().
    504	 * If we were to allocate multiple bios (say a stacking block driver
    505	 * that was splitting bios), we would deadlock if we exhausted the
    506	 * mempool's reserve.
    507	 *
    508	 * We solve this, and guarantee forward progress, with a rescuer
    509	 * workqueue per bio_set. If we go to allocate and there are bios on
    510	 * current->bio_list, we first try the allocation without
    511	 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
    512	 * blocking to the rescuer workqueue before we retry with the original
    513	 * gfp_flags.
    514	 */
    515	if (current->bio_list &&
    516	    (!bio_list_empty(&current->bio_list[0]) ||
    517	     !bio_list_empty(&current->bio_list[1])) &&
    518	    bs->rescue_workqueue)
    519		gfp_mask &= ~__GFP_DIRECT_RECLAIM;
    520
    521	p = mempool_alloc(&bs->bio_pool, gfp_mask);
    522	if (!p && gfp_mask != saved_gfp) {
    523		punt_bios_to_rescuer(bs);
    524		gfp_mask = saved_gfp;
    525		p = mempool_alloc(&bs->bio_pool, gfp_mask);
    526	}
    527	if (unlikely(!p))
    528		return NULL;
    529
    530	bio = p + bs->front_pad;
    531	if (nr_vecs > BIO_INLINE_VECS) {
    532		struct bio_vec *bvl = NULL;
    533
    534		bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
    535		if (!bvl && gfp_mask != saved_gfp) {
    536			punt_bios_to_rescuer(bs);
    537			gfp_mask = saved_gfp;
    538			bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
    539		}
    540		if (unlikely(!bvl))
    541			goto err_free;
    542
    543		bio_init(bio, bdev, bvl, nr_vecs, opf);
    544	} else if (nr_vecs) {
    545		bio_init(bio, bdev, bio->bi_inline_vecs, BIO_INLINE_VECS, opf);
    546	} else {
    547		bio_init(bio, bdev, NULL, 0, opf);
    548	}
    549
    550	bio->bi_pool = bs;
    551	return bio;
    552
    553err_free:
    554	mempool_free(p, &bs->bio_pool);
    555	return NULL;
    556}
    557EXPORT_SYMBOL(bio_alloc_bioset);
    558
    559/**
    560 * bio_kmalloc - kmalloc a bio
    561 * @nr_vecs:	number of bio_vecs to allocate
    562 * @gfp_mask:   the GFP_* mask given to the slab allocator
    563 *
    564 * Use kmalloc to allocate a bio (including bvecs).  The bio must be initialized
    565 * using bio_init() before use.  To free a bio returned from this function use
    566 * kfree() after calling bio_uninit().  A bio returned from this function can
    567 * be reused by calling bio_uninit() before calling bio_init() again.
    568 *
    569 * Note that unlike bio_alloc() or bio_alloc_bioset() allocations from this
    570 * function are not backed by a mempool can can fail.  Do not use this function
    571 * for allocations in the file system I/O path.
    572 *
    573 * Returns: Pointer to new bio on success, NULL on failure.
    574 */
    575struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask)
    576{
    577	struct bio *bio;
    578
    579	if (nr_vecs > UIO_MAXIOV)
    580		return NULL;
    581	return kmalloc(struct_size(bio, bi_inline_vecs, nr_vecs), gfp_mask);
    582}
    583EXPORT_SYMBOL(bio_kmalloc);
    584
    585void zero_fill_bio(struct bio *bio)
    586{
    587	struct bio_vec bv;
    588	struct bvec_iter iter;
    589
    590	bio_for_each_segment(bv, bio, iter)
    591		memzero_bvec(&bv);
    592}
    593EXPORT_SYMBOL(zero_fill_bio);
    594
    595/**
    596 * bio_truncate - truncate the bio to small size of @new_size
    597 * @bio:	the bio to be truncated
    598 * @new_size:	new size for truncating the bio
    599 *
    600 * Description:
    601 *   Truncate the bio to new size of @new_size. If bio_op(bio) is
    602 *   REQ_OP_READ, zero the truncated part. This function should only
    603 *   be used for handling corner cases, such as bio eod.
    604 */
    605static void bio_truncate(struct bio *bio, unsigned new_size)
    606{
    607	struct bio_vec bv;
    608	struct bvec_iter iter;
    609	unsigned int done = 0;
    610	bool truncated = false;
    611
    612	if (new_size >= bio->bi_iter.bi_size)
    613		return;
    614
    615	if (bio_op(bio) != REQ_OP_READ)
    616		goto exit;
    617
    618	bio_for_each_segment(bv, bio, iter) {
    619		if (done + bv.bv_len > new_size) {
    620			unsigned offset;
    621
    622			if (!truncated)
    623				offset = new_size - done;
    624			else
    625				offset = 0;
    626			zero_user(bv.bv_page, bv.bv_offset + offset,
    627				  bv.bv_len - offset);
    628			truncated = true;
    629		}
    630		done += bv.bv_len;
    631	}
    632
    633 exit:
    634	/*
    635	 * Don't touch bvec table here and make it really immutable, since
    636	 * fs bio user has to retrieve all pages via bio_for_each_segment_all
    637	 * in its .end_bio() callback.
    638	 *
    639	 * It is enough to truncate bio by updating .bi_size since we can make
    640	 * correct bvec with the updated .bi_size for drivers.
    641	 */
    642	bio->bi_iter.bi_size = new_size;
    643}
    644
    645/**
    646 * guard_bio_eod - truncate a BIO to fit the block device
    647 * @bio:	bio to truncate
    648 *
    649 * This allows us to do IO even on the odd last sectors of a device, even if the
    650 * block size is some multiple of the physical sector size.
    651 *
    652 * We'll just truncate the bio to the size of the device, and clear the end of
    653 * the buffer head manually.  Truly out-of-range accesses will turn into actual
    654 * I/O errors, this only handles the "we need to be able to do I/O at the final
    655 * sector" case.
    656 */
    657void guard_bio_eod(struct bio *bio)
    658{
    659	sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
    660
    661	if (!maxsector)
    662		return;
    663
    664	/*
    665	 * If the *whole* IO is past the end of the device,
    666	 * let it through, and the IO layer will turn it into
    667	 * an EIO.
    668	 */
    669	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
    670		return;
    671
    672	maxsector -= bio->bi_iter.bi_sector;
    673	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
    674		return;
    675
    676	bio_truncate(bio, maxsector << 9);
    677}
    678
    679#define ALLOC_CACHE_MAX		512
    680#define ALLOC_CACHE_SLACK	 64
    681
    682static void bio_alloc_cache_prune(struct bio_alloc_cache *cache,
    683				  unsigned int nr)
    684{
    685	unsigned int i = 0;
    686	struct bio *bio;
    687
    688	while ((bio = cache->free_list) != NULL) {
    689		cache->free_list = bio->bi_next;
    690		cache->nr--;
    691		bio_free(bio);
    692		if (++i == nr)
    693			break;
    694	}
    695}
    696
    697static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node)
    698{
    699	struct bio_set *bs;
    700
    701	bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead);
    702	if (bs->cache) {
    703		struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu);
    704
    705		bio_alloc_cache_prune(cache, -1U);
    706	}
    707	return 0;
    708}
    709
    710static void bio_alloc_cache_destroy(struct bio_set *bs)
    711{
    712	int cpu;
    713
    714	if (!bs->cache)
    715		return;
    716
    717	cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
    718	for_each_possible_cpu(cpu) {
    719		struct bio_alloc_cache *cache;
    720
    721		cache = per_cpu_ptr(bs->cache, cpu);
    722		bio_alloc_cache_prune(cache, -1U);
    723	}
    724	free_percpu(bs->cache);
    725	bs->cache = NULL;
    726}
    727
    728/**
    729 * bio_put - release a reference to a bio
    730 * @bio:   bio to release reference to
    731 *
    732 * Description:
    733 *   Put a reference to a &struct bio, either one you have gotten with
    734 *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
    735 **/
    736void bio_put(struct bio *bio)
    737{
    738	if (unlikely(bio_flagged(bio, BIO_REFFED))) {
    739		BUG_ON(!atomic_read(&bio->__bi_cnt));
    740		if (!atomic_dec_and_test(&bio->__bi_cnt))
    741			return;
    742	}
    743
    744	if (bio->bi_opf & REQ_ALLOC_CACHE) {
    745		struct bio_alloc_cache *cache;
    746
    747		bio_uninit(bio);
    748		cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu());
    749		bio->bi_next = cache->free_list;
    750		cache->free_list = bio;
    751		if (++cache->nr > ALLOC_CACHE_MAX + ALLOC_CACHE_SLACK)
    752			bio_alloc_cache_prune(cache, ALLOC_CACHE_SLACK);
    753		put_cpu();
    754	} else {
    755		bio_free(bio);
    756	}
    757}
    758EXPORT_SYMBOL(bio_put);
    759
    760static int __bio_clone(struct bio *bio, struct bio *bio_src, gfp_t gfp)
    761{
    762	bio_set_flag(bio, BIO_CLONED);
    763	if (bio_flagged(bio_src, BIO_THROTTLED))
    764		bio_set_flag(bio, BIO_THROTTLED);
    765	bio->bi_ioprio = bio_src->bi_ioprio;
    766	bio->bi_iter = bio_src->bi_iter;
    767
    768	if (bio->bi_bdev) {
    769		if (bio->bi_bdev == bio_src->bi_bdev &&
    770		    bio_flagged(bio_src, BIO_REMAPPED))
    771			bio_set_flag(bio, BIO_REMAPPED);
    772		bio_clone_blkg_association(bio, bio_src);
    773	}
    774
    775	if (bio_crypt_clone(bio, bio_src, gfp) < 0)
    776		return -ENOMEM;
    777	if (bio_integrity(bio_src) &&
    778	    bio_integrity_clone(bio, bio_src, gfp) < 0)
    779		return -ENOMEM;
    780	return 0;
    781}
    782
    783/**
    784 * bio_alloc_clone - clone a bio that shares the original bio's biovec
    785 * @bdev: block_device to clone onto
    786 * @bio_src: bio to clone from
    787 * @gfp: allocation priority
    788 * @bs: bio_set to allocate from
    789 *
    790 * Allocate a new bio that is a clone of @bio_src. The caller owns the returned
    791 * bio, but not the actual data it points to.
    792 *
    793 * The caller must ensure that the return bio is not freed before @bio_src.
    794 */
    795struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src,
    796		gfp_t gfp, struct bio_set *bs)
    797{
    798	struct bio *bio;
    799
    800	bio = bio_alloc_bioset(bdev, 0, bio_src->bi_opf, gfp, bs);
    801	if (!bio)
    802		return NULL;
    803
    804	if (__bio_clone(bio, bio_src, gfp) < 0) {
    805		bio_put(bio);
    806		return NULL;
    807	}
    808	bio->bi_io_vec = bio_src->bi_io_vec;
    809
    810	return bio;
    811}
    812EXPORT_SYMBOL(bio_alloc_clone);
    813
    814/**
    815 * bio_init_clone - clone a bio that shares the original bio's biovec
    816 * @bdev: block_device to clone onto
    817 * @bio: bio to clone into
    818 * @bio_src: bio to clone from
    819 * @gfp: allocation priority
    820 *
    821 * Initialize a new bio in caller provided memory that is a clone of @bio_src.
    822 * The caller owns the returned bio, but not the actual data it points to.
    823 *
    824 * The caller must ensure that @bio_src is not freed before @bio.
    825 */
    826int bio_init_clone(struct block_device *bdev, struct bio *bio,
    827		struct bio *bio_src, gfp_t gfp)
    828{
    829	int ret;
    830
    831	bio_init(bio, bdev, bio_src->bi_io_vec, 0, bio_src->bi_opf);
    832	ret = __bio_clone(bio, bio_src, gfp);
    833	if (ret)
    834		bio_uninit(bio);
    835	return ret;
    836}
    837EXPORT_SYMBOL(bio_init_clone);
    838
    839/**
    840 * bio_full - check if the bio is full
    841 * @bio:	bio to check
    842 * @len:	length of one segment to be added
    843 *
    844 * Return true if @bio is full and one segment with @len bytes can't be
    845 * added to the bio, otherwise return false
    846 */
    847static inline bool bio_full(struct bio *bio, unsigned len)
    848{
    849	if (bio->bi_vcnt >= bio->bi_max_vecs)
    850		return true;
    851	if (bio->bi_iter.bi_size > UINT_MAX - len)
    852		return true;
    853	return false;
    854}
    855
    856static inline bool page_is_mergeable(const struct bio_vec *bv,
    857		struct page *page, unsigned int len, unsigned int off,
    858		bool *same_page)
    859{
    860	size_t bv_end = bv->bv_offset + bv->bv_len;
    861	phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
    862	phys_addr_t page_addr = page_to_phys(page);
    863
    864	if (vec_end_addr + 1 != page_addr + off)
    865		return false;
    866	if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
    867		return false;
    868
    869	*same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
    870	if (*same_page)
    871		return true;
    872	return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE);
    873}
    874
    875/**
    876 * __bio_try_merge_page - try appending data to an existing bvec.
    877 * @bio: destination bio
    878 * @page: start page to add
    879 * @len: length of the data to add
    880 * @off: offset of the data relative to @page
    881 * @same_page: return if the segment has been merged inside the same page
    882 *
    883 * Try to add the data at @page + @off to the last bvec of @bio.  This is a
    884 * useful optimisation for file systems with a block size smaller than the
    885 * page size.
    886 *
    887 * Warn if (@len, @off) crosses pages in case that @same_page is true.
    888 *
    889 * Return %true on success or %false on failure.
    890 */
    891static bool __bio_try_merge_page(struct bio *bio, struct page *page,
    892		unsigned int len, unsigned int off, bool *same_page)
    893{
    894	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
    895		return false;
    896
    897	if (bio->bi_vcnt > 0) {
    898		struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
    899
    900		if (page_is_mergeable(bv, page, len, off, same_page)) {
    901			if (bio->bi_iter.bi_size > UINT_MAX - len) {
    902				*same_page = false;
    903				return false;
    904			}
    905			bv->bv_len += len;
    906			bio->bi_iter.bi_size += len;
    907			return true;
    908		}
    909	}
    910	return false;
    911}
    912
    913/*
    914 * Try to merge a page into a segment, while obeying the hardware segment
    915 * size limit.  This is not for normal read/write bios, but for passthrough
    916 * or Zone Append operations that we can't split.
    917 */
    918static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
    919				 struct page *page, unsigned len,
    920				 unsigned offset, bool *same_page)
    921{
    922	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
    923	unsigned long mask = queue_segment_boundary(q);
    924	phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
    925	phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
    926
    927	if ((addr1 | mask) != (addr2 | mask))
    928		return false;
    929	if (bv->bv_len + len > queue_max_segment_size(q))
    930		return false;
    931	return __bio_try_merge_page(bio, page, len, offset, same_page);
    932}
    933
    934/**
    935 * bio_add_hw_page - attempt to add a page to a bio with hw constraints
    936 * @q: the target queue
    937 * @bio: destination bio
    938 * @page: page to add
    939 * @len: vec entry length
    940 * @offset: vec entry offset
    941 * @max_sectors: maximum number of sectors that can be added
    942 * @same_page: return if the segment has been merged inside the same page
    943 *
    944 * Add a page to a bio while respecting the hardware max_sectors, max_segment
    945 * and gap limitations.
    946 */
    947int bio_add_hw_page(struct request_queue *q, struct bio *bio,
    948		struct page *page, unsigned int len, unsigned int offset,
    949		unsigned int max_sectors, bool *same_page)
    950{
    951	struct bio_vec *bvec;
    952
    953	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
    954		return 0;
    955
    956	if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
    957		return 0;
    958
    959	if (bio->bi_vcnt > 0) {
    960		if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
    961			return len;
    962
    963		/*
    964		 * If the queue doesn't support SG gaps and adding this segment
    965		 * would create a gap, disallow it.
    966		 */
    967		bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
    968		if (bvec_gap_to_prev(q, bvec, offset))
    969			return 0;
    970	}
    971
    972	if (bio_full(bio, len))
    973		return 0;
    974
    975	if (bio->bi_vcnt >= queue_max_segments(q))
    976		return 0;
    977
    978	bvec = &bio->bi_io_vec[bio->bi_vcnt];
    979	bvec->bv_page = page;
    980	bvec->bv_len = len;
    981	bvec->bv_offset = offset;
    982	bio->bi_vcnt++;
    983	bio->bi_iter.bi_size += len;
    984	return len;
    985}
    986
    987/**
    988 * bio_add_pc_page	- attempt to add page to passthrough bio
    989 * @q: the target queue
    990 * @bio: destination bio
    991 * @page: page to add
    992 * @len: vec entry length
    993 * @offset: vec entry offset
    994 *
    995 * Attempt to add a page to the bio_vec maplist. This can fail for a
    996 * number of reasons, such as the bio being full or target block device
    997 * limitations. The target block device must allow bio's up to PAGE_SIZE,
    998 * so it is always possible to add a single page to an empty bio.
    999 *
   1000 * This should only be used by passthrough bios.
   1001 */
   1002int bio_add_pc_page(struct request_queue *q, struct bio *bio,
   1003		struct page *page, unsigned int len, unsigned int offset)
   1004{
   1005	bool same_page = false;
   1006	return bio_add_hw_page(q, bio, page, len, offset,
   1007			queue_max_hw_sectors(q), &same_page);
   1008}
   1009EXPORT_SYMBOL(bio_add_pc_page);
   1010
   1011/**
   1012 * bio_add_zone_append_page - attempt to add page to zone-append bio
   1013 * @bio: destination bio
   1014 * @page: page to add
   1015 * @len: vec entry length
   1016 * @offset: vec entry offset
   1017 *
   1018 * Attempt to add a page to the bio_vec maplist of a bio that will be submitted
   1019 * for a zone-append request. This can fail for a number of reasons, such as the
   1020 * bio being full or the target block device is not a zoned block device or
   1021 * other limitations of the target block device. The target block device must
   1022 * allow bio's up to PAGE_SIZE, so it is always possible to add a single page
   1023 * to an empty bio.
   1024 *
   1025 * Returns: number of bytes added to the bio, or 0 in case of a failure.
   1026 */
   1027int bio_add_zone_append_page(struct bio *bio, struct page *page,
   1028			     unsigned int len, unsigned int offset)
   1029{
   1030	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
   1031	bool same_page = false;
   1032
   1033	if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND))
   1034		return 0;
   1035
   1036	if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
   1037		return 0;
   1038
   1039	return bio_add_hw_page(q, bio, page, len, offset,
   1040			       queue_max_zone_append_sectors(q), &same_page);
   1041}
   1042EXPORT_SYMBOL_GPL(bio_add_zone_append_page);
   1043
   1044/**
   1045 * __bio_add_page - add page(s) to a bio in a new segment
   1046 * @bio: destination bio
   1047 * @page: start page to add
   1048 * @len: length of the data to add, may cross pages
   1049 * @off: offset of the data relative to @page, may cross pages
   1050 *
   1051 * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
   1052 * that @bio has space for another bvec.
   1053 */
   1054void __bio_add_page(struct bio *bio, struct page *page,
   1055		unsigned int len, unsigned int off)
   1056{
   1057	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
   1058
   1059	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
   1060	WARN_ON_ONCE(bio_full(bio, len));
   1061
   1062	bv->bv_page = page;
   1063	bv->bv_offset = off;
   1064	bv->bv_len = len;
   1065
   1066	bio->bi_iter.bi_size += len;
   1067	bio->bi_vcnt++;
   1068
   1069	if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
   1070		bio_set_flag(bio, BIO_WORKINGSET);
   1071}
   1072EXPORT_SYMBOL_GPL(__bio_add_page);
   1073
   1074/**
   1075 *	bio_add_page	-	attempt to add page(s) to bio
   1076 *	@bio: destination bio
   1077 *	@page: start page to add
   1078 *	@len: vec entry length, may cross pages
   1079 *	@offset: vec entry offset relative to @page, may cross pages
   1080 *
   1081 *	Attempt to add page(s) to the bio_vec maplist. This will only fail
   1082 *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
   1083 */
   1084int bio_add_page(struct bio *bio, struct page *page,
   1085		 unsigned int len, unsigned int offset)
   1086{
   1087	bool same_page = false;
   1088
   1089	if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
   1090		if (bio_full(bio, len))
   1091			return 0;
   1092		__bio_add_page(bio, page, len, offset);
   1093	}
   1094	return len;
   1095}
   1096EXPORT_SYMBOL(bio_add_page);
   1097
   1098/**
   1099 * bio_add_folio - Attempt to add part of a folio to a bio.
   1100 * @bio: BIO to add to.
   1101 * @folio: Folio to add.
   1102 * @len: How many bytes from the folio to add.
   1103 * @off: First byte in this folio to add.
   1104 *
   1105 * Filesystems that use folios can call this function instead of calling
   1106 * bio_add_page() for each page in the folio.  If @off is bigger than
   1107 * PAGE_SIZE, this function can create a bio_vec that starts in a page
   1108 * after the bv_page.  BIOs do not support folios that are 4GiB or larger.
   1109 *
   1110 * Return: Whether the addition was successful.
   1111 */
   1112bool bio_add_folio(struct bio *bio, struct folio *folio, size_t len,
   1113		   size_t off)
   1114{
   1115	if (len > UINT_MAX || off > UINT_MAX)
   1116		return false;
   1117	return bio_add_page(bio, &folio->page, len, off) > 0;
   1118}
   1119
   1120void __bio_release_pages(struct bio *bio, bool mark_dirty)
   1121{
   1122	struct bvec_iter_all iter_all;
   1123	struct bio_vec *bvec;
   1124
   1125	bio_for_each_segment_all(bvec, bio, iter_all) {
   1126		if (mark_dirty && !PageCompound(bvec->bv_page))
   1127			set_page_dirty_lock(bvec->bv_page);
   1128		put_page(bvec->bv_page);
   1129	}
   1130}
   1131EXPORT_SYMBOL_GPL(__bio_release_pages);
   1132
   1133void bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
   1134{
   1135	size_t size = iov_iter_count(iter);
   1136
   1137	WARN_ON_ONCE(bio->bi_max_vecs);
   1138
   1139	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
   1140		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
   1141		size_t max_sectors = queue_max_zone_append_sectors(q);
   1142
   1143		size = min(size, max_sectors << SECTOR_SHIFT);
   1144	}
   1145
   1146	bio->bi_vcnt = iter->nr_segs;
   1147	bio->bi_io_vec = (struct bio_vec *)iter->bvec;
   1148	bio->bi_iter.bi_bvec_done = iter->iov_offset;
   1149	bio->bi_iter.bi_size = size;
   1150	bio_set_flag(bio, BIO_NO_PAGE_REF);
   1151	bio_set_flag(bio, BIO_CLONED);
   1152}
   1153
   1154static void bio_put_pages(struct page **pages, size_t size, size_t off)
   1155{
   1156	size_t i, nr = DIV_ROUND_UP(size + (off & ~PAGE_MASK), PAGE_SIZE);
   1157
   1158	for (i = 0; i < nr; i++)
   1159		put_page(pages[i]);
   1160}
   1161
   1162#define PAGE_PTRS_PER_BVEC     (sizeof(struct bio_vec) / sizeof(struct page *))
   1163
   1164/**
   1165 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
   1166 * @bio: bio to add pages to
   1167 * @iter: iov iterator describing the region to be mapped
   1168 *
   1169 * Pins pages from *iter and appends them to @bio's bvec array. The
   1170 * pages will have to be released using put_page() when done.
   1171 * For multi-segment *iter, this function only adds pages from the
   1172 * next non-empty segment of the iov iterator.
   1173 */
   1174static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
   1175{
   1176	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
   1177	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
   1178	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
   1179	struct page **pages = (struct page **)bv;
   1180	bool same_page = false;
   1181	ssize_t size, left;
   1182	unsigned len, i;
   1183	size_t offset;
   1184
   1185	/*
   1186	 * Move page array up in the allocated memory for the bio vecs as far as
   1187	 * possible so that we can start filling biovecs from the beginning
   1188	 * without overwriting the temporary page array.
   1189	*/
   1190	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
   1191	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
   1192
   1193	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
   1194	if (unlikely(size <= 0))
   1195		return size ? size : -EFAULT;
   1196
   1197	for (left = size, i = 0; left > 0; left -= len, i++) {
   1198		struct page *page = pages[i];
   1199
   1200		len = min_t(size_t, PAGE_SIZE - offset, left);
   1201
   1202		if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
   1203			if (same_page)
   1204				put_page(page);
   1205		} else {
   1206			if (WARN_ON_ONCE(bio_full(bio, len))) {
   1207				bio_put_pages(pages + i, left, offset);
   1208				return -EINVAL;
   1209			}
   1210			__bio_add_page(bio, page, len, offset);
   1211		}
   1212		offset = 0;
   1213	}
   1214
   1215	iov_iter_advance(iter, size);
   1216	return 0;
   1217}
   1218
   1219static int __bio_iov_append_get_pages(struct bio *bio, struct iov_iter *iter)
   1220{
   1221	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
   1222	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
   1223	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
   1224	unsigned int max_append_sectors = queue_max_zone_append_sectors(q);
   1225	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
   1226	struct page **pages = (struct page **)bv;
   1227	ssize_t size, left;
   1228	unsigned len, i;
   1229	size_t offset;
   1230	int ret = 0;
   1231
   1232	if (WARN_ON_ONCE(!max_append_sectors))
   1233		return 0;
   1234
   1235	/*
   1236	 * Move page array up in the allocated memory for the bio vecs as far as
   1237	 * possible so that we can start filling biovecs from the beginning
   1238	 * without overwriting the temporary page array.
   1239	 */
   1240	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
   1241	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
   1242
   1243	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
   1244	if (unlikely(size <= 0))
   1245		return size ? size : -EFAULT;
   1246
   1247	for (left = size, i = 0; left > 0; left -= len, i++) {
   1248		struct page *page = pages[i];
   1249		bool same_page = false;
   1250
   1251		len = min_t(size_t, PAGE_SIZE - offset, left);
   1252		if (bio_add_hw_page(q, bio, page, len, offset,
   1253				max_append_sectors, &same_page) != len) {
   1254			bio_put_pages(pages + i, left, offset);
   1255			ret = -EINVAL;
   1256			break;
   1257		}
   1258		if (same_page)
   1259			put_page(page);
   1260		offset = 0;
   1261	}
   1262
   1263	iov_iter_advance(iter, size - left);
   1264	return ret;
   1265}
   1266
   1267/**
   1268 * bio_iov_iter_get_pages - add user or kernel pages to a bio
   1269 * @bio: bio to add pages to
   1270 * @iter: iov iterator describing the region to be added
   1271 *
   1272 * This takes either an iterator pointing to user memory, or one pointing to
   1273 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
   1274 * map them into the kernel. On IO completion, the caller should put those
   1275 * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
   1276 * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
   1277 * to ensure the bvecs and pages stay referenced until the submitted I/O is
   1278 * completed by a call to ->ki_complete() or returns with an error other than
   1279 * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
   1280 * on IO completion. If it isn't, then pages should be released.
   1281 *
   1282 * The function tries, but does not guarantee, to pin as many pages as
   1283 * fit into the bio, or are requested in @iter, whatever is smaller. If
   1284 * MM encounters an error pinning the requested pages, it stops. Error
   1285 * is returned only if 0 pages could be pinned.
   1286 *
   1287 * It's intended for direct IO, so doesn't do PSI tracking, the caller is
   1288 * responsible for setting BIO_WORKINGSET if necessary.
   1289 */
   1290int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
   1291{
   1292	int ret = 0;
   1293
   1294	if (iov_iter_is_bvec(iter)) {
   1295		bio_iov_bvec_set(bio, iter);
   1296		iov_iter_advance(iter, bio->bi_iter.bi_size);
   1297		return 0;
   1298	}
   1299
   1300	do {
   1301		if (bio_op(bio) == REQ_OP_ZONE_APPEND)
   1302			ret = __bio_iov_append_get_pages(bio, iter);
   1303		else
   1304			ret = __bio_iov_iter_get_pages(bio, iter);
   1305	} while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
   1306
   1307	/* don't account direct I/O as memory stall */
   1308	bio_clear_flag(bio, BIO_WORKINGSET);
   1309	return bio->bi_vcnt ? 0 : ret;
   1310}
   1311EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
   1312
   1313static void submit_bio_wait_endio(struct bio *bio)
   1314{
   1315	complete(bio->bi_private);
   1316}
   1317
   1318/**
   1319 * submit_bio_wait - submit a bio, and wait until it completes
   1320 * @bio: The &struct bio which describes the I/O
   1321 *
   1322 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
   1323 * bio_endio() on failure.
   1324 *
   1325 * WARNING: Unlike to how submit_bio() is usually used, this function does not
   1326 * result in bio reference to be consumed. The caller must drop the reference
   1327 * on his own.
   1328 */
   1329int submit_bio_wait(struct bio *bio)
   1330{
   1331	DECLARE_COMPLETION_ONSTACK_MAP(done,
   1332			bio->bi_bdev->bd_disk->lockdep_map);
   1333	unsigned long hang_check;
   1334
   1335	bio->bi_private = &done;
   1336	bio->bi_end_io = submit_bio_wait_endio;
   1337	bio->bi_opf |= REQ_SYNC;
   1338	submit_bio(bio);
   1339
   1340	/* Prevent hang_check timer from firing at us during very long I/O */
   1341	hang_check = sysctl_hung_task_timeout_secs;
   1342	if (hang_check)
   1343		while (!wait_for_completion_io_timeout(&done,
   1344					hang_check * (HZ/2)))
   1345			;
   1346	else
   1347		wait_for_completion_io(&done);
   1348
   1349	return blk_status_to_errno(bio->bi_status);
   1350}
   1351EXPORT_SYMBOL(submit_bio_wait);
   1352
   1353void __bio_advance(struct bio *bio, unsigned bytes)
   1354{
   1355	if (bio_integrity(bio))
   1356		bio_integrity_advance(bio, bytes);
   1357
   1358	bio_crypt_advance(bio, bytes);
   1359	bio_advance_iter(bio, &bio->bi_iter, bytes);
   1360}
   1361EXPORT_SYMBOL(__bio_advance);
   1362
   1363void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
   1364			struct bio *src, struct bvec_iter *src_iter)
   1365{
   1366	while (src_iter->bi_size && dst_iter->bi_size) {
   1367		struct bio_vec src_bv = bio_iter_iovec(src, *src_iter);
   1368		struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter);
   1369		unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len);
   1370		void *src_buf = bvec_kmap_local(&src_bv);
   1371		void *dst_buf = bvec_kmap_local(&dst_bv);
   1372
   1373		memcpy(dst_buf, src_buf, bytes);
   1374
   1375		kunmap_local(dst_buf);
   1376		kunmap_local(src_buf);
   1377
   1378		bio_advance_iter_single(src, src_iter, bytes);
   1379		bio_advance_iter_single(dst, dst_iter, bytes);
   1380	}
   1381}
   1382EXPORT_SYMBOL(bio_copy_data_iter);
   1383
   1384/**
   1385 * bio_copy_data - copy contents of data buffers from one bio to another
   1386 * @src: source bio
   1387 * @dst: destination bio
   1388 *
   1389 * Stops when it reaches the end of either @src or @dst - that is, copies
   1390 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
   1391 */
   1392void bio_copy_data(struct bio *dst, struct bio *src)
   1393{
   1394	struct bvec_iter src_iter = src->bi_iter;
   1395	struct bvec_iter dst_iter = dst->bi_iter;
   1396
   1397	bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
   1398}
   1399EXPORT_SYMBOL(bio_copy_data);
   1400
   1401void bio_free_pages(struct bio *bio)
   1402{
   1403	struct bio_vec *bvec;
   1404	struct bvec_iter_all iter_all;
   1405
   1406	bio_for_each_segment_all(bvec, bio, iter_all)
   1407		__free_page(bvec->bv_page);
   1408}
   1409EXPORT_SYMBOL(bio_free_pages);
   1410
   1411/*
   1412 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
   1413 * for performing direct-IO in BIOs.
   1414 *
   1415 * The problem is that we cannot run set_page_dirty() from interrupt context
   1416 * because the required locks are not interrupt-safe.  So what we can do is to
   1417 * mark the pages dirty _before_ performing IO.  And in interrupt context,
   1418 * check that the pages are still dirty.   If so, fine.  If not, redirty them
   1419 * in process context.
   1420 *
   1421 * We special-case compound pages here: normally this means reads into hugetlb
   1422 * pages.  The logic in here doesn't really work right for compound pages
   1423 * because the VM does not uniformly chase down the head page in all cases.
   1424 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
   1425 * handle them at all.  So we skip compound pages here at an early stage.
   1426 *
   1427 * Note that this code is very hard to test under normal circumstances because
   1428 * direct-io pins the pages with get_user_pages().  This makes
   1429 * is_page_cache_freeable return false, and the VM will not clean the pages.
   1430 * But other code (eg, flusher threads) could clean the pages if they are mapped
   1431 * pagecache.
   1432 *
   1433 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
   1434 * deferred bio dirtying paths.
   1435 */
   1436
   1437/*
   1438 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
   1439 */
   1440void bio_set_pages_dirty(struct bio *bio)
   1441{
   1442	struct bio_vec *bvec;
   1443	struct bvec_iter_all iter_all;
   1444
   1445	bio_for_each_segment_all(bvec, bio, iter_all) {
   1446		if (!PageCompound(bvec->bv_page))
   1447			set_page_dirty_lock(bvec->bv_page);
   1448	}
   1449}
   1450
   1451/*
   1452 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
   1453 * If they are, then fine.  If, however, some pages are clean then they must
   1454 * have been written out during the direct-IO read.  So we take another ref on
   1455 * the BIO and re-dirty the pages in process context.
   1456 *
   1457 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
   1458 * here on.  It will run one put_page() against each page and will run one
   1459 * bio_put() against the BIO.
   1460 */
   1461
   1462static void bio_dirty_fn(struct work_struct *work);
   1463
   1464static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
   1465static DEFINE_SPINLOCK(bio_dirty_lock);
   1466static struct bio *bio_dirty_list;
   1467
   1468/*
   1469 * This runs in process context
   1470 */
   1471static void bio_dirty_fn(struct work_struct *work)
   1472{
   1473	struct bio *bio, *next;
   1474
   1475	spin_lock_irq(&bio_dirty_lock);
   1476	next = bio_dirty_list;
   1477	bio_dirty_list = NULL;
   1478	spin_unlock_irq(&bio_dirty_lock);
   1479
   1480	while ((bio = next) != NULL) {
   1481		next = bio->bi_private;
   1482
   1483		bio_release_pages(bio, true);
   1484		bio_put(bio);
   1485	}
   1486}
   1487
   1488void bio_check_pages_dirty(struct bio *bio)
   1489{
   1490	struct bio_vec *bvec;
   1491	unsigned long flags;
   1492	struct bvec_iter_all iter_all;
   1493
   1494	bio_for_each_segment_all(bvec, bio, iter_all) {
   1495		if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
   1496			goto defer;
   1497	}
   1498
   1499	bio_release_pages(bio, false);
   1500	bio_put(bio);
   1501	return;
   1502defer:
   1503	spin_lock_irqsave(&bio_dirty_lock, flags);
   1504	bio->bi_private = bio_dirty_list;
   1505	bio_dirty_list = bio;
   1506	spin_unlock_irqrestore(&bio_dirty_lock, flags);
   1507	schedule_work(&bio_dirty_work);
   1508}
   1509
   1510static inline bool bio_remaining_done(struct bio *bio)
   1511{
   1512	/*
   1513	 * If we're not chaining, then ->__bi_remaining is always 1 and
   1514	 * we always end io on the first invocation.
   1515	 */
   1516	if (!bio_flagged(bio, BIO_CHAIN))
   1517		return true;
   1518
   1519	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
   1520
   1521	if (atomic_dec_and_test(&bio->__bi_remaining)) {
   1522		bio_clear_flag(bio, BIO_CHAIN);
   1523		return true;
   1524	}
   1525
   1526	return false;
   1527}
   1528
   1529/**
   1530 * bio_endio - end I/O on a bio
   1531 * @bio:	bio
   1532 *
   1533 * Description:
   1534 *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
   1535 *   way to end I/O on a bio. No one should call bi_end_io() directly on a
   1536 *   bio unless they own it and thus know that it has an end_io function.
   1537 *
   1538 *   bio_endio() can be called several times on a bio that has been chained
   1539 *   using bio_chain().  The ->bi_end_io() function will only be called the
   1540 *   last time.
   1541 **/
   1542void bio_endio(struct bio *bio)
   1543{
   1544again:
   1545	if (!bio_remaining_done(bio))
   1546		return;
   1547	if (!bio_integrity_endio(bio))
   1548		return;
   1549
   1550	rq_qos_done_bio(bio);
   1551
   1552	if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
   1553		trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio);
   1554		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
   1555	}
   1556
   1557	/*
   1558	 * Need to have a real endio function for chained bios, otherwise
   1559	 * various corner cases will break (like stacking block devices that
   1560	 * save/restore bi_end_io) - however, we want to avoid unbounded
   1561	 * recursion and blowing the stack. Tail call optimization would
   1562	 * handle this, but compiling with frame pointers also disables
   1563	 * gcc's sibling call optimization.
   1564	 */
   1565	if (bio->bi_end_io == bio_chain_endio) {
   1566		bio = __bio_chain_endio(bio);
   1567		goto again;
   1568	}
   1569
   1570	blk_throtl_bio_endio(bio);
   1571	/* release cgroup info */
   1572	bio_uninit(bio);
   1573	if (bio->bi_end_io)
   1574		bio->bi_end_io(bio);
   1575}
   1576EXPORT_SYMBOL(bio_endio);
   1577
   1578/**
   1579 * bio_split - split a bio
   1580 * @bio:	bio to split
   1581 * @sectors:	number of sectors to split from the front of @bio
   1582 * @gfp:	gfp mask
   1583 * @bs:		bio set to allocate from
   1584 *
   1585 * Allocates and returns a new bio which represents @sectors from the start of
   1586 * @bio, and updates @bio to represent the remaining sectors.
   1587 *
   1588 * Unless this is a discard request the newly allocated bio will point
   1589 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
   1590 * neither @bio nor @bs are freed before the split bio.
   1591 */
   1592struct bio *bio_split(struct bio *bio, int sectors,
   1593		      gfp_t gfp, struct bio_set *bs)
   1594{
   1595	struct bio *split;
   1596
   1597	BUG_ON(sectors <= 0);
   1598	BUG_ON(sectors >= bio_sectors(bio));
   1599
   1600	/* Zone append commands cannot be split */
   1601	if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
   1602		return NULL;
   1603
   1604	split = bio_alloc_clone(bio->bi_bdev, bio, gfp, bs);
   1605	if (!split)
   1606		return NULL;
   1607
   1608	split->bi_iter.bi_size = sectors << 9;
   1609
   1610	if (bio_integrity(split))
   1611		bio_integrity_trim(split);
   1612
   1613	bio_advance(bio, split->bi_iter.bi_size);
   1614
   1615	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
   1616		bio_set_flag(split, BIO_TRACE_COMPLETION);
   1617
   1618	return split;
   1619}
   1620EXPORT_SYMBOL(bio_split);
   1621
   1622/**
   1623 * bio_trim - trim a bio
   1624 * @bio:	bio to trim
   1625 * @offset:	number of sectors to trim from the front of @bio
   1626 * @size:	size we want to trim @bio to, in sectors
   1627 *
   1628 * This function is typically used for bios that are cloned and submitted
   1629 * to the underlying device in parts.
   1630 */
   1631void bio_trim(struct bio *bio, sector_t offset, sector_t size)
   1632{
   1633	if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS ||
   1634			 offset + size > bio_sectors(bio)))
   1635		return;
   1636
   1637	size <<= 9;
   1638	if (offset == 0 && size == bio->bi_iter.bi_size)
   1639		return;
   1640
   1641	bio_advance(bio, offset << 9);
   1642	bio->bi_iter.bi_size = size;
   1643
   1644	if (bio_integrity(bio))
   1645		bio_integrity_trim(bio);
   1646}
   1647EXPORT_SYMBOL_GPL(bio_trim);
   1648
   1649/*
   1650 * create memory pools for biovec's in a bio_set.
   1651 * use the global biovec slabs created for general use.
   1652 */
   1653int biovec_init_pool(mempool_t *pool, int pool_entries)
   1654{
   1655	struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
   1656
   1657	return mempool_init_slab_pool(pool, pool_entries, bp->slab);
   1658}
   1659
   1660/*
   1661 * bioset_exit - exit a bioset initialized with bioset_init()
   1662 *
   1663 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
   1664 * kzalloc()).
   1665 */
   1666void bioset_exit(struct bio_set *bs)
   1667{
   1668	bio_alloc_cache_destroy(bs);
   1669	if (bs->rescue_workqueue)
   1670		destroy_workqueue(bs->rescue_workqueue);
   1671	bs->rescue_workqueue = NULL;
   1672
   1673	mempool_exit(&bs->bio_pool);
   1674	mempool_exit(&bs->bvec_pool);
   1675
   1676	bioset_integrity_free(bs);
   1677	if (bs->bio_slab)
   1678		bio_put_slab(bs);
   1679	bs->bio_slab = NULL;
   1680}
   1681EXPORT_SYMBOL(bioset_exit);
   1682
   1683/**
   1684 * bioset_init - Initialize a bio_set
   1685 * @bs:		pool to initialize
   1686 * @pool_size:	Number of bio and bio_vecs to cache in the mempool
   1687 * @front_pad:	Number of bytes to allocate in front of the returned bio
   1688 * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS
   1689 *              and %BIOSET_NEED_RESCUER
   1690 *
   1691 * Description:
   1692 *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
   1693 *    to ask for a number of bytes to be allocated in front of the bio.
   1694 *    Front pad allocation is useful for embedding the bio inside
   1695 *    another structure, to avoid allocating extra data to go with the bio.
   1696 *    Note that the bio must be embedded at the END of that structure always,
   1697 *    or things will break badly.
   1698 *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
   1699 *    for allocating iovecs.  This pool is not needed e.g. for bio_init_clone().
   1700 *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used
   1701 *    to dispatch queued requests when the mempool runs out of space.
   1702 *
   1703 */
   1704int bioset_init(struct bio_set *bs,
   1705		unsigned int pool_size,
   1706		unsigned int front_pad,
   1707		int flags)
   1708{
   1709	bs->front_pad = front_pad;
   1710	if (flags & BIOSET_NEED_BVECS)
   1711		bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
   1712	else
   1713		bs->back_pad = 0;
   1714
   1715	spin_lock_init(&bs->rescue_lock);
   1716	bio_list_init(&bs->rescue_list);
   1717	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
   1718
   1719	bs->bio_slab = bio_find_or_create_slab(bs);
   1720	if (!bs->bio_slab)
   1721		return -ENOMEM;
   1722
   1723	if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
   1724		goto bad;
   1725
   1726	if ((flags & BIOSET_NEED_BVECS) &&
   1727	    biovec_init_pool(&bs->bvec_pool, pool_size))
   1728		goto bad;
   1729
   1730	if (flags & BIOSET_NEED_RESCUER) {
   1731		bs->rescue_workqueue = alloc_workqueue("bioset",
   1732							WQ_MEM_RECLAIM, 0);
   1733		if (!bs->rescue_workqueue)
   1734			goto bad;
   1735	}
   1736	if (flags & BIOSET_PERCPU_CACHE) {
   1737		bs->cache = alloc_percpu(struct bio_alloc_cache);
   1738		if (!bs->cache)
   1739			goto bad;
   1740		cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
   1741	}
   1742
   1743	return 0;
   1744bad:
   1745	bioset_exit(bs);
   1746	return -ENOMEM;
   1747}
   1748EXPORT_SYMBOL(bioset_init);
   1749
   1750static int __init init_bio(void)
   1751{
   1752	int i;
   1753
   1754	bio_integrity_init();
   1755
   1756	for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
   1757		struct biovec_slab *bvs = bvec_slabs + i;
   1758
   1759		bvs->slab = kmem_cache_create(bvs->name,
   1760				bvs->nr_vecs * sizeof(struct bio_vec), 0,
   1761				SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
   1762	}
   1763
   1764	cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL,
   1765					bio_cpu_dead);
   1766
   1767	if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
   1768		panic("bio: can't allocate bios\n");
   1769
   1770	if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
   1771		panic("bio: can't create integrity pool\n");
   1772
   1773	return 0;
   1774}
   1775subsys_initcall(init_bio);