blk-crypto.c (12349B)
1// SPDX-License-Identifier: GPL-2.0 2/* 3 * Copyright 2019 Google LLC 4 */ 5 6/* 7 * Refer to Documentation/block/inline-encryption.rst for detailed explanation. 8 */ 9 10#define pr_fmt(fmt) "blk-crypto: " fmt 11 12#include <linux/bio.h> 13#include <linux/blkdev.h> 14#include <linux/blk-crypto-profile.h> 15#include <linux/module.h> 16#include <linux/slab.h> 17 18#include "blk-crypto-internal.h" 19 20const struct blk_crypto_mode blk_crypto_modes[] = { 21 [BLK_ENCRYPTION_MODE_AES_256_XTS] = { 22 .name = "AES-256-XTS", 23 .cipher_str = "xts(aes)", 24 .keysize = 64, 25 .ivsize = 16, 26 }, 27 [BLK_ENCRYPTION_MODE_AES_128_CBC_ESSIV] = { 28 .name = "AES-128-CBC-ESSIV", 29 .cipher_str = "essiv(cbc(aes),sha256)", 30 .keysize = 16, 31 .ivsize = 16, 32 }, 33 [BLK_ENCRYPTION_MODE_ADIANTUM] = { 34 .name = "Adiantum", 35 .cipher_str = "adiantum(xchacha12,aes)", 36 .keysize = 32, 37 .ivsize = 32, 38 }, 39}; 40 41/* 42 * This number needs to be at least (the number of threads doing IO 43 * concurrently) * (maximum recursive depth of a bio), so that we don't 44 * deadlock on crypt_ctx allocations. The default is chosen to be the same 45 * as the default number of post read contexts in both EXT4 and F2FS. 46 */ 47static int num_prealloc_crypt_ctxs = 128; 48 49module_param(num_prealloc_crypt_ctxs, int, 0444); 50MODULE_PARM_DESC(num_prealloc_crypt_ctxs, 51 "Number of bio crypto contexts to preallocate"); 52 53static struct kmem_cache *bio_crypt_ctx_cache; 54static mempool_t *bio_crypt_ctx_pool; 55 56static int __init bio_crypt_ctx_init(void) 57{ 58 size_t i; 59 60 bio_crypt_ctx_cache = KMEM_CACHE(bio_crypt_ctx, 0); 61 if (!bio_crypt_ctx_cache) 62 goto out_no_mem; 63 64 bio_crypt_ctx_pool = mempool_create_slab_pool(num_prealloc_crypt_ctxs, 65 bio_crypt_ctx_cache); 66 if (!bio_crypt_ctx_pool) 67 goto out_no_mem; 68 69 /* This is assumed in various places. */ 70 BUILD_BUG_ON(BLK_ENCRYPTION_MODE_INVALID != 0); 71 72 /* Sanity check that no algorithm exceeds the defined limits. */ 73 for (i = 0; i < BLK_ENCRYPTION_MODE_MAX; i++) { 74 BUG_ON(blk_crypto_modes[i].keysize > BLK_CRYPTO_MAX_KEY_SIZE); 75 BUG_ON(blk_crypto_modes[i].ivsize > BLK_CRYPTO_MAX_IV_SIZE); 76 } 77 78 return 0; 79out_no_mem: 80 panic("Failed to allocate mem for bio crypt ctxs\n"); 81} 82subsys_initcall(bio_crypt_ctx_init); 83 84void bio_crypt_set_ctx(struct bio *bio, const struct blk_crypto_key *key, 85 const u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE], gfp_t gfp_mask) 86{ 87 struct bio_crypt_ctx *bc; 88 89 /* 90 * The caller must use a gfp_mask that contains __GFP_DIRECT_RECLAIM so 91 * that the mempool_alloc() can't fail. 92 */ 93 WARN_ON_ONCE(!(gfp_mask & __GFP_DIRECT_RECLAIM)); 94 95 bc = mempool_alloc(bio_crypt_ctx_pool, gfp_mask); 96 97 bc->bc_key = key; 98 memcpy(bc->bc_dun, dun, sizeof(bc->bc_dun)); 99 100 bio->bi_crypt_context = bc; 101} 102 103void __bio_crypt_free_ctx(struct bio *bio) 104{ 105 mempool_free(bio->bi_crypt_context, bio_crypt_ctx_pool); 106 bio->bi_crypt_context = NULL; 107} 108 109int __bio_crypt_clone(struct bio *dst, struct bio *src, gfp_t gfp_mask) 110{ 111 dst->bi_crypt_context = mempool_alloc(bio_crypt_ctx_pool, gfp_mask); 112 if (!dst->bi_crypt_context) 113 return -ENOMEM; 114 *dst->bi_crypt_context = *src->bi_crypt_context; 115 return 0; 116} 117 118/* Increments @dun by @inc, treating @dun as a multi-limb integer. */ 119void bio_crypt_dun_increment(u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE], 120 unsigned int inc) 121{ 122 int i; 123 124 for (i = 0; inc && i < BLK_CRYPTO_DUN_ARRAY_SIZE; i++) { 125 dun[i] += inc; 126 /* 127 * If the addition in this limb overflowed, then we need to 128 * carry 1 into the next limb. Else the carry is 0. 129 */ 130 if (dun[i] < inc) 131 inc = 1; 132 else 133 inc = 0; 134 } 135} 136 137void __bio_crypt_advance(struct bio *bio, unsigned int bytes) 138{ 139 struct bio_crypt_ctx *bc = bio->bi_crypt_context; 140 141 bio_crypt_dun_increment(bc->bc_dun, 142 bytes >> bc->bc_key->data_unit_size_bits); 143} 144 145/* 146 * Returns true if @bc->bc_dun plus @bytes converted to data units is equal to 147 * @next_dun, treating the DUNs as multi-limb integers. 148 */ 149bool bio_crypt_dun_is_contiguous(const struct bio_crypt_ctx *bc, 150 unsigned int bytes, 151 const u64 next_dun[BLK_CRYPTO_DUN_ARRAY_SIZE]) 152{ 153 int i; 154 unsigned int carry = bytes >> bc->bc_key->data_unit_size_bits; 155 156 for (i = 0; i < BLK_CRYPTO_DUN_ARRAY_SIZE; i++) { 157 if (bc->bc_dun[i] + carry != next_dun[i]) 158 return false; 159 /* 160 * If the addition in this limb overflowed, then we need to 161 * carry 1 into the next limb. Else the carry is 0. 162 */ 163 if ((bc->bc_dun[i] + carry) < carry) 164 carry = 1; 165 else 166 carry = 0; 167 } 168 169 /* If the DUN wrapped through 0, don't treat it as contiguous. */ 170 return carry == 0; 171} 172 173/* 174 * Checks that two bio crypt contexts are compatible - i.e. that 175 * they are mergeable except for data_unit_num continuity. 176 */ 177static bool bio_crypt_ctx_compatible(struct bio_crypt_ctx *bc1, 178 struct bio_crypt_ctx *bc2) 179{ 180 if (!bc1) 181 return !bc2; 182 183 return bc2 && bc1->bc_key == bc2->bc_key; 184} 185 186bool bio_crypt_rq_ctx_compatible(struct request *rq, struct bio *bio) 187{ 188 return bio_crypt_ctx_compatible(rq->crypt_ctx, bio->bi_crypt_context); 189} 190 191/* 192 * Checks that two bio crypt contexts are compatible, and also 193 * that their data_unit_nums are continuous (and can hence be merged) 194 * in the order @bc1 followed by @bc2. 195 */ 196bool bio_crypt_ctx_mergeable(struct bio_crypt_ctx *bc1, unsigned int bc1_bytes, 197 struct bio_crypt_ctx *bc2) 198{ 199 if (!bio_crypt_ctx_compatible(bc1, bc2)) 200 return false; 201 202 return !bc1 || bio_crypt_dun_is_contiguous(bc1, bc1_bytes, bc2->bc_dun); 203} 204 205/* Check that all I/O segments are data unit aligned. */ 206static bool bio_crypt_check_alignment(struct bio *bio) 207{ 208 const unsigned int data_unit_size = 209 bio->bi_crypt_context->bc_key->crypto_cfg.data_unit_size; 210 struct bvec_iter iter; 211 struct bio_vec bv; 212 213 bio_for_each_segment(bv, bio, iter) { 214 if (!IS_ALIGNED(bv.bv_len | bv.bv_offset, data_unit_size)) 215 return false; 216 } 217 218 return true; 219} 220 221blk_status_t __blk_crypto_init_request(struct request *rq) 222{ 223 return blk_crypto_get_keyslot(rq->q->crypto_profile, 224 rq->crypt_ctx->bc_key, 225 &rq->crypt_keyslot); 226} 227 228/** 229 * __blk_crypto_free_request - Uninitialize the crypto fields of a request. 230 * 231 * @rq: The request whose crypto fields to uninitialize. 232 * 233 * Completely uninitializes the crypto fields of a request. If a keyslot has 234 * been programmed into some inline encryption hardware, that keyslot is 235 * released. The rq->crypt_ctx is also freed. 236 */ 237void __blk_crypto_free_request(struct request *rq) 238{ 239 blk_crypto_put_keyslot(rq->crypt_keyslot); 240 mempool_free(rq->crypt_ctx, bio_crypt_ctx_pool); 241 blk_crypto_rq_set_defaults(rq); 242} 243 244/** 245 * __blk_crypto_bio_prep - Prepare bio for inline encryption 246 * 247 * @bio_ptr: pointer to original bio pointer 248 * 249 * If the bio crypt context provided for the bio is supported by the underlying 250 * device's inline encryption hardware, do nothing. 251 * 252 * Otherwise, try to perform en/decryption for this bio by falling back to the 253 * kernel crypto API. When the crypto API fallback is used for encryption, 254 * blk-crypto may choose to split the bio into 2 - the first one that will 255 * continue to be processed and the second one that will be resubmitted via 256 * submit_bio_noacct. A bounce bio will be allocated to encrypt the contents 257 * of the aforementioned "first one", and *bio_ptr will be updated to this 258 * bounce bio. 259 * 260 * Caller must ensure bio has bio_crypt_ctx. 261 * 262 * Return: true on success; false on error (and bio->bi_status will be set 263 * appropriately, and bio_endio() will have been called so bio 264 * submission should abort). 265 */ 266bool __blk_crypto_bio_prep(struct bio **bio_ptr) 267{ 268 struct bio *bio = *bio_ptr; 269 const struct blk_crypto_key *bc_key = bio->bi_crypt_context->bc_key; 270 struct blk_crypto_profile *profile; 271 272 /* Error if bio has no data. */ 273 if (WARN_ON_ONCE(!bio_has_data(bio))) { 274 bio->bi_status = BLK_STS_IOERR; 275 goto fail; 276 } 277 278 if (!bio_crypt_check_alignment(bio)) { 279 bio->bi_status = BLK_STS_IOERR; 280 goto fail; 281 } 282 283 /* 284 * Success if device supports the encryption context, or if we succeeded 285 * in falling back to the crypto API. 286 */ 287 profile = bdev_get_queue(bio->bi_bdev)->crypto_profile; 288 if (__blk_crypto_cfg_supported(profile, &bc_key->crypto_cfg)) 289 return true; 290 291 if (blk_crypto_fallback_bio_prep(bio_ptr)) 292 return true; 293fail: 294 bio_endio(*bio_ptr); 295 return false; 296} 297 298int __blk_crypto_rq_bio_prep(struct request *rq, struct bio *bio, 299 gfp_t gfp_mask) 300{ 301 if (!rq->crypt_ctx) { 302 rq->crypt_ctx = mempool_alloc(bio_crypt_ctx_pool, gfp_mask); 303 if (!rq->crypt_ctx) 304 return -ENOMEM; 305 } 306 *rq->crypt_ctx = *bio->bi_crypt_context; 307 return 0; 308} 309 310/** 311 * blk_crypto_init_key() - Prepare a key for use with blk-crypto 312 * @blk_key: Pointer to the blk_crypto_key to initialize. 313 * @raw_key: Pointer to the raw key. Must be the correct length for the chosen 314 * @crypto_mode; see blk_crypto_modes[]. 315 * @crypto_mode: identifier for the encryption algorithm to use 316 * @dun_bytes: number of bytes that will be used to specify the DUN when this 317 * key is used 318 * @data_unit_size: the data unit size to use for en/decryption 319 * 320 * Return: 0 on success, -errno on failure. The caller is responsible for 321 * zeroizing both blk_key and raw_key when done with them. 322 */ 323int blk_crypto_init_key(struct blk_crypto_key *blk_key, const u8 *raw_key, 324 enum blk_crypto_mode_num crypto_mode, 325 unsigned int dun_bytes, 326 unsigned int data_unit_size) 327{ 328 const struct blk_crypto_mode *mode; 329 330 memset(blk_key, 0, sizeof(*blk_key)); 331 332 if (crypto_mode >= ARRAY_SIZE(blk_crypto_modes)) 333 return -EINVAL; 334 335 mode = &blk_crypto_modes[crypto_mode]; 336 if (mode->keysize == 0) 337 return -EINVAL; 338 339 if (dun_bytes == 0 || dun_bytes > mode->ivsize) 340 return -EINVAL; 341 342 if (!is_power_of_2(data_unit_size)) 343 return -EINVAL; 344 345 blk_key->crypto_cfg.crypto_mode = crypto_mode; 346 blk_key->crypto_cfg.dun_bytes = dun_bytes; 347 blk_key->crypto_cfg.data_unit_size = data_unit_size; 348 blk_key->data_unit_size_bits = ilog2(data_unit_size); 349 blk_key->size = mode->keysize; 350 memcpy(blk_key->raw, raw_key, mode->keysize); 351 352 return 0; 353} 354 355/* 356 * Check if bios with @cfg can be en/decrypted by blk-crypto (i.e. either the 357 * request queue it's submitted to supports inline crypto, or the 358 * blk-crypto-fallback is enabled and supports the cfg). 359 */ 360bool blk_crypto_config_supported(struct request_queue *q, 361 const struct blk_crypto_config *cfg) 362{ 363 return IS_ENABLED(CONFIG_BLK_INLINE_ENCRYPTION_FALLBACK) || 364 __blk_crypto_cfg_supported(q->crypto_profile, cfg); 365} 366 367/** 368 * blk_crypto_start_using_key() - Start using a blk_crypto_key on a device 369 * @key: A key to use on the device 370 * @q: the request queue for the device 371 * 372 * Upper layers must call this function to ensure that either the hardware 373 * supports the key's crypto settings, or the crypto API fallback has transforms 374 * for the needed mode allocated and ready to go. This function may allocate 375 * an skcipher, and *should not* be called from the data path, since that might 376 * cause a deadlock 377 * 378 * Return: 0 on success; -ENOPKG if the hardware doesn't support the key and 379 * blk-crypto-fallback is either disabled or the needed algorithm 380 * is disabled in the crypto API; or another -errno code. 381 */ 382int blk_crypto_start_using_key(const struct blk_crypto_key *key, 383 struct request_queue *q) 384{ 385 if (__blk_crypto_cfg_supported(q->crypto_profile, &key->crypto_cfg)) 386 return 0; 387 return blk_crypto_fallback_start_using_mode(key->crypto_cfg.crypto_mode); 388} 389 390/** 391 * blk_crypto_evict_key() - Evict a key from any inline encryption hardware 392 * it may have been programmed into 393 * @q: The request queue who's associated inline encryption hardware this key 394 * might have been programmed into 395 * @key: The key to evict 396 * 397 * Upper layers (filesystems) must call this function to ensure that a key is 398 * evicted from any hardware that it might have been programmed into. The key 399 * must not be in use by any in-flight IO when this function is called. 400 * 401 * Return: 0 on success or if the key wasn't in any keyslot; -errno on error. 402 */ 403int blk_crypto_evict_key(struct request_queue *q, 404 const struct blk_crypto_key *key) 405{ 406 if (__blk_crypto_cfg_supported(q->crypto_profile, &key->crypto_cfg)) 407 return __blk_crypto_evict_key(q->crypto_profile, key); 408 409 /* 410 * If the request_queue didn't support the key, then blk-crypto-fallback 411 * may have been used, so try to evict the key from blk-crypto-fallback. 412 */ 413 return blk_crypto_fallback_evict_key(key); 414} 415EXPORT_SYMBOL_GPL(blk_crypto_evict_key);