cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

blk-map.c (14821B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * Functions related to mapping data to requests
      4 */
      5#include <linux/kernel.h>
      6#include <linux/sched/task_stack.h>
      7#include <linux/module.h>
      8#include <linux/bio.h>
      9#include <linux/blkdev.h>
     10#include <linux/uio.h>
     11
     12#include "blk.h"
     13
     14struct bio_map_data {
     15	bool is_our_pages : 1;
     16	bool is_null_mapped : 1;
     17	struct iov_iter iter;
     18	struct iovec iov[];
     19};
     20
     21static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
     22					       gfp_t gfp_mask)
     23{
     24	struct bio_map_data *bmd;
     25
     26	if (data->nr_segs > UIO_MAXIOV)
     27		return NULL;
     28
     29	bmd = kmalloc(struct_size(bmd, iov, data->nr_segs), gfp_mask);
     30	if (!bmd)
     31		return NULL;
     32	memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
     33	bmd->iter = *data;
     34	bmd->iter.iov = bmd->iov;
     35	return bmd;
     36}
     37
     38/**
     39 * bio_copy_from_iter - copy all pages from iov_iter to bio
     40 * @bio: The &struct bio which describes the I/O as destination
     41 * @iter: iov_iter as source
     42 *
     43 * Copy all pages from iov_iter to bio.
     44 * Returns 0 on success, or error on failure.
     45 */
     46static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
     47{
     48	struct bio_vec *bvec;
     49	struct bvec_iter_all iter_all;
     50
     51	bio_for_each_segment_all(bvec, bio, iter_all) {
     52		ssize_t ret;
     53
     54		ret = copy_page_from_iter(bvec->bv_page,
     55					  bvec->bv_offset,
     56					  bvec->bv_len,
     57					  iter);
     58
     59		if (!iov_iter_count(iter))
     60			break;
     61
     62		if (ret < bvec->bv_len)
     63			return -EFAULT;
     64	}
     65
     66	return 0;
     67}
     68
     69/**
     70 * bio_copy_to_iter - copy all pages from bio to iov_iter
     71 * @bio: The &struct bio which describes the I/O as source
     72 * @iter: iov_iter as destination
     73 *
     74 * Copy all pages from bio to iov_iter.
     75 * Returns 0 on success, or error on failure.
     76 */
     77static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
     78{
     79	struct bio_vec *bvec;
     80	struct bvec_iter_all iter_all;
     81
     82	bio_for_each_segment_all(bvec, bio, iter_all) {
     83		ssize_t ret;
     84
     85		ret = copy_page_to_iter(bvec->bv_page,
     86					bvec->bv_offset,
     87					bvec->bv_len,
     88					&iter);
     89
     90		if (!iov_iter_count(&iter))
     91			break;
     92
     93		if (ret < bvec->bv_len)
     94			return -EFAULT;
     95	}
     96
     97	return 0;
     98}
     99
    100/**
    101 *	bio_uncopy_user	-	finish previously mapped bio
    102 *	@bio: bio being terminated
    103 *
    104 *	Free pages allocated from bio_copy_user_iov() and write back data
    105 *	to user space in case of a read.
    106 */
    107static int bio_uncopy_user(struct bio *bio)
    108{
    109	struct bio_map_data *bmd = bio->bi_private;
    110	int ret = 0;
    111
    112	if (!bmd->is_null_mapped) {
    113		/*
    114		 * if we're in a workqueue, the request is orphaned, so
    115		 * don't copy into a random user address space, just free
    116		 * and return -EINTR so user space doesn't expect any data.
    117		 */
    118		if (!current->mm)
    119			ret = -EINTR;
    120		else if (bio_data_dir(bio) == READ)
    121			ret = bio_copy_to_iter(bio, bmd->iter);
    122		if (bmd->is_our_pages)
    123			bio_free_pages(bio);
    124	}
    125	kfree(bmd);
    126	return ret;
    127}
    128
    129static int bio_copy_user_iov(struct request *rq, struct rq_map_data *map_data,
    130		struct iov_iter *iter, gfp_t gfp_mask)
    131{
    132	struct bio_map_data *bmd;
    133	struct page *page;
    134	struct bio *bio;
    135	int i = 0, ret;
    136	int nr_pages;
    137	unsigned int len = iter->count;
    138	unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
    139
    140	bmd = bio_alloc_map_data(iter, gfp_mask);
    141	if (!bmd)
    142		return -ENOMEM;
    143
    144	/*
    145	 * We need to do a deep copy of the iov_iter including the iovecs.
    146	 * The caller provided iov might point to an on-stack or otherwise
    147	 * shortlived one.
    148	 */
    149	bmd->is_our_pages = !map_data;
    150	bmd->is_null_mapped = (map_data && map_data->null_mapped);
    151
    152	nr_pages = bio_max_segs(DIV_ROUND_UP(offset + len, PAGE_SIZE));
    153
    154	ret = -ENOMEM;
    155	bio = bio_kmalloc(nr_pages, gfp_mask);
    156	if (!bio)
    157		goto out_bmd;
    158	bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, req_op(rq));
    159
    160	if (map_data) {
    161		nr_pages = 1 << map_data->page_order;
    162		i = map_data->offset / PAGE_SIZE;
    163	}
    164	while (len) {
    165		unsigned int bytes = PAGE_SIZE;
    166
    167		bytes -= offset;
    168
    169		if (bytes > len)
    170			bytes = len;
    171
    172		if (map_data) {
    173			if (i == map_data->nr_entries * nr_pages) {
    174				ret = -ENOMEM;
    175				goto cleanup;
    176			}
    177
    178			page = map_data->pages[i / nr_pages];
    179			page += (i % nr_pages);
    180
    181			i++;
    182		} else {
    183			page = alloc_page(GFP_NOIO | gfp_mask);
    184			if (!page) {
    185				ret = -ENOMEM;
    186				goto cleanup;
    187			}
    188		}
    189
    190		if (bio_add_pc_page(rq->q, bio, page, bytes, offset) < bytes) {
    191			if (!map_data)
    192				__free_page(page);
    193			break;
    194		}
    195
    196		len -= bytes;
    197		offset = 0;
    198	}
    199
    200	if (map_data)
    201		map_data->offset += bio->bi_iter.bi_size;
    202
    203	/*
    204	 * success
    205	 */
    206	if ((iov_iter_rw(iter) == WRITE &&
    207	     (!map_data || !map_data->null_mapped)) ||
    208	    (map_data && map_data->from_user)) {
    209		ret = bio_copy_from_iter(bio, iter);
    210		if (ret)
    211			goto cleanup;
    212	} else {
    213		if (bmd->is_our_pages)
    214			zero_fill_bio(bio);
    215		iov_iter_advance(iter, bio->bi_iter.bi_size);
    216	}
    217
    218	bio->bi_private = bmd;
    219
    220	ret = blk_rq_append_bio(rq, bio);
    221	if (ret)
    222		goto cleanup;
    223	return 0;
    224cleanup:
    225	if (!map_data)
    226		bio_free_pages(bio);
    227	bio_uninit(bio);
    228	kfree(bio);
    229out_bmd:
    230	kfree(bmd);
    231	return ret;
    232}
    233
    234static int bio_map_user_iov(struct request *rq, struct iov_iter *iter,
    235		gfp_t gfp_mask)
    236{
    237	unsigned int max_sectors = queue_max_hw_sectors(rq->q);
    238	unsigned int nr_vecs = iov_iter_npages(iter, BIO_MAX_VECS);
    239	struct bio *bio;
    240	int ret;
    241	int j;
    242
    243	if (!iov_iter_count(iter))
    244		return -EINVAL;
    245
    246	bio = bio_kmalloc(nr_vecs, gfp_mask);
    247	if (!bio)
    248		return -ENOMEM;
    249	bio_init(bio, NULL, bio->bi_inline_vecs, nr_vecs, req_op(rq));
    250
    251	while (iov_iter_count(iter)) {
    252		struct page **pages;
    253		ssize_t bytes;
    254		size_t offs, added = 0;
    255		int npages;
    256
    257		bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
    258		if (unlikely(bytes <= 0)) {
    259			ret = bytes ? bytes : -EFAULT;
    260			goto out_unmap;
    261		}
    262
    263		npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
    264
    265		if (unlikely(offs & queue_dma_alignment(rq->q)))
    266			j = 0;
    267		else {
    268			for (j = 0; j < npages; j++) {
    269				struct page *page = pages[j];
    270				unsigned int n = PAGE_SIZE - offs;
    271				bool same_page = false;
    272
    273				if (n > bytes)
    274					n = bytes;
    275
    276				if (!bio_add_hw_page(rq->q, bio, page, n, offs,
    277						     max_sectors, &same_page)) {
    278					if (same_page)
    279						put_page(page);
    280					break;
    281				}
    282
    283				added += n;
    284				bytes -= n;
    285				offs = 0;
    286			}
    287			iov_iter_advance(iter, added);
    288		}
    289		/*
    290		 * release the pages we didn't map into the bio, if any
    291		 */
    292		while (j < npages)
    293			put_page(pages[j++]);
    294		kvfree(pages);
    295		/* couldn't stuff something into bio? */
    296		if (bytes)
    297			break;
    298	}
    299
    300	ret = blk_rq_append_bio(rq, bio);
    301	if (ret)
    302		goto out_unmap;
    303	return 0;
    304
    305 out_unmap:
    306	bio_release_pages(bio, false);
    307	bio_uninit(bio);
    308	kfree(bio);
    309	return ret;
    310}
    311
    312static void bio_invalidate_vmalloc_pages(struct bio *bio)
    313{
    314#ifdef ARCH_IMPLEMENTS_FLUSH_KERNEL_VMAP_RANGE
    315	if (bio->bi_private && !op_is_write(bio_op(bio))) {
    316		unsigned long i, len = 0;
    317
    318		for (i = 0; i < bio->bi_vcnt; i++)
    319			len += bio->bi_io_vec[i].bv_len;
    320		invalidate_kernel_vmap_range(bio->bi_private, len);
    321	}
    322#endif
    323}
    324
    325static void bio_map_kern_endio(struct bio *bio)
    326{
    327	bio_invalidate_vmalloc_pages(bio);
    328	bio_uninit(bio);
    329	kfree(bio);
    330}
    331
    332/**
    333 *	bio_map_kern	-	map kernel address into bio
    334 *	@q: the struct request_queue for the bio
    335 *	@data: pointer to buffer to map
    336 *	@len: length in bytes
    337 *	@gfp_mask: allocation flags for bio allocation
    338 *
    339 *	Map the kernel address into a bio suitable for io to a block
    340 *	device. Returns an error pointer in case of error.
    341 */
    342static struct bio *bio_map_kern(struct request_queue *q, void *data,
    343		unsigned int len, gfp_t gfp_mask)
    344{
    345	unsigned long kaddr = (unsigned long)data;
    346	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
    347	unsigned long start = kaddr >> PAGE_SHIFT;
    348	const int nr_pages = end - start;
    349	bool is_vmalloc = is_vmalloc_addr(data);
    350	struct page *page;
    351	int offset, i;
    352	struct bio *bio;
    353
    354	bio = bio_kmalloc(nr_pages, gfp_mask);
    355	if (!bio)
    356		return ERR_PTR(-ENOMEM);
    357	bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, 0);
    358
    359	if (is_vmalloc) {
    360		flush_kernel_vmap_range(data, len);
    361		bio->bi_private = data;
    362	}
    363
    364	offset = offset_in_page(kaddr);
    365	for (i = 0; i < nr_pages; i++) {
    366		unsigned int bytes = PAGE_SIZE - offset;
    367
    368		if (len <= 0)
    369			break;
    370
    371		if (bytes > len)
    372			bytes = len;
    373
    374		if (!is_vmalloc)
    375			page = virt_to_page(data);
    376		else
    377			page = vmalloc_to_page(data);
    378		if (bio_add_pc_page(q, bio, page, bytes,
    379				    offset) < bytes) {
    380			/* we don't support partial mappings */
    381			bio_uninit(bio);
    382			kfree(bio);
    383			return ERR_PTR(-EINVAL);
    384		}
    385
    386		data += bytes;
    387		len -= bytes;
    388		offset = 0;
    389	}
    390
    391	bio->bi_end_io = bio_map_kern_endio;
    392	return bio;
    393}
    394
    395static void bio_copy_kern_endio(struct bio *bio)
    396{
    397	bio_free_pages(bio);
    398	bio_uninit(bio);
    399	kfree(bio);
    400}
    401
    402static void bio_copy_kern_endio_read(struct bio *bio)
    403{
    404	char *p = bio->bi_private;
    405	struct bio_vec *bvec;
    406	struct bvec_iter_all iter_all;
    407
    408	bio_for_each_segment_all(bvec, bio, iter_all) {
    409		memcpy_from_bvec(p, bvec);
    410		p += bvec->bv_len;
    411	}
    412
    413	bio_copy_kern_endio(bio);
    414}
    415
    416/**
    417 *	bio_copy_kern	-	copy kernel address into bio
    418 *	@q: the struct request_queue for the bio
    419 *	@data: pointer to buffer to copy
    420 *	@len: length in bytes
    421 *	@gfp_mask: allocation flags for bio and page allocation
    422 *	@reading: data direction is READ
    423 *
    424 *	copy the kernel address into a bio suitable for io to a block
    425 *	device. Returns an error pointer in case of error.
    426 */
    427static struct bio *bio_copy_kern(struct request_queue *q, void *data,
    428		unsigned int len, gfp_t gfp_mask, int reading)
    429{
    430	unsigned long kaddr = (unsigned long)data;
    431	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
    432	unsigned long start = kaddr >> PAGE_SHIFT;
    433	struct bio *bio;
    434	void *p = data;
    435	int nr_pages = 0;
    436
    437	/*
    438	 * Overflow, abort
    439	 */
    440	if (end < start)
    441		return ERR_PTR(-EINVAL);
    442
    443	nr_pages = end - start;
    444	bio = bio_kmalloc(nr_pages, gfp_mask);
    445	if (!bio)
    446		return ERR_PTR(-ENOMEM);
    447	bio_init(bio, NULL, bio->bi_inline_vecs, nr_pages, 0);
    448
    449	while (len) {
    450		struct page *page;
    451		unsigned int bytes = PAGE_SIZE;
    452
    453		if (bytes > len)
    454			bytes = len;
    455
    456		page = alloc_page(GFP_NOIO | __GFP_ZERO | gfp_mask);
    457		if (!page)
    458			goto cleanup;
    459
    460		if (!reading)
    461			memcpy(page_address(page), p, bytes);
    462
    463		if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
    464			break;
    465
    466		len -= bytes;
    467		p += bytes;
    468	}
    469
    470	if (reading) {
    471		bio->bi_end_io = bio_copy_kern_endio_read;
    472		bio->bi_private = data;
    473	} else {
    474		bio->bi_end_io = bio_copy_kern_endio;
    475	}
    476
    477	return bio;
    478
    479cleanup:
    480	bio_free_pages(bio);
    481	bio_uninit(bio);
    482	kfree(bio);
    483	return ERR_PTR(-ENOMEM);
    484}
    485
    486/*
    487 * Append a bio to a passthrough request.  Only works if the bio can be merged
    488 * into the request based on the driver constraints.
    489 */
    490int blk_rq_append_bio(struct request *rq, struct bio *bio)
    491{
    492	struct bvec_iter iter;
    493	struct bio_vec bv;
    494	unsigned int nr_segs = 0;
    495
    496	bio_for_each_bvec(bv, bio, iter)
    497		nr_segs++;
    498
    499	if (!rq->bio) {
    500		blk_rq_bio_prep(rq, bio, nr_segs);
    501	} else {
    502		if (!ll_back_merge_fn(rq, bio, nr_segs))
    503			return -EINVAL;
    504		rq->biotail->bi_next = bio;
    505		rq->biotail = bio;
    506		rq->__data_len += (bio)->bi_iter.bi_size;
    507		bio_crypt_free_ctx(bio);
    508	}
    509
    510	return 0;
    511}
    512EXPORT_SYMBOL(blk_rq_append_bio);
    513
    514/**
    515 * blk_rq_map_user_iov - map user data to a request, for passthrough requests
    516 * @q:		request queue where request should be inserted
    517 * @rq:		request to map data to
    518 * @map_data:   pointer to the rq_map_data holding pages (if necessary)
    519 * @iter:	iovec iterator
    520 * @gfp_mask:	memory allocation flags
    521 *
    522 * Description:
    523 *    Data will be mapped directly for zero copy I/O, if possible. Otherwise
    524 *    a kernel bounce buffer is used.
    525 *
    526 *    A matching blk_rq_unmap_user() must be issued at the end of I/O, while
    527 *    still in process context.
    528 */
    529int blk_rq_map_user_iov(struct request_queue *q, struct request *rq,
    530			struct rq_map_data *map_data,
    531			const struct iov_iter *iter, gfp_t gfp_mask)
    532{
    533	bool copy = false;
    534	unsigned long align = q->dma_pad_mask | queue_dma_alignment(q);
    535	struct bio *bio = NULL;
    536	struct iov_iter i;
    537	int ret = -EINVAL;
    538
    539	if (!iter_is_iovec(iter))
    540		goto fail;
    541
    542	if (map_data)
    543		copy = true;
    544	else if (blk_queue_may_bounce(q))
    545		copy = true;
    546	else if (iov_iter_alignment(iter) & align)
    547		copy = true;
    548	else if (queue_virt_boundary(q))
    549		copy = queue_virt_boundary(q) & iov_iter_gap_alignment(iter);
    550
    551	i = *iter;
    552	do {
    553		if (copy)
    554			ret = bio_copy_user_iov(rq, map_data, &i, gfp_mask);
    555		else
    556			ret = bio_map_user_iov(rq, &i, gfp_mask);
    557		if (ret)
    558			goto unmap_rq;
    559		if (!bio)
    560			bio = rq->bio;
    561	} while (iov_iter_count(&i));
    562
    563	return 0;
    564
    565unmap_rq:
    566	blk_rq_unmap_user(bio);
    567fail:
    568	rq->bio = NULL;
    569	return ret;
    570}
    571EXPORT_SYMBOL(blk_rq_map_user_iov);
    572
    573int blk_rq_map_user(struct request_queue *q, struct request *rq,
    574		    struct rq_map_data *map_data, void __user *ubuf,
    575		    unsigned long len, gfp_t gfp_mask)
    576{
    577	struct iovec iov;
    578	struct iov_iter i;
    579	int ret = import_single_range(rq_data_dir(rq), ubuf, len, &iov, &i);
    580
    581	if (unlikely(ret < 0))
    582		return ret;
    583
    584	return blk_rq_map_user_iov(q, rq, map_data, &i, gfp_mask);
    585}
    586EXPORT_SYMBOL(blk_rq_map_user);
    587
    588/**
    589 * blk_rq_unmap_user - unmap a request with user data
    590 * @bio:	       start of bio list
    591 *
    592 * Description:
    593 *    Unmap a rq previously mapped by blk_rq_map_user(). The caller must
    594 *    supply the original rq->bio from the blk_rq_map_user() return, since
    595 *    the I/O completion may have changed rq->bio.
    596 */
    597int blk_rq_unmap_user(struct bio *bio)
    598{
    599	struct bio *next_bio;
    600	int ret = 0, ret2;
    601
    602	while (bio) {
    603		if (bio->bi_private) {
    604			ret2 = bio_uncopy_user(bio);
    605			if (ret2 && !ret)
    606				ret = ret2;
    607		} else {
    608			bio_release_pages(bio, bio_data_dir(bio) == READ);
    609		}
    610
    611		next_bio = bio;
    612		bio = bio->bi_next;
    613		bio_uninit(next_bio);
    614		kfree(next_bio);
    615	}
    616
    617	return ret;
    618}
    619EXPORT_SYMBOL(blk_rq_unmap_user);
    620
    621/**
    622 * blk_rq_map_kern - map kernel data to a request, for passthrough requests
    623 * @q:		request queue where request should be inserted
    624 * @rq:		request to fill
    625 * @kbuf:	the kernel buffer
    626 * @len:	length of user data
    627 * @gfp_mask:	memory allocation flags
    628 *
    629 * Description:
    630 *    Data will be mapped directly if possible. Otherwise a bounce
    631 *    buffer is used. Can be called multiple times to append multiple
    632 *    buffers.
    633 */
    634int blk_rq_map_kern(struct request_queue *q, struct request *rq, void *kbuf,
    635		    unsigned int len, gfp_t gfp_mask)
    636{
    637	int reading = rq_data_dir(rq) == READ;
    638	unsigned long addr = (unsigned long) kbuf;
    639	struct bio *bio;
    640	int ret;
    641
    642	if (len > (queue_max_hw_sectors(q) << 9))
    643		return -EINVAL;
    644	if (!len || !kbuf)
    645		return -EINVAL;
    646
    647	if (!blk_rq_aligned(q, addr, len) || object_is_on_stack(kbuf) ||
    648	    blk_queue_may_bounce(q))
    649		bio = bio_copy_kern(q, kbuf, len, gfp_mask, reading);
    650	else
    651		bio = bio_map_kern(q, kbuf, len, gfp_mask);
    652
    653	if (IS_ERR(bio))
    654		return PTR_ERR(bio);
    655
    656	bio->bi_opf &= ~REQ_OP_MASK;
    657	bio->bi_opf |= req_op(rq);
    658
    659	ret = blk_rq_append_bio(rq, bio);
    660	if (unlikely(ret)) {
    661		bio_uninit(bio);
    662		kfree(bio);
    663	}
    664	return ret;
    665}
    666EXPORT_SYMBOL(blk_rq_map_kern);