cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

blk-mq-sched.c (18134B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * blk-mq scheduling framework
      4 *
      5 * Copyright (C) 2016 Jens Axboe
      6 */
      7#include <linux/kernel.h>
      8#include <linux/module.h>
      9#include <linux/blk-mq.h>
     10#include <linux/list_sort.h>
     11
     12#include <trace/events/block.h>
     13
     14#include "blk.h"
     15#include "blk-mq.h"
     16#include "blk-mq-debugfs.h"
     17#include "blk-mq-sched.h"
     18#include "blk-mq-tag.h"
     19#include "blk-wbt.h"
     20
     21/*
     22 * Mark a hardware queue as needing a restart. For shared queues, maintain
     23 * a count of how many hardware queues are marked for restart.
     24 */
     25void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
     26{
     27	if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
     28		return;
     29
     30	set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
     31}
     32EXPORT_SYMBOL_GPL(blk_mq_sched_mark_restart_hctx);
     33
     34void __blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx)
     35{
     36	clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
     37
     38	/*
     39	 * Order clearing SCHED_RESTART and list_empty_careful(&hctx->dispatch)
     40	 * in blk_mq_run_hw_queue(). Its pair is the barrier in
     41	 * blk_mq_dispatch_rq_list(). So dispatch code won't see SCHED_RESTART,
     42	 * meantime new request added to hctx->dispatch is missed to check in
     43	 * blk_mq_run_hw_queue().
     44	 */
     45	smp_mb();
     46
     47	blk_mq_run_hw_queue(hctx, true);
     48}
     49
     50static int sched_rq_cmp(void *priv, const struct list_head *a,
     51			const struct list_head *b)
     52{
     53	struct request *rqa = container_of(a, struct request, queuelist);
     54	struct request *rqb = container_of(b, struct request, queuelist);
     55
     56	return rqa->mq_hctx > rqb->mq_hctx;
     57}
     58
     59static bool blk_mq_dispatch_hctx_list(struct list_head *rq_list)
     60{
     61	struct blk_mq_hw_ctx *hctx =
     62		list_first_entry(rq_list, struct request, queuelist)->mq_hctx;
     63	struct request *rq;
     64	LIST_HEAD(hctx_list);
     65	unsigned int count = 0;
     66
     67	list_for_each_entry(rq, rq_list, queuelist) {
     68		if (rq->mq_hctx != hctx) {
     69			list_cut_before(&hctx_list, rq_list, &rq->queuelist);
     70			goto dispatch;
     71		}
     72		count++;
     73	}
     74	list_splice_tail_init(rq_list, &hctx_list);
     75
     76dispatch:
     77	return blk_mq_dispatch_rq_list(hctx, &hctx_list, count);
     78}
     79
     80#define BLK_MQ_BUDGET_DELAY	3		/* ms units */
     81
     82/*
     83 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
     84 * its queue by itself in its completion handler, so we don't need to
     85 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
     86 *
     87 * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
     88 * be run again.  This is necessary to avoid starving flushes.
     89 */
     90static int __blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
     91{
     92	struct request_queue *q = hctx->queue;
     93	struct elevator_queue *e = q->elevator;
     94	bool multi_hctxs = false, run_queue = false;
     95	bool dispatched = false, busy = false;
     96	unsigned int max_dispatch;
     97	LIST_HEAD(rq_list);
     98	int count = 0;
     99
    100	if (hctx->dispatch_busy)
    101		max_dispatch = 1;
    102	else
    103		max_dispatch = hctx->queue->nr_requests;
    104
    105	do {
    106		struct request *rq;
    107		int budget_token;
    108
    109		if (e->type->ops.has_work && !e->type->ops.has_work(hctx))
    110			break;
    111
    112		if (!list_empty_careful(&hctx->dispatch)) {
    113			busy = true;
    114			break;
    115		}
    116
    117		budget_token = blk_mq_get_dispatch_budget(q);
    118		if (budget_token < 0)
    119			break;
    120
    121		rq = e->type->ops.dispatch_request(hctx);
    122		if (!rq) {
    123			blk_mq_put_dispatch_budget(q, budget_token);
    124			/*
    125			 * We're releasing without dispatching. Holding the
    126			 * budget could have blocked any "hctx"s with the
    127			 * same queue and if we didn't dispatch then there's
    128			 * no guarantee anyone will kick the queue.  Kick it
    129			 * ourselves.
    130			 */
    131			run_queue = true;
    132			break;
    133		}
    134
    135		blk_mq_set_rq_budget_token(rq, budget_token);
    136
    137		/*
    138		 * Now this rq owns the budget which has to be released
    139		 * if this rq won't be queued to driver via .queue_rq()
    140		 * in blk_mq_dispatch_rq_list().
    141		 */
    142		list_add_tail(&rq->queuelist, &rq_list);
    143		count++;
    144		if (rq->mq_hctx != hctx)
    145			multi_hctxs = true;
    146
    147		/*
    148		 * If we cannot get tag for the request, stop dequeueing
    149		 * requests from the IO scheduler. We are unlikely to be able
    150		 * to submit them anyway and it creates false impression for
    151		 * scheduling heuristics that the device can take more IO.
    152		 */
    153		if (!blk_mq_get_driver_tag(rq))
    154			break;
    155	} while (count < max_dispatch);
    156
    157	if (!count) {
    158		if (run_queue)
    159			blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY);
    160	} else if (multi_hctxs) {
    161		/*
    162		 * Requests from different hctx may be dequeued from some
    163		 * schedulers, such as bfq and deadline.
    164		 *
    165		 * Sort the requests in the list according to their hctx,
    166		 * dispatch batching requests from same hctx at a time.
    167		 */
    168		list_sort(NULL, &rq_list, sched_rq_cmp);
    169		do {
    170			dispatched |= blk_mq_dispatch_hctx_list(&rq_list);
    171		} while (!list_empty(&rq_list));
    172	} else {
    173		dispatched = blk_mq_dispatch_rq_list(hctx, &rq_list, count);
    174	}
    175
    176	if (busy)
    177		return -EAGAIN;
    178	return !!dispatched;
    179}
    180
    181static int blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
    182{
    183	unsigned long end = jiffies + HZ;
    184	int ret;
    185
    186	do {
    187		ret = __blk_mq_do_dispatch_sched(hctx);
    188		if (ret != 1)
    189			break;
    190		if (need_resched() || time_is_before_jiffies(end)) {
    191			blk_mq_delay_run_hw_queue(hctx, 0);
    192			break;
    193		}
    194	} while (1);
    195
    196	return ret;
    197}
    198
    199static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx,
    200					  struct blk_mq_ctx *ctx)
    201{
    202	unsigned short idx = ctx->index_hw[hctx->type];
    203
    204	if (++idx == hctx->nr_ctx)
    205		idx = 0;
    206
    207	return hctx->ctxs[idx];
    208}
    209
    210/*
    211 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
    212 * its queue by itself in its completion handler, so we don't need to
    213 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
    214 *
    215 * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
    216 * be run again.  This is necessary to avoid starving flushes.
    217 */
    218static int blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx)
    219{
    220	struct request_queue *q = hctx->queue;
    221	LIST_HEAD(rq_list);
    222	struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from);
    223	int ret = 0;
    224	struct request *rq;
    225
    226	do {
    227		int budget_token;
    228
    229		if (!list_empty_careful(&hctx->dispatch)) {
    230			ret = -EAGAIN;
    231			break;
    232		}
    233
    234		if (!sbitmap_any_bit_set(&hctx->ctx_map))
    235			break;
    236
    237		budget_token = blk_mq_get_dispatch_budget(q);
    238		if (budget_token < 0)
    239			break;
    240
    241		rq = blk_mq_dequeue_from_ctx(hctx, ctx);
    242		if (!rq) {
    243			blk_mq_put_dispatch_budget(q, budget_token);
    244			/*
    245			 * We're releasing without dispatching. Holding the
    246			 * budget could have blocked any "hctx"s with the
    247			 * same queue and if we didn't dispatch then there's
    248			 * no guarantee anyone will kick the queue.  Kick it
    249			 * ourselves.
    250			 */
    251			blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY);
    252			break;
    253		}
    254
    255		blk_mq_set_rq_budget_token(rq, budget_token);
    256
    257		/*
    258		 * Now this rq owns the budget which has to be released
    259		 * if this rq won't be queued to driver via .queue_rq()
    260		 * in blk_mq_dispatch_rq_list().
    261		 */
    262		list_add(&rq->queuelist, &rq_list);
    263
    264		/* round robin for fair dispatch */
    265		ctx = blk_mq_next_ctx(hctx, rq->mq_ctx);
    266
    267	} while (blk_mq_dispatch_rq_list(rq->mq_hctx, &rq_list, 1));
    268
    269	WRITE_ONCE(hctx->dispatch_from, ctx);
    270	return ret;
    271}
    272
    273static int __blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
    274{
    275	struct request_queue *q = hctx->queue;
    276	const bool has_sched = q->elevator;
    277	int ret = 0;
    278	LIST_HEAD(rq_list);
    279
    280	/*
    281	 * If we have previous entries on our dispatch list, grab them first for
    282	 * more fair dispatch.
    283	 */
    284	if (!list_empty_careful(&hctx->dispatch)) {
    285		spin_lock(&hctx->lock);
    286		if (!list_empty(&hctx->dispatch))
    287			list_splice_init(&hctx->dispatch, &rq_list);
    288		spin_unlock(&hctx->lock);
    289	}
    290
    291	/*
    292	 * Only ask the scheduler for requests, if we didn't have residual
    293	 * requests from the dispatch list. This is to avoid the case where
    294	 * we only ever dispatch a fraction of the requests available because
    295	 * of low device queue depth. Once we pull requests out of the IO
    296	 * scheduler, we can no longer merge or sort them. So it's best to
    297	 * leave them there for as long as we can. Mark the hw queue as
    298	 * needing a restart in that case.
    299	 *
    300	 * We want to dispatch from the scheduler if there was nothing
    301	 * on the dispatch list or we were able to dispatch from the
    302	 * dispatch list.
    303	 */
    304	if (!list_empty(&rq_list)) {
    305		blk_mq_sched_mark_restart_hctx(hctx);
    306		if (blk_mq_dispatch_rq_list(hctx, &rq_list, 0)) {
    307			if (has_sched)
    308				ret = blk_mq_do_dispatch_sched(hctx);
    309			else
    310				ret = blk_mq_do_dispatch_ctx(hctx);
    311		}
    312	} else if (has_sched) {
    313		ret = blk_mq_do_dispatch_sched(hctx);
    314	} else if (hctx->dispatch_busy) {
    315		/* dequeue request one by one from sw queue if queue is busy */
    316		ret = blk_mq_do_dispatch_ctx(hctx);
    317	} else {
    318		blk_mq_flush_busy_ctxs(hctx, &rq_list);
    319		blk_mq_dispatch_rq_list(hctx, &rq_list, 0);
    320	}
    321
    322	return ret;
    323}
    324
    325void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
    326{
    327	struct request_queue *q = hctx->queue;
    328
    329	/* RCU or SRCU read lock is needed before checking quiesced flag */
    330	if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)))
    331		return;
    332
    333	hctx->run++;
    334
    335	/*
    336	 * A return of -EAGAIN is an indication that hctx->dispatch is not
    337	 * empty and we must run again in order to avoid starving flushes.
    338	 */
    339	if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN) {
    340		if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN)
    341			blk_mq_run_hw_queue(hctx, true);
    342	}
    343}
    344
    345bool blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio,
    346		unsigned int nr_segs)
    347{
    348	struct elevator_queue *e = q->elevator;
    349	struct blk_mq_ctx *ctx;
    350	struct blk_mq_hw_ctx *hctx;
    351	bool ret = false;
    352	enum hctx_type type;
    353
    354	if (e && e->type->ops.bio_merge) {
    355		ret = e->type->ops.bio_merge(q, bio, nr_segs);
    356		goto out_put;
    357	}
    358
    359	ctx = blk_mq_get_ctx(q);
    360	hctx = blk_mq_map_queue(q, bio->bi_opf, ctx);
    361	type = hctx->type;
    362	if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE) ||
    363	    list_empty_careful(&ctx->rq_lists[type]))
    364		goto out_put;
    365
    366	/* default per sw-queue merge */
    367	spin_lock(&ctx->lock);
    368	/*
    369	 * Reverse check our software queue for entries that we could
    370	 * potentially merge with. Currently includes a hand-wavy stop
    371	 * count of 8, to not spend too much time checking for merges.
    372	 */
    373	if (blk_bio_list_merge(q, &ctx->rq_lists[type], bio, nr_segs))
    374		ret = true;
    375
    376	spin_unlock(&ctx->lock);
    377out_put:
    378	return ret;
    379}
    380
    381bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq,
    382				   struct list_head *free)
    383{
    384	return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq, free);
    385}
    386EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
    387
    388static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
    389				       struct request *rq)
    390{
    391	/*
    392	 * dispatch flush and passthrough rq directly
    393	 *
    394	 * passthrough request has to be added to hctx->dispatch directly.
    395	 * For some reason, device may be in one situation which can't
    396	 * handle FS request, so STS_RESOURCE is always returned and the
    397	 * FS request will be added to hctx->dispatch. However passthrough
    398	 * request may be required at that time for fixing the problem. If
    399	 * passthrough request is added to scheduler queue, there isn't any
    400	 * chance to dispatch it given we prioritize requests in hctx->dispatch.
    401	 */
    402	if ((rq->rq_flags & RQF_FLUSH_SEQ) || blk_rq_is_passthrough(rq))
    403		return true;
    404
    405	return false;
    406}
    407
    408void blk_mq_sched_insert_request(struct request *rq, bool at_head,
    409				 bool run_queue, bool async)
    410{
    411	struct request_queue *q = rq->q;
    412	struct elevator_queue *e = q->elevator;
    413	struct blk_mq_ctx *ctx = rq->mq_ctx;
    414	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
    415
    416	WARN_ON(e && (rq->tag != BLK_MQ_NO_TAG));
    417
    418	if (blk_mq_sched_bypass_insert(hctx, rq)) {
    419		/*
    420		 * Firstly normal IO request is inserted to scheduler queue or
    421		 * sw queue, meantime we add flush request to dispatch queue(
    422		 * hctx->dispatch) directly and there is at most one in-flight
    423		 * flush request for each hw queue, so it doesn't matter to add
    424		 * flush request to tail or front of the dispatch queue.
    425		 *
    426		 * Secondly in case of NCQ, flush request belongs to non-NCQ
    427		 * command, and queueing it will fail when there is any
    428		 * in-flight normal IO request(NCQ command). When adding flush
    429		 * rq to the front of hctx->dispatch, it is easier to introduce
    430		 * extra time to flush rq's latency because of S_SCHED_RESTART
    431		 * compared with adding to the tail of dispatch queue, then
    432		 * chance of flush merge is increased, and less flush requests
    433		 * will be issued to controller. It is observed that ~10% time
    434		 * is saved in blktests block/004 on disk attached to AHCI/NCQ
    435		 * drive when adding flush rq to the front of hctx->dispatch.
    436		 *
    437		 * Simply queue flush rq to the front of hctx->dispatch so that
    438		 * intensive flush workloads can benefit in case of NCQ HW.
    439		 */
    440		at_head = (rq->rq_flags & RQF_FLUSH_SEQ) ? true : at_head;
    441		blk_mq_request_bypass_insert(rq, at_head, false);
    442		goto run;
    443	}
    444
    445	if (e) {
    446		LIST_HEAD(list);
    447
    448		list_add(&rq->queuelist, &list);
    449		e->type->ops.insert_requests(hctx, &list, at_head);
    450	} else {
    451		spin_lock(&ctx->lock);
    452		__blk_mq_insert_request(hctx, rq, at_head);
    453		spin_unlock(&ctx->lock);
    454	}
    455
    456run:
    457	if (run_queue)
    458		blk_mq_run_hw_queue(hctx, async);
    459}
    460
    461void blk_mq_sched_insert_requests(struct blk_mq_hw_ctx *hctx,
    462				  struct blk_mq_ctx *ctx,
    463				  struct list_head *list, bool run_queue_async)
    464{
    465	struct elevator_queue *e;
    466	struct request_queue *q = hctx->queue;
    467
    468	/*
    469	 * blk_mq_sched_insert_requests() is called from flush plug
    470	 * context only, and hold one usage counter to prevent queue
    471	 * from being released.
    472	 */
    473	percpu_ref_get(&q->q_usage_counter);
    474
    475	e = hctx->queue->elevator;
    476	if (e) {
    477		e->type->ops.insert_requests(hctx, list, false);
    478	} else {
    479		/*
    480		 * try to issue requests directly if the hw queue isn't
    481		 * busy in case of 'none' scheduler, and this way may save
    482		 * us one extra enqueue & dequeue to sw queue.
    483		 */
    484		if (!hctx->dispatch_busy && !run_queue_async) {
    485			blk_mq_run_dispatch_ops(hctx->queue,
    486				blk_mq_try_issue_list_directly(hctx, list));
    487			if (list_empty(list))
    488				goto out;
    489		}
    490		blk_mq_insert_requests(hctx, ctx, list);
    491	}
    492
    493	blk_mq_run_hw_queue(hctx, run_queue_async);
    494 out:
    495	percpu_ref_put(&q->q_usage_counter);
    496}
    497
    498static int blk_mq_sched_alloc_map_and_rqs(struct request_queue *q,
    499					  struct blk_mq_hw_ctx *hctx,
    500					  unsigned int hctx_idx)
    501{
    502	if (blk_mq_is_shared_tags(q->tag_set->flags)) {
    503		hctx->sched_tags = q->sched_shared_tags;
    504		return 0;
    505	}
    506
    507	hctx->sched_tags = blk_mq_alloc_map_and_rqs(q->tag_set, hctx_idx,
    508						    q->nr_requests);
    509
    510	if (!hctx->sched_tags)
    511		return -ENOMEM;
    512	return 0;
    513}
    514
    515static void blk_mq_exit_sched_shared_tags(struct request_queue *queue)
    516{
    517	blk_mq_free_rq_map(queue->sched_shared_tags);
    518	queue->sched_shared_tags = NULL;
    519}
    520
    521/* called in queue's release handler, tagset has gone away */
    522static void blk_mq_sched_tags_teardown(struct request_queue *q, unsigned int flags)
    523{
    524	struct blk_mq_hw_ctx *hctx;
    525	unsigned long i;
    526
    527	queue_for_each_hw_ctx(q, hctx, i) {
    528		if (hctx->sched_tags) {
    529			if (!blk_mq_is_shared_tags(flags))
    530				blk_mq_free_rq_map(hctx->sched_tags);
    531			hctx->sched_tags = NULL;
    532		}
    533	}
    534
    535	if (blk_mq_is_shared_tags(flags))
    536		blk_mq_exit_sched_shared_tags(q);
    537}
    538
    539static int blk_mq_init_sched_shared_tags(struct request_queue *queue)
    540{
    541	struct blk_mq_tag_set *set = queue->tag_set;
    542
    543	/*
    544	 * Set initial depth at max so that we don't need to reallocate for
    545	 * updating nr_requests.
    546	 */
    547	queue->sched_shared_tags = blk_mq_alloc_map_and_rqs(set,
    548						BLK_MQ_NO_HCTX_IDX,
    549						MAX_SCHED_RQ);
    550	if (!queue->sched_shared_tags)
    551		return -ENOMEM;
    552
    553	blk_mq_tag_update_sched_shared_tags(queue);
    554
    555	return 0;
    556}
    557
    558int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
    559{
    560	unsigned int flags = q->tag_set->flags;
    561	struct blk_mq_hw_ctx *hctx;
    562	struct elevator_queue *eq;
    563	unsigned long i;
    564	int ret;
    565
    566	if (!e) {
    567		blk_queue_flag_clear(QUEUE_FLAG_SQ_SCHED, q);
    568		q->elevator = NULL;
    569		q->nr_requests = q->tag_set->queue_depth;
    570		return 0;
    571	}
    572
    573	/*
    574	 * Default to double of smaller one between hw queue_depth and 128,
    575	 * since we don't split into sync/async like the old code did.
    576	 * Additionally, this is a per-hw queue depth.
    577	 */
    578	q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth,
    579				   BLKDEV_DEFAULT_RQ);
    580
    581	if (blk_mq_is_shared_tags(flags)) {
    582		ret = blk_mq_init_sched_shared_tags(q);
    583		if (ret)
    584			return ret;
    585	}
    586
    587	queue_for_each_hw_ctx(q, hctx, i) {
    588		ret = blk_mq_sched_alloc_map_and_rqs(q, hctx, i);
    589		if (ret)
    590			goto err_free_map_and_rqs;
    591	}
    592
    593	ret = e->ops.init_sched(q, e);
    594	if (ret)
    595		goto err_free_map_and_rqs;
    596
    597	mutex_lock(&q->debugfs_mutex);
    598	blk_mq_debugfs_register_sched(q);
    599	mutex_unlock(&q->debugfs_mutex);
    600
    601	queue_for_each_hw_ctx(q, hctx, i) {
    602		if (e->ops.init_hctx) {
    603			ret = e->ops.init_hctx(hctx, i);
    604			if (ret) {
    605				eq = q->elevator;
    606				blk_mq_sched_free_rqs(q);
    607				blk_mq_exit_sched(q, eq);
    608				kobject_put(&eq->kobj);
    609				return ret;
    610			}
    611		}
    612		mutex_lock(&q->debugfs_mutex);
    613		blk_mq_debugfs_register_sched_hctx(q, hctx);
    614		mutex_unlock(&q->debugfs_mutex);
    615	}
    616
    617	return 0;
    618
    619err_free_map_and_rqs:
    620	blk_mq_sched_free_rqs(q);
    621	blk_mq_sched_tags_teardown(q, flags);
    622
    623	q->elevator = NULL;
    624	return ret;
    625}
    626
    627/*
    628 * called in either blk_queue_cleanup or elevator_switch, tagset
    629 * is required for freeing requests
    630 */
    631void blk_mq_sched_free_rqs(struct request_queue *q)
    632{
    633	struct blk_mq_hw_ctx *hctx;
    634	unsigned long i;
    635
    636	if (blk_mq_is_shared_tags(q->tag_set->flags)) {
    637		blk_mq_free_rqs(q->tag_set, q->sched_shared_tags,
    638				BLK_MQ_NO_HCTX_IDX);
    639	} else {
    640		queue_for_each_hw_ctx(q, hctx, i) {
    641			if (hctx->sched_tags)
    642				blk_mq_free_rqs(q->tag_set,
    643						hctx->sched_tags, i);
    644		}
    645	}
    646}
    647
    648void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
    649{
    650	struct blk_mq_hw_ctx *hctx;
    651	unsigned long i;
    652	unsigned int flags = 0;
    653
    654	queue_for_each_hw_ctx(q, hctx, i) {
    655		mutex_lock(&q->debugfs_mutex);
    656		blk_mq_debugfs_unregister_sched_hctx(hctx);
    657		mutex_unlock(&q->debugfs_mutex);
    658
    659		if (e->type->ops.exit_hctx && hctx->sched_data) {
    660			e->type->ops.exit_hctx(hctx, i);
    661			hctx->sched_data = NULL;
    662		}
    663		flags = hctx->flags;
    664	}
    665
    666	mutex_lock(&q->debugfs_mutex);
    667	blk_mq_debugfs_unregister_sched(q);
    668	mutex_unlock(&q->debugfs_mutex);
    669
    670	if (e->type->ops.exit_sched)
    671		e->type->ops.exit_sched(e);
    672	blk_mq_sched_tags_teardown(q, flags);
    673	q->elevator = NULL;
    674}