cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

blk-rq-qos.c (7174B)


      1// SPDX-License-Identifier: GPL-2.0
      2
      3#include "blk-rq-qos.h"
      4
      5/*
      6 * Increment 'v', if 'v' is below 'below'. Returns true if we succeeded,
      7 * false if 'v' + 1 would be bigger than 'below'.
      8 */
      9static bool atomic_inc_below(atomic_t *v, unsigned int below)
     10{
     11	unsigned int cur = atomic_read(v);
     12
     13	for (;;) {
     14		unsigned int old;
     15
     16		if (cur >= below)
     17			return false;
     18		old = atomic_cmpxchg(v, cur, cur + 1);
     19		if (old == cur)
     20			break;
     21		cur = old;
     22	}
     23
     24	return true;
     25}
     26
     27bool rq_wait_inc_below(struct rq_wait *rq_wait, unsigned int limit)
     28{
     29	return atomic_inc_below(&rq_wait->inflight, limit);
     30}
     31
     32void __rq_qos_cleanup(struct rq_qos *rqos, struct bio *bio)
     33{
     34	do {
     35		if (rqos->ops->cleanup)
     36			rqos->ops->cleanup(rqos, bio);
     37		rqos = rqos->next;
     38	} while (rqos);
     39}
     40
     41void __rq_qos_done(struct rq_qos *rqos, struct request *rq)
     42{
     43	do {
     44		if (rqos->ops->done)
     45			rqos->ops->done(rqos, rq);
     46		rqos = rqos->next;
     47	} while (rqos);
     48}
     49
     50void __rq_qos_issue(struct rq_qos *rqos, struct request *rq)
     51{
     52	do {
     53		if (rqos->ops->issue)
     54			rqos->ops->issue(rqos, rq);
     55		rqos = rqos->next;
     56	} while (rqos);
     57}
     58
     59void __rq_qos_requeue(struct rq_qos *rqos, struct request *rq)
     60{
     61	do {
     62		if (rqos->ops->requeue)
     63			rqos->ops->requeue(rqos, rq);
     64		rqos = rqos->next;
     65	} while (rqos);
     66}
     67
     68void __rq_qos_throttle(struct rq_qos *rqos, struct bio *bio)
     69{
     70	do {
     71		if (rqos->ops->throttle)
     72			rqos->ops->throttle(rqos, bio);
     73		rqos = rqos->next;
     74	} while (rqos);
     75}
     76
     77void __rq_qos_track(struct rq_qos *rqos, struct request *rq, struct bio *bio)
     78{
     79	do {
     80		if (rqos->ops->track)
     81			rqos->ops->track(rqos, rq, bio);
     82		rqos = rqos->next;
     83	} while (rqos);
     84}
     85
     86void __rq_qos_merge(struct rq_qos *rqos, struct request *rq, struct bio *bio)
     87{
     88	do {
     89		if (rqos->ops->merge)
     90			rqos->ops->merge(rqos, rq, bio);
     91		rqos = rqos->next;
     92	} while (rqos);
     93}
     94
     95void __rq_qos_done_bio(struct rq_qos *rqos, struct bio *bio)
     96{
     97	do {
     98		if (rqos->ops->done_bio)
     99			rqos->ops->done_bio(rqos, bio);
    100		rqos = rqos->next;
    101	} while (rqos);
    102}
    103
    104void __rq_qos_queue_depth_changed(struct rq_qos *rqos)
    105{
    106	do {
    107		if (rqos->ops->queue_depth_changed)
    108			rqos->ops->queue_depth_changed(rqos);
    109		rqos = rqos->next;
    110	} while (rqos);
    111}
    112
    113/*
    114 * Return true, if we can't increase the depth further by scaling
    115 */
    116bool rq_depth_calc_max_depth(struct rq_depth *rqd)
    117{
    118	unsigned int depth;
    119	bool ret = false;
    120
    121	/*
    122	 * For QD=1 devices, this is a special case. It's important for those
    123	 * to have one request ready when one completes, so force a depth of
    124	 * 2 for those devices. On the backend, it'll be a depth of 1 anyway,
    125	 * since the device can't have more than that in flight. If we're
    126	 * scaling down, then keep a setting of 1/1/1.
    127	 */
    128	if (rqd->queue_depth == 1) {
    129		if (rqd->scale_step > 0)
    130			rqd->max_depth = 1;
    131		else {
    132			rqd->max_depth = 2;
    133			ret = true;
    134		}
    135	} else {
    136		/*
    137		 * scale_step == 0 is our default state. If we have suffered
    138		 * latency spikes, step will be > 0, and we shrink the
    139		 * allowed write depths. If step is < 0, we're only doing
    140		 * writes, and we allow a temporarily higher depth to
    141		 * increase performance.
    142		 */
    143		depth = min_t(unsigned int, rqd->default_depth,
    144			      rqd->queue_depth);
    145		if (rqd->scale_step > 0)
    146			depth = 1 + ((depth - 1) >> min(31, rqd->scale_step));
    147		else if (rqd->scale_step < 0) {
    148			unsigned int maxd = 3 * rqd->queue_depth / 4;
    149
    150			depth = 1 + ((depth - 1) << -rqd->scale_step);
    151			if (depth > maxd) {
    152				depth = maxd;
    153				ret = true;
    154			}
    155		}
    156
    157		rqd->max_depth = depth;
    158	}
    159
    160	return ret;
    161}
    162
    163/* Returns true on success and false if scaling up wasn't possible */
    164bool rq_depth_scale_up(struct rq_depth *rqd)
    165{
    166	/*
    167	 * Hit max in previous round, stop here
    168	 */
    169	if (rqd->scaled_max)
    170		return false;
    171
    172	rqd->scale_step--;
    173
    174	rqd->scaled_max = rq_depth_calc_max_depth(rqd);
    175	return true;
    176}
    177
    178/*
    179 * Scale rwb down. If 'hard_throttle' is set, do it quicker, since we
    180 * had a latency violation. Returns true on success and returns false if
    181 * scaling down wasn't possible.
    182 */
    183bool rq_depth_scale_down(struct rq_depth *rqd, bool hard_throttle)
    184{
    185	/*
    186	 * Stop scaling down when we've hit the limit. This also prevents
    187	 * ->scale_step from going to crazy values, if the device can't
    188	 * keep up.
    189	 */
    190	if (rqd->max_depth == 1)
    191		return false;
    192
    193	if (rqd->scale_step < 0 && hard_throttle)
    194		rqd->scale_step = 0;
    195	else
    196		rqd->scale_step++;
    197
    198	rqd->scaled_max = false;
    199	rq_depth_calc_max_depth(rqd);
    200	return true;
    201}
    202
    203struct rq_qos_wait_data {
    204	struct wait_queue_entry wq;
    205	struct task_struct *task;
    206	struct rq_wait *rqw;
    207	acquire_inflight_cb_t *cb;
    208	void *private_data;
    209	bool got_token;
    210};
    211
    212static int rq_qos_wake_function(struct wait_queue_entry *curr,
    213				unsigned int mode, int wake_flags, void *key)
    214{
    215	struct rq_qos_wait_data *data = container_of(curr,
    216						     struct rq_qos_wait_data,
    217						     wq);
    218
    219	/*
    220	 * If we fail to get a budget, return -1 to interrupt the wake up loop
    221	 * in __wake_up_common.
    222	 */
    223	if (!data->cb(data->rqw, data->private_data))
    224		return -1;
    225
    226	data->got_token = true;
    227	smp_wmb();
    228	list_del_init(&curr->entry);
    229	wake_up_process(data->task);
    230	return 1;
    231}
    232
    233/**
    234 * rq_qos_wait - throttle on a rqw if we need to
    235 * @rqw: rqw to throttle on
    236 * @private_data: caller provided specific data
    237 * @acquire_inflight_cb: inc the rqw->inflight counter if we can
    238 * @cleanup_cb: the callback to cleanup in case we race with a waker
    239 *
    240 * This provides a uniform place for the rq_qos users to do their throttling.
    241 * Since you can end up with a lot of things sleeping at once, this manages the
    242 * waking up based on the resources available.  The acquire_inflight_cb should
    243 * inc the rqw->inflight if we have the ability to do so, or return false if not
    244 * and then we will sleep until the room becomes available.
    245 *
    246 * cleanup_cb is in case that we race with a waker and need to cleanup the
    247 * inflight count accordingly.
    248 */
    249void rq_qos_wait(struct rq_wait *rqw, void *private_data,
    250		 acquire_inflight_cb_t *acquire_inflight_cb,
    251		 cleanup_cb_t *cleanup_cb)
    252{
    253	struct rq_qos_wait_data data = {
    254		.wq = {
    255			.func	= rq_qos_wake_function,
    256			.entry	= LIST_HEAD_INIT(data.wq.entry),
    257		},
    258		.task = current,
    259		.rqw = rqw,
    260		.cb = acquire_inflight_cb,
    261		.private_data = private_data,
    262	};
    263	bool has_sleeper;
    264
    265	has_sleeper = wq_has_sleeper(&rqw->wait);
    266	if (!has_sleeper && acquire_inflight_cb(rqw, private_data))
    267		return;
    268
    269	has_sleeper = !prepare_to_wait_exclusive(&rqw->wait, &data.wq,
    270						 TASK_UNINTERRUPTIBLE);
    271	do {
    272		/* The memory barrier in set_task_state saves us here. */
    273		if (data.got_token)
    274			break;
    275		if (!has_sleeper && acquire_inflight_cb(rqw, private_data)) {
    276			finish_wait(&rqw->wait, &data.wq);
    277
    278			/*
    279			 * We raced with wbt_wake_function() getting a token,
    280			 * which means we now have two. Put our local token
    281			 * and wake anyone else potentially waiting for one.
    282			 */
    283			smp_rmb();
    284			if (data.got_token)
    285				cleanup_cb(rqw, private_data);
    286			break;
    287		}
    288		io_schedule();
    289		has_sleeper = true;
    290		set_current_state(TASK_UNINTERRUPTIBLE);
    291	} while (1);
    292	finish_wait(&rqw->wait, &data.wq);
    293}
    294
    295void rq_qos_exit(struct request_queue *q)
    296{
    297	while (q->rq_qos) {
    298		struct rq_qos *rqos = q->rq_qos;
    299		q->rq_qos = rqos->next;
    300		rqos->ops->exit(rqos);
    301	}
    302}