cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

blk-settings.c (30928B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * Functions related to setting various queue properties from drivers
      4 */
      5#include <linux/kernel.h>
      6#include <linux/module.h>
      7#include <linux/init.h>
      8#include <linux/bio.h>
      9#include <linux/blkdev.h>
     10#include <linux/pagemap.h>
     11#include <linux/backing-dev-defs.h>
     12#include <linux/gcd.h>
     13#include <linux/lcm.h>
     14#include <linux/jiffies.h>
     15#include <linux/gfp.h>
     16#include <linux/dma-mapping.h>
     17
     18#include "blk.h"
     19#include "blk-wbt.h"
     20
     21void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
     22{
     23	q->rq_timeout = timeout;
     24}
     25EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
     26
     27/**
     28 * blk_set_default_limits - reset limits to default values
     29 * @lim:  the queue_limits structure to reset
     30 *
     31 * Description:
     32 *   Returns a queue_limit struct to its default state.
     33 */
     34void blk_set_default_limits(struct queue_limits *lim)
     35{
     36	lim->max_segments = BLK_MAX_SEGMENTS;
     37	lim->max_discard_segments = 1;
     38	lim->max_integrity_segments = 0;
     39	lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
     40	lim->virt_boundary_mask = 0;
     41	lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
     42	lim->max_sectors = lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
     43	lim->max_dev_sectors = 0;
     44	lim->chunk_sectors = 0;
     45	lim->max_write_zeroes_sectors = 0;
     46	lim->max_zone_append_sectors = 0;
     47	lim->max_discard_sectors = 0;
     48	lim->max_hw_discard_sectors = 0;
     49	lim->max_secure_erase_sectors = 0;
     50	lim->discard_granularity = 0;
     51	lim->discard_alignment = 0;
     52	lim->discard_misaligned = 0;
     53	lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
     54	lim->bounce = BLK_BOUNCE_NONE;
     55	lim->alignment_offset = 0;
     56	lim->io_opt = 0;
     57	lim->misaligned = 0;
     58	lim->zoned = BLK_ZONED_NONE;
     59	lim->zone_write_granularity = 0;
     60}
     61EXPORT_SYMBOL(blk_set_default_limits);
     62
     63/**
     64 * blk_set_stacking_limits - set default limits for stacking devices
     65 * @lim:  the queue_limits structure to reset
     66 *
     67 * Description:
     68 *   Returns a queue_limit struct to its default state. Should be used
     69 *   by stacking drivers like DM that have no internal limits.
     70 */
     71void blk_set_stacking_limits(struct queue_limits *lim)
     72{
     73	blk_set_default_limits(lim);
     74
     75	/* Inherit limits from component devices */
     76	lim->max_segments = USHRT_MAX;
     77	lim->max_discard_segments = USHRT_MAX;
     78	lim->max_hw_sectors = UINT_MAX;
     79	lim->max_segment_size = UINT_MAX;
     80	lim->max_sectors = UINT_MAX;
     81	lim->max_dev_sectors = UINT_MAX;
     82	lim->max_write_zeroes_sectors = UINT_MAX;
     83	lim->max_zone_append_sectors = UINT_MAX;
     84}
     85EXPORT_SYMBOL(blk_set_stacking_limits);
     86
     87/**
     88 * blk_queue_bounce_limit - set bounce buffer limit for queue
     89 * @q: the request queue for the device
     90 * @bounce: bounce limit to enforce
     91 *
     92 * Description:
     93 *    Force bouncing for ISA DMA ranges or highmem.
     94 *
     95 *    DEPRECATED, don't use in new code.
     96 **/
     97void blk_queue_bounce_limit(struct request_queue *q, enum blk_bounce bounce)
     98{
     99	q->limits.bounce = bounce;
    100}
    101EXPORT_SYMBOL(blk_queue_bounce_limit);
    102
    103/**
    104 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
    105 * @q:  the request queue for the device
    106 * @max_hw_sectors:  max hardware sectors in the usual 512b unit
    107 *
    108 * Description:
    109 *    Enables a low level driver to set a hard upper limit,
    110 *    max_hw_sectors, on the size of requests.  max_hw_sectors is set by
    111 *    the device driver based upon the capabilities of the I/O
    112 *    controller.
    113 *
    114 *    max_dev_sectors is a hard limit imposed by the storage device for
    115 *    READ/WRITE requests. It is set by the disk driver.
    116 *
    117 *    max_sectors is a soft limit imposed by the block layer for
    118 *    filesystem type requests.  This value can be overridden on a
    119 *    per-device basis in /sys/block/<device>/queue/max_sectors_kb.
    120 *    The soft limit can not exceed max_hw_sectors.
    121 **/
    122void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_hw_sectors)
    123{
    124	struct queue_limits *limits = &q->limits;
    125	unsigned int max_sectors;
    126
    127	if ((max_hw_sectors << 9) < PAGE_SIZE) {
    128		max_hw_sectors = 1 << (PAGE_SHIFT - 9);
    129		printk(KERN_INFO "%s: set to minimum %d\n",
    130		       __func__, max_hw_sectors);
    131	}
    132
    133	max_hw_sectors = round_down(max_hw_sectors,
    134				    limits->logical_block_size >> SECTOR_SHIFT);
    135	limits->max_hw_sectors = max_hw_sectors;
    136
    137	max_sectors = min_not_zero(max_hw_sectors, limits->max_dev_sectors);
    138	max_sectors = min_t(unsigned int, max_sectors, BLK_DEF_MAX_SECTORS);
    139	max_sectors = round_down(max_sectors,
    140				 limits->logical_block_size >> SECTOR_SHIFT);
    141	limits->max_sectors = max_sectors;
    142
    143	if (!q->disk)
    144		return;
    145	q->disk->bdi->io_pages = max_sectors >> (PAGE_SHIFT - 9);
    146}
    147EXPORT_SYMBOL(blk_queue_max_hw_sectors);
    148
    149/**
    150 * blk_queue_chunk_sectors - set size of the chunk for this queue
    151 * @q:  the request queue for the device
    152 * @chunk_sectors:  chunk sectors in the usual 512b unit
    153 *
    154 * Description:
    155 *    If a driver doesn't want IOs to cross a given chunk size, it can set
    156 *    this limit and prevent merging across chunks. Note that the block layer
    157 *    must accept a page worth of data at any offset. So if the crossing of
    158 *    chunks is a hard limitation in the driver, it must still be prepared
    159 *    to split single page bios.
    160 **/
    161void blk_queue_chunk_sectors(struct request_queue *q, unsigned int chunk_sectors)
    162{
    163	q->limits.chunk_sectors = chunk_sectors;
    164}
    165EXPORT_SYMBOL(blk_queue_chunk_sectors);
    166
    167/**
    168 * blk_queue_max_discard_sectors - set max sectors for a single discard
    169 * @q:  the request queue for the device
    170 * @max_discard_sectors: maximum number of sectors to discard
    171 **/
    172void blk_queue_max_discard_sectors(struct request_queue *q,
    173		unsigned int max_discard_sectors)
    174{
    175	q->limits.max_hw_discard_sectors = max_discard_sectors;
    176	q->limits.max_discard_sectors = max_discard_sectors;
    177}
    178EXPORT_SYMBOL(blk_queue_max_discard_sectors);
    179
    180/**
    181 * blk_queue_max_secure_erase_sectors - set max sectors for a secure erase
    182 * @q:  the request queue for the device
    183 * @max_sectors: maximum number of sectors to secure_erase
    184 **/
    185void blk_queue_max_secure_erase_sectors(struct request_queue *q,
    186		unsigned int max_sectors)
    187{
    188	q->limits.max_secure_erase_sectors = max_sectors;
    189}
    190EXPORT_SYMBOL(blk_queue_max_secure_erase_sectors);
    191
    192/**
    193 * blk_queue_max_write_zeroes_sectors - set max sectors for a single
    194 *                                      write zeroes
    195 * @q:  the request queue for the device
    196 * @max_write_zeroes_sectors: maximum number of sectors to write per command
    197 **/
    198void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
    199		unsigned int max_write_zeroes_sectors)
    200{
    201	q->limits.max_write_zeroes_sectors = max_write_zeroes_sectors;
    202}
    203EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors);
    204
    205/**
    206 * blk_queue_max_zone_append_sectors - set max sectors for a single zone append
    207 * @q:  the request queue for the device
    208 * @max_zone_append_sectors: maximum number of sectors to write per command
    209 **/
    210void blk_queue_max_zone_append_sectors(struct request_queue *q,
    211		unsigned int max_zone_append_sectors)
    212{
    213	unsigned int max_sectors;
    214
    215	if (WARN_ON(!blk_queue_is_zoned(q)))
    216		return;
    217
    218	max_sectors = min(q->limits.max_hw_sectors, max_zone_append_sectors);
    219	max_sectors = min(q->limits.chunk_sectors, max_sectors);
    220
    221	/*
    222	 * Signal eventual driver bugs resulting in the max_zone_append sectors limit
    223	 * being 0 due to a 0 argument, the chunk_sectors limit (zone size) not set,
    224	 * or the max_hw_sectors limit not set.
    225	 */
    226	WARN_ON(!max_sectors);
    227
    228	q->limits.max_zone_append_sectors = max_sectors;
    229}
    230EXPORT_SYMBOL_GPL(blk_queue_max_zone_append_sectors);
    231
    232/**
    233 * blk_queue_max_segments - set max hw segments for a request for this queue
    234 * @q:  the request queue for the device
    235 * @max_segments:  max number of segments
    236 *
    237 * Description:
    238 *    Enables a low level driver to set an upper limit on the number of
    239 *    hw data segments in a request.
    240 **/
    241void blk_queue_max_segments(struct request_queue *q, unsigned short max_segments)
    242{
    243	if (!max_segments) {
    244		max_segments = 1;
    245		printk(KERN_INFO "%s: set to minimum %d\n",
    246		       __func__, max_segments);
    247	}
    248
    249	q->limits.max_segments = max_segments;
    250}
    251EXPORT_SYMBOL(blk_queue_max_segments);
    252
    253/**
    254 * blk_queue_max_discard_segments - set max segments for discard requests
    255 * @q:  the request queue for the device
    256 * @max_segments:  max number of segments
    257 *
    258 * Description:
    259 *    Enables a low level driver to set an upper limit on the number of
    260 *    segments in a discard request.
    261 **/
    262void blk_queue_max_discard_segments(struct request_queue *q,
    263		unsigned short max_segments)
    264{
    265	q->limits.max_discard_segments = max_segments;
    266}
    267EXPORT_SYMBOL_GPL(blk_queue_max_discard_segments);
    268
    269/**
    270 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
    271 * @q:  the request queue for the device
    272 * @max_size:  max size of segment in bytes
    273 *
    274 * Description:
    275 *    Enables a low level driver to set an upper limit on the size of a
    276 *    coalesced segment
    277 **/
    278void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
    279{
    280	if (max_size < PAGE_SIZE) {
    281		max_size = PAGE_SIZE;
    282		printk(KERN_INFO "%s: set to minimum %d\n",
    283		       __func__, max_size);
    284	}
    285
    286	/* see blk_queue_virt_boundary() for the explanation */
    287	WARN_ON_ONCE(q->limits.virt_boundary_mask);
    288
    289	q->limits.max_segment_size = max_size;
    290}
    291EXPORT_SYMBOL(blk_queue_max_segment_size);
    292
    293/**
    294 * blk_queue_logical_block_size - set logical block size for the queue
    295 * @q:  the request queue for the device
    296 * @size:  the logical block size, in bytes
    297 *
    298 * Description:
    299 *   This should be set to the lowest possible block size that the
    300 *   storage device can address.  The default of 512 covers most
    301 *   hardware.
    302 **/
    303void blk_queue_logical_block_size(struct request_queue *q, unsigned int size)
    304{
    305	struct queue_limits *limits = &q->limits;
    306
    307	limits->logical_block_size = size;
    308
    309	if (limits->physical_block_size < size)
    310		limits->physical_block_size = size;
    311
    312	if (limits->io_min < limits->physical_block_size)
    313		limits->io_min = limits->physical_block_size;
    314
    315	limits->max_hw_sectors =
    316		round_down(limits->max_hw_sectors, size >> SECTOR_SHIFT);
    317	limits->max_sectors =
    318		round_down(limits->max_sectors, size >> SECTOR_SHIFT);
    319}
    320EXPORT_SYMBOL(blk_queue_logical_block_size);
    321
    322/**
    323 * blk_queue_physical_block_size - set physical block size for the queue
    324 * @q:  the request queue for the device
    325 * @size:  the physical block size, in bytes
    326 *
    327 * Description:
    328 *   This should be set to the lowest possible sector size that the
    329 *   hardware can operate on without reverting to read-modify-write
    330 *   operations.
    331 */
    332void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
    333{
    334	q->limits.physical_block_size = size;
    335
    336	if (q->limits.physical_block_size < q->limits.logical_block_size)
    337		q->limits.physical_block_size = q->limits.logical_block_size;
    338
    339	if (q->limits.io_min < q->limits.physical_block_size)
    340		q->limits.io_min = q->limits.physical_block_size;
    341}
    342EXPORT_SYMBOL(blk_queue_physical_block_size);
    343
    344/**
    345 * blk_queue_zone_write_granularity - set zone write granularity for the queue
    346 * @q:  the request queue for the zoned device
    347 * @size:  the zone write granularity size, in bytes
    348 *
    349 * Description:
    350 *   This should be set to the lowest possible size allowing to write in
    351 *   sequential zones of a zoned block device.
    352 */
    353void blk_queue_zone_write_granularity(struct request_queue *q,
    354				      unsigned int size)
    355{
    356	if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
    357		return;
    358
    359	q->limits.zone_write_granularity = size;
    360
    361	if (q->limits.zone_write_granularity < q->limits.logical_block_size)
    362		q->limits.zone_write_granularity = q->limits.logical_block_size;
    363}
    364EXPORT_SYMBOL_GPL(blk_queue_zone_write_granularity);
    365
    366/**
    367 * blk_queue_alignment_offset - set physical block alignment offset
    368 * @q:	the request queue for the device
    369 * @offset: alignment offset in bytes
    370 *
    371 * Description:
    372 *   Some devices are naturally misaligned to compensate for things like
    373 *   the legacy DOS partition table 63-sector offset.  Low-level drivers
    374 *   should call this function for devices whose first sector is not
    375 *   naturally aligned.
    376 */
    377void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
    378{
    379	q->limits.alignment_offset =
    380		offset & (q->limits.physical_block_size - 1);
    381	q->limits.misaligned = 0;
    382}
    383EXPORT_SYMBOL(blk_queue_alignment_offset);
    384
    385void disk_update_readahead(struct gendisk *disk)
    386{
    387	struct request_queue *q = disk->queue;
    388
    389	/*
    390	 * For read-ahead of large files to be effective, we need to read ahead
    391	 * at least twice the optimal I/O size.
    392	 */
    393	disk->bdi->ra_pages =
    394		max(queue_io_opt(q) * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
    395	disk->bdi->io_pages = queue_max_sectors(q) >> (PAGE_SHIFT - 9);
    396}
    397EXPORT_SYMBOL_GPL(disk_update_readahead);
    398
    399/**
    400 * blk_limits_io_min - set minimum request size for a device
    401 * @limits: the queue limits
    402 * @min:  smallest I/O size in bytes
    403 *
    404 * Description:
    405 *   Some devices have an internal block size bigger than the reported
    406 *   hardware sector size.  This function can be used to signal the
    407 *   smallest I/O the device can perform without incurring a performance
    408 *   penalty.
    409 */
    410void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
    411{
    412	limits->io_min = min;
    413
    414	if (limits->io_min < limits->logical_block_size)
    415		limits->io_min = limits->logical_block_size;
    416
    417	if (limits->io_min < limits->physical_block_size)
    418		limits->io_min = limits->physical_block_size;
    419}
    420EXPORT_SYMBOL(blk_limits_io_min);
    421
    422/**
    423 * blk_queue_io_min - set minimum request size for the queue
    424 * @q:	the request queue for the device
    425 * @min:  smallest I/O size in bytes
    426 *
    427 * Description:
    428 *   Storage devices may report a granularity or preferred minimum I/O
    429 *   size which is the smallest request the device can perform without
    430 *   incurring a performance penalty.  For disk drives this is often the
    431 *   physical block size.  For RAID arrays it is often the stripe chunk
    432 *   size.  A properly aligned multiple of minimum_io_size is the
    433 *   preferred request size for workloads where a high number of I/O
    434 *   operations is desired.
    435 */
    436void blk_queue_io_min(struct request_queue *q, unsigned int min)
    437{
    438	blk_limits_io_min(&q->limits, min);
    439}
    440EXPORT_SYMBOL(blk_queue_io_min);
    441
    442/**
    443 * blk_limits_io_opt - set optimal request size for a device
    444 * @limits: the queue limits
    445 * @opt:  smallest I/O size in bytes
    446 *
    447 * Description:
    448 *   Storage devices may report an optimal I/O size, which is the
    449 *   device's preferred unit for sustained I/O.  This is rarely reported
    450 *   for disk drives.  For RAID arrays it is usually the stripe width or
    451 *   the internal track size.  A properly aligned multiple of
    452 *   optimal_io_size is the preferred request size for workloads where
    453 *   sustained throughput is desired.
    454 */
    455void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
    456{
    457	limits->io_opt = opt;
    458}
    459EXPORT_SYMBOL(blk_limits_io_opt);
    460
    461/**
    462 * blk_queue_io_opt - set optimal request size for the queue
    463 * @q:	the request queue for the device
    464 * @opt:  optimal request size in bytes
    465 *
    466 * Description:
    467 *   Storage devices may report an optimal I/O size, which is the
    468 *   device's preferred unit for sustained I/O.  This is rarely reported
    469 *   for disk drives.  For RAID arrays it is usually the stripe width or
    470 *   the internal track size.  A properly aligned multiple of
    471 *   optimal_io_size is the preferred request size for workloads where
    472 *   sustained throughput is desired.
    473 */
    474void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
    475{
    476	blk_limits_io_opt(&q->limits, opt);
    477	if (!q->disk)
    478		return;
    479	q->disk->bdi->ra_pages =
    480		max(queue_io_opt(q) * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
    481}
    482EXPORT_SYMBOL(blk_queue_io_opt);
    483
    484static int queue_limit_alignment_offset(struct queue_limits *lim,
    485		sector_t sector)
    486{
    487	unsigned int granularity = max(lim->physical_block_size, lim->io_min);
    488	unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT)
    489		<< SECTOR_SHIFT;
    490
    491	return (granularity + lim->alignment_offset - alignment) % granularity;
    492}
    493
    494static unsigned int queue_limit_discard_alignment(struct queue_limits *lim,
    495		sector_t sector)
    496{
    497	unsigned int alignment, granularity, offset;
    498
    499	if (!lim->max_discard_sectors)
    500		return 0;
    501
    502	/* Why are these in bytes, not sectors? */
    503	alignment = lim->discard_alignment >> SECTOR_SHIFT;
    504	granularity = lim->discard_granularity >> SECTOR_SHIFT;
    505	if (!granularity)
    506		return 0;
    507
    508	/* Offset of the partition start in 'granularity' sectors */
    509	offset = sector_div(sector, granularity);
    510
    511	/* And why do we do this modulus *again* in blkdev_issue_discard()? */
    512	offset = (granularity + alignment - offset) % granularity;
    513
    514	/* Turn it back into bytes, gaah */
    515	return offset << SECTOR_SHIFT;
    516}
    517
    518static unsigned int blk_round_down_sectors(unsigned int sectors, unsigned int lbs)
    519{
    520	sectors = round_down(sectors, lbs >> SECTOR_SHIFT);
    521	if (sectors < PAGE_SIZE >> SECTOR_SHIFT)
    522		sectors = PAGE_SIZE >> SECTOR_SHIFT;
    523	return sectors;
    524}
    525
    526/**
    527 * blk_stack_limits - adjust queue_limits for stacked devices
    528 * @t:	the stacking driver limits (top device)
    529 * @b:  the underlying queue limits (bottom, component device)
    530 * @start:  first data sector within component device
    531 *
    532 * Description:
    533 *    This function is used by stacking drivers like MD and DM to ensure
    534 *    that all component devices have compatible block sizes and
    535 *    alignments.  The stacking driver must provide a queue_limits
    536 *    struct (top) and then iteratively call the stacking function for
    537 *    all component (bottom) devices.  The stacking function will
    538 *    attempt to combine the values and ensure proper alignment.
    539 *
    540 *    Returns 0 if the top and bottom queue_limits are compatible.  The
    541 *    top device's block sizes and alignment offsets may be adjusted to
    542 *    ensure alignment with the bottom device. If no compatible sizes
    543 *    and alignments exist, -1 is returned and the resulting top
    544 *    queue_limits will have the misaligned flag set to indicate that
    545 *    the alignment_offset is undefined.
    546 */
    547int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
    548		     sector_t start)
    549{
    550	unsigned int top, bottom, alignment, ret = 0;
    551
    552	t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
    553	t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
    554	t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
    555	t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors,
    556					b->max_write_zeroes_sectors);
    557	t->max_zone_append_sectors = min(t->max_zone_append_sectors,
    558					b->max_zone_append_sectors);
    559	t->bounce = max(t->bounce, b->bounce);
    560
    561	t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
    562					    b->seg_boundary_mask);
    563	t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
    564					    b->virt_boundary_mask);
    565
    566	t->max_segments = min_not_zero(t->max_segments, b->max_segments);
    567	t->max_discard_segments = min_not_zero(t->max_discard_segments,
    568					       b->max_discard_segments);
    569	t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
    570						 b->max_integrity_segments);
    571
    572	t->max_segment_size = min_not_zero(t->max_segment_size,
    573					   b->max_segment_size);
    574
    575	t->misaligned |= b->misaligned;
    576
    577	alignment = queue_limit_alignment_offset(b, start);
    578
    579	/* Bottom device has different alignment.  Check that it is
    580	 * compatible with the current top alignment.
    581	 */
    582	if (t->alignment_offset != alignment) {
    583
    584		top = max(t->physical_block_size, t->io_min)
    585			+ t->alignment_offset;
    586		bottom = max(b->physical_block_size, b->io_min) + alignment;
    587
    588		/* Verify that top and bottom intervals line up */
    589		if (max(top, bottom) % min(top, bottom)) {
    590			t->misaligned = 1;
    591			ret = -1;
    592		}
    593	}
    594
    595	t->logical_block_size = max(t->logical_block_size,
    596				    b->logical_block_size);
    597
    598	t->physical_block_size = max(t->physical_block_size,
    599				     b->physical_block_size);
    600
    601	t->io_min = max(t->io_min, b->io_min);
    602	t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
    603
    604	/* Set non-power-of-2 compatible chunk_sectors boundary */
    605	if (b->chunk_sectors)
    606		t->chunk_sectors = gcd(t->chunk_sectors, b->chunk_sectors);
    607
    608	/* Physical block size a multiple of the logical block size? */
    609	if (t->physical_block_size & (t->logical_block_size - 1)) {
    610		t->physical_block_size = t->logical_block_size;
    611		t->misaligned = 1;
    612		ret = -1;
    613	}
    614
    615	/* Minimum I/O a multiple of the physical block size? */
    616	if (t->io_min & (t->physical_block_size - 1)) {
    617		t->io_min = t->physical_block_size;
    618		t->misaligned = 1;
    619		ret = -1;
    620	}
    621
    622	/* Optimal I/O a multiple of the physical block size? */
    623	if (t->io_opt & (t->physical_block_size - 1)) {
    624		t->io_opt = 0;
    625		t->misaligned = 1;
    626		ret = -1;
    627	}
    628
    629	/* chunk_sectors a multiple of the physical block size? */
    630	if ((t->chunk_sectors << 9) & (t->physical_block_size - 1)) {
    631		t->chunk_sectors = 0;
    632		t->misaligned = 1;
    633		ret = -1;
    634	}
    635
    636	t->raid_partial_stripes_expensive =
    637		max(t->raid_partial_stripes_expensive,
    638		    b->raid_partial_stripes_expensive);
    639
    640	/* Find lowest common alignment_offset */
    641	t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
    642		% max(t->physical_block_size, t->io_min);
    643
    644	/* Verify that new alignment_offset is on a logical block boundary */
    645	if (t->alignment_offset & (t->logical_block_size - 1)) {
    646		t->misaligned = 1;
    647		ret = -1;
    648	}
    649
    650	t->max_sectors = blk_round_down_sectors(t->max_sectors, t->logical_block_size);
    651	t->max_hw_sectors = blk_round_down_sectors(t->max_hw_sectors, t->logical_block_size);
    652	t->max_dev_sectors = blk_round_down_sectors(t->max_dev_sectors, t->logical_block_size);
    653
    654	/* Discard alignment and granularity */
    655	if (b->discard_granularity) {
    656		alignment = queue_limit_discard_alignment(b, start);
    657
    658		if (t->discard_granularity != 0 &&
    659		    t->discard_alignment != alignment) {
    660			top = t->discard_granularity + t->discard_alignment;
    661			bottom = b->discard_granularity + alignment;
    662
    663			/* Verify that top and bottom intervals line up */
    664			if ((max(top, bottom) % min(top, bottom)) != 0)
    665				t->discard_misaligned = 1;
    666		}
    667
    668		t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
    669						      b->max_discard_sectors);
    670		t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
    671							 b->max_hw_discard_sectors);
    672		t->discard_granularity = max(t->discard_granularity,
    673					     b->discard_granularity);
    674		t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
    675			t->discard_granularity;
    676	}
    677	t->max_secure_erase_sectors = min_not_zero(t->max_secure_erase_sectors,
    678						   b->max_secure_erase_sectors);
    679	t->zone_write_granularity = max(t->zone_write_granularity,
    680					b->zone_write_granularity);
    681	t->zoned = max(t->zoned, b->zoned);
    682	return ret;
    683}
    684EXPORT_SYMBOL(blk_stack_limits);
    685
    686/**
    687 * disk_stack_limits - adjust queue limits for stacked drivers
    688 * @disk:  MD/DM gendisk (top)
    689 * @bdev:  the underlying block device (bottom)
    690 * @offset:  offset to beginning of data within component device
    691 *
    692 * Description:
    693 *    Merges the limits for a top level gendisk and a bottom level
    694 *    block_device.
    695 */
    696void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
    697		       sector_t offset)
    698{
    699	struct request_queue *t = disk->queue;
    700
    701	if (blk_stack_limits(&t->limits, &bdev_get_queue(bdev)->limits,
    702			get_start_sect(bdev) + (offset >> 9)) < 0)
    703		pr_notice("%s: Warning: Device %pg is misaligned\n",
    704			disk->disk_name, bdev);
    705
    706	disk_update_readahead(disk);
    707}
    708EXPORT_SYMBOL(disk_stack_limits);
    709
    710/**
    711 * blk_queue_update_dma_pad - update pad mask
    712 * @q:     the request queue for the device
    713 * @mask:  pad mask
    714 *
    715 * Update dma pad mask.
    716 *
    717 * Appending pad buffer to a request modifies the last entry of a
    718 * scatter list such that it includes the pad buffer.
    719 **/
    720void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
    721{
    722	if (mask > q->dma_pad_mask)
    723		q->dma_pad_mask = mask;
    724}
    725EXPORT_SYMBOL(blk_queue_update_dma_pad);
    726
    727/**
    728 * blk_queue_segment_boundary - set boundary rules for segment merging
    729 * @q:  the request queue for the device
    730 * @mask:  the memory boundary mask
    731 **/
    732void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
    733{
    734	if (mask < PAGE_SIZE - 1) {
    735		mask = PAGE_SIZE - 1;
    736		printk(KERN_INFO "%s: set to minimum %lx\n",
    737		       __func__, mask);
    738	}
    739
    740	q->limits.seg_boundary_mask = mask;
    741}
    742EXPORT_SYMBOL(blk_queue_segment_boundary);
    743
    744/**
    745 * blk_queue_virt_boundary - set boundary rules for bio merging
    746 * @q:  the request queue for the device
    747 * @mask:  the memory boundary mask
    748 **/
    749void blk_queue_virt_boundary(struct request_queue *q, unsigned long mask)
    750{
    751	q->limits.virt_boundary_mask = mask;
    752
    753	/*
    754	 * Devices that require a virtual boundary do not support scatter/gather
    755	 * I/O natively, but instead require a descriptor list entry for each
    756	 * page (which might not be idential to the Linux PAGE_SIZE).  Because
    757	 * of that they are not limited by our notion of "segment size".
    758	 */
    759	if (mask)
    760		q->limits.max_segment_size = UINT_MAX;
    761}
    762EXPORT_SYMBOL(blk_queue_virt_boundary);
    763
    764/**
    765 * blk_queue_dma_alignment - set dma length and memory alignment
    766 * @q:     the request queue for the device
    767 * @mask:  alignment mask
    768 *
    769 * description:
    770 *    set required memory and length alignment for direct dma transactions.
    771 *    this is used when building direct io requests for the queue.
    772 *
    773 **/
    774void blk_queue_dma_alignment(struct request_queue *q, int mask)
    775{
    776	q->dma_alignment = mask;
    777}
    778EXPORT_SYMBOL(blk_queue_dma_alignment);
    779
    780/**
    781 * blk_queue_update_dma_alignment - update dma length and memory alignment
    782 * @q:     the request queue for the device
    783 * @mask:  alignment mask
    784 *
    785 * description:
    786 *    update required memory and length alignment for direct dma transactions.
    787 *    If the requested alignment is larger than the current alignment, then
    788 *    the current queue alignment is updated to the new value, otherwise it
    789 *    is left alone.  The design of this is to allow multiple objects
    790 *    (driver, device, transport etc) to set their respective
    791 *    alignments without having them interfere.
    792 *
    793 **/
    794void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
    795{
    796	BUG_ON(mask > PAGE_SIZE);
    797
    798	if (mask > q->dma_alignment)
    799		q->dma_alignment = mask;
    800}
    801EXPORT_SYMBOL(blk_queue_update_dma_alignment);
    802
    803/**
    804 * blk_set_queue_depth - tell the block layer about the device queue depth
    805 * @q:		the request queue for the device
    806 * @depth:		queue depth
    807 *
    808 */
    809void blk_set_queue_depth(struct request_queue *q, unsigned int depth)
    810{
    811	q->queue_depth = depth;
    812	rq_qos_queue_depth_changed(q);
    813}
    814EXPORT_SYMBOL(blk_set_queue_depth);
    815
    816/**
    817 * blk_queue_write_cache - configure queue's write cache
    818 * @q:		the request queue for the device
    819 * @wc:		write back cache on or off
    820 * @fua:	device supports FUA writes, if true
    821 *
    822 * Tell the block layer about the write cache of @q.
    823 */
    824void blk_queue_write_cache(struct request_queue *q, bool wc, bool fua)
    825{
    826	if (wc)
    827		blk_queue_flag_set(QUEUE_FLAG_WC, q);
    828	else
    829		blk_queue_flag_clear(QUEUE_FLAG_WC, q);
    830	if (fua)
    831		blk_queue_flag_set(QUEUE_FLAG_FUA, q);
    832	else
    833		blk_queue_flag_clear(QUEUE_FLAG_FUA, q);
    834
    835	wbt_set_write_cache(q, test_bit(QUEUE_FLAG_WC, &q->queue_flags));
    836}
    837EXPORT_SYMBOL_GPL(blk_queue_write_cache);
    838
    839/**
    840 * blk_queue_required_elevator_features - Set a queue required elevator features
    841 * @q:		the request queue for the target device
    842 * @features:	Required elevator features OR'ed together
    843 *
    844 * Tell the block layer that for the device controlled through @q, only the
    845 * only elevators that can be used are those that implement at least the set of
    846 * features specified by @features.
    847 */
    848void blk_queue_required_elevator_features(struct request_queue *q,
    849					  unsigned int features)
    850{
    851	q->required_elevator_features = features;
    852}
    853EXPORT_SYMBOL_GPL(blk_queue_required_elevator_features);
    854
    855/**
    856 * blk_queue_can_use_dma_map_merging - configure queue for merging segments.
    857 * @q:		the request queue for the device
    858 * @dev:	the device pointer for dma
    859 *
    860 * Tell the block layer about merging the segments by dma map of @q.
    861 */
    862bool blk_queue_can_use_dma_map_merging(struct request_queue *q,
    863				       struct device *dev)
    864{
    865	unsigned long boundary = dma_get_merge_boundary(dev);
    866
    867	if (!boundary)
    868		return false;
    869
    870	/* No need to update max_segment_size. see blk_queue_virt_boundary() */
    871	blk_queue_virt_boundary(q, boundary);
    872
    873	return true;
    874}
    875EXPORT_SYMBOL_GPL(blk_queue_can_use_dma_map_merging);
    876
    877static bool disk_has_partitions(struct gendisk *disk)
    878{
    879	unsigned long idx;
    880	struct block_device *part;
    881	bool ret = false;
    882
    883	rcu_read_lock();
    884	xa_for_each(&disk->part_tbl, idx, part) {
    885		if (bdev_is_partition(part)) {
    886			ret = true;
    887			break;
    888		}
    889	}
    890	rcu_read_unlock();
    891
    892	return ret;
    893}
    894
    895/**
    896 * blk_queue_set_zoned - configure a disk queue zoned model.
    897 * @disk:	the gendisk of the queue to configure
    898 * @model:	the zoned model to set
    899 *
    900 * Set the zoned model of the request queue of @disk according to @model.
    901 * When @model is BLK_ZONED_HM (host managed), this should be called only
    902 * if zoned block device support is enabled (CONFIG_BLK_DEV_ZONED option).
    903 * If @model specifies BLK_ZONED_HA (host aware), the effective model used
    904 * depends on CONFIG_BLK_DEV_ZONED settings and on the existence of partitions
    905 * on the disk.
    906 */
    907void blk_queue_set_zoned(struct gendisk *disk, enum blk_zoned_model model)
    908{
    909	struct request_queue *q = disk->queue;
    910
    911	switch (model) {
    912	case BLK_ZONED_HM:
    913		/*
    914		 * Host managed devices are supported only if
    915		 * CONFIG_BLK_DEV_ZONED is enabled.
    916		 */
    917		WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED));
    918		break;
    919	case BLK_ZONED_HA:
    920		/*
    921		 * Host aware devices can be treated either as regular block
    922		 * devices (similar to drive managed devices) or as zoned block
    923		 * devices to take advantage of the zone command set, similarly
    924		 * to host managed devices. We try the latter if there are no
    925		 * partitions and zoned block device support is enabled, else
    926		 * we do nothing special as far as the block layer is concerned.
    927		 */
    928		if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) ||
    929		    disk_has_partitions(disk))
    930			model = BLK_ZONED_NONE;
    931		break;
    932	case BLK_ZONED_NONE:
    933	default:
    934		if (WARN_ON_ONCE(model != BLK_ZONED_NONE))
    935			model = BLK_ZONED_NONE;
    936		break;
    937	}
    938
    939	q->limits.zoned = model;
    940	if (model != BLK_ZONED_NONE) {
    941		/*
    942		 * Set the zone write granularity to the device logical block
    943		 * size by default. The driver can change this value if needed.
    944		 */
    945		blk_queue_zone_write_granularity(q,
    946						queue_logical_block_size(q));
    947	} else {
    948		blk_queue_clear_zone_settings(q);
    949	}
    950}
    951EXPORT_SYMBOL_GPL(blk_queue_set_zoned);
    952
    953int bdev_alignment_offset(struct block_device *bdev)
    954{
    955	struct request_queue *q = bdev_get_queue(bdev);
    956
    957	if (q->limits.misaligned)
    958		return -1;
    959	if (bdev_is_partition(bdev))
    960		return queue_limit_alignment_offset(&q->limits,
    961				bdev->bd_start_sect);
    962	return q->limits.alignment_offset;
    963}
    964EXPORT_SYMBOL_GPL(bdev_alignment_offset);
    965
    966unsigned int bdev_discard_alignment(struct block_device *bdev)
    967{
    968	struct request_queue *q = bdev_get_queue(bdev);
    969
    970	if (bdev_is_partition(bdev))
    971		return queue_limit_discard_alignment(&q->limits,
    972				bdev->bd_start_sect);
    973	return q->limits.discard_alignment;
    974}
    975EXPORT_SYMBOL_GPL(bdev_discard_alignment);