cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

blk-wbt.c (20386B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * buffered writeback throttling. loosely based on CoDel. We can't drop
      4 * packets for IO scheduling, so the logic is something like this:
      5 *
      6 * - Monitor latencies in a defined window of time.
      7 * - If the minimum latency in the above window exceeds some target, increment
      8 *   scaling step and scale down queue depth by a factor of 2x. The monitoring
      9 *   window is then shrunk to 100 / sqrt(scaling step + 1).
     10 * - For any window where we don't have solid data on what the latencies
     11 *   look like, retain status quo.
     12 * - If latencies look good, decrement scaling step.
     13 * - If we're only doing writes, allow the scaling step to go negative. This
     14 *   will temporarily boost write performance, snapping back to a stable
     15 *   scaling step of 0 if reads show up or the heavy writers finish. Unlike
     16 *   positive scaling steps where we shrink the monitoring window, a negative
     17 *   scaling step retains the default step==0 window size.
     18 *
     19 * Copyright (C) 2016 Jens Axboe
     20 *
     21 */
     22#include <linux/kernel.h>
     23#include <linux/blk_types.h>
     24#include <linux/slab.h>
     25#include <linux/backing-dev.h>
     26#include <linux/swap.h>
     27
     28#include "blk-wbt.h"
     29#include "blk-rq-qos.h"
     30
     31#define CREATE_TRACE_POINTS
     32#include <trace/events/wbt.h>
     33
     34static inline void wbt_clear_state(struct request *rq)
     35{
     36	rq->wbt_flags = 0;
     37}
     38
     39static inline enum wbt_flags wbt_flags(struct request *rq)
     40{
     41	return rq->wbt_flags;
     42}
     43
     44static inline bool wbt_is_tracked(struct request *rq)
     45{
     46	return rq->wbt_flags & WBT_TRACKED;
     47}
     48
     49static inline bool wbt_is_read(struct request *rq)
     50{
     51	return rq->wbt_flags & WBT_READ;
     52}
     53
     54enum {
     55	/*
     56	 * Default setting, we'll scale up (to 75% of QD max) or down (min 1)
     57	 * from here depending on device stats
     58	 */
     59	RWB_DEF_DEPTH	= 16,
     60
     61	/*
     62	 * 100msec window
     63	 */
     64	RWB_WINDOW_NSEC		= 100 * 1000 * 1000ULL,
     65
     66	/*
     67	 * Disregard stats, if we don't meet this minimum
     68	 */
     69	RWB_MIN_WRITE_SAMPLES	= 3,
     70
     71	/*
     72	 * If we have this number of consecutive windows with not enough
     73	 * information to scale up or down, scale up.
     74	 */
     75	RWB_UNKNOWN_BUMP	= 5,
     76};
     77
     78static inline bool rwb_enabled(struct rq_wb *rwb)
     79{
     80	return rwb && rwb->enable_state != WBT_STATE_OFF_DEFAULT &&
     81		      rwb->wb_normal != 0;
     82}
     83
     84static void wb_timestamp(struct rq_wb *rwb, unsigned long *var)
     85{
     86	if (rwb_enabled(rwb)) {
     87		const unsigned long cur = jiffies;
     88
     89		if (cur != *var)
     90			*var = cur;
     91	}
     92}
     93
     94/*
     95 * If a task was rate throttled in balance_dirty_pages() within the last
     96 * second or so, use that to indicate a higher cleaning rate.
     97 */
     98static bool wb_recent_wait(struct rq_wb *rwb)
     99{
    100	struct bdi_writeback *wb = &rwb->rqos.q->disk->bdi->wb;
    101
    102	return time_before(jiffies, wb->dirty_sleep + HZ);
    103}
    104
    105static inline struct rq_wait *get_rq_wait(struct rq_wb *rwb,
    106					  enum wbt_flags wb_acct)
    107{
    108	if (wb_acct & WBT_KSWAPD)
    109		return &rwb->rq_wait[WBT_RWQ_KSWAPD];
    110	else if (wb_acct & WBT_DISCARD)
    111		return &rwb->rq_wait[WBT_RWQ_DISCARD];
    112
    113	return &rwb->rq_wait[WBT_RWQ_BG];
    114}
    115
    116static void rwb_wake_all(struct rq_wb *rwb)
    117{
    118	int i;
    119
    120	for (i = 0; i < WBT_NUM_RWQ; i++) {
    121		struct rq_wait *rqw = &rwb->rq_wait[i];
    122
    123		if (wq_has_sleeper(&rqw->wait))
    124			wake_up_all(&rqw->wait);
    125	}
    126}
    127
    128static void wbt_rqw_done(struct rq_wb *rwb, struct rq_wait *rqw,
    129			 enum wbt_flags wb_acct)
    130{
    131	int inflight, limit;
    132
    133	inflight = atomic_dec_return(&rqw->inflight);
    134
    135	/*
    136	 * wbt got disabled with IO in flight. Wake up any potential
    137	 * waiters, we don't have to do more than that.
    138	 */
    139	if (unlikely(!rwb_enabled(rwb))) {
    140		rwb_wake_all(rwb);
    141		return;
    142	}
    143
    144	/*
    145	 * For discards, our limit is always the background. For writes, if
    146	 * the device does write back caching, drop further down before we
    147	 * wake people up.
    148	 */
    149	if (wb_acct & WBT_DISCARD)
    150		limit = rwb->wb_background;
    151	else if (rwb->wc && !wb_recent_wait(rwb))
    152		limit = 0;
    153	else
    154		limit = rwb->wb_normal;
    155
    156	/*
    157	 * Don't wake anyone up if we are above the normal limit.
    158	 */
    159	if (inflight && inflight >= limit)
    160		return;
    161
    162	if (wq_has_sleeper(&rqw->wait)) {
    163		int diff = limit - inflight;
    164
    165		if (!inflight || diff >= rwb->wb_background / 2)
    166			wake_up_all(&rqw->wait);
    167	}
    168}
    169
    170static void __wbt_done(struct rq_qos *rqos, enum wbt_flags wb_acct)
    171{
    172	struct rq_wb *rwb = RQWB(rqos);
    173	struct rq_wait *rqw;
    174
    175	if (!(wb_acct & WBT_TRACKED))
    176		return;
    177
    178	rqw = get_rq_wait(rwb, wb_acct);
    179	wbt_rqw_done(rwb, rqw, wb_acct);
    180}
    181
    182/*
    183 * Called on completion of a request. Note that it's also called when
    184 * a request is merged, when the request gets freed.
    185 */
    186static void wbt_done(struct rq_qos *rqos, struct request *rq)
    187{
    188	struct rq_wb *rwb = RQWB(rqos);
    189
    190	if (!wbt_is_tracked(rq)) {
    191		if (rwb->sync_cookie == rq) {
    192			rwb->sync_issue = 0;
    193			rwb->sync_cookie = NULL;
    194		}
    195
    196		if (wbt_is_read(rq))
    197			wb_timestamp(rwb, &rwb->last_comp);
    198	} else {
    199		WARN_ON_ONCE(rq == rwb->sync_cookie);
    200		__wbt_done(rqos, wbt_flags(rq));
    201	}
    202	wbt_clear_state(rq);
    203}
    204
    205static inline bool stat_sample_valid(struct blk_rq_stat *stat)
    206{
    207	/*
    208	 * We need at least one read sample, and a minimum of
    209	 * RWB_MIN_WRITE_SAMPLES. We require some write samples to know
    210	 * that it's writes impacting us, and not just some sole read on
    211	 * a device that is in a lower power state.
    212	 */
    213	return (stat[READ].nr_samples >= 1 &&
    214		stat[WRITE].nr_samples >= RWB_MIN_WRITE_SAMPLES);
    215}
    216
    217static u64 rwb_sync_issue_lat(struct rq_wb *rwb)
    218{
    219	u64 now, issue = READ_ONCE(rwb->sync_issue);
    220
    221	if (!issue || !rwb->sync_cookie)
    222		return 0;
    223
    224	now = ktime_to_ns(ktime_get());
    225	return now - issue;
    226}
    227
    228enum {
    229	LAT_OK = 1,
    230	LAT_UNKNOWN,
    231	LAT_UNKNOWN_WRITES,
    232	LAT_EXCEEDED,
    233};
    234
    235static int latency_exceeded(struct rq_wb *rwb, struct blk_rq_stat *stat)
    236{
    237	struct backing_dev_info *bdi = rwb->rqos.q->disk->bdi;
    238	struct rq_depth *rqd = &rwb->rq_depth;
    239	u64 thislat;
    240
    241	/*
    242	 * If our stored sync issue exceeds the window size, or it
    243	 * exceeds our min target AND we haven't logged any entries,
    244	 * flag the latency as exceeded. wbt works off completion latencies,
    245	 * but for a flooded device, a single sync IO can take a long time
    246	 * to complete after being issued. If this time exceeds our
    247	 * monitoring window AND we didn't see any other completions in that
    248	 * window, then count that sync IO as a violation of the latency.
    249	 */
    250	thislat = rwb_sync_issue_lat(rwb);
    251	if (thislat > rwb->cur_win_nsec ||
    252	    (thislat > rwb->min_lat_nsec && !stat[READ].nr_samples)) {
    253		trace_wbt_lat(bdi, thislat);
    254		return LAT_EXCEEDED;
    255	}
    256
    257	/*
    258	 * No read/write mix, if stat isn't valid
    259	 */
    260	if (!stat_sample_valid(stat)) {
    261		/*
    262		 * If we had writes in this stat window and the window is
    263		 * current, we're only doing writes. If a task recently
    264		 * waited or still has writes in flights, consider us doing
    265		 * just writes as well.
    266		 */
    267		if (stat[WRITE].nr_samples || wb_recent_wait(rwb) ||
    268		    wbt_inflight(rwb))
    269			return LAT_UNKNOWN_WRITES;
    270		return LAT_UNKNOWN;
    271	}
    272
    273	/*
    274	 * If the 'min' latency exceeds our target, step down.
    275	 */
    276	if (stat[READ].min > rwb->min_lat_nsec) {
    277		trace_wbt_lat(bdi, stat[READ].min);
    278		trace_wbt_stat(bdi, stat);
    279		return LAT_EXCEEDED;
    280	}
    281
    282	if (rqd->scale_step)
    283		trace_wbt_stat(bdi, stat);
    284
    285	return LAT_OK;
    286}
    287
    288static void rwb_trace_step(struct rq_wb *rwb, const char *msg)
    289{
    290	struct backing_dev_info *bdi = rwb->rqos.q->disk->bdi;
    291	struct rq_depth *rqd = &rwb->rq_depth;
    292
    293	trace_wbt_step(bdi, msg, rqd->scale_step, rwb->cur_win_nsec,
    294			rwb->wb_background, rwb->wb_normal, rqd->max_depth);
    295}
    296
    297static void calc_wb_limits(struct rq_wb *rwb)
    298{
    299	if (rwb->min_lat_nsec == 0) {
    300		rwb->wb_normal = rwb->wb_background = 0;
    301	} else if (rwb->rq_depth.max_depth <= 2) {
    302		rwb->wb_normal = rwb->rq_depth.max_depth;
    303		rwb->wb_background = 1;
    304	} else {
    305		rwb->wb_normal = (rwb->rq_depth.max_depth + 1) / 2;
    306		rwb->wb_background = (rwb->rq_depth.max_depth + 3) / 4;
    307	}
    308}
    309
    310static void scale_up(struct rq_wb *rwb)
    311{
    312	if (!rq_depth_scale_up(&rwb->rq_depth))
    313		return;
    314	calc_wb_limits(rwb);
    315	rwb->unknown_cnt = 0;
    316	rwb_wake_all(rwb);
    317	rwb_trace_step(rwb, tracepoint_string("scale up"));
    318}
    319
    320static void scale_down(struct rq_wb *rwb, bool hard_throttle)
    321{
    322	if (!rq_depth_scale_down(&rwb->rq_depth, hard_throttle))
    323		return;
    324	calc_wb_limits(rwb);
    325	rwb->unknown_cnt = 0;
    326	rwb_trace_step(rwb, tracepoint_string("scale down"));
    327}
    328
    329static void rwb_arm_timer(struct rq_wb *rwb)
    330{
    331	struct rq_depth *rqd = &rwb->rq_depth;
    332
    333	if (rqd->scale_step > 0) {
    334		/*
    335		 * We should speed this up, using some variant of a fast
    336		 * integer inverse square root calculation. Since we only do
    337		 * this for every window expiration, it's not a huge deal,
    338		 * though.
    339		 */
    340		rwb->cur_win_nsec = div_u64(rwb->win_nsec << 4,
    341					int_sqrt((rqd->scale_step + 1) << 8));
    342	} else {
    343		/*
    344		 * For step < 0, we don't want to increase/decrease the
    345		 * window size.
    346		 */
    347		rwb->cur_win_nsec = rwb->win_nsec;
    348	}
    349
    350	blk_stat_activate_nsecs(rwb->cb, rwb->cur_win_nsec);
    351}
    352
    353static void wb_timer_fn(struct blk_stat_callback *cb)
    354{
    355	struct rq_wb *rwb = cb->data;
    356	struct rq_depth *rqd = &rwb->rq_depth;
    357	unsigned int inflight = wbt_inflight(rwb);
    358	int status;
    359
    360	if (!rwb->rqos.q->disk)
    361		return;
    362
    363	status = latency_exceeded(rwb, cb->stat);
    364
    365	trace_wbt_timer(rwb->rqos.q->disk->bdi, status, rqd->scale_step,
    366			inflight);
    367
    368	/*
    369	 * If we exceeded the latency target, step down. If we did not,
    370	 * step one level up. If we don't know enough to say either exceeded
    371	 * or ok, then don't do anything.
    372	 */
    373	switch (status) {
    374	case LAT_EXCEEDED:
    375		scale_down(rwb, true);
    376		break;
    377	case LAT_OK:
    378		scale_up(rwb);
    379		break;
    380	case LAT_UNKNOWN_WRITES:
    381		/*
    382		 * We started a the center step, but don't have a valid
    383		 * read/write sample, but we do have writes going on.
    384		 * Allow step to go negative, to increase write perf.
    385		 */
    386		scale_up(rwb);
    387		break;
    388	case LAT_UNKNOWN:
    389		if (++rwb->unknown_cnt < RWB_UNKNOWN_BUMP)
    390			break;
    391		/*
    392		 * We get here when previously scaled reduced depth, and we
    393		 * currently don't have a valid read/write sample. For that
    394		 * case, slowly return to center state (step == 0).
    395		 */
    396		if (rqd->scale_step > 0)
    397			scale_up(rwb);
    398		else if (rqd->scale_step < 0)
    399			scale_down(rwb, false);
    400		break;
    401	default:
    402		break;
    403	}
    404
    405	/*
    406	 * Re-arm timer, if we have IO in flight
    407	 */
    408	if (rqd->scale_step || inflight)
    409		rwb_arm_timer(rwb);
    410}
    411
    412static void wbt_update_limits(struct rq_wb *rwb)
    413{
    414	struct rq_depth *rqd = &rwb->rq_depth;
    415
    416	rqd->scale_step = 0;
    417	rqd->scaled_max = false;
    418
    419	rq_depth_calc_max_depth(rqd);
    420	calc_wb_limits(rwb);
    421
    422	rwb_wake_all(rwb);
    423}
    424
    425u64 wbt_get_min_lat(struct request_queue *q)
    426{
    427	struct rq_qos *rqos = wbt_rq_qos(q);
    428	if (!rqos)
    429		return 0;
    430	return RQWB(rqos)->min_lat_nsec;
    431}
    432
    433void wbt_set_min_lat(struct request_queue *q, u64 val)
    434{
    435	struct rq_qos *rqos = wbt_rq_qos(q);
    436	if (!rqos)
    437		return;
    438	RQWB(rqos)->min_lat_nsec = val;
    439	RQWB(rqos)->enable_state = WBT_STATE_ON_MANUAL;
    440	wbt_update_limits(RQWB(rqos));
    441}
    442
    443
    444static bool close_io(struct rq_wb *rwb)
    445{
    446	const unsigned long now = jiffies;
    447
    448	return time_before(now, rwb->last_issue + HZ / 10) ||
    449		time_before(now, rwb->last_comp + HZ / 10);
    450}
    451
    452#define REQ_HIPRIO	(REQ_SYNC | REQ_META | REQ_PRIO)
    453
    454static inline unsigned int get_limit(struct rq_wb *rwb, unsigned long rw)
    455{
    456	unsigned int limit;
    457
    458	/*
    459	 * If we got disabled, just return UINT_MAX. This ensures that
    460	 * we'll properly inc a new IO, and dec+wakeup at the end.
    461	 */
    462	if (!rwb_enabled(rwb))
    463		return UINT_MAX;
    464
    465	if ((rw & REQ_OP_MASK) == REQ_OP_DISCARD)
    466		return rwb->wb_background;
    467
    468	/*
    469	 * At this point we know it's a buffered write. If this is
    470	 * kswapd trying to free memory, or REQ_SYNC is set, then
    471	 * it's WB_SYNC_ALL writeback, and we'll use the max limit for
    472	 * that. If the write is marked as a background write, then use
    473	 * the idle limit, or go to normal if we haven't had competing
    474	 * IO for a bit.
    475	 */
    476	if ((rw & REQ_HIPRIO) || wb_recent_wait(rwb) || current_is_kswapd())
    477		limit = rwb->rq_depth.max_depth;
    478	else if ((rw & REQ_BACKGROUND) || close_io(rwb)) {
    479		/*
    480		 * If less than 100ms since we completed unrelated IO,
    481		 * limit us to half the depth for background writeback.
    482		 */
    483		limit = rwb->wb_background;
    484	} else
    485		limit = rwb->wb_normal;
    486
    487	return limit;
    488}
    489
    490struct wbt_wait_data {
    491	struct rq_wb *rwb;
    492	enum wbt_flags wb_acct;
    493	unsigned long rw;
    494};
    495
    496static bool wbt_inflight_cb(struct rq_wait *rqw, void *private_data)
    497{
    498	struct wbt_wait_data *data = private_data;
    499	return rq_wait_inc_below(rqw, get_limit(data->rwb, data->rw));
    500}
    501
    502static void wbt_cleanup_cb(struct rq_wait *rqw, void *private_data)
    503{
    504	struct wbt_wait_data *data = private_data;
    505	wbt_rqw_done(data->rwb, rqw, data->wb_acct);
    506}
    507
    508/*
    509 * Block if we will exceed our limit, or if we are currently waiting for
    510 * the timer to kick off queuing again.
    511 */
    512static void __wbt_wait(struct rq_wb *rwb, enum wbt_flags wb_acct,
    513		       unsigned long rw)
    514{
    515	struct rq_wait *rqw = get_rq_wait(rwb, wb_acct);
    516	struct wbt_wait_data data = {
    517		.rwb = rwb,
    518		.wb_acct = wb_acct,
    519		.rw = rw,
    520	};
    521
    522	rq_qos_wait(rqw, &data, wbt_inflight_cb, wbt_cleanup_cb);
    523}
    524
    525static inline bool wbt_should_throttle(struct bio *bio)
    526{
    527	switch (bio_op(bio)) {
    528	case REQ_OP_WRITE:
    529		/*
    530		 * Don't throttle WRITE_ODIRECT
    531		 */
    532		if ((bio->bi_opf & (REQ_SYNC | REQ_IDLE)) ==
    533		    (REQ_SYNC | REQ_IDLE))
    534			return false;
    535		fallthrough;
    536	case REQ_OP_DISCARD:
    537		return true;
    538	default:
    539		return false;
    540	}
    541}
    542
    543static enum wbt_flags bio_to_wbt_flags(struct rq_wb *rwb, struct bio *bio)
    544{
    545	enum wbt_flags flags = 0;
    546
    547	if (!rwb_enabled(rwb))
    548		return 0;
    549
    550	if (bio_op(bio) == REQ_OP_READ) {
    551		flags = WBT_READ;
    552	} else if (wbt_should_throttle(bio)) {
    553		if (current_is_kswapd())
    554			flags |= WBT_KSWAPD;
    555		if (bio_op(bio) == REQ_OP_DISCARD)
    556			flags |= WBT_DISCARD;
    557		flags |= WBT_TRACKED;
    558	}
    559	return flags;
    560}
    561
    562static void wbt_cleanup(struct rq_qos *rqos, struct bio *bio)
    563{
    564	struct rq_wb *rwb = RQWB(rqos);
    565	enum wbt_flags flags = bio_to_wbt_flags(rwb, bio);
    566	__wbt_done(rqos, flags);
    567}
    568
    569/*
    570 * May sleep, if we have exceeded the writeback limits. Caller can pass
    571 * in an irq held spinlock, if it holds one when calling this function.
    572 * If we do sleep, we'll release and re-grab it.
    573 */
    574static void wbt_wait(struct rq_qos *rqos, struct bio *bio)
    575{
    576	struct rq_wb *rwb = RQWB(rqos);
    577	enum wbt_flags flags;
    578
    579	flags = bio_to_wbt_flags(rwb, bio);
    580	if (!(flags & WBT_TRACKED)) {
    581		if (flags & WBT_READ)
    582			wb_timestamp(rwb, &rwb->last_issue);
    583		return;
    584	}
    585
    586	__wbt_wait(rwb, flags, bio->bi_opf);
    587
    588	if (!blk_stat_is_active(rwb->cb))
    589		rwb_arm_timer(rwb);
    590}
    591
    592static void wbt_track(struct rq_qos *rqos, struct request *rq, struct bio *bio)
    593{
    594	struct rq_wb *rwb = RQWB(rqos);
    595	rq->wbt_flags |= bio_to_wbt_flags(rwb, bio);
    596}
    597
    598static void wbt_issue(struct rq_qos *rqos, struct request *rq)
    599{
    600	struct rq_wb *rwb = RQWB(rqos);
    601
    602	if (!rwb_enabled(rwb))
    603		return;
    604
    605	/*
    606	 * Track sync issue, in case it takes a long time to complete. Allows us
    607	 * to react quicker, if a sync IO takes a long time to complete. Note
    608	 * that this is just a hint. The request can go away when it completes,
    609	 * so it's important we never dereference it. We only use the address to
    610	 * compare with, which is why we store the sync_issue time locally.
    611	 */
    612	if (wbt_is_read(rq) && !rwb->sync_issue) {
    613		rwb->sync_cookie = rq;
    614		rwb->sync_issue = rq->io_start_time_ns;
    615	}
    616}
    617
    618static void wbt_requeue(struct rq_qos *rqos, struct request *rq)
    619{
    620	struct rq_wb *rwb = RQWB(rqos);
    621	if (!rwb_enabled(rwb))
    622		return;
    623	if (rq == rwb->sync_cookie) {
    624		rwb->sync_issue = 0;
    625		rwb->sync_cookie = NULL;
    626	}
    627}
    628
    629void wbt_set_write_cache(struct request_queue *q, bool write_cache_on)
    630{
    631	struct rq_qos *rqos = wbt_rq_qos(q);
    632	if (rqos)
    633		RQWB(rqos)->wc = write_cache_on;
    634}
    635
    636/*
    637 * Enable wbt if defaults are configured that way
    638 */
    639void wbt_enable_default(struct request_queue *q)
    640{
    641	struct rq_qos *rqos = wbt_rq_qos(q);
    642
    643	/* Throttling already enabled? */
    644	if (rqos) {
    645		if (RQWB(rqos)->enable_state == WBT_STATE_OFF_DEFAULT)
    646			RQWB(rqos)->enable_state = WBT_STATE_ON_DEFAULT;
    647		return;
    648	}
    649
    650	/* Queue not registered? Maybe shutting down... */
    651	if (!blk_queue_registered(q))
    652		return;
    653
    654	if (queue_is_mq(q) && IS_ENABLED(CONFIG_BLK_WBT_MQ))
    655		wbt_init(q);
    656}
    657EXPORT_SYMBOL_GPL(wbt_enable_default);
    658
    659u64 wbt_default_latency_nsec(struct request_queue *q)
    660{
    661	/*
    662	 * We default to 2msec for non-rotational storage, and 75msec
    663	 * for rotational storage.
    664	 */
    665	if (blk_queue_nonrot(q))
    666		return 2000000ULL;
    667	else
    668		return 75000000ULL;
    669}
    670
    671static int wbt_data_dir(const struct request *rq)
    672{
    673	const int op = req_op(rq);
    674
    675	if (op == REQ_OP_READ)
    676		return READ;
    677	else if (op_is_write(op))
    678		return WRITE;
    679
    680	/* don't account */
    681	return -1;
    682}
    683
    684static void wbt_queue_depth_changed(struct rq_qos *rqos)
    685{
    686	RQWB(rqos)->rq_depth.queue_depth = blk_queue_depth(rqos->q);
    687	wbt_update_limits(RQWB(rqos));
    688}
    689
    690static void wbt_exit(struct rq_qos *rqos)
    691{
    692	struct rq_wb *rwb = RQWB(rqos);
    693	struct request_queue *q = rqos->q;
    694
    695	blk_stat_remove_callback(q, rwb->cb);
    696	blk_stat_free_callback(rwb->cb);
    697	kfree(rwb);
    698}
    699
    700/*
    701 * Disable wbt, if enabled by default.
    702 */
    703void wbt_disable_default(struct request_queue *q)
    704{
    705	struct rq_qos *rqos = wbt_rq_qos(q);
    706	struct rq_wb *rwb;
    707	if (!rqos)
    708		return;
    709	rwb = RQWB(rqos);
    710	if (rwb->enable_state == WBT_STATE_ON_DEFAULT) {
    711		blk_stat_deactivate(rwb->cb);
    712		rwb->enable_state = WBT_STATE_OFF_DEFAULT;
    713	}
    714}
    715EXPORT_SYMBOL_GPL(wbt_disable_default);
    716
    717#ifdef CONFIG_BLK_DEBUG_FS
    718static int wbt_curr_win_nsec_show(void *data, struct seq_file *m)
    719{
    720	struct rq_qos *rqos = data;
    721	struct rq_wb *rwb = RQWB(rqos);
    722
    723	seq_printf(m, "%llu\n", rwb->cur_win_nsec);
    724	return 0;
    725}
    726
    727static int wbt_enabled_show(void *data, struct seq_file *m)
    728{
    729	struct rq_qos *rqos = data;
    730	struct rq_wb *rwb = RQWB(rqos);
    731
    732	seq_printf(m, "%d\n", rwb->enable_state);
    733	return 0;
    734}
    735
    736static int wbt_id_show(void *data, struct seq_file *m)
    737{
    738	struct rq_qos *rqos = data;
    739
    740	seq_printf(m, "%u\n", rqos->id);
    741	return 0;
    742}
    743
    744static int wbt_inflight_show(void *data, struct seq_file *m)
    745{
    746	struct rq_qos *rqos = data;
    747	struct rq_wb *rwb = RQWB(rqos);
    748	int i;
    749
    750	for (i = 0; i < WBT_NUM_RWQ; i++)
    751		seq_printf(m, "%d: inflight %d\n", i,
    752			   atomic_read(&rwb->rq_wait[i].inflight));
    753	return 0;
    754}
    755
    756static int wbt_min_lat_nsec_show(void *data, struct seq_file *m)
    757{
    758	struct rq_qos *rqos = data;
    759	struct rq_wb *rwb = RQWB(rqos);
    760
    761	seq_printf(m, "%lu\n", rwb->min_lat_nsec);
    762	return 0;
    763}
    764
    765static int wbt_unknown_cnt_show(void *data, struct seq_file *m)
    766{
    767	struct rq_qos *rqos = data;
    768	struct rq_wb *rwb = RQWB(rqos);
    769
    770	seq_printf(m, "%u\n", rwb->unknown_cnt);
    771	return 0;
    772}
    773
    774static int wbt_normal_show(void *data, struct seq_file *m)
    775{
    776	struct rq_qos *rqos = data;
    777	struct rq_wb *rwb = RQWB(rqos);
    778
    779	seq_printf(m, "%u\n", rwb->wb_normal);
    780	return 0;
    781}
    782
    783static int wbt_background_show(void *data, struct seq_file *m)
    784{
    785	struct rq_qos *rqos = data;
    786	struct rq_wb *rwb = RQWB(rqos);
    787
    788	seq_printf(m, "%u\n", rwb->wb_background);
    789	return 0;
    790}
    791
    792static const struct blk_mq_debugfs_attr wbt_debugfs_attrs[] = {
    793	{"curr_win_nsec", 0400, wbt_curr_win_nsec_show},
    794	{"enabled", 0400, wbt_enabled_show},
    795	{"id", 0400, wbt_id_show},
    796	{"inflight", 0400, wbt_inflight_show},
    797	{"min_lat_nsec", 0400, wbt_min_lat_nsec_show},
    798	{"unknown_cnt", 0400, wbt_unknown_cnt_show},
    799	{"wb_normal", 0400, wbt_normal_show},
    800	{"wb_background", 0400, wbt_background_show},
    801	{},
    802};
    803#endif
    804
    805static struct rq_qos_ops wbt_rqos_ops = {
    806	.throttle = wbt_wait,
    807	.issue = wbt_issue,
    808	.track = wbt_track,
    809	.requeue = wbt_requeue,
    810	.done = wbt_done,
    811	.cleanup = wbt_cleanup,
    812	.queue_depth_changed = wbt_queue_depth_changed,
    813	.exit = wbt_exit,
    814#ifdef CONFIG_BLK_DEBUG_FS
    815	.debugfs_attrs = wbt_debugfs_attrs,
    816#endif
    817};
    818
    819int wbt_init(struct request_queue *q)
    820{
    821	struct rq_wb *rwb;
    822	int i;
    823
    824	rwb = kzalloc(sizeof(*rwb), GFP_KERNEL);
    825	if (!rwb)
    826		return -ENOMEM;
    827
    828	rwb->cb = blk_stat_alloc_callback(wb_timer_fn, wbt_data_dir, 2, rwb);
    829	if (!rwb->cb) {
    830		kfree(rwb);
    831		return -ENOMEM;
    832	}
    833
    834	for (i = 0; i < WBT_NUM_RWQ; i++)
    835		rq_wait_init(&rwb->rq_wait[i]);
    836
    837	rwb->rqos.id = RQ_QOS_WBT;
    838	rwb->rqos.ops = &wbt_rqos_ops;
    839	rwb->rqos.q = q;
    840	rwb->last_comp = rwb->last_issue = jiffies;
    841	rwb->win_nsec = RWB_WINDOW_NSEC;
    842	rwb->enable_state = WBT_STATE_ON_DEFAULT;
    843	rwb->wc = 1;
    844	rwb->rq_depth.default_depth = RWB_DEF_DEPTH;
    845
    846	/*
    847	 * Assign rwb and add the stats callback.
    848	 */
    849	rq_qos_add(q, &rwb->rqos);
    850	blk_stat_add_callback(q, rwb->cb);
    851
    852	rwb->min_lat_nsec = wbt_default_latency_nsec(q);
    853
    854	wbt_queue_depth_changed(&rwb->rqos);
    855	wbt_set_write_cache(q, test_bit(QUEUE_FLAG_WC, &q->queue_flags));
    856
    857	return 0;
    858}