blk.h (14784B)
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef BLK_INTERNAL_H 3#define BLK_INTERNAL_H 4 5#include <linux/blk-crypto.h> 6#include <linux/memblock.h> /* for max_pfn/max_low_pfn */ 7#include <xen/xen.h> 8#include "blk-crypto-internal.h" 9 10struct elevator_type; 11 12/* Max future timer expiry for timeouts */ 13#define BLK_MAX_TIMEOUT (5 * HZ) 14 15extern struct dentry *blk_debugfs_root; 16 17struct blk_flush_queue { 18 unsigned int flush_pending_idx:1; 19 unsigned int flush_running_idx:1; 20 blk_status_t rq_status; 21 unsigned long flush_pending_since; 22 struct list_head flush_queue[2]; 23 struct list_head flush_data_in_flight; 24 struct request *flush_rq; 25 26 spinlock_t mq_flush_lock; 27}; 28 29extern struct kmem_cache *blk_requestq_cachep; 30extern struct kmem_cache *blk_requestq_srcu_cachep; 31extern struct kobj_type blk_queue_ktype; 32extern struct ida blk_queue_ida; 33 34static inline void __blk_get_queue(struct request_queue *q) 35{ 36 kobject_get(&q->kobj); 37} 38 39bool is_flush_rq(struct request *req); 40 41struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size, 42 gfp_t flags); 43void blk_free_flush_queue(struct blk_flush_queue *q); 44 45void blk_freeze_queue(struct request_queue *q); 46void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic); 47void blk_queue_start_drain(struct request_queue *q); 48int __bio_queue_enter(struct request_queue *q, struct bio *bio); 49void submit_bio_noacct_nocheck(struct bio *bio); 50 51static inline bool blk_try_enter_queue(struct request_queue *q, bool pm) 52{ 53 rcu_read_lock(); 54 if (!percpu_ref_tryget_live_rcu(&q->q_usage_counter)) 55 goto fail; 56 57 /* 58 * The code that increments the pm_only counter must ensure that the 59 * counter is globally visible before the queue is unfrozen. 60 */ 61 if (blk_queue_pm_only(q) && 62 (!pm || queue_rpm_status(q) == RPM_SUSPENDED)) 63 goto fail_put; 64 65 rcu_read_unlock(); 66 return true; 67 68fail_put: 69 blk_queue_exit(q); 70fail: 71 rcu_read_unlock(); 72 return false; 73} 74 75static inline int bio_queue_enter(struct bio *bio) 76{ 77 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 78 79 if (blk_try_enter_queue(q, false)) 80 return 0; 81 return __bio_queue_enter(q, bio); 82} 83 84#define BIO_INLINE_VECS 4 85struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs, 86 gfp_t gfp_mask); 87void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs); 88 89static inline bool biovec_phys_mergeable(struct request_queue *q, 90 struct bio_vec *vec1, struct bio_vec *vec2) 91{ 92 unsigned long mask = queue_segment_boundary(q); 93 phys_addr_t addr1 = page_to_phys(vec1->bv_page) + vec1->bv_offset; 94 phys_addr_t addr2 = page_to_phys(vec2->bv_page) + vec2->bv_offset; 95 96 if (addr1 + vec1->bv_len != addr2) 97 return false; 98 if (xen_domain() && !xen_biovec_phys_mergeable(vec1, vec2->bv_page)) 99 return false; 100 if ((addr1 | mask) != ((addr2 + vec2->bv_len - 1) | mask)) 101 return false; 102 return true; 103} 104 105static inline bool __bvec_gap_to_prev(struct request_queue *q, 106 struct bio_vec *bprv, unsigned int offset) 107{ 108 return (offset & queue_virt_boundary(q)) || 109 ((bprv->bv_offset + bprv->bv_len) & queue_virt_boundary(q)); 110} 111 112/* 113 * Check if adding a bio_vec after bprv with offset would create a gap in 114 * the SG list. Most drivers don't care about this, but some do. 115 */ 116static inline bool bvec_gap_to_prev(struct request_queue *q, 117 struct bio_vec *bprv, unsigned int offset) 118{ 119 if (!queue_virt_boundary(q)) 120 return false; 121 return __bvec_gap_to_prev(q, bprv, offset); 122} 123 124static inline bool rq_mergeable(struct request *rq) 125{ 126 if (blk_rq_is_passthrough(rq)) 127 return false; 128 129 if (req_op(rq) == REQ_OP_FLUSH) 130 return false; 131 132 if (req_op(rq) == REQ_OP_WRITE_ZEROES) 133 return false; 134 135 if (req_op(rq) == REQ_OP_ZONE_APPEND) 136 return false; 137 138 if (rq->cmd_flags & REQ_NOMERGE_FLAGS) 139 return false; 140 if (rq->rq_flags & RQF_NOMERGE_FLAGS) 141 return false; 142 143 return true; 144} 145 146/* 147 * There are two different ways to handle DISCARD merges: 148 * 1) If max_discard_segments > 1, the driver treats every bio as a range and 149 * send the bios to controller together. The ranges don't need to be 150 * contiguous. 151 * 2) Otherwise, the request will be normal read/write requests. The ranges 152 * need to be contiguous. 153 */ 154static inline bool blk_discard_mergable(struct request *req) 155{ 156 if (req_op(req) == REQ_OP_DISCARD && 157 queue_max_discard_segments(req->q) > 1) 158 return true; 159 return false; 160} 161 162#ifdef CONFIG_BLK_DEV_INTEGRITY 163void blk_flush_integrity(void); 164bool __bio_integrity_endio(struct bio *); 165void bio_integrity_free(struct bio *bio); 166static inline bool bio_integrity_endio(struct bio *bio) 167{ 168 if (bio_integrity(bio)) 169 return __bio_integrity_endio(bio); 170 return true; 171} 172 173bool blk_integrity_merge_rq(struct request_queue *, struct request *, 174 struct request *); 175bool blk_integrity_merge_bio(struct request_queue *, struct request *, 176 struct bio *); 177 178static inline bool integrity_req_gap_back_merge(struct request *req, 179 struct bio *next) 180{ 181 struct bio_integrity_payload *bip = bio_integrity(req->bio); 182 struct bio_integrity_payload *bip_next = bio_integrity(next); 183 184 return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1], 185 bip_next->bip_vec[0].bv_offset); 186} 187 188static inline bool integrity_req_gap_front_merge(struct request *req, 189 struct bio *bio) 190{ 191 struct bio_integrity_payload *bip = bio_integrity(bio); 192 struct bio_integrity_payload *bip_next = bio_integrity(req->bio); 193 194 return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1], 195 bip_next->bip_vec[0].bv_offset); 196} 197 198int blk_integrity_add(struct gendisk *disk); 199void blk_integrity_del(struct gendisk *); 200#else /* CONFIG_BLK_DEV_INTEGRITY */ 201static inline bool blk_integrity_merge_rq(struct request_queue *rq, 202 struct request *r1, struct request *r2) 203{ 204 return true; 205} 206static inline bool blk_integrity_merge_bio(struct request_queue *rq, 207 struct request *r, struct bio *b) 208{ 209 return true; 210} 211static inline bool integrity_req_gap_back_merge(struct request *req, 212 struct bio *next) 213{ 214 return false; 215} 216static inline bool integrity_req_gap_front_merge(struct request *req, 217 struct bio *bio) 218{ 219 return false; 220} 221 222static inline void blk_flush_integrity(void) 223{ 224} 225static inline bool bio_integrity_endio(struct bio *bio) 226{ 227 return true; 228} 229static inline void bio_integrity_free(struct bio *bio) 230{ 231} 232static inline int blk_integrity_add(struct gendisk *disk) 233{ 234 return 0; 235} 236static inline void blk_integrity_del(struct gendisk *disk) 237{ 238} 239#endif /* CONFIG_BLK_DEV_INTEGRITY */ 240 241unsigned long blk_rq_timeout(unsigned long timeout); 242void blk_add_timer(struct request *req); 243const char *blk_status_to_str(blk_status_t status); 244 245bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 246 unsigned int nr_segs); 247bool blk_bio_list_merge(struct request_queue *q, struct list_head *list, 248 struct bio *bio, unsigned int nr_segs); 249 250/* 251 * Plug flush limits 252 */ 253#define BLK_MAX_REQUEST_COUNT 32 254#define BLK_PLUG_FLUSH_SIZE (128 * 1024) 255 256/* 257 * Internal elevator interface 258 */ 259#define ELV_ON_HASH(rq) ((rq)->rq_flags & RQF_HASHED) 260 261void blk_insert_flush(struct request *rq); 262 263int elevator_switch_mq(struct request_queue *q, 264 struct elevator_type *new_e); 265void elevator_exit(struct request_queue *q); 266int elv_register_queue(struct request_queue *q, bool uevent); 267void elv_unregister_queue(struct request_queue *q); 268 269ssize_t part_size_show(struct device *dev, struct device_attribute *attr, 270 char *buf); 271ssize_t part_stat_show(struct device *dev, struct device_attribute *attr, 272 char *buf); 273ssize_t part_inflight_show(struct device *dev, struct device_attribute *attr, 274 char *buf); 275ssize_t part_fail_show(struct device *dev, struct device_attribute *attr, 276 char *buf); 277ssize_t part_fail_store(struct device *dev, struct device_attribute *attr, 278 const char *buf, size_t count); 279ssize_t part_timeout_show(struct device *, struct device_attribute *, char *); 280ssize_t part_timeout_store(struct device *, struct device_attribute *, 281 const char *, size_t); 282 283static inline bool blk_may_split(struct request_queue *q, struct bio *bio) 284{ 285 switch (bio_op(bio)) { 286 case REQ_OP_DISCARD: 287 case REQ_OP_SECURE_ERASE: 288 case REQ_OP_WRITE_ZEROES: 289 return true; /* non-trivial splitting decisions */ 290 default: 291 break; 292 } 293 294 /* 295 * All drivers must accept single-segments bios that are <= PAGE_SIZE. 296 * This is a quick and dirty check that relies on the fact that 297 * bi_io_vec[0] is always valid if a bio has data. The check might 298 * lead to occasional false negatives when bios are cloned, but compared 299 * to the performance impact of cloned bios themselves the loop below 300 * doesn't matter anyway. 301 */ 302 return q->limits.chunk_sectors || bio->bi_vcnt != 1 || 303 bio->bi_io_vec->bv_len + bio->bi_io_vec->bv_offset > PAGE_SIZE; 304} 305 306void __blk_queue_split(struct request_queue *q, struct bio **bio, 307 unsigned int *nr_segs); 308int ll_back_merge_fn(struct request *req, struct bio *bio, 309 unsigned int nr_segs); 310bool blk_attempt_req_merge(struct request_queue *q, struct request *rq, 311 struct request *next); 312unsigned int blk_recalc_rq_segments(struct request *rq); 313void blk_rq_set_mixed_merge(struct request *rq); 314bool blk_rq_merge_ok(struct request *rq, struct bio *bio); 315enum elv_merge blk_try_merge(struct request *rq, struct bio *bio); 316 317int blk_dev_init(void); 318 319/* 320 * Contribute to IO statistics IFF: 321 * 322 * a) it's attached to a gendisk, and 323 * b) the queue had IO stats enabled when this request was started 324 */ 325static inline bool blk_do_io_stat(struct request *rq) 326{ 327 return (rq->rq_flags & RQF_IO_STAT) && !blk_rq_is_passthrough(rq); 328} 329 330void update_io_ticks(struct block_device *part, unsigned long now, bool end); 331 332static inline void req_set_nomerge(struct request_queue *q, struct request *req) 333{ 334 req->cmd_flags |= REQ_NOMERGE; 335 if (req == q->last_merge) 336 q->last_merge = NULL; 337} 338 339/* 340 * The max size one bio can handle is UINT_MAX becasue bvec_iter.bi_size 341 * is defined as 'unsigned int', meantime it has to aligned to with logical 342 * block size which is the minimum accepted unit by hardware. 343 */ 344static inline unsigned int bio_allowed_max_sectors(struct request_queue *q) 345{ 346 return round_down(UINT_MAX, queue_logical_block_size(q)) >> 9; 347} 348 349/* 350 * Internal io_context interface 351 */ 352struct io_cq *ioc_find_get_icq(struct request_queue *q); 353struct io_cq *ioc_lookup_icq(struct request_queue *q); 354#ifdef CONFIG_BLK_ICQ 355void ioc_clear_queue(struct request_queue *q); 356#else 357static inline void ioc_clear_queue(struct request_queue *q) 358{ 359} 360#endif /* CONFIG_BLK_ICQ */ 361 362#ifdef CONFIG_BLK_DEV_THROTTLING_LOW 363extern ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page); 364extern ssize_t blk_throtl_sample_time_store(struct request_queue *q, 365 const char *page, size_t count); 366extern void blk_throtl_bio_endio(struct bio *bio); 367extern void blk_throtl_stat_add(struct request *rq, u64 time); 368#else 369static inline void blk_throtl_bio_endio(struct bio *bio) { } 370static inline void blk_throtl_stat_add(struct request *rq, u64 time) { } 371#endif 372 373void __blk_queue_bounce(struct request_queue *q, struct bio **bio); 374 375static inline bool blk_queue_may_bounce(struct request_queue *q) 376{ 377 return IS_ENABLED(CONFIG_BOUNCE) && 378 q->limits.bounce == BLK_BOUNCE_HIGH && 379 max_low_pfn >= max_pfn; 380} 381 382static inline void blk_queue_bounce(struct request_queue *q, struct bio **bio) 383{ 384 if (unlikely(blk_queue_may_bounce(q) && bio_has_data(*bio))) 385 __blk_queue_bounce(q, bio); 386} 387 388#ifdef CONFIG_BLK_CGROUP_IOLATENCY 389extern int blk_iolatency_init(struct request_queue *q); 390#else 391static inline int blk_iolatency_init(struct request_queue *q) { return 0; } 392#endif 393 394#ifdef CONFIG_BLK_DEV_ZONED 395void blk_queue_free_zone_bitmaps(struct request_queue *q); 396void blk_queue_clear_zone_settings(struct request_queue *q); 397#else 398static inline void blk_queue_free_zone_bitmaps(struct request_queue *q) {} 399static inline void blk_queue_clear_zone_settings(struct request_queue *q) {} 400#endif 401 402int blk_alloc_ext_minor(void); 403void blk_free_ext_minor(unsigned int minor); 404#define ADDPART_FLAG_NONE 0 405#define ADDPART_FLAG_RAID 1 406#define ADDPART_FLAG_WHOLEDISK 2 407int bdev_add_partition(struct gendisk *disk, int partno, sector_t start, 408 sector_t length); 409int bdev_del_partition(struct gendisk *disk, int partno); 410int bdev_resize_partition(struct gendisk *disk, int partno, sector_t start, 411 sector_t length); 412void blk_drop_partitions(struct gendisk *disk); 413 414int bio_add_hw_page(struct request_queue *q, struct bio *bio, 415 struct page *page, unsigned int len, unsigned int offset, 416 unsigned int max_sectors, bool *same_page); 417 418static inline struct kmem_cache *blk_get_queue_kmem_cache(bool srcu) 419{ 420 if (srcu) 421 return blk_requestq_srcu_cachep; 422 return blk_requestq_cachep; 423} 424struct request_queue *blk_alloc_queue(int node_id, bool alloc_srcu); 425 426int disk_scan_partitions(struct gendisk *disk, fmode_t mode); 427 428int disk_alloc_events(struct gendisk *disk); 429void disk_add_events(struct gendisk *disk); 430void disk_del_events(struct gendisk *disk); 431void disk_release_events(struct gendisk *disk); 432void disk_block_events(struct gendisk *disk); 433void disk_unblock_events(struct gendisk *disk); 434void disk_flush_events(struct gendisk *disk, unsigned int mask); 435extern struct device_attribute dev_attr_events; 436extern struct device_attribute dev_attr_events_async; 437extern struct device_attribute dev_attr_events_poll_msecs; 438 439long blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg); 440long compat_blkdev_ioctl(struct file *file, unsigned cmd, unsigned long arg); 441 442extern const struct address_space_operations def_blk_aops; 443 444int disk_register_independent_access_ranges(struct gendisk *disk, 445 struct blk_independent_access_ranges *new_iars); 446void disk_unregister_independent_access_ranges(struct gendisk *disk); 447 448#ifdef CONFIG_FAIL_MAKE_REQUEST 449bool should_fail_request(struct block_device *part, unsigned int bytes); 450#else /* CONFIG_FAIL_MAKE_REQUEST */ 451static inline bool should_fail_request(struct block_device *part, 452 unsigned int bytes) 453{ 454 return false; 455} 456#endif /* CONFIG_FAIL_MAKE_REQUEST */ 457 458/* 459 * Optimized request reference counting. Ideally we'd make timeouts be more 460 * clever, as that's the only reason we need references at all... But until 461 * this happens, this is faster than using refcount_t. Also see: 462 * 463 * abc54d634334 ("io_uring: switch to atomic_t for io_kiocb reference count") 464 */ 465#define req_ref_zero_or_close_to_overflow(req) \ 466 ((unsigned int) atomic_read(&(req->ref)) + 127u <= 127u) 467 468static inline bool req_ref_inc_not_zero(struct request *req) 469{ 470 return atomic_inc_not_zero(&req->ref); 471} 472 473static inline bool req_ref_put_and_test(struct request *req) 474{ 475 WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req)); 476 return atomic_dec_and_test(&req->ref); 477} 478 479static inline void req_ref_set(struct request *req, int value) 480{ 481 atomic_set(&req->ref, value); 482} 483 484static inline int req_ref_read(struct request *req) 485{ 486 return atomic_read(&req->ref); 487} 488 489#endif /* BLK_INTERNAL_H */