cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

kyber-iosched.c (28588B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * The Kyber I/O scheduler. Controls latency by throttling queue depths using
      4 * scalable techniques.
      5 *
      6 * Copyright (C) 2017 Facebook
      7 */
      8
      9#include <linux/kernel.h>
     10#include <linux/blkdev.h>
     11#include <linux/blk-mq.h>
     12#include <linux/module.h>
     13#include <linux/sbitmap.h>
     14
     15#include <trace/events/block.h>
     16
     17#include "elevator.h"
     18#include "blk.h"
     19#include "blk-mq.h"
     20#include "blk-mq-debugfs.h"
     21#include "blk-mq-sched.h"
     22#include "blk-mq-tag.h"
     23
     24#define CREATE_TRACE_POINTS
     25#include <trace/events/kyber.h>
     26
     27/*
     28 * Scheduling domains: the device is divided into multiple domains based on the
     29 * request type.
     30 */
     31enum {
     32	KYBER_READ,
     33	KYBER_WRITE,
     34	KYBER_DISCARD,
     35	KYBER_OTHER,
     36	KYBER_NUM_DOMAINS,
     37};
     38
     39static const char *kyber_domain_names[] = {
     40	[KYBER_READ] = "READ",
     41	[KYBER_WRITE] = "WRITE",
     42	[KYBER_DISCARD] = "DISCARD",
     43	[KYBER_OTHER] = "OTHER",
     44};
     45
     46enum {
     47	/*
     48	 * In order to prevent starvation of synchronous requests by a flood of
     49	 * asynchronous requests, we reserve 25% of requests for synchronous
     50	 * operations.
     51	 */
     52	KYBER_ASYNC_PERCENT = 75,
     53};
     54
     55/*
     56 * Maximum device-wide depth for each scheduling domain.
     57 *
     58 * Even for fast devices with lots of tags like NVMe, you can saturate the
     59 * device with only a fraction of the maximum possible queue depth. So, we cap
     60 * these to a reasonable value.
     61 */
     62static const unsigned int kyber_depth[] = {
     63	[KYBER_READ] = 256,
     64	[KYBER_WRITE] = 128,
     65	[KYBER_DISCARD] = 64,
     66	[KYBER_OTHER] = 16,
     67};
     68
     69/*
     70 * Default latency targets for each scheduling domain.
     71 */
     72static const u64 kyber_latency_targets[] = {
     73	[KYBER_READ] = 2ULL * NSEC_PER_MSEC,
     74	[KYBER_WRITE] = 10ULL * NSEC_PER_MSEC,
     75	[KYBER_DISCARD] = 5ULL * NSEC_PER_SEC,
     76};
     77
     78/*
     79 * Batch size (number of requests we'll dispatch in a row) for each scheduling
     80 * domain.
     81 */
     82static const unsigned int kyber_batch_size[] = {
     83	[KYBER_READ] = 16,
     84	[KYBER_WRITE] = 8,
     85	[KYBER_DISCARD] = 1,
     86	[KYBER_OTHER] = 1,
     87};
     88
     89/*
     90 * Requests latencies are recorded in a histogram with buckets defined relative
     91 * to the target latency:
     92 *
     93 * <= 1/4 * target latency
     94 * <= 1/2 * target latency
     95 * <= 3/4 * target latency
     96 * <= target latency
     97 * <= 1 1/4 * target latency
     98 * <= 1 1/2 * target latency
     99 * <= 1 3/4 * target latency
    100 * > 1 3/4 * target latency
    101 */
    102enum {
    103	/*
    104	 * The width of the latency histogram buckets is
    105	 * 1 / (1 << KYBER_LATENCY_SHIFT) * target latency.
    106	 */
    107	KYBER_LATENCY_SHIFT = 2,
    108	/*
    109	 * The first (1 << KYBER_LATENCY_SHIFT) buckets are <= target latency,
    110	 * thus, "good".
    111	 */
    112	KYBER_GOOD_BUCKETS = 1 << KYBER_LATENCY_SHIFT,
    113	/* There are also (1 << KYBER_LATENCY_SHIFT) "bad" buckets. */
    114	KYBER_LATENCY_BUCKETS = 2 << KYBER_LATENCY_SHIFT,
    115};
    116
    117/*
    118 * We measure both the total latency and the I/O latency (i.e., latency after
    119 * submitting to the device).
    120 */
    121enum {
    122	KYBER_TOTAL_LATENCY,
    123	KYBER_IO_LATENCY,
    124};
    125
    126static const char *kyber_latency_type_names[] = {
    127	[KYBER_TOTAL_LATENCY] = "total",
    128	[KYBER_IO_LATENCY] = "I/O",
    129};
    130
    131/*
    132 * Per-cpu latency histograms: total latency and I/O latency for each scheduling
    133 * domain except for KYBER_OTHER.
    134 */
    135struct kyber_cpu_latency {
    136	atomic_t buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS];
    137};
    138
    139/*
    140 * There is a same mapping between ctx & hctx and kcq & khd,
    141 * we use request->mq_ctx->index_hw to index the kcq in khd.
    142 */
    143struct kyber_ctx_queue {
    144	/*
    145	 * Used to ensure operations on rq_list and kcq_map to be an atmoic one.
    146	 * Also protect the rqs on rq_list when merge.
    147	 */
    148	spinlock_t lock;
    149	struct list_head rq_list[KYBER_NUM_DOMAINS];
    150} ____cacheline_aligned_in_smp;
    151
    152struct kyber_queue_data {
    153	struct request_queue *q;
    154	dev_t dev;
    155
    156	/*
    157	 * Each scheduling domain has a limited number of in-flight requests
    158	 * device-wide, limited by these tokens.
    159	 */
    160	struct sbitmap_queue domain_tokens[KYBER_NUM_DOMAINS];
    161
    162	/*
    163	 * Async request percentage, converted to per-word depth for
    164	 * sbitmap_get_shallow().
    165	 */
    166	unsigned int async_depth;
    167
    168	struct kyber_cpu_latency __percpu *cpu_latency;
    169
    170	/* Timer for stats aggregation and adjusting domain tokens. */
    171	struct timer_list timer;
    172
    173	unsigned int latency_buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS];
    174
    175	unsigned long latency_timeout[KYBER_OTHER];
    176
    177	int domain_p99[KYBER_OTHER];
    178
    179	/* Target latencies in nanoseconds. */
    180	u64 latency_targets[KYBER_OTHER];
    181};
    182
    183struct kyber_hctx_data {
    184	spinlock_t lock;
    185	struct list_head rqs[KYBER_NUM_DOMAINS];
    186	unsigned int cur_domain;
    187	unsigned int batching;
    188	struct kyber_ctx_queue *kcqs;
    189	struct sbitmap kcq_map[KYBER_NUM_DOMAINS];
    190	struct sbq_wait domain_wait[KYBER_NUM_DOMAINS];
    191	struct sbq_wait_state *domain_ws[KYBER_NUM_DOMAINS];
    192	atomic_t wait_index[KYBER_NUM_DOMAINS];
    193};
    194
    195static int kyber_domain_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
    196			     void *key);
    197
    198static unsigned int kyber_sched_domain(unsigned int op)
    199{
    200	switch (op & REQ_OP_MASK) {
    201	case REQ_OP_READ:
    202		return KYBER_READ;
    203	case REQ_OP_WRITE:
    204		return KYBER_WRITE;
    205	case REQ_OP_DISCARD:
    206		return KYBER_DISCARD;
    207	default:
    208		return KYBER_OTHER;
    209	}
    210}
    211
    212static void flush_latency_buckets(struct kyber_queue_data *kqd,
    213				  struct kyber_cpu_latency *cpu_latency,
    214				  unsigned int sched_domain, unsigned int type)
    215{
    216	unsigned int *buckets = kqd->latency_buckets[sched_domain][type];
    217	atomic_t *cpu_buckets = cpu_latency->buckets[sched_domain][type];
    218	unsigned int bucket;
    219
    220	for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++)
    221		buckets[bucket] += atomic_xchg(&cpu_buckets[bucket], 0);
    222}
    223
    224/*
    225 * Calculate the histogram bucket with the given percentile rank, or -1 if there
    226 * aren't enough samples yet.
    227 */
    228static int calculate_percentile(struct kyber_queue_data *kqd,
    229				unsigned int sched_domain, unsigned int type,
    230				unsigned int percentile)
    231{
    232	unsigned int *buckets = kqd->latency_buckets[sched_domain][type];
    233	unsigned int bucket, samples = 0, percentile_samples;
    234
    235	for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++)
    236		samples += buckets[bucket];
    237
    238	if (!samples)
    239		return -1;
    240
    241	/*
    242	 * We do the calculation once we have 500 samples or one second passes
    243	 * since the first sample was recorded, whichever comes first.
    244	 */
    245	if (!kqd->latency_timeout[sched_domain])
    246		kqd->latency_timeout[sched_domain] = max(jiffies + HZ, 1UL);
    247	if (samples < 500 &&
    248	    time_is_after_jiffies(kqd->latency_timeout[sched_domain])) {
    249		return -1;
    250	}
    251	kqd->latency_timeout[sched_domain] = 0;
    252
    253	percentile_samples = DIV_ROUND_UP(samples * percentile, 100);
    254	for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS - 1; bucket++) {
    255		if (buckets[bucket] >= percentile_samples)
    256			break;
    257		percentile_samples -= buckets[bucket];
    258	}
    259	memset(buckets, 0, sizeof(kqd->latency_buckets[sched_domain][type]));
    260
    261	trace_kyber_latency(kqd->dev, kyber_domain_names[sched_domain],
    262			    kyber_latency_type_names[type], percentile,
    263			    bucket + 1, 1 << KYBER_LATENCY_SHIFT, samples);
    264
    265	return bucket;
    266}
    267
    268static void kyber_resize_domain(struct kyber_queue_data *kqd,
    269				unsigned int sched_domain, unsigned int depth)
    270{
    271	depth = clamp(depth, 1U, kyber_depth[sched_domain]);
    272	if (depth != kqd->domain_tokens[sched_domain].sb.depth) {
    273		sbitmap_queue_resize(&kqd->domain_tokens[sched_domain], depth);
    274		trace_kyber_adjust(kqd->dev, kyber_domain_names[sched_domain],
    275				   depth);
    276	}
    277}
    278
    279static void kyber_timer_fn(struct timer_list *t)
    280{
    281	struct kyber_queue_data *kqd = from_timer(kqd, t, timer);
    282	unsigned int sched_domain;
    283	int cpu;
    284	bool bad = false;
    285
    286	/* Sum all of the per-cpu latency histograms. */
    287	for_each_online_cpu(cpu) {
    288		struct kyber_cpu_latency *cpu_latency;
    289
    290		cpu_latency = per_cpu_ptr(kqd->cpu_latency, cpu);
    291		for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
    292			flush_latency_buckets(kqd, cpu_latency, sched_domain,
    293					      KYBER_TOTAL_LATENCY);
    294			flush_latency_buckets(kqd, cpu_latency, sched_domain,
    295					      KYBER_IO_LATENCY);
    296		}
    297	}
    298
    299	/*
    300	 * Check if any domains have a high I/O latency, which might indicate
    301	 * congestion in the device. Note that we use the p90; we don't want to
    302	 * be too sensitive to outliers here.
    303	 */
    304	for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
    305		int p90;
    306
    307		p90 = calculate_percentile(kqd, sched_domain, KYBER_IO_LATENCY,
    308					   90);
    309		if (p90 >= KYBER_GOOD_BUCKETS)
    310			bad = true;
    311	}
    312
    313	/*
    314	 * Adjust the scheduling domain depths. If we determined that there was
    315	 * congestion, we throttle all domains with good latencies. Either way,
    316	 * we ease up on throttling domains with bad latencies.
    317	 */
    318	for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
    319		unsigned int orig_depth, depth;
    320		int p99;
    321
    322		p99 = calculate_percentile(kqd, sched_domain,
    323					   KYBER_TOTAL_LATENCY, 99);
    324		/*
    325		 * This is kind of subtle: different domains will not
    326		 * necessarily have enough samples to calculate the latency
    327		 * percentiles during the same window, so we have to remember
    328		 * the p99 for the next time we observe congestion; once we do,
    329		 * we don't want to throttle again until we get more data, so we
    330		 * reset it to -1.
    331		 */
    332		if (bad) {
    333			if (p99 < 0)
    334				p99 = kqd->domain_p99[sched_domain];
    335			kqd->domain_p99[sched_domain] = -1;
    336		} else if (p99 >= 0) {
    337			kqd->domain_p99[sched_domain] = p99;
    338		}
    339		if (p99 < 0)
    340			continue;
    341
    342		/*
    343		 * If this domain has bad latency, throttle less. Otherwise,
    344		 * throttle more iff we determined that there is congestion.
    345		 *
    346		 * The new depth is scaled linearly with the p99 latency vs the
    347		 * latency target. E.g., if the p99 is 3/4 of the target, then
    348		 * we throttle down to 3/4 of the current depth, and if the p99
    349		 * is 2x the target, then we double the depth.
    350		 */
    351		if (bad || p99 >= KYBER_GOOD_BUCKETS) {
    352			orig_depth = kqd->domain_tokens[sched_domain].sb.depth;
    353			depth = (orig_depth * (p99 + 1)) >> KYBER_LATENCY_SHIFT;
    354			kyber_resize_domain(kqd, sched_domain, depth);
    355		}
    356	}
    357}
    358
    359static struct kyber_queue_data *kyber_queue_data_alloc(struct request_queue *q)
    360{
    361	struct kyber_queue_data *kqd;
    362	int ret = -ENOMEM;
    363	int i;
    364
    365	kqd = kzalloc_node(sizeof(*kqd), GFP_KERNEL, q->node);
    366	if (!kqd)
    367		goto err;
    368
    369	kqd->q = q;
    370	kqd->dev = disk_devt(q->disk);
    371
    372	kqd->cpu_latency = alloc_percpu_gfp(struct kyber_cpu_latency,
    373					    GFP_KERNEL | __GFP_ZERO);
    374	if (!kqd->cpu_latency)
    375		goto err_kqd;
    376
    377	timer_setup(&kqd->timer, kyber_timer_fn, 0);
    378
    379	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
    380		WARN_ON(!kyber_depth[i]);
    381		WARN_ON(!kyber_batch_size[i]);
    382		ret = sbitmap_queue_init_node(&kqd->domain_tokens[i],
    383					      kyber_depth[i], -1, false,
    384					      GFP_KERNEL, q->node);
    385		if (ret) {
    386			while (--i >= 0)
    387				sbitmap_queue_free(&kqd->domain_tokens[i]);
    388			goto err_buckets;
    389		}
    390	}
    391
    392	for (i = 0; i < KYBER_OTHER; i++) {
    393		kqd->domain_p99[i] = -1;
    394		kqd->latency_targets[i] = kyber_latency_targets[i];
    395	}
    396
    397	return kqd;
    398
    399err_buckets:
    400	free_percpu(kqd->cpu_latency);
    401err_kqd:
    402	kfree(kqd);
    403err:
    404	return ERR_PTR(ret);
    405}
    406
    407static int kyber_init_sched(struct request_queue *q, struct elevator_type *e)
    408{
    409	struct kyber_queue_data *kqd;
    410	struct elevator_queue *eq;
    411
    412	eq = elevator_alloc(q, e);
    413	if (!eq)
    414		return -ENOMEM;
    415
    416	kqd = kyber_queue_data_alloc(q);
    417	if (IS_ERR(kqd)) {
    418		kobject_put(&eq->kobj);
    419		return PTR_ERR(kqd);
    420	}
    421
    422	blk_stat_enable_accounting(q);
    423
    424	blk_queue_flag_clear(QUEUE_FLAG_SQ_SCHED, q);
    425
    426	eq->elevator_data = kqd;
    427	q->elevator = eq;
    428
    429	return 0;
    430}
    431
    432static void kyber_exit_sched(struct elevator_queue *e)
    433{
    434	struct kyber_queue_data *kqd = e->elevator_data;
    435	int i;
    436
    437	del_timer_sync(&kqd->timer);
    438	blk_stat_disable_accounting(kqd->q);
    439
    440	for (i = 0; i < KYBER_NUM_DOMAINS; i++)
    441		sbitmap_queue_free(&kqd->domain_tokens[i]);
    442	free_percpu(kqd->cpu_latency);
    443	kfree(kqd);
    444}
    445
    446static void kyber_ctx_queue_init(struct kyber_ctx_queue *kcq)
    447{
    448	unsigned int i;
    449
    450	spin_lock_init(&kcq->lock);
    451	for (i = 0; i < KYBER_NUM_DOMAINS; i++)
    452		INIT_LIST_HEAD(&kcq->rq_list[i]);
    453}
    454
    455static void kyber_depth_updated(struct blk_mq_hw_ctx *hctx)
    456{
    457	struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
    458	struct blk_mq_tags *tags = hctx->sched_tags;
    459	unsigned int shift = tags->bitmap_tags.sb.shift;
    460
    461	kqd->async_depth = (1U << shift) * KYBER_ASYNC_PERCENT / 100U;
    462
    463	sbitmap_queue_min_shallow_depth(&tags->bitmap_tags, kqd->async_depth);
    464}
    465
    466static int kyber_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
    467{
    468	struct kyber_hctx_data *khd;
    469	int i;
    470
    471	khd = kmalloc_node(sizeof(*khd), GFP_KERNEL, hctx->numa_node);
    472	if (!khd)
    473		return -ENOMEM;
    474
    475	khd->kcqs = kmalloc_array_node(hctx->nr_ctx,
    476				       sizeof(struct kyber_ctx_queue),
    477				       GFP_KERNEL, hctx->numa_node);
    478	if (!khd->kcqs)
    479		goto err_khd;
    480
    481	for (i = 0; i < hctx->nr_ctx; i++)
    482		kyber_ctx_queue_init(&khd->kcqs[i]);
    483
    484	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
    485		if (sbitmap_init_node(&khd->kcq_map[i], hctx->nr_ctx,
    486				      ilog2(8), GFP_KERNEL, hctx->numa_node,
    487				      false, false)) {
    488			while (--i >= 0)
    489				sbitmap_free(&khd->kcq_map[i]);
    490			goto err_kcqs;
    491		}
    492	}
    493
    494	spin_lock_init(&khd->lock);
    495
    496	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
    497		INIT_LIST_HEAD(&khd->rqs[i]);
    498		khd->domain_wait[i].sbq = NULL;
    499		init_waitqueue_func_entry(&khd->domain_wait[i].wait,
    500					  kyber_domain_wake);
    501		khd->domain_wait[i].wait.private = hctx;
    502		INIT_LIST_HEAD(&khd->domain_wait[i].wait.entry);
    503		atomic_set(&khd->wait_index[i], 0);
    504	}
    505
    506	khd->cur_domain = 0;
    507	khd->batching = 0;
    508
    509	hctx->sched_data = khd;
    510	kyber_depth_updated(hctx);
    511
    512	return 0;
    513
    514err_kcqs:
    515	kfree(khd->kcqs);
    516err_khd:
    517	kfree(khd);
    518	return -ENOMEM;
    519}
    520
    521static void kyber_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
    522{
    523	struct kyber_hctx_data *khd = hctx->sched_data;
    524	int i;
    525
    526	for (i = 0; i < KYBER_NUM_DOMAINS; i++)
    527		sbitmap_free(&khd->kcq_map[i]);
    528	kfree(khd->kcqs);
    529	kfree(hctx->sched_data);
    530}
    531
    532static int rq_get_domain_token(struct request *rq)
    533{
    534	return (long)rq->elv.priv[0];
    535}
    536
    537static void rq_set_domain_token(struct request *rq, int token)
    538{
    539	rq->elv.priv[0] = (void *)(long)token;
    540}
    541
    542static void rq_clear_domain_token(struct kyber_queue_data *kqd,
    543				  struct request *rq)
    544{
    545	unsigned int sched_domain;
    546	int nr;
    547
    548	nr = rq_get_domain_token(rq);
    549	if (nr != -1) {
    550		sched_domain = kyber_sched_domain(rq->cmd_flags);
    551		sbitmap_queue_clear(&kqd->domain_tokens[sched_domain], nr,
    552				    rq->mq_ctx->cpu);
    553	}
    554}
    555
    556static void kyber_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
    557{
    558	/*
    559	 * We use the scheduler tags as per-hardware queue queueing tokens.
    560	 * Async requests can be limited at this stage.
    561	 */
    562	if (!op_is_sync(op)) {
    563		struct kyber_queue_data *kqd = data->q->elevator->elevator_data;
    564
    565		data->shallow_depth = kqd->async_depth;
    566	}
    567}
    568
    569static bool kyber_bio_merge(struct request_queue *q, struct bio *bio,
    570		unsigned int nr_segs)
    571{
    572	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
    573	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, bio->bi_opf, ctx);
    574	struct kyber_hctx_data *khd = hctx->sched_data;
    575	struct kyber_ctx_queue *kcq = &khd->kcqs[ctx->index_hw[hctx->type]];
    576	unsigned int sched_domain = kyber_sched_domain(bio->bi_opf);
    577	struct list_head *rq_list = &kcq->rq_list[sched_domain];
    578	bool merged;
    579
    580	spin_lock(&kcq->lock);
    581	merged = blk_bio_list_merge(hctx->queue, rq_list, bio, nr_segs);
    582	spin_unlock(&kcq->lock);
    583
    584	return merged;
    585}
    586
    587static void kyber_prepare_request(struct request *rq)
    588{
    589	rq_set_domain_token(rq, -1);
    590}
    591
    592static void kyber_insert_requests(struct blk_mq_hw_ctx *hctx,
    593				  struct list_head *rq_list, bool at_head)
    594{
    595	struct kyber_hctx_data *khd = hctx->sched_data;
    596	struct request *rq, *next;
    597
    598	list_for_each_entry_safe(rq, next, rq_list, queuelist) {
    599		unsigned int sched_domain = kyber_sched_domain(rq->cmd_flags);
    600		struct kyber_ctx_queue *kcq = &khd->kcqs[rq->mq_ctx->index_hw[hctx->type]];
    601		struct list_head *head = &kcq->rq_list[sched_domain];
    602
    603		spin_lock(&kcq->lock);
    604		trace_block_rq_insert(rq);
    605		if (at_head)
    606			list_move(&rq->queuelist, head);
    607		else
    608			list_move_tail(&rq->queuelist, head);
    609		sbitmap_set_bit(&khd->kcq_map[sched_domain],
    610				rq->mq_ctx->index_hw[hctx->type]);
    611		spin_unlock(&kcq->lock);
    612	}
    613}
    614
    615static void kyber_finish_request(struct request *rq)
    616{
    617	struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
    618
    619	rq_clear_domain_token(kqd, rq);
    620}
    621
    622static void add_latency_sample(struct kyber_cpu_latency *cpu_latency,
    623			       unsigned int sched_domain, unsigned int type,
    624			       u64 target, u64 latency)
    625{
    626	unsigned int bucket;
    627	u64 divisor;
    628
    629	if (latency > 0) {
    630		divisor = max_t(u64, target >> KYBER_LATENCY_SHIFT, 1);
    631		bucket = min_t(unsigned int, div64_u64(latency - 1, divisor),
    632			       KYBER_LATENCY_BUCKETS - 1);
    633	} else {
    634		bucket = 0;
    635	}
    636
    637	atomic_inc(&cpu_latency->buckets[sched_domain][type][bucket]);
    638}
    639
    640static void kyber_completed_request(struct request *rq, u64 now)
    641{
    642	struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
    643	struct kyber_cpu_latency *cpu_latency;
    644	unsigned int sched_domain;
    645	u64 target;
    646
    647	sched_domain = kyber_sched_domain(rq->cmd_flags);
    648	if (sched_domain == KYBER_OTHER)
    649		return;
    650
    651	cpu_latency = get_cpu_ptr(kqd->cpu_latency);
    652	target = kqd->latency_targets[sched_domain];
    653	add_latency_sample(cpu_latency, sched_domain, KYBER_TOTAL_LATENCY,
    654			   target, now - rq->start_time_ns);
    655	add_latency_sample(cpu_latency, sched_domain, KYBER_IO_LATENCY, target,
    656			   now - rq->io_start_time_ns);
    657	put_cpu_ptr(kqd->cpu_latency);
    658
    659	timer_reduce(&kqd->timer, jiffies + HZ / 10);
    660}
    661
    662struct flush_kcq_data {
    663	struct kyber_hctx_data *khd;
    664	unsigned int sched_domain;
    665	struct list_head *list;
    666};
    667
    668static bool flush_busy_kcq(struct sbitmap *sb, unsigned int bitnr, void *data)
    669{
    670	struct flush_kcq_data *flush_data = data;
    671	struct kyber_ctx_queue *kcq = &flush_data->khd->kcqs[bitnr];
    672
    673	spin_lock(&kcq->lock);
    674	list_splice_tail_init(&kcq->rq_list[flush_data->sched_domain],
    675			      flush_data->list);
    676	sbitmap_clear_bit(sb, bitnr);
    677	spin_unlock(&kcq->lock);
    678
    679	return true;
    680}
    681
    682static void kyber_flush_busy_kcqs(struct kyber_hctx_data *khd,
    683				  unsigned int sched_domain,
    684				  struct list_head *list)
    685{
    686	struct flush_kcq_data data = {
    687		.khd = khd,
    688		.sched_domain = sched_domain,
    689		.list = list,
    690	};
    691
    692	sbitmap_for_each_set(&khd->kcq_map[sched_domain],
    693			     flush_busy_kcq, &data);
    694}
    695
    696static int kyber_domain_wake(wait_queue_entry_t *wqe, unsigned mode, int flags,
    697			     void *key)
    698{
    699	struct blk_mq_hw_ctx *hctx = READ_ONCE(wqe->private);
    700	struct sbq_wait *wait = container_of(wqe, struct sbq_wait, wait);
    701
    702	sbitmap_del_wait_queue(wait);
    703	blk_mq_run_hw_queue(hctx, true);
    704	return 1;
    705}
    706
    707static int kyber_get_domain_token(struct kyber_queue_data *kqd,
    708				  struct kyber_hctx_data *khd,
    709				  struct blk_mq_hw_ctx *hctx)
    710{
    711	unsigned int sched_domain = khd->cur_domain;
    712	struct sbitmap_queue *domain_tokens = &kqd->domain_tokens[sched_domain];
    713	struct sbq_wait *wait = &khd->domain_wait[sched_domain];
    714	struct sbq_wait_state *ws;
    715	int nr;
    716
    717	nr = __sbitmap_queue_get(domain_tokens);
    718
    719	/*
    720	 * If we failed to get a domain token, make sure the hardware queue is
    721	 * run when one becomes available. Note that this is serialized on
    722	 * khd->lock, but we still need to be careful about the waker.
    723	 */
    724	if (nr < 0 && list_empty_careful(&wait->wait.entry)) {
    725		ws = sbq_wait_ptr(domain_tokens,
    726				  &khd->wait_index[sched_domain]);
    727		khd->domain_ws[sched_domain] = ws;
    728		sbitmap_add_wait_queue(domain_tokens, ws, wait);
    729
    730		/*
    731		 * Try again in case a token was freed before we got on the wait
    732		 * queue.
    733		 */
    734		nr = __sbitmap_queue_get(domain_tokens);
    735	}
    736
    737	/*
    738	 * If we got a token while we were on the wait queue, remove ourselves
    739	 * from the wait queue to ensure that all wake ups make forward
    740	 * progress. It's possible that the waker already deleted the entry
    741	 * between the !list_empty_careful() check and us grabbing the lock, but
    742	 * list_del_init() is okay with that.
    743	 */
    744	if (nr >= 0 && !list_empty_careful(&wait->wait.entry)) {
    745		ws = khd->domain_ws[sched_domain];
    746		spin_lock_irq(&ws->wait.lock);
    747		sbitmap_del_wait_queue(wait);
    748		spin_unlock_irq(&ws->wait.lock);
    749	}
    750
    751	return nr;
    752}
    753
    754static struct request *
    755kyber_dispatch_cur_domain(struct kyber_queue_data *kqd,
    756			  struct kyber_hctx_data *khd,
    757			  struct blk_mq_hw_ctx *hctx)
    758{
    759	struct list_head *rqs;
    760	struct request *rq;
    761	int nr;
    762
    763	rqs = &khd->rqs[khd->cur_domain];
    764
    765	/*
    766	 * If we already have a flushed request, then we just need to get a
    767	 * token for it. Otherwise, if there are pending requests in the kcqs,
    768	 * flush the kcqs, but only if we can get a token. If not, we should
    769	 * leave the requests in the kcqs so that they can be merged. Note that
    770	 * khd->lock serializes the flushes, so if we observed any bit set in
    771	 * the kcq_map, we will always get a request.
    772	 */
    773	rq = list_first_entry_or_null(rqs, struct request, queuelist);
    774	if (rq) {
    775		nr = kyber_get_domain_token(kqd, khd, hctx);
    776		if (nr >= 0) {
    777			khd->batching++;
    778			rq_set_domain_token(rq, nr);
    779			list_del_init(&rq->queuelist);
    780			return rq;
    781		} else {
    782			trace_kyber_throttled(kqd->dev,
    783					      kyber_domain_names[khd->cur_domain]);
    784		}
    785	} else if (sbitmap_any_bit_set(&khd->kcq_map[khd->cur_domain])) {
    786		nr = kyber_get_domain_token(kqd, khd, hctx);
    787		if (nr >= 0) {
    788			kyber_flush_busy_kcqs(khd, khd->cur_domain, rqs);
    789			rq = list_first_entry(rqs, struct request, queuelist);
    790			khd->batching++;
    791			rq_set_domain_token(rq, nr);
    792			list_del_init(&rq->queuelist);
    793			return rq;
    794		} else {
    795			trace_kyber_throttled(kqd->dev,
    796					      kyber_domain_names[khd->cur_domain]);
    797		}
    798	}
    799
    800	/* There were either no pending requests or no tokens. */
    801	return NULL;
    802}
    803
    804static struct request *kyber_dispatch_request(struct blk_mq_hw_ctx *hctx)
    805{
    806	struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
    807	struct kyber_hctx_data *khd = hctx->sched_data;
    808	struct request *rq;
    809	int i;
    810
    811	spin_lock(&khd->lock);
    812
    813	/*
    814	 * First, if we are still entitled to batch, try to dispatch a request
    815	 * from the batch.
    816	 */
    817	if (khd->batching < kyber_batch_size[khd->cur_domain]) {
    818		rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
    819		if (rq)
    820			goto out;
    821	}
    822
    823	/*
    824	 * Either,
    825	 * 1. We were no longer entitled to a batch.
    826	 * 2. The domain we were batching didn't have any requests.
    827	 * 3. The domain we were batching was out of tokens.
    828	 *
    829	 * Start another batch. Note that this wraps back around to the original
    830	 * domain if no other domains have requests or tokens.
    831	 */
    832	khd->batching = 0;
    833	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
    834		if (khd->cur_domain == KYBER_NUM_DOMAINS - 1)
    835			khd->cur_domain = 0;
    836		else
    837			khd->cur_domain++;
    838
    839		rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
    840		if (rq)
    841			goto out;
    842	}
    843
    844	rq = NULL;
    845out:
    846	spin_unlock(&khd->lock);
    847	return rq;
    848}
    849
    850static bool kyber_has_work(struct blk_mq_hw_ctx *hctx)
    851{
    852	struct kyber_hctx_data *khd = hctx->sched_data;
    853	int i;
    854
    855	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
    856		if (!list_empty_careful(&khd->rqs[i]) ||
    857		    sbitmap_any_bit_set(&khd->kcq_map[i]))
    858			return true;
    859	}
    860
    861	return false;
    862}
    863
    864#define KYBER_LAT_SHOW_STORE(domain, name)				\
    865static ssize_t kyber_##name##_lat_show(struct elevator_queue *e,	\
    866				       char *page)			\
    867{									\
    868	struct kyber_queue_data *kqd = e->elevator_data;		\
    869									\
    870	return sprintf(page, "%llu\n", kqd->latency_targets[domain]);	\
    871}									\
    872									\
    873static ssize_t kyber_##name##_lat_store(struct elevator_queue *e,	\
    874					const char *page, size_t count)	\
    875{									\
    876	struct kyber_queue_data *kqd = e->elevator_data;		\
    877	unsigned long long nsec;					\
    878	int ret;							\
    879									\
    880	ret = kstrtoull(page, 10, &nsec);				\
    881	if (ret)							\
    882		return ret;						\
    883									\
    884	kqd->latency_targets[domain] = nsec;				\
    885									\
    886	return count;							\
    887}
    888KYBER_LAT_SHOW_STORE(KYBER_READ, read);
    889KYBER_LAT_SHOW_STORE(KYBER_WRITE, write);
    890#undef KYBER_LAT_SHOW_STORE
    891
    892#define KYBER_LAT_ATTR(op) __ATTR(op##_lat_nsec, 0644, kyber_##op##_lat_show, kyber_##op##_lat_store)
    893static struct elv_fs_entry kyber_sched_attrs[] = {
    894	KYBER_LAT_ATTR(read),
    895	KYBER_LAT_ATTR(write),
    896	__ATTR_NULL
    897};
    898#undef KYBER_LAT_ATTR
    899
    900#ifdef CONFIG_BLK_DEBUG_FS
    901#define KYBER_DEBUGFS_DOMAIN_ATTRS(domain, name)			\
    902static int kyber_##name##_tokens_show(void *data, struct seq_file *m)	\
    903{									\
    904	struct request_queue *q = data;					\
    905	struct kyber_queue_data *kqd = q->elevator->elevator_data;	\
    906									\
    907	sbitmap_queue_show(&kqd->domain_tokens[domain], m);		\
    908	return 0;							\
    909}									\
    910									\
    911static void *kyber_##name##_rqs_start(struct seq_file *m, loff_t *pos)	\
    912	__acquires(&khd->lock)						\
    913{									\
    914	struct blk_mq_hw_ctx *hctx = m->private;			\
    915	struct kyber_hctx_data *khd = hctx->sched_data;			\
    916									\
    917	spin_lock(&khd->lock);						\
    918	return seq_list_start(&khd->rqs[domain], *pos);			\
    919}									\
    920									\
    921static void *kyber_##name##_rqs_next(struct seq_file *m, void *v,	\
    922				     loff_t *pos)			\
    923{									\
    924	struct blk_mq_hw_ctx *hctx = m->private;			\
    925	struct kyber_hctx_data *khd = hctx->sched_data;			\
    926									\
    927	return seq_list_next(v, &khd->rqs[domain], pos);		\
    928}									\
    929									\
    930static void kyber_##name##_rqs_stop(struct seq_file *m, void *v)	\
    931	__releases(&khd->lock)						\
    932{									\
    933	struct blk_mq_hw_ctx *hctx = m->private;			\
    934	struct kyber_hctx_data *khd = hctx->sched_data;			\
    935									\
    936	spin_unlock(&khd->lock);					\
    937}									\
    938									\
    939static const struct seq_operations kyber_##name##_rqs_seq_ops = {	\
    940	.start	= kyber_##name##_rqs_start,				\
    941	.next	= kyber_##name##_rqs_next,				\
    942	.stop	= kyber_##name##_rqs_stop,				\
    943	.show	= blk_mq_debugfs_rq_show,				\
    944};									\
    945									\
    946static int kyber_##name##_waiting_show(void *data, struct seq_file *m)	\
    947{									\
    948	struct blk_mq_hw_ctx *hctx = data;				\
    949	struct kyber_hctx_data *khd = hctx->sched_data;			\
    950	wait_queue_entry_t *wait = &khd->domain_wait[domain].wait;	\
    951									\
    952	seq_printf(m, "%d\n", !list_empty_careful(&wait->entry));	\
    953	return 0;							\
    954}
    955KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_READ, read)
    956KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_WRITE, write)
    957KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_DISCARD, discard)
    958KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_OTHER, other)
    959#undef KYBER_DEBUGFS_DOMAIN_ATTRS
    960
    961static int kyber_async_depth_show(void *data, struct seq_file *m)
    962{
    963	struct request_queue *q = data;
    964	struct kyber_queue_data *kqd = q->elevator->elevator_data;
    965
    966	seq_printf(m, "%u\n", kqd->async_depth);
    967	return 0;
    968}
    969
    970static int kyber_cur_domain_show(void *data, struct seq_file *m)
    971{
    972	struct blk_mq_hw_ctx *hctx = data;
    973	struct kyber_hctx_data *khd = hctx->sched_data;
    974
    975	seq_printf(m, "%s\n", kyber_domain_names[khd->cur_domain]);
    976	return 0;
    977}
    978
    979static int kyber_batching_show(void *data, struct seq_file *m)
    980{
    981	struct blk_mq_hw_ctx *hctx = data;
    982	struct kyber_hctx_data *khd = hctx->sched_data;
    983
    984	seq_printf(m, "%u\n", khd->batching);
    985	return 0;
    986}
    987
    988#define KYBER_QUEUE_DOMAIN_ATTRS(name)	\
    989	{#name "_tokens", 0400, kyber_##name##_tokens_show}
    990static const struct blk_mq_debugfs_attr kyber_queue_debugfs_attrs[] = {
    991	KYBER_QUEUE_DOMAIN_ATTRS(read),
    992	KYBER_QUEUE_DOMAIN_ATTRS(write),
    993	KYBER_QUEUE_DOMAIN_ATTRS(discard),
    994	KYBER_QUEUE_DOMAIN_ATTRS(other),
    995	{"async_depth", 0400, kyber_async_depth_show},
    996	{},
    997};
    998#undef KYBER_QUEUE_DOMAIN_ATTRS
    999
   1000#define KYBER_HCTX_DOMAIN_ATTRS(name)					\
   1001	{#name "_rqs", 0400, .seq_ops = &kyber_##name##_rqs_seq_ops},	\
   1002	{#name "_waiting", 0400, kyber_##name##_waiting_show}
   1003static const struct blk_mq_debugfs_attr kyber_hctx_debugfs_attrs[] = {
   1004	KYBER_HCTX_DOMAIN_ATTRS(read),
   1005	KYBER_HCTX_DOMAIN_ATTRS(write),
   1006	KYBER_HCTX_DOMAIN_ATTRS(discard),
   1007	KYBER_HCTX_DOMAIN_ATTRS(other),
   1008	{"cur_domain", 0400, kyber_cur_domain_show},
   1009	{"batching", 0400, kyber_batching_show},
   1010	{},
   1011};
   1012#undef KYBER_HCTX_DOMAIN_ATTRS
   1013#endif
   1014
   1015static struct elevator_type kyber_sched = {
   1016	.ops = {
   1017		.init_sched = kyber_init_sched,
   1018		.exit_sched = kyber_exit_sched,
   1019		.init_hctx = kyber_init_hctx,
   1020		.exit_hctx = kyber_exit_hctx,
   1021		.limit_depth = kyber_limit_depth,
   1022		.bio_merge = kyber_bio_merge,
   1023		.prepare_request = kyber_prepare_request,
   1024		.insert_requests = kyber_insert_requests,
   1025		.finish_request = kyber_finish_request,
   1026		.requeue_request = kyber_finish_request,
   1027		.completed_request = kyber_completed_request,
   1028		.dispatch_request = kyber_dispatch_request,
   1029		.has_work = kyber_has_work,
   1030		.depth_updated = kyber_depth_updated,
   1031	},
   1032#ifdef CONFIG_BLK_DEBUG_FS
   1033	.queue_debugfs_attrs = kyber_queue_debugfs_attrs,
   1034	.hctx_debugfs_attrs = kyber_hctx_debugfs_attrs,
   1035#endif
   1036	.elevator_attrs = kyber_sched_attrs,
   1037	.elevator_name = "kyber",
   1038	.elevator_owner = THIS_MODULE,
   1039};
   1040
   1041static int __init kyber_init(void)
   1042{
   1043	return elv_register(&kyber_sched);
   1044}
   1045
   1046static void __exit kyber_exit(void)
   1047{
   1048	elv_unregister(&kyber_sched);
   1049}
   1050
   1051module_init(kyber_init);
   1052module_exit(kyber_exit);
   1053
   1054MODULE_AUTHOR("Omar Sandoval");
   1055MODULE_LICENSE("GPL");
   1056MODULE_DESCRIPTION("Kyber I/O scheduler");