cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

algif_aead.c (15984B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 * algif_aead: User-space interface for AEAD algorithms
      4 *
      5 * Copyright (C) 2014, Stephan Mueller <smueller@chronox.de>
      6 *
      7 * This file provides the user-space API for AEAD ciphers.
      8 *
      9 * The following concept of the memory management is used:
     10 *
     11 * The kernel maintains two SGLs, the TX SGL and the RX SGL. The TX SGL is
     12 * filled by user space with the data submitted via sendpage/sendmsg. Filling
     13 * up the TX SGL does not cause a crypto operation -- the data will only be
     14 * tracked by the kernel. Upon receipt of one recvmsg call, the caller must
     15 * provide a buffer which is tracked with the RX SGL.
     16 *
     17 * During the processing of the recvmsg operation, the cipher request is
     18 * allocated and prepared. As part of the recvmsg operation, the processed
     19 * TX buffers are extracted from the TX SGL into a separate SGL.
     20 *
     21 * After the completion of the crypto operation, the RX SGL and the cipher
     22 * request is released. The extracted TX SGL parts are released together with
     23 * the RX SGL release.
     24 */
     25
     26#include <crypto/internal/aead.h>
     27#include <crypto/scatterwalk.h>
     28#include <crypto/if_alg.h>
     29#include <crypto/skcipher.h>
     30#include <crypto/null.h>
     31#include <linux/init.h>
     32#include <linux/list.h>
     33#include <linux/kernel.h>
     34#include <linux/mm.h>
     35#include <linux/module.h>
     36#include <linux/net.h>
     37#include <net/sock.h>
     38
     39struct aead_tfm {
     40	struct crypto_aead *aead;
     41	struct crypto_sync_skcipher *null_tfm;
     42};
     43
     44static inline bool aead_sufficient_data(struct sock *sk)
     45{
     46	struct alg_sock *ask = alg_sk(sk);
     47	struct sock *psk = ask->parent;
     48	struct alg_sock *pask = alg_sk(psk);
     49	struct af_alg_ctx *ctx = ask->private;
     50	struct aead_tfm *aeadc = pask->private;
     51	struct crypto_aead *tfm = aeadc->aead;
     52	unsigned int as = crypto_aead_authsize(tfm);
     53
     54	/*
     55	 * The minimum amount of memory needed for an AEAD cipher is
     56	 * the AAD and in case of decryption the tag.
     57	 */
     58	return ctx->used >= ctx->aead_assoclen + (ctx->enc ? 0 : as);
     59}
     60
     61static int aead_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
     62{
     63	struct sock *sk = sock->sk;
     64	struct alg_sock *ask = alg_sk(sk);
     65	struct sock *psk = ask->parent;
     66	struct alg_sock *pask = alg_sk(psk);
     67	struct aead_tfm *aeadc = pask->private;
     68	struct crypto_aead *tfm = aeadc->aead;
     69	unsigned int ivsize = crypto_aead_ivsize(tfm);
     70
     71	return af_alg_sendmsg(sock, msg, size, ivsize);
     72}
     73
     74static int crypto_aead_copy_sgl(struct crypto_sync_skcipher *null_tfm,
     75				struct scatterlist *src,
     76				struct scatterlist *dst, unsigned int len)
     77{
     78	SYNC_SKCIPHER_REQUEST_ON_STACK(skreq, null_tfm);
     79
     80	skcipher_request_set_sync_tfm(skreq, null_tfm);
     81	skcipher_request_set_callback(skreq, CRYPTO_TFM_REQ_MAY_SLEEP,
     82				      NULL, NULL);
     83	skcipher_request_set_crypt(skreq, src, dst, len, NULL);
     84
     85	return crypto_skcipher_encrypt(skreq);
     86}
     87
     88static int _aead_recvmsg(struct socket *sock, struct msghdr *msg,
     89			 size_t ignored, int flags)
     90{
     91	struct sock *sk = sock->sk;
     92	struct alg_sock *ask = alg_sk(sk);
     93	struct sock *psk = ask->parent;
     94	struct alg_sock *pask = alg_sk(psk);
     95	struct af_alg_ctx *ctx = ask->private;
     96	struct aead_tfm *aeadc = pask->private;
     97	struct crypto_aead *tfm = aeadc->aead;
     98	struct crypto_sync_skcipher *null_tfm = aeadc->null_tfm;
     99	unsigned int i, as = crypto_aead_authsize(tfm);
    100	struct af_alg_async_req *areq;
    101	struct af_alg_tsgl *tsgl, *tmp;
    102	struct scatterlist *rsgl_src, *tsgl_src = NULL;
    103	int err = 0;
    104	size_t used = 0;		/* [in]  TX bufs to be en/decrypted */
    105	size_t outlen = 0;		/* [out] RX bufs produced by kernel */
    106	size_t usedpages = 0;		/* [in]  RX bufs to be used from user */
    107	size_t processed = 0;		/* [in]  TX bufs to be consumed */
    108
    109	if (!ctx->init || ctx->more) {
    110		err = af_alg_wait_for_data(sk, flags, 0);
    111		if (err)
    112			return err;
    113	}
    114
    115	/*
    116	 * Data length provided by caller via sendmsg/sendpage that has not
    117	 * yet been processed.
    118	 */
    119	used = ctx->used;
    120
    121	/*
    122	 * Make sure sufficient data is present -- note, the same check is
    123	 * also present in sendmsg/sendpage. The checks in sendpage/sendmsg
    124	 * shall provide an information to the data sender that something is
    125	 * wrong, but they are irrelevant to maintain the kernel integrity.
    126	 * We need this check here too in case user space decides to not honor
    127	 * the error message in sendmsg/sendpage and still call recvmsg. This
    128	 * check here protects the kernel integrity.
    129	 */
    130	if (!aead_sufficient_data(sk))
    131		return -EINVAL;
    132
    133	/*
    134	 * Calculate the minimum output buffer size holding the result of the
    135	 * cipher operation. When encrypting data, the receiving buffer is
    136	 * larger by the tag length compared to the input buffer as the
    137	 * encryption operation generates the tag. For decryption, the input
    138	 * buffer provides the tag which is consumed resulting in only the
    139	 * plaintext without a buffer for the tag returned to the caller.
    140	 */
    141	if (ctx->enc)
    142		outlen = used + as;
    143	else
    144		outlen = used - as;
    145
    146	/*
    147	 * The cipher operation input data is reduced by the associated data
    148	 * length as this data is processed separately later on.
    149	 */
    150	used -= ctx->aead_assoclen;
    151
    152	/* Allocate cipher request for current operation. */
    153	areq = af_alg_alloc_areq(sk, sizeof(struct af_alg_async_req) +
    154				     crypto_aead_reqsize(tfm));
    155	if (IS_ERR(areq))
    156		return PTR_ERR(areq);
    157
    158	/* convert iovecs of output buffers into RX SGL */
    159	err = af_alg_get_rsgl(sk, msg, flags, areq, outlen, &usedpages);
    160	if (err)
    161		goto free;
    162
    163	/*
    164	 * Ensure output buffer is sufficiently large. If the caller provides
    165	 * less buffer space, only use the relative required input size. This
    166	 * allows AIO operation where the caller sent all data to be processed
    167	 * and the AIO operation performs the operation on the different chunks
    168	 * of the input data.
    169	 */
    170	if (usedpages < outlen) {
    171		size_t less = outlen - usedpages;
    172
    173		if (used < less) {
    174			err = -EINVAL;
    175			goto free;
    176		}
    177		used -= less;
    178		outlen -= less;
    179	}
    180
    181	processed = used + ctx->aead_assoclen;
    182	list_for_each_entry_safe(tsgl, tmp, &ctx->tsgl_list, list) {
    183		for (i = 0; i < tsgl->cur; i++) {
    184			struct scatterlist *process_sg = tsgl->sg + i;
    185
    186			if (!(process_sg->length) || !sg_page(process_sg))
    187				continue;
    188			tsgl_src = process_sg;
    189			break;
    190		}
    191		if (tsgl_src)
    192			break;
    193	}
    194	if (processed && !tsgl_src) {
    195		err = -EFAULT;
    196		goto free;
    197	}
    198
    199	/*
    200	 * Copy of AAD from source to destination
    201	 *
    202	 * The AAD is copied to the destination buffer without change. Even
    203	 * when user space uses an in-place cipher operation, the kernel
    204	 * will copy the data as it does not see whether such in-place operation
    205	 * is initiated.
    206	 *
    207	 * To ensure efficiency, the following implementation ensure that the
    208	 * ciphers are invoked to perform a crypto operation in-place. This
    209	 * is achieved by memory management specified as follows.
    210	 */
    211
    212	/* Use the RX SGL as source (and destination) for crypto op. */
    213	rsgl_src = areq->first_rsgl.sgl.sg;
    214
    215	if (ctx->enc) {
    216		/*
    217		 * Encryption operation - The in-place cipher operation is
    218		 * achieved by the following operation:
    219		 *
    220		 * TX SGL: AAD || PT
    221		 *	    |	   |
    222		 *	    | copy |
    223		 *	    v	   v
    224		 * RX SGL: AAD || PT || Tag
    225		 */
    226		err = crypto_aead_copy_sgl(null_tfm, tsgl_src,
    227					   areq->first_rsgl.sgl.sg, processed);
    228		if (err)
    229			goto free;
    230		af_alg_pull_tsgl(sk, processed, NULL, 0);
    231	} else {
    232		/*
    233		 * Decryption operation - To achieve an in-place cipher
    234		 * operation, the following  SGL structure is used:
    235		 *
    236		 * TX SGL: AAD || CT || Tag
    237		 *	    |	   |	 ^
    238		 *	    | copy |	 | Create SGL link.
    239		 *	    v	   v	 |
    240		 * RX SGL: AAD || CT ----+
    241		 */
    242
    243		 /* Copy AAD || CT to RX SGL buffer for in-place operation. */
    244		err = crypto_aead_copy_sgl(null_tfm, tsgl_src,
    245					   areq->first_rsgl.sgl.sg, outlen);
    246		if (err)
    247			goto free;
    248
    249		/* Create TX SGL for tag and chain it to RX SGL. */
    250		areq->tsgl_entries = af_alg_count_tsgl(sk, processed,
    251						       processed - as);
    252		if (!areq->tsgl_entries)
    253			areq->tsgl_entries = 1;
    254		areq->tsgl = sock_kmalloc(sk, array_size(sizeof(*areq->tsgl),
    255							 areq->tsgl_entries),
    256					  GFP_KERNEL);
    257		if (!areq->tsgl) {
    258			err = -ENOMEM;
    259			goto free;
    260		}
    261		sg_init_table(areq->tsgl, areq->tsgl_entries);
    262
    263		/* Release TX SGL, except for tag data and reassign tag data. */
    264		af_alg_pull_tsgl(sk, processed, areq->tsgl, processed - as);
    265
    266		/* chain the areq TX SGL holding the tag with RX SGL */
    267		if (usedpages) {
    268			/* RX SGL present */
    269			struct af_alg_sgl *sgl_prev = &areq->last_rsgl->sgl;
    270
    271			sg_unmark_end(sgl_prev->sg + sgl_prev->npages - 1);
    272			sg_chain(sgl_prev->sg, sgl_prev->npages + 1,
    273				 areq->tsgl);
    274		} else
    275			/* no RX SGL present (e.g. authentication only) */
    276			rsgl_src = areq->tsgl;
    277	}
    278
    279	/* Initialize the crypto operation */
    280	aead_request_set_crypt(&areq->cra_u.aead_req, rsgl_src,
    281			       areq->first_rsgl.sgl.sg, used, ctx->iv);
    282	aead_request_set_ad(&areq->cra_u.aead_req, ctx->aead_assoclen);
    283	aead_request_set_tfm(&areq->cra_u.aead_req, tfm);
    284
    285	if (msg->msg_iocb && !is_sync_kiocb(msg->msg_iocb)) {
    286		/* AIO operation */
    287		sock_hold(sk);
    288		areq->iocb = msg->msg_iocb;
    289
    290		/* Remember output size that will be generated. */
    291		areq->outlen = outlen;
    292
    293		aead_request_set_callback(&areq->cra_u.aead_req,
    294					  CRYPTO_TFM_REQ_MAY_SLEEP,
    295					  af_alg_async_cb, areq);
    296		err = ctx->enc ? crypto_aead_encrypt(&areq->cra_u.aead_req) :
    297				 crypto_aead_decrypt(&areq->cra_u.aead_req);
    298
    299		/* AIO operation in progress */
    300		if (err == -EINPROGRESS)
    301			return -EIOCBQUEUED;
    302
    303		sock_put(sk);
    304	} else {
    305		/* Synchronous operation */
    306		aead_request_set_callback(&areq->cra_u.aead_req,
    307					  CRYPTO_TFM_REQ_MAY_SLEEP |
    308					  CRYPTO_TFM_REQ_MAY_BACKLOG,
    309					  crypto_req_done, &ctx->wait);
    310		err = crypto_wait_req(ctx->enc ?
    311				crypto_aead_encrypt(&areq->cra_u.aead_req) :
    312				crypto_aead_decrypt(&areq->cra_u.aead_req),
    313				&ctx->wait);
    314	}
    315
    316
    317free:
    318	af_alg_free_resources(areq);
    319
    320	return err ? err : outlen;
    321}
    322
    323static int aead_recvmsg(struct socket *sock, struct msghdr *msg,
    324			size_t ignored, int flags)
    325{
    326	struct sock *sk = sock->sk;
    327	int ret = 0;
    328
    329	lock_sock(sk);
    330	while (msg_data_left(msg)) {
    331		int err = _aead_recvmsg(sock, msg, ignored, flags);
    332
    333		/*
    334		 * This error covers -EIOCBQUEUED which implies that we can
    335		 * only handle one AIO request. If the caller wants to have
    336		 * multiple AIO requests in parallel, he must make multiple
    337		 * separate AIO calls.
    338		 *
    339		 * Also return the error if no data has been processed so far.
    340		 */
    341		if (err <= 0) {
    342			if (err == -EIOCBQUEUED || err == -EBADMSG || !ret)
    343				ret = err;
    344			goto out;
    345		}
    346
    347		ret += err;
    348	}
    349
    350out:
    351	af_alg_wmem_wakeup(sk);
    352	release_sock(sk);
    353	return ret;
    354}
    355
    356static struct proto_ops algif_aead_ops = {
    357	.family		=	PF_ALG,
    358
    359	.connect	=	sock_no_connect,
    360	.socketpair	=	sock_no_socketpair,
    361	.getname	=	sock_no_getname,
    362	.ioctl		=	sock_no_ioctl,
    363	.listen		=	sock_no_listen,
    364	.shutdown	=	sock_no_shutdown,
    365	.mmap		=	sock_no_mmap,
    366	.bind		=	sock_no_bind,
    367	.accept		=	sock_no_accept,
    368
    369	.release	=	af_alg_release,
    370	.sendmsg	=	aead_sendmsg,
    371	.sendpage	=	af_alg_sendpage,
    372	.recvmsg	=	aead_recvmsg,
    373	.poll		=	af_alg_poll,
    374};
    375
    376static int aead_check_key(struct socket *sock)
    377{
    378	int err = 0;
    379	struct sock *psk;
    380	struct alg_sock *pask;
    381	struct aead_tfm *tfm;
    382	struct sock *sk = sock->sk;
    383	struct alg_sock *ask = alg_sk(sk);
    384
    385	lock_sock(sk);
    386	if (!atomic_read(&ask->nokey_refcnt))
    387		goto unlock_child;
    388
    389	psk = ask->parent;
    390	pask = alg_sk(ask->parent);
    391	tfm = pask->private;
    392
    393	err = -ENOKEY;
    394	lock_sock_nested(psk, SINGLE_DEPTH_NESTING);
    395	if (crypto_aead_get_flags(tfm->aead) & CRYPTO_TFM_NEED_KEY)
    396		goto unlock;
    397
    398	atomic_dec(&pask->nokey_refcnt);
    399	atomic_set(&ask->nokey_refcnt, 0);
    400
    401	err = 0;
    402
    403unlock:
    404	release_sock(psk);
    405unlock_child:
    406	release_sock(sk);
    407
    408	return err;
    409}
    410
    411static int aead_sendmsg_nokey(struct socket *sock, struct msghdr *msg,
    412				  size_t size)
    413{
    414	int err;
    415
    416	err = aead_check_key(sock);
    417	if (err)
    418		return err;
    419
    420	return aead_sendmsg(sock, msg, size);
    421}
    422
    423static ssize_t aead_sendpage_nokey(struct socket *sock, struct page *page,
    424				       int offset, size_t size, int flags)
    425{
    426	int err;
    427
    428	err = aead_check_key(sock);
    429	if (err)
    430		return err;
    431
    432	return af_alg_sendpage(sock, page, offset, size, flags);
    433}
    434
    435static int aead_recvmsg_nokey(struct socket *sock, struct msghdr *msg,
    436				  size_t ignored, int flags)
    437{
    438	int err;
    439
    440	err = aead_check_key(sock);
    441	if (err)
    442		return err;
    443
    444	return aead_recvmsg(sock, msg, ignored, flags);
    445}
    446
    447static struct proto_ops algif_aead_ops_nokey = {
    448	.family		=	PF_ALG,
    449
    450	.connect	=	sock_no_connect,
    451	.socketpair	=	sock_no_socketpair,
    452	.getname	=	sock_no_getname,
    453	.ioctl		=	sock_no_ioctl,
    454	.listen		=	sock_no_listen,
    455	.shutdown	=	sock_no_shutdown,
    456	.mmap		=	sock_no_mmap,
    457	.bind		=	sock_no_bind,
    458	.accept		=	sock_no_accept,
    459
    460	.release	=	af_alg_release,
    461	.sendmsg	=	aead_sendmsg_nokey,
    462	.sendpage	=	aead_sendpage_nokey,
    463	.recvmsg	=	aead_recvmsg_nokey,
    464	.poll		=	af_alg_poll,
    465};
    466
    467static void *aead_bind(const char *name, u32 type, u32 mask)
    468{
    469	struct aead_tfm *tfm;
    470	struct crypto_aead *aead;
    471	struct crypto_sync_skcipher *null_tfm;
    472
    473	tfm = kzalloc(sizeof(*tfm), GFP_KERNEL);
    474	if (!tfm)
    475		return ERR_PTR(-ENOMEM);
    476
    477	aead = crypto_alloc_aead(name, type, mask);
    478	if (IS_ERR(aead)) {
    479		kfree(tfm);
    480		return ERR_CAST(aead);
    481	}
    482
    483	null_tfm = crypto_get_default_null_skcipher();
    484	if (IS_ERR(null_tfm)) {
    485		crypto_free_aead(aead);
    486		kfree(tfm);
    487		return ERR_CAST(null_tfm);
    488	}
    489
    490	tfm->aead = aead;
    491	tfm->null_tfm = null_tfm;
    492
    493	return tfm;
    494}
    495
    496static void aead_release(void *private)
    497{
    498	struct aead_tfm *tfm = private;
    499
    500	crypto_free_aead(tfm->aead);
    501	crypto_put_default_null_skcipher();
    502	kfree(tfm);
    503}
    504
    505static int aead_setauthsize(void *private, unsigned int authsize)
    506{
    507	struct aead_tfm *tfm = private;
    508
    509	return crypto_aead_setauthsize(tfm->aead, authsize);
    510}
    511
    512static int aead_setkey(void *private, const u8 *key, unsigned int keylen)
    513{
    514	struct aead_tfm *tfm = private;
    515
    516	return crypto_aead_setkey(tfm->aead, key, keylen);
    517}
    518
    519static void aead_sock_destruct(struct sock *sk)
    520{
    521	struct alg_sock *ask = alg_sk(sk);
    522	struct af_alg_ctx *ctx = ask->private;
    523	struct sock *psk = ask->parent;
    524	struct alg_sock *pask = alg_sk(psk);
    525	struct aead_tfm *aeadc = pask->private;
    526	struct crypto_aead *tfm = aeadc->aead;
    527	unsigned int ivlen = crypto_aead_ivsize(tfm);
    528
    529	af_alg_pull_tsgl(sk, ctx->used, NULL, 0);
    530	sock_kzfree_s(sk, ctx->iv, ivlen);
    531	sock_kfree_s(sk, ctx, ctx->len);
    532	af_alg_release_parent(sk);
    533}
    534
    535static int aead_accept_parent_nokey(void *private, struct sock *sk)
    536{
    537	struct af_alg_ctx *ctx;
    538	struct alg_sock *ask = alg_sk(sk);
    539	struct aead_tfm *tfm = private;
    540	struct crypto_aead *aead = tfm->aead;
    541	unsigned int len = sizeof(*ctx);
    542	unsigned int ivlen = crypto_aead_ivsize(aead);
    543
    544	ctx = sock_kmalloc(sk, len, GFP_KERNEL);
    545	if (!ctx)
    546		return -ENOMEM;
    547	memset(ctx, 0, len);
    548
    549	ctx->iv = sock_kmalloc(sk, ivlen, GFP_KERNEL);
    550	if (!ctx->iv) {
    551		sock_kfree_s(sk, ctx, len);
    552		return -ENOMEM;
    553	}
    554	memset(ctx->iv, 0, ivlen);
    555
    556	INIT_LIST_HEAD(&ctx->tsgl_list);
    557	ctx->len = len;
    558	crypto_init_wait(&ctx->wait);
    559
    560	ask->private = ctx;
    561
    562	sk->sk_destruct = aead_sock_destruct;
    563
    564	return 0;
    565}
    566
    567static int aead_accept_parent(void *private, struct sock *sk)
    568{
    569	struct aead_tfm *tfm = private;
    570
    571	if (crypto_aead_get_flags(tfm->aead) & CRYPTO_TFM_NEED_KEY)
    572		return -ENOKEY;
    573
    574	return aead_accept_parent_nokey(private, sk);
    575}
    576
    577static const struct af_alg_type algif_type_aead = {
    578	.bind		=	aead_bind,
    579	.release	=	aead_release,
    580	.setkey		=	aead_setkey,
    581	.setauthsize	=	aead_setauthsize,
    582	.accept		=	aead_accept_parent,
    583	.accept_nokey	=	aead_accept_parent_nokey,
    584	.ops		=	&algif_aead_ops,
    585	.ops_nokey	=	&algif_aead_ops_nokey,
    586	.name		=	"aead",
    587	.owner		=	THIS_MODULE
    588};
    589
    590static int __init algif_aead_init(void)
    591{
    592	return af_alg_register_type(&algif_type_aead);
    593}
    594
    595static void __exit algif_aead_exit(void)
    596{
    597	int err = af_alg_unregister_type(&algif_type_aead);
    598	BUG_ON(err);
    599}
    600
    601module_init(algif_aead_init);
    602module_exit(algif_aead_exit);
    603MODULE_LICENSE("GPL");
    604MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>");
    605MODULE_DESCRIPTION("AEAD kernel crypto API user space interface");