cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

public_key.c (12207B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/* In-software asymmetric public-key crypto subtype
      3 *
      4 * See Documentation/crypto/asymmetric-keys.rst
      5 *
      6 * Copyright (C) 2012 Red Hat, Inc. All Rights Reserved.
      7 * Written by David Howells (dhowells@redhat.com)
      8 */
      9
     10#define pr_fmt(fmt) "PKEY: "fmt
     11#include <linux/module.h>
     12#include <linux/export.h>
     13#include <linux/kernel.h>
     14#include <linux/slab.h>
     15#include <linux/seq_file.h>
     16#include <linux/scatterlist.h>
     17#include <linux/asn1.h>
     18#include <keys/asymmetric-subtype.h>
     19#include <crypto/public_key.h>
     20#include <crypto/akcipher.h>
     21#include <crypto/sm2.h>
     22#include <crypto/sm3_base.h>
     23
     24MODULE_DESCRIPTION("In-software asymmetric public-key subtype");
     25MODULE_AUTHOR("Red Hat, Inc.");
     26MODULE_LICENSE("GPL");
     27
     28/*
     29 * Provide a part of a description of the key for /proc/keys.
     30 */
     31static void public_key_describe(const struct key *asymmetric_key,
     32				struct seq_file *m)
     33{
     34	struct public_key *key = asymmetric_key->payload.data[asym_crypto];
     35
     36	if (key)
     37		seq_printf(m, "%s.%s", key->id_type, key->pkey_algo);
     38}
     39
     40/*
     41 * Destroy a public key algorithm key.
     42 */
     43void public_key_free(struct public_key *key)
     44{
     45	if (key) {
     46		kfree(key->key);
     47		kfree(key->params);
     48		kfree(key);
     49	}
     50}
     51EXPORT_SYMBOL_GPL(public_key_free);
     52
     53/*
     54 * Destroy a public key algorithm key.
     55 */
     56static void public_key_destroy(void *payload0, void *payload3)
     57{
     58	public_key_free(payload0);
     59	public_key_signature_free(payload3);
     60}
     61
     62/*
     63 * Given a public_key, and an encoding and hash_algo to be used for signing
     64 * and/or verification with that key, determine the name of the corresponding
     65 * akcipher algorithm.  Also check that encoding and hash_algo are allowed.
     66 */
     67static int
     68software_key_determine_akcipher(const struct public_key *pkey,
     69				const char *encoding, const char *hash_algo,
     70				char alg_name[CRYPTO_MAX_ALG_NAME])
     71{
     72	int n;
     73
     74	if (!encoding)
     75		return -EINVAL;
     76
     77	if (strcmp(pkey->pkey_algo, "rsa") == 0) {
     78		/*
     79		 * RSA signatures usually use EMSA-PKCS1-1_5 [RFC3447 sec 8.2].
     80		 */
     81		if (strcmp(encoding, "pkcs1") == 0) {
     82			if (!hash_algo)
     83				n = snprintf(alg_name, CRYPTO_MAX_ALG_NAME,
     84					     "pkcs1pad(%s)",
     85					     pkey->pkey_algo);
     86			else
     87				n = snprintf(alg_name, CRYPTO_MAX_ALG_NAME,
     88					     "pkcs1pad(%s,%s)",
     89					     pkey->pkey_algo, hash_algo);
     90			return n >= CRYPTO_MAX_ALG_NAME ? -EINVAL : 0;
     91		}
     92		if (strcmp(encoding, "raw") != 0)
     93			return -EINVAL;
     94		/*
     95		 * Raw RSA cannot differentiate between different hash
     96		 * algorithms.
     97		 */
     98		if (hash_algo)
     99			return -EINVAL;
    100	} else if (strncmp(pkey->pkey_algo, "ecdsa", 5) == 0) {
    101		if (strcmp(encoding, "x962") != 0)
    102			return -EINVAL;
    103		/*
    104		 * ECDSA signatures are taken over a raw hash, so they don't
    105		 * differentiate between different hash algorithms.  That means
    106		 * that the verifier should hard-code a specific hash algorithm.
    107		 * Unfortunately, in practice ECDSA is used with multiple SHAs,
    108		 * so we have to allow all of them and not just one.
    109		 */
    110		if (!hash_algo)
    111			return -EINVAL;
    112		if (strcmp(hash_algo, "sha1") != 0 &&
    113		    strcmp(hash_algo, "sha224") != 0 &&
    114		    strcmp(hash_algo, "sha256") != 0 &&
    115		    strcmp(hash_algo, "sha384") != 0 &&
    116		    strcmp(hash_algo, "sha512") != 0)
    117			return -EINVAL;
    118	} else if (strcmp(pkey->pkey_algo, "sm2") == 0) {
    119		if (strcmp(encoding, "raw") != 0)
    120			return -EINVAL;
    121		if (!hash_algo)
    122			return -EINVAL;
    123		if (strcmp(hash_algo, "sm3") != 0)
    124			return -EINVAL;
    125	} else if (strcmp(pkey->pkey_algo, "ecrdsa") == 0) {
    126		if (strcmp(encoding, "raw") != 0)
    127			return -EINVAL;
    128		if (!hash_algo)
    129			return -EINVAL;
    130		if (strcmp(hash_algo, "streebog256") != 0 &&
    131		    strcmp(hash_algo, "streebog512") != 0)
    132			return -EINVAL;
    133	} else {
    134		/* Unknown public key algorithm */
    135		return -ENOPKG;
    136	}
    137	if (strscpy(alg_name, pkey->pkey_algo, CRYPTO_MAX_ALG_NAME) < 0)
    138		return -EINVAL;
    139	return 0;
    140}
    141
    142static u8 *pkey_pack_u32(u8 *dst, u32 val)
    143{
    144	memcpy(dst, &val, sizeof(val));
    145	return dst + sizeof(val);
    146}
    147
    148/*
    149 * Query information about a key.
    150 */
    151static int software_key_query(const struct kernel_pkey_params *params,
    152			      struct kernel_pkey_query *info)
    153{
    154	struct crypto_akcipher *tfm;
    155	struct public_key *pkey = params->key->payload.data[asym_crypto];
    156	char alg_name[CRYPTO_MAX_ALG_NAME];
    157	u8 *key, *ptr;
    158	int ret, len;
    159
    160	ret = software_key_determine_akcipher(pkey, params->encoding,
    161					      params->hash_algo, alg_name);
    162	if (ret < 0)
    163		return ret;
    164
    165	tfm = crypto_alloc_akcipher(alg_name, 0, 0);
    166	if (IS_ERR(tfm))
    167		return PTR_ERR(tfm);
    168
    169	ret = -ENOMEM;
    170	key = kmalloc(pkey->keylen + sizeof(u32) * 2 + pkey->paramlen,
    171		      GFP_KERNEL);
    172	if (!key)
    173		goto error_free_tfm;
    174	memcpy(key, pkey->key, pkey->keylen);
    175	ptr = key + pkey->keylen;
    176	ptr = pkey_pack_u32(ptr, pkey->algo);
    177	ptr = pkey_pack_u32(ptr, pkey->paramlen);
    178	memcpy(ptr, pkey->params, pkey->paramlen);
    179
    180	if (pkey->key_is_private)
    181		ret = crypto_akcipher_set_priv_key(tfm, key, pkey->keylen);
    182	else
    183		ret = crypto_akcipher_set_pub_key(tfm, key, pkey->keylen);
    184	if (ret < 0)
    185		goto error_free_key;
    186
    187	len = crypto_akcipher_maxsize(tfm);
    188	info->key_size = len * 8;
    189	info->max_data_size = len;
    190	info->max_sig_size = len;
    191	info->max_enc_size = len;
    192	info->max_dec_size = len;
    193	info->supported_ops = (KEYCTL_SUPPORTS_ENCRYPT |
    194			       KEYCTL_SUPPORTS_VERIFY);
    195	if (pkey->key_is_private)
    196		info->supported_ops |= (KEYCTL_SUPPORTS_DECRYPT |
    197					KEYCTL_SUPPORTS_SIGN);
    198	ret = 0;
    199
    200error_free_key:
    201	kfree(key);
    202error_free_tfm:
    203	crypto_free_akcipher(tfm);
    204	pr_devel("<==%s() = %d\n", __func__, ret);
    205	return ret;
    206}
    207
    208/*
    209 * Do encryption, decryption and signing ops.
    210 */
    211static int software_key_eds_op(struct kernel_pkey_params *params,
    212			       const void *in, void *out)
    213{
    214	const struct public_key *pkey = params->key->payload.data[asym_crypto];
    215	struct akcipher_request *req;
    216	struct crypto_akcipher *tfm;
    217	struct crypto_wait cwait;
    218	struct scatterlist in_sg, out_sg;
    219	char alg_name[CRYPTO_MAX_ALG_NAME];
    220	char *key, *ptr;
    221	int ret;
    222
    223	pr_devel("==>%s()\n", __func__);
    224
    225	ret = software_key_determine_akcipher(pkey, params->encoding,
    226					      params->hash_algo, alg_name);
    227	if (ret < 0)
    228		return ret;
    229
    230	tfm = crypto_alloc_akcipher(alg_name, 0, 0);
    231	if (IS_ERR(tfm))
    232		return PTR_ERR(tfm);
    233
    234	ret = -ENOMEM;
    235	req = akcipher_request_alloc(tfm, GFP_KERNEL);
    236	if (!req)
    237		goto error_free_tfm;
    238
    239	key = kmalloc(pkey->keylen + sizeof(u32) * 2 + pkey->paramlen,
    240		      GFP_KERNEL);
    241	if (!key)
    242		goto error_free_req;
    243
    244	memcpy(key, pkey->key, pkey->keylen);
    245	ptr = key + pkey->keylen;
    246	ptr = pkey_pack_u32(ptr, pkey->algo);
    247	ptr = pkey_pack_u32(ptr, pkey->paramlen);
    248	memcpy(ptr, pkey->params, pkey->paramlen);
    249
    250	if (pkey->key_is_private)
    251		ret = crypto_akcipher_set_priv_key(tfm, key, pkey->keylen);
    252	else
    253		ret = crypto_akcipher_set_pub_key(tfm, key, pkey->keylen);
    254	if (ret)
    255		goto error_free_key;
    256
    257	sg_init_one(&in_sg, in, params->in_len);
    258	sg_init_one(&out_sg, out, params->out_len);
    259	akcipher_request_set_crypt(req, &in_sg, &out_sg, params->in_len,
    260				   params->out_len);
    261	crypto_init_wait(&cwait);
    262	akcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
    263				      CRYPTO_TFM_REQ_MAY_SLEEP,
    264				      crypto_req_done, &cwait);
    265
    266	/* Perform the encryption calculation. */
    267	switch (params->op) {
    268	case kernel_pkey_encrypt:
    269		ret = crypto_akcipher_encrypt(req);
    270		break;
    271	case kernel_pkey_decrypt:
    272		ret = crypto_akcipher_decrypt(req);
    273		break;
    274	case kernel_pkey_sign:
    275		ret = crypto_akcipher_sign(req);
    276		break;
    277	default:
    278		BUG();
    279	}
    280
    281	ret = crypto_wait_req(ret, &cwait);
    282	if (ret == 0)
    283		ret = req->dst_len;
    284
    285error_free_key:
    286	kfree(key);
    287error_free_req:
    288	akcipher_request_free(req);
    289error_free_tfm:
    290	crypto_free_akcipher(tfm);
    291	pr_devel("<==%s() = %d\n", __func__, ret);
    292	return ret;
    293}
    294
    295#if IS_REACHABLE(CONFIG_CRYPTO_SM2)
    296static int cert_sig_digest_update(const struct public_key_signature *sig,
    297				  struct crypto_akcipher *tfm_pkey)
    298{
    299	struct crypto_shash *tfm;
    300	struct shash_desc *desc;
    301	size_t desc_size;
    302	unsigned char dgst[SM3_DIGEST_SIZE];
    303	int ret;
    304
    305	BUG_ON(!sig->data);
    306
    307	ret = sm2_compute_z_digest(tfm_pkey, SM2_DEFAULT_USERID,
    308					SM2_DEFAULT_USERID_LEN, dgst);
    309	if (ret)
    310		return ret;
    311
    312	tfm = crypto_alloc_shash(sig->hash_algo, 0, 0);
    313	if (IS_ERR(tfm))
    314		return PTR_ERR(tfm);
    315
    316	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
    317	desc = kzalloc(desc_size, GFP_KERNEL);
    318	if (!desc) {
    319		ret = -ENOMEM;
    320		goto error_free_tfm;
    321	}
    322
    323	desc->tfm = tfm;
    324
    325	ret = crypto_shash_init(desc);
    326	if (ret < 0)
    327		goto error_free_desc;
    328
    329	ret = crypto_shash_update(desc, dgst, SM3_DIGEST_SIZE);
    330	if (ret < 0)
    331		goto error_free_desc;
    332
    333	ret = crypto_shash_finup(desc, sig->data, sig->data_size, sig->digest);
    334
    335error_free_desc:
    336	kfree(desc);
    337error_free_tfm:
    338	crypto_free_shash(tfm);
    339	return ret;
    340}
    341#else
    342static inline int cert_sig_digest_update(
    343	const struct public_key_signature *sig,
    344	struct crypto_akcipher *tfm_pkey)
    345{
    346	return -ENOTSUPP;
    347}
    348#endif /* ! IS_REACHABLE(CONFIG_CRYPTO_SM2) */
    349
    350/*
    351 * Verify a signature using a public key.
    352 */
    353int public_key_verify_signature(const struct public_key *pkey,
    354				const struct public_key_signature *sig)
    355{
    356	struct crypto_wait cwait;
    357	struct crypto_akcipher *tfm;
    358	struct akcipher_request *req;
    359	struct scatterlist src_sg[2];
    360	char alg_name[CRYPTO_MAX_ALG_NAME];
    361	char *key, *ptr;
    362	int ret;
    363
    364	pr_devel("==>%s()\n", __func__);
    365
    366	BUG_ON(!pkey);
    367	BUG_ON(!sig);
    368	BUG_ON(!sig->s);
    369
    370	/*
    371	 * If the signature specifies a public key algorithm, it *must* match
    372	 * the key's actual public key algorithm.
    373	 *
    374	 * Small exception: ECDSA signatures don't specify the curve, but ECDSA
    375	 * keys do.  So the strings can mismatch slightly in that case:
    376	 * "ecdsa-nist-*" for the key, but "ecdsa" for the signature.
    377	 */
    378	if (sig->pkey_algo) {
    379		if (strcmp(pkey->pkey_algo, sig->pkey_algo) != 0 &&
    380		    (strncmp(pkey->pkey_algo, "ecdsa-", 6) != 0 ||
    381		     strcmp(sig->pkey_algo, "ecdsa") != 0))
    382			return -EKEYREJECTED;
    383	}
    384
    385	ret = software_key_determine_akcipher(pkey, sig->encoding,
    386					      sig->hash_algo, alg_name);
    387	if (ret < 0)
    388		return ret;
    389
    390	tfm = crypto_alloc_akcipher(alg_name, 0, 0);
    391	if (IS_ERR(tfm))
    392		return PTR_ERR(tfm);
    393
    394	ret = -ENOMEM;
    395	req = akcipher_request_alloc(tfm, GFP_KERNEL);
    396	if (!req)
    397		goto error_free_tfm;
    398
    399	key = kmalloc(pkey->keylen + sizeof(u32) * 2 + pkey->paramlen,
    400		      GFP_KERNEL);
    401	if (!key)
    402		goto error_free_req;
    403
    404	memcpy(key, pkey->key, pkey->keylen);
    405	ptr = key + pkey->keylen;
    406	ptr = pkey_pack_u32(ptr, pkey->algo);
    407	ptr = pkey_pack_u32(ptr, pkey->paramlen);
    408	memcpy(ptr, pkey->params, pkey->paramlen);
    409
    410	if (pkey->key_is_private)
    411		ret = crypto_akcipher_set_priv_key(tfm, key, pkey->keylen);
    412	else
    413		ret = crypto_akcipher_set_pub_key(tfm, key, pkey->keylen);
    414	if (ret)
    415		goto error_free_key;
    416
    417	if (sig->pkey_algo && strcmp(sig->pkey_algo, "sm2") == 0 &&
    418	    sig->data_size) {
    419		ret = cert_sig_digest_update(sig, tfm);
    420		if (ret)
    421			goto error_free_key;
    422	}
    423
    424	sg_init_table(src_sg, 2);
    425	sg_set_buf(&src_sg[0], sig->s, sig->s_size);
    426	sg_set_buf(&src_sg[1], sig->digest, sig->digest_size);
    427	akcipher_request_set_crypt(req, src_sg, NULL, sig->s_size,
    428				   sig->digest_size);
    429	crypto_init_wait(&cwait);
    430	akcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
    431				      CRYPTO_TFM_REQ_MAY_SLEEP,
    432				      crypto_req_done, &cwait);
    433	ret = crypto_wait_req(crypto_akcipher_verify(req), &cwait);
    434
    435error_free_key:
    436	kfree(key);
    437error_free_req:
    438	akcipher_request_free(req);
    439error_free_tfm:
    440	crypto_free_akcipher(tfm);
    441	pr_devel("<==%s() = %d\n", __func__, ret);
    442	if (WARN_ON_ONCE(ret > 0))
    443		ret = -EINVAL;
    444	return ret;
    445}
    446EXPORT_SYMBOL_GPL(public_key_verify_signature);
    447
    448static int public_key_verify_signature_2(const struct key *key,
    449					 const struct public_key_signature *sig)
    450{
    451	const struct public_key *pk = key->payload.data[asym_crypto];
    452	return public_key_verify_signature(pk, sig);
    453}
    454
    455/*
    456 * Public key algorithm asymmetric key subtype
    457 */
    458struct asymmetric_key_subtype public_key_subtype = {
    459	.owner			= THIS_MODULE,
    460	.name			= "public_key",
    461	.name_len		= sizeof("public_key") - 1,
    462	.describe		= public_key_describe,
    463	.destroy		= public_key_destroy,
    464	.query			= software_key_query,
    465	.eds_op			= software_key_eds_op,
    466	.verify_signature	= public_key_verify_signature_2,
    467};
    468EXPORT_SYMBOL_GPL(public_key_subtype);