cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

async_raid6_recov.c (16775B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 * Asynchronous RAID-6 recovery calculations ASYNC_TX API.
      4 * Copyright(c) 2009 Intel Corporation
      5 *
      6 * based on raid6recov.c:
      7 *   Copyright 2002 H. Peter Anvin
      8 */
      9#include <linux/kernel.h>
     10#include <linux/interrupt.h>
     11#include <linux/module.h>
     12#include <linux/dma-mapping.h>
     13#include <linux/raid/pq.h>
     14#include <linux/async_tx.h>
     15#include <linux/dmaengine.h>
     16
     17static struct dma_async_tx_descriptor *
     18async_sum_product(struct page *dest, unsigned int d_off,
     19		struct page **srcs, unsigned int *src_offs, unsigned char *coef,
     20		size_t len, struct async_submit_ctl *submit)
     21{
     22	struct dma_chan *chan = async_tx_find_channel(submit, DMA_PQ,
     23						      &dest, 1, srcs, 2, len);
     24	struct dma_device *dma = chan ? chan->device : NULL;
     25	struct dmaengine_unmap_data *unmap = NULL;
     26	const u8 *amul, *bmul;
     27	u8 ax, bx;
     28	u8 *a, *b, *c;
     29
     30	if (dma)
     31		unmap = dmaengine_get_unmap_data(dma->dev, 3, GFP_NOWAIT);
     32
     33	if (unmap) {
     34		struct device *dev = dma->dev;
     35		dma_addr_t pq[2];
     36		struct dma_async_tx_descriptor *tx;
     37		enum dma_ctrl_flags dma_flags = DMA_PREP_PQ_DISABLE_P;
     38
     39		if (submit->flags & ASYNC_TX_FENCE)
     40			dma_flags |= DMA_PREP_FENCE;
     41		unmap->addr[0] = dma_map_page(dev, srcs[0], src_offs[0],
     42						len, DMA_TO_DEVICE);
     43		unmap->addr[1] = dma_map_page(dev, srcs[1], src_offs[1],
     44						len, DMA_TO_DEVICE);
     45		unmap->to_cnt = 2;
     46
     47		unmap->addr[2] = dma_map_page(dev, dest, d_off,
     48						len, DMA_BIDIRECTIONAL);
     49		unmap->bidi_cnt = 1;
     50		/* engine only looks at Q, but expects it to follow P */
     51		pq[1] = unmap->addr[2];
     52
     53		unmap->len = len;
     54		tx = dma->device_prep_dma_pq(chan, pq, unmap->addr, 2, coef,
     55					     len, dma_flags);
     56		if (tx) {
     57			dma_set_unmap(tx, unmap);
     58			async_tx_submit(chan, tx, submit);
     59			dmaengine_unmap_put(unmap);
     60			return tx;
     61		}
     62
     63		/* could not get a descriptor, unmap and fall through to
     64		 * the synchronous path
     65		 */
     66		dmaengine_unmap_put(unmap);
     67	}
     68
     69	/* run the operation synchronously */
     70	async_tx_quiesce(&submit->depend_tx);
     71	amul = raid6_gfmul[coef[0]];
     72	bmul = raid6_gfmul[coef[1]];
     73	a = page_address(srcs[0]) + src_offs[0];
     74	b = page_address(srcs[1]) + src_offs[1];
     75	c = page_address(dest) + d_off;
     76
     77	while (len--) {
     78		ax    = amul[*a++];
     79		bx    = bmul[*b++];
     80		*c++ = ax ^ bx;
     81	}
     82
     83	return NULL;
     84}
     85
     86static struct dma_async_tx_descriptor *
     87async_mult(struct page *dest, unsigned int d_off, struct page *src,
     88		unsigned int s_off, u8 coef, size_t len,
     89		struct async_submit_ctl *submit)
     90{
     91	struct dma_chan *chan = async_tx_find_channel(submit, DMA_PQ,
     92						      &dest, 1, &src, 1, len);
     93	struct dma_device *dma = chan ? chan->device : NULL;
     94	struct dmaengine_unmap_data *unmap = NULL;
     95	const u8 *qmul; /* Q multiplier table */
     96	u8 *d, *s;
     97
     98	if (dma)
     99		unmap = dmaengine_get_unmap_data(dma->dev, 3, GFP_NOWAIT);
    100
    101	if (unmap) {
    102		dma_addr_t dma_dest[2];
    103		struct device *dev = dma->dev;
    104		struct dma_async_tx_descriptor *tx;
    105		enum dma_ctrl_flags dma_flags = DMA_PREP_PQ_DISABLE_P;
    106
    107		if (submit->flags & ASYNC_TX_FENCE)
    108			dma_flags |= DMA_PREP_FENCE;
    109		unmap->addr[0] = dma_map_page(dev, src, s_off,
    110						len, DMA_TO_DEVICE);
    111		unmap->to_cnt++;
    112		unmap->addr[1] = dma_map_page(dev, dest, d_off,
    113						len, DMA_BIDIRECTIONAL);
    114		dma_dest[1] = unmap->addr[1];
    115		unmap->bidi_cnt++;
    116		unmap->len = len;
    117
    118		/* this looks funny, but the engine looks for Q at
    119		 * dma_dest[1] and ignores dma_dest[0] as a dest
    120		 * due to DMA_PREP_PQ_DISABLE_P
    121		 */
    122		tx = dma->device_prep_dma_pq(chan, dma_dest, unmap->addr,
    123					     1, &coef, len, dma_flags);
    124
    125		if (tx) {
    126			dma_set_unmap(tx, unmap);
    127			dmaengine_unmap_put(unmap);
    128			async_tx_submit(chan, tx, submit);
    129			return tx;
    130		}
    131
    132		/* could not get a descriptor, unmap and fall through to
    133		 * the synchronous path
    134		 */
    135		dmaengine_unmap_put(unmap);
    136	}
    137
    138	/* no channel available, or failed to allocate a descriptor, so
    139	 * perform the operation synchronously
    140	 */
    141	async_tx_quiesce(&submit->depend_tx);
    142	qmul  = raid6_gfmul[coef];
    143	d = page_address(dest) + d_off;
    144	s = page_address(src) + s_off;
    145
    146	while (len--)
    147		*d++ = qmul[*s++];
    148
    149	return NULL;
    150}
    151
    152static struct dma_async_tx_descriptor *
    153__2data_recov_4(int disks, size_t bytes, int faila, int failb,
    154		struct page **blocks, unsigned int *offs,
    155		struct async_submit_ctl *submit)
    156{
    157	struct dma_async_tx_descriptor *tx = NULL;
    158	struct page *p, *q, *a, *b;
    159	unsigned int p_off, q_off, a_off, b_off;
    160	struct page *srcs[2];
    161	unsigned int src_offs[2];
    162	unsigned char coef[2];
    163	enum async_tx_flags flags = submit->flags;
    164	dma_async_tx_callback cb_fn = submit->cb_fn;
    165	void *cb_param = submit->cb_param;
    166	void *scribble = submit->scribble;
    167
    168	p = blocks[disks-2];
    169	p_off = offs[disks-2];
    170	q = blocks[disks-1];
    171	q_off = offs[disks-1];
    172
    173	a = blocks[faila];
    174	a_off = offs[faila];
    175	b = blocks[failb];
    176	b_off = offs[failb];
    177
    178	/* in the 4 disk case P + Pxy == P and Q + Qxy == Q */
    179	/* Dx = A*(P+Pxy) + B*(Q+Qxy) */
    180	srcs[0] = p;
    181	src_offs[0] = p_off;
    182	srcs[1] = q;
    183	src_offs[1] = q_off;
    184	coef[0] = raid6_gfexi[failb-faila];
    185	coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]];
    186	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
    187	tx = async_sum_product(b, b_off, srcs, src_offs, coef, bytes, submit);
    188
    189	/* Dy = P+Pxy+Dx */
    190	srcs[0] = p;
    191	src_offs[0] = p_off;
    192	srcs[1] = b;
    193	src_offs[1] = b_off;
    194	init_async_submit(submit, flags | ASYNC_TX_XOR_ZERO_DST, tx, cb_fn,
    195			  cb_param, scribble);
    196	tx = async_xor_offs(a, a_off, srcs, src_offs, 2, bytes, submit);
    197
    198	return tx;
    199
    200}
    201
    202static struct dma_async_tx_descriptor *
    203__2data_recov_5(int disks, size_t bytes, int faila, int failb,
    204		struct page **blocks, unsigned int *offs,
    205		struct async_submit_ctl *submit)
    206{
    207	struct dma_async_tx_descriptor *tx = NULL;
    208	struct page *p, *q, *g, *dp, *dq;
    209	unsigned int p_off, q_off, g_off, dp_off, dq_off;
    210	struct page *srcs[2];
    211	unsigned int src_offs[2];
    212	unsigned char coef[2];
    213	enum async_tx_flags flags = submit->flags;
    214	dma_async_tx_callback cb_fn = submit->cb_fn;
    215	void *cb_param = submit->cb_param;
    216	void *scribble = submit->scribble;
    217	int good_srcs, good, i;
    218
    219	good_srcs = 0;
    220	good = -1;
    221	for (i = 0; i < disks-2; i++) {
    222		if (blocks[i] == NULL)
    223			continue;
    224		if (i == faila || i == failb)
    225			continue;
    226		good = i;
    227		good_srcs++;
    228	}
    229	BUG_ON(good_srcs > 1);
    230
    231	p = blocks[disks-2];
    232	p_off = offs[disks-2];
    233	q = blocks[disks-1];
    234	q_off = offs[disks-1];
    235	g = blocks[good];
    236	g_off = offs[good];
    237
    238	/* Compute syndrome with zero for the missing data pages
    239	 * Use the dead data pages as temporary storage for delta p and
    240	 * delta q
    241	 */
    242	dp = blocks[faila];
    243	dp_off = offs[faila];
    244	dq = blocks[failb];
    245	dq_off = offs[failb];
    246
    247	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
    248	tx = async_memcpy(dp, g, dp_off, g_off, bytes, submit);
    249	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
    250	tx = async_mult(dq, dq_off, g, g_off,
    251			raid6_gfexp[good], bytes, submit);
    252
    253	/* compute P + Pxy */
    254	srcs[0] = dp;
    255	src_offs[0] = dp_off;
    256	srcs[1] = p;
    257	src_offs[1] = p_off;
    258	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
    259			  NULL, NULL, scribble);
    260	tx = async_xor_offs(dp, dp_off, srcs, src_offs, 2, bytes, submit);
    261
    262	/* compute Q + Qxy */
    263	srcs[0] = dq;
    264	src_offs[0] = dq_off;
    265	srcs[1] = q;
    266	src_offs[1] = q_off;
    267	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
    268			  NULL, NULL, scribble);
    269	tx = async_xor_offs(dq, dq_off, srcs, src_offs, 2, bytes, submit);
    270
    271	/* Dx = A*(P+Pxy) + B*(Q+Qxy) */
    272	srcs[0] = dp;
    273	src_offs[0] = dp_off;
    274	srcs[1] = dq;
    275	src_offs[1] = dq_off;
    276	coef[0] = raid6_gfexi[failb-faila];
    277	coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]];
    278	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
    279	tx = async_sum_product(dq, dq_off, srcs, src_offs, coef, bytes, submit);
    280
    281	/* Dy = P+Pxy+Dx */
    282	srcs[0] = dp;
    283	src_offs[0] = dp_off;
    284	srcs[1] = dq;
    285	src_offs[1] = dq_off;
    286	init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn,
    287			  cb_param, scribble);
    288	tx = async_xor_offs(dp, dp_off, srcs, src_offs, 2, bytes, submit);
    289
    290	return tx;
    291}
    292
    293static struct dma_async_tx_descriptor *
    294__2data_recov_n(int disks, size_t bytes, int faila, int failb,
    295	      struct page **blocks, unsigned int *offs,
    296		  struct async_submit_ctl *submit)
    297{
    298	struct dma_async_tx_descriptor *tx = NULL;
    299	struct page *p, *q, *dp, *dq;
    300	unsigned int p_off, q_off, dp_off, dq_off;
    301	struct page *srcs[2];
    302	unsigned int src_offs[2];
    303	unsigned char coef[2];
    304	enum async_tx_flags flags = submit->flags;
    305	dma_async_tx_callback cb_fn = submit->cb_fn;
    306	void *cb_param = submit->cb_param;
    307	void *scribble = submit->scribble;
    308
    309	p = blocks[disks-2];
    310	p_off = offs[disks-2];
    311	q = blocks[disks-1];
    312	q_off = offs[disks-1];
    313
    314	/* Compute syndrome with zero for the missing data pages
    315	 * Use the dead data pages as temporary storage for
    316	 * delta p and delta q
    317	 */
    318	dp = blocks[faila];
    319	dp_off = offs[faila];
    320	blocks[faila] = NULL;
    321	blocks[disks-2] = dp;
    322	offs[disks-2] = dp_off;
    323	dq = blocks[failb];
    324	dq_off = offs[failb];
    325	blocks[failb] = NULL;
    326	blocks[disks-1] = dq;
    327	offs[disks-1] = dq_off;
    328
    329	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
    330	tx = async_gen_syndrome(blocks, offs, disks, bytes, submit);
    331
    332	/* Restore pointer table */
    333	blocks[faila]   = dp;
    334	offs[faila] = dp_off;
    335	blocks[failb]   = dq;
    336	offs[failb] = dq_off;
    337	blocks[disks-2] = p;
    338	offs[disks-2] = p_off;
    339	blocks[disks-1] = q;
    340	offs[disks-1] = q_off;
    341
    342	/* compute P + Pxy */
    343	srcs[0] = dp;
    344	src_offs[0] = dp_off;
    345	srcs[1] = p;
    346	src_offs[1] = p_off;
    347	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
    348			  NULL, NULL, scribble);
    349	tx = async_xor_offs(dp, dp_off, srcs, src_offs, 2, bytes, submit);
    350
    351	/* compute Q + Qxy */
    352	srcs[0] = dq;
    353	src_offs[0] = dq_off;
    354	srcs[1] = q;
    355	src_offs[1] = q_off;
    356	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
    357			  NULL, NULL, scribble);
    358	tx = async_xor_offs(dq, dq_off, srcs, src_offs, 2, bytes, submit);
    359
    360	/* Dx = A*(P+Pxy) + B*(Q+Qxy) */
    361	srcs[0] = dp;
    362	src_offs[0] = dp_off;
    363	srcs[1] = dq;
    364	src_offs[1] = dq_off;
    365	coef[0] = raid6_gfexi[failb-faila];
    366	coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]];
    367	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
    368	tx = async_sum_product(dq, dq_off, srcs, src_offs, coef, bytes, submit);
    369
    370	/* Dy = P+Pxy+Dx */
    371	srcs[0] = dp;
    372	src_offs[0] = dp_off;
    373	srcs[1] = dq;
    374	src_offs[1] = dq_off;
    375	init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn,
    376			  cb_param, scribble);
    377	tx = async_xor_offs(dp, dp_off, srcs, src_offs, 2, bytes, submit);
    378
    379	return tx;
    380}
    381
    382/**
    383 * async_raid6_2data_recov - asynchronously calculate two missing data blocks
    384 * @disks: number of disks in the RAID-6 array
    385 * @bytes: block size
    386 * @faila: first failed drive index
    387 * @failb: second failed drive index
    388 * @blocks: array of source pointers where the last two entries are p and q
    389 * @offs: array of offset for pages in blocks
    390 * @submit: submission/completion modifiers
    391 */
    392struct dma_async_tx_descriptor *
    393async_raid6_2data_recov(int disks, size_t bytes, int faila, int failb,
    394			struct page **blocks, unsigned int *offs,
    395			struct async_submit_ctl *submit)
    396{
    397	void *scribble = submit->scribble;
    398	int non_zero_srcs, i;
    399
    400	BUG_ON(faila == failb);
    401	if (failb < faila)
    402		swap(faila, failb);
    403
    404	pr_debug("%s: disks: %d len: %zu\n", __func__, disks, bytes);
    405
    406	/* if a dma resource is not available or a scribble buffer is not
    407	 * available punt to the synchronous path.  In the 'dma not
    408	 * available' case be sure to use the scribble buffer to
    409	 * preserve the content of 'blocks' as the caller intended.
    410	 */
    411	if (!async_dma_find_channel(DMA_PQ) || !scribble) {
    412		void **ptrs = scribble ? scribble : (void **) blocks;
    413
    414		async_tx_quiesce(&submit->depend_tx);
    415		for (i = 0; i < disks; i++)
    416			if (blocks[i] == NULL)
    417				ptrs[i] = (void *) raid6_empty_zero_page;
    418			else
    419				ptrs[i] = page_address(blocks[i]) + offs[i];
    420
    421		raid6_2data_recov(disks, bytes, faila, failb, ptrs);
    422
    423		async_tx_sync_epilog(submit);
    424
    425		return NULL;
    426	}
    427
    428	non_zero_srcs = 0;
    429	for (i = 0; i < disks-2 && non_zero_srcs < 4; i++)
    430		if (blocks[i])
    431			non_zero_srcs++;
    432	switch (non_zero_srcs) {
    433	case 0:
    434	case 1:
    435		/* There must be at least 2 sources - the failed devices. */
    436		BUG();
    437
    438	case 2:
    439		/* dma devices do not uniformly understand a zero source pq
    440		 * operation (in contrast to the synchronous case), so
    441		 * explicitly handle the special case of a 4 disk array with
    442		 * both data disks missing.
    443		 */
    444		return __2data_recov_4(disks, bytes, faila, failb,
    445				blocks, offs, submit);
    446	case 3:
    447		/* dma devices do not uniformly understand a single
    448		 * source pq operation (in contrast to the synchronous
    449		 * case), so explicitly handle the special case of a 5 disk
    450		 * array with 2 of 3 data disks missing.
    451		 */
    452		return __2data_recov_5(disks, bytes, faila, failb,
    453				blocks, offs, submit);
    454	default:
    455		return __2data_recov_n(disks, bytes, faila, failb,
    456				blocks, offs, submit);
    457	}
    458}
    459EXPORT_SYMBOL_GPL(async_raid6_2data_recov);
    460
    461/**
    462 * async_raid6_datap_recov - asynchronously calculate a data and the 'p' block
    463 * @disks: number of disks in the RAID-6 array
    464 * @bytes: block size
    465 * @faila: failed drive index
    466 * @blocks: array of source pointers where the last two entries are p and q
    467 * @offs: array of offset for pages in blocks
    468 * @submit: submission/completion modifiers
    469 */
    470struct dma_async_tx_descriptor *
    471async_raid6_datap_recov(int disks, size_t bytes, int faila,
    472			struct page **blocks, unsigned int *offs,
    473			struct async_submit_ctl *submit)
    474{
    475	struct dma_async_tx_descriptor *tx = NULL;
    476	struct page *p, *q, *dq;
    477	unsigned int p_off, q_off, dq_off;
    478	u8 coef;
    479	enum async_tx_flags flags = submit->flags;
    480	dma_async_tx_callback cb_fn = submit->cb_fn;
    481	void *cb_param = submit->cb_param;
    482	void *scribble = submit->scribble;
    483	int good_srcs, good, i;
    484	struct page *srcs[2];
    485	unsigned int src_offs[2];
    486
    487	pr_debug("%s: disks: %d len: %zu\n", __func__, disks, bytes);
    488
    489	/* if a dma resource is not available or a scribble buffer is not
    490	 * available punt to the synchronous path.  In the 'dma not
    491	 * available' case be sure to use the scribble buffer to
    492	 * preserve the content of 'blocks' as the caller intended.
    493	 */
    494	if (!async_dma_find_channel(DMA_PQ) || !scribble) {
    495		void **ptrs = scribble ? scribble : (void **) blocks;
    496
    497		async_tx_quiesce(&submit->depend_tx);
    498		for (i = 0; i < disks; i++)
    499			if (blocks[i] == NULL)
    500				ptrs[i] = (void*)raid6_empty_zero_page;
    501			else
    502				ptrs[i] = page_address(blocks[i]) + offs[i];
    503
    504		raid6_datap_recov(disks, bytes, faila, ptrs);
    505
    506		async_tx_sync_epilog(submit);
    507
    508		return NULL;
    509	}
    510
    511	good_srcs = 0;
    512	good = -1;
    513	for (i = 0; i < disks-2; i++) {
    514		if (i == faila)
    515			continue;
    516		if (blocks[i]) {
    517			good = i;
    518			good_srcs++;
    519			if (good_srcs > 1)
    520				break;
    521		}
    522	}
    523	BUG_ON(good_srcs == 0);
    524
    525	p = blocks[disks-2];
    526	p_off = offs[disks-2];
    527	q = blocks[disks-1];
    528	q_off = offs[disks-1];
    529
    530	/* Compute syndrome with zero for the missing data page
    531	 * Use the dead data page as temporary storage for delta q
    532	 */
    533	dq = blocks[faila];
    534	dq_off = offs[faila];
    535	blocks[faila] = NULL;
    536	blocks[disks-1] = dq;
    537	offs[disks-1] = dq_off;
    538
    539	/* in the 4-disk case we only need to perform a single source
    540	 * multiplication with the one good data block.
    541	 */
    542	if (good_srcs == 1) {
    543		struct page *g = blocks[good];
    544		unsigned int g_off = offs[good];
    545
    546		init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL,
    547				  scribble);
    548		tx = async_memcpy(p, g, p_off, g_off, bytes, submit);
    549
    550		init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL,
    551				  scribble);
    552		tx = async_mult(dq, dq_off, g, g_off,
    553				raid6_gfexp[good], bytes, submit);
    554	} else {
    555		init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL,
    556				  scribble);
    557		tx = async_gen_syndrome(blocks, offs, disks, bytes, submit);
    558	}
    559
    560	/* Restore pointer table */
    561	blocks[faila]   = dq;
    562	offs[faila] = dq_off;
    563	blocks[disks-1] = q;
    564	offs[disks-1] = q_off;
    565
    566	/* calculate g^{-faila} */
    567	coef = raid6_gfinv[raid6_gfexp[faila]];
    568
    569	srcs[0] = dq;
    570	src_offs[0] = dq_off;
    571	srcs[1] = q;
    572	src_offs[1] = q_off;
    573	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
    574			  NULL, NULL, scribble);
    575	tx = async_xor_offs(dq, dq_off, srcs, src_offs, 2, bytes, submit);
    576
    577	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
    578	tx = async_mult(dq, dq_off, dq, dq_off, coef, bytes, submit);
    579
    580	srcs[0] = p;
    581	src_offs[0] = p_off;
    582	srcs[1] = dq;
    583	src_offs[1] = dq_off;
    584	init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn,
    585			  cb_param, scribble);
    586	tx = async_xor_offs(p, p_off, srcs, src_offs, 2, bytes, submit);
    587
    588	return tx;
    589}
    590EXPORT_SYMBOL_GPL(async_raid6_datap_recov);
    591
    592MODULE_AUTHOR("Dan Williams <dan.j.williams@intel.com>");
    593MODULE_DESCRIPTION("asynchronous RAID-6 recovery api");
    594MODULE_LICENSE("GPL");