cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

drbg.c (61818B)


      1/*
      2 * DRBG: Deterministic Random Bits Generator
      3 *       Based on NIST Recommended DRBG from NIST SP800-90A with the following
      4 *       properties:
      5 *		* CTR DRBG with DF with AES-128, AES-192, AES-256 cores
      6 *		* Hash DRBG with DF with SHA-1, SHA-256, SHA-384, SHA-512 cores
      7 *		* HMAC DRBG with DF with SHA-1, SHA-256, SHA-384, SHA-512 cores
      8 *		* with and without prediction resistance
      9 *
     10 * Copyright Stephan Mueller <smueller@chronox.de>, 2014
     11 *
     12 * Redistribution and use in source and binary forms, with or without
     13 * modification, are permitted provided that the following conditions
     14 * are met:
     15 * 1. Redistributions of source code must retain the above copyright
     16 *    notice, and the entire permission notice in its entirety,
     17 *    including the disclaimer of warranties.
     18 * 2. Redistributions in binary form must reproduce the above copyright
     19 *    notice, this list of conditions and the following disclaimer in the
     20 *    documentation and/or other materials provided with the distribution.
     21 * 3. The name of the author may not be used to endorse or promote
     22 *    products derived from this software without specific prior
     23 *    written permission.
     24 *
     25 * ALTERNATIVELY, this product may be distributed under the terms of
     26 * the GNU General Public License, in which case the provisions of the GPL are
     27 * required INSTEAD OF the above restrictions.  (This clause is
     28 * necessary due to a potential bad interaction between the GPL and
     29 * the restrictions contained in a BSD-style copyright.)
     30 *
     31 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
     32 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     33 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
     34 * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
     35 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     36 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
     37 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
     38 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
     39 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     40 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
     41 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
     42 * DAMAGE.
     43 *
     44 * DRBG Usage
     45 * ==========
     46 * The SP 800-90A DRBG allows the user to specify a personalization string
     47 * for initialization as well as an additional information string for each
     48 * random number request. The following code fragments show how a caller
     49 * uses the kernel crypto API to use the full functionality of the DRBG.
     50 *
     51 * Usage without any additional data
     52 * ---------------------------------
     53 * struct crypto_rng *drng;
     54 * int err;
     55 * char data[DATALEN];
     56 *
     57 * drng = crypto_alloc_rng(drng_name, 0, 0);
     58 * err = crypto_rng_get_bytes(drng, &data, DATALEN);
     59 * crypto_free_rng(drng);
     60 *
     61 *
     62 * Usage with personalization string during initialization
     63 * -------------------------------------------------------
     64 * struct crypto_rng *drng;
     65 * int err;
     66 * char data[DATALEN];
     67 * struct drbg_string pers;
     68 * char personalization[11] = "some-string";
     69 *
     70 * drbg_string_fill(&pers, personalization, strlen(personalization));
     71 * drng = crypto_alloc_rng(drng_name, 0, 0);
     72 * // The reset completely re-initializes the DRBG with the provided
     73 * // personalization string
     74 * err = crypto_rng_reset(drng, &personalization, strlen(personalization));
     75 * err = crypto_rng_get_bytes(drng, &data, DATALEN);
     76 * crypto_free_rng(drng);
     77 *
     78 *
     79 * Usage with additional information string during random number request
     80 * ---------------------------------------------------------------------
     81 * struct crypto_rng *drng;
     82 * int err;
     83 * char data[DATALEN];
     84 * char addtl_string[11] = "some-string";
     85 * string drbg_string addtl;
     86 *
     87 * drbg_string_fill(&addtl, addtl_string, strlen(addtl_string));
     88 * drng = crypto_alloc_rng(drng_name, 0, 0);
     89 * // The following call is a wrapper to crypto_rng_get_bytes() and returns
     90 * // the same error codes.
     91 * err = crypto_drbg_get_bytes_addtl(drng, &data, DATALEN, &addtl);
     92 * crypto_free_rng(drng);
     93 *
     94 *
     95 * Usage with personalization and additional information strings
     96 * -------------------------------------------------------------
     97 * Just mix both scenarios above.
     98 */
     99
    100#include <crypto/drbg.h>
    101#include <crypto/internal/cipher.h>
    102#include <linux/kernel.h>
    103#include <linux/jiffies.h>
    104
    105/***************************************************************
    106 * Backend cipher definitions available to DRBG
    107 ***************************************************************/
    108
    109/*
    110 * The order of the DRBG definitions here matter: every DRBG is registered
    111 * as stdrng. Each DRBG receives an increasing cra_priority values the later
    112 * they are defined in this array (see drbg_fill_array).
    113 *
    114 * HMAC DRBGs are favored over Hash DRBGs over CTR DRBGs, and
    115 * the SHA256 / AES 256 over other ciphers. Thus, the favored
    116 * DRBGs are the latest entries in this array.
    117 */
    118static const struct drbg_core drbg_cores[] = {
    119#ifdef CONFIG_CRYPTO_DRBG_CTR
    120	{
    121		.flags = DRBG_CTR | DRBG_STRENGTH128,
    122		.statelen = 32, /* 256 bits as defined in 10.2.1 */
    123		.blocklen_bytes = 16,
    124		.cra_name = "ctr_aes128",
    125		.backend_cra_name = "aes",
    126	}, {
    127		.flags = DRBG_CTR | DRBG_STRENGTH192,
    128		.statelen = 40, /* 320 bits as defined in 10.2.1 */
    129		.blocklen_bytes = 16,
    130		.cra_name = "ctr_aes192",
    131		.backend_cra_name = "aes",
    132	}, {
    133		.flags = DRBG_CTR | DRBG_STRENGTH256,
    134		.statelen = 48, /* 384 bits as defined in 10.2.1 */
    135		.blocklen_bytes = 16,
    136		.cra_name = "ctr_aes256",
    137		.backend_cra_name = "aes",
    138	},
    139#endif /* CONFIG_CRYPTO_DRBG_CTR */
    140#ifdef CONFIG_CRYPTO_DRBG_HASH
    141	{
    142		.flags = DRBG_HASH | DRBG_STRENGTH128,
    143		.statelen = 55, /* 440 bits */
    144		.blocklen_bytes = 20,
    145		.cra_name = "sha1",
    146		.backend_cra_name = "sha1",
    147	}, {
    148		.flags = DRBG_HASH | DRBG_STRENGTH256,
    149		.statelen = 111, /* 888 bits */
    150		.blocklen_bytes = 48,
    151		.cra_name = "sha384",
    152		.backend_cra_name = "sha384",
    153	}, {
    154		.flags = DRBG_HASH | DRBG_STRENGTH256,
    155		.statelen = 111, /* 888 bits */
    156		.blocklen_bytes = 64,
    157		.cra_name = "sha512",
    158		.backend_cra_name = "sha512",
    159	}, {
    160		.flags = DRBG_HASH | DRBG_STRENGTH256,
    161		.statelen = 55, /* 440 bits */
    162		.blocklen_bytes = 32,
    163		.cra_name = "sha256",
    164		.backend_cra_name = "sha256",
    165	},
    166#endif /* CONFIG_CRYPTO_DRBG_HASH */
    167#ifdef CONFIG_CRYPTO_DRBG_HMAC
    168	{
    169		.flags = DRBG_HMAC | DRBG_STRENGTH128,
    170		.statelen = 20, /* block length of cipher */
    171		.blocklen_bytes = 20,
    172		.cra_name = "hmac_sha1",
    173		.backend_cra_name = "hmac(sha1)",
    174	}, {
    175		.flags = DRBG_HMAC | DRBG_STRENGTH256,
    176		.statelen = 48, /* block length of cipher */
    177		.blocklen_bytes = 48,
    178		.cra_name = "hmac_sha384",
    179		.backend_cra_name = "hmac(sha384)",
    180	}, {
    181		.flags = DRBG_HMAC | DRBG_STRENGTH256,
    182		.statelen = 32, /* block length of cipher */
    183		.blocklen_bytes = 32,
    184		.cra_name = "hmac_sha256",
    185		.backend_cra_name = "hmac(sha256)",
    186	}, {
    187		.flags = DRBG_HMAC | DRBG_STRENGTH256,
    188		.statelen = 64, /* block length of cipher */
    189		.blocklen_bytes = 64,
    190		.cra_name = "hmac_sha512",
    191		.backend_cra_name = "hmac(sha512)",
    192	},
    193#endif /* CONFIG_CRYPTO_DRBG_HMAC */
    194};
    195
    196static int drbg_uninstantiate(struct drbg_state *drbg);
    197
    198/******************************************************************
    199 * Generic helper functions
    200 ******************************************************************/
    201
    202/*
    203 * Return strength of DRBG according to SP800-90A section 8.4
    204 *
    205 * @flags DRBG flags reference
    206 *
    207 * Return: normalized strength in *bytes* value or 32 as default
    208 *	   to counter programming errors
    209 */
    210static inline unsigned short drbg_sec_strength(drbg_flag_t flags)
    211{
    212	switch (flags & DRBG_STRENGTH_MASK) {
    213	case DRBG_STRENGTH128:
    214		return 16;
    215	case DRBG_STRENGTH192:
    216		return 24;
    217	case DRBG_STRENGTH256:
    218		return 32;
    219	default:
    220		return 32;
    221	}
    222}
    223
    224/*
    225 * FIPS 140-2 continuous self test for the noise source
    226 * The test is performed on the noise source input data. Thus, the function
    227 * implicitly knows the size of the buffer to be equal to the security
    228 * strength.
    229 *
    230 * Note, this function disregards the nonce trailing the entropy data during
    231 * initial seeding.
    232 *
    233 * drbg->drbg_mutex must have been taken.
    234 *
    235 * @drbg DRBG handle
    236 * @entropy buffer of seed data to be checked
    237 *
    238 * return:
    239 *	0 on success
    240 *	-EAGAIN on when the CTRNG is not yet primed
    241 *	< 0 on error
    242 */
    243static int drbg_fips_continuous_test(struct drbg_state *drbg,
    244				     const unsigned char *entropy)
    245{
    246	unsigned short entropylen = drbg_sec_strength(drbg->core->flags);
    247	int ret = 0;
    248
    249	if (!IS_ENABLED(CONFIG_CRYPTO_FIPS))
    250		return 0;
    251
    252	/* skip test if we test the overall system */
    253	if (list_empty(&drbg->test_data.list))
    254		return 0;
    255	/* only perform test in FIPS mode */
    256	if (!fips_enabled)
    257		return 0;
    258
    259	if (!drbg->fips_primed) {
    260		/* Priming of FIPS test */
    261		memcpy(drbg->prev, entropy, entropylen);
    262		drbg->fips_primed = true;
    263		/* priming: another round is needed */
    264		return -EAGAIN;
    265	}
    266	ret = memcmp(drbg->prev, entropy, entropylen);
    267	if (!ret)
    268		panic("DRBG continuous self test failed\n");
    269	memcpy(drbg->prev, entropy, entropylen);
    270
    271	/* the test shall pass when the two values are not equal */
    272	return 0;
    273}
    274
    275/*
    276 * Convert an integer into a byte representation of this integer.
    277 * The byte representation is big-endian
    278 *
    279 * @val value to be converted
    280 * @buf buffer holding the converted integer -- caller must ensure that
    281 *      buffer size is at least 32 bit
    282 */
    283#if (defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_CTR))
    284static inline void drbg_cpu_to_be32(__u32 val, unsigned char *buf)
    285{
    286	struct s {
    287		__be32 conv;
    288	};
    289	struct s *conversion = (struct s *) buf;
    290
    291	conversion->conv = cpu_to_be32(val);
    292}
    293#endif /* defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_CTR) */
    294
    295/******************************************************************
    296 * CTR DRBG callback functions
    297 ******************************************************************/
    298
    299#ifdef CONFIG_CRYPTO_DRBG_CTR
    300#define CRYPTO_DRBG_CTR_STRING "CTR "
    301MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes256");
    302MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes256");
    303MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes192");
    304MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes192");
    305MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes128");
    306MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes128");
    307
    308static void drbg_kcapi_symsetkey(struct drbg_state *drbg,
    309				 const unsigned char *key);
    310static int drbg_kcapi_sym(struct drbg_state *drbg, unsigned char *outval,
    311			  const struct drbg_string *in);
    312static int drbg_init_sym_kernel(struct drbg_state *drbg);
    313static int drbg_fini_sym_kernel(struct drbg_state *drbg);
    314static int drbg_kcapi_sym_ctr(struct drbg_state *drbg,
    315			      u8 *inbuf, u32 inbuflen,
    316			      u8 *outbuf, u32 outlen);
    317#define DRBG_OUTSCRATCHLEN 256
    318
    319/* BCC function for CTR DRBG as defined in 10.4.3 */
    320static int drbg_ctr_bcc(struct drbg_state *drbg,
    321			unsigned char *out, const unsigned char *key,
    322			struct list_head *in)
    323{
    324	int ret = 0;
    325	struct drbg_string *curr = NULL;
    326	struct drbg_string data;
    327	short cnt = 0;
    328
    329	drbg_string_fill(&data, out, drbg_blocklen(drbg));
    330
    331	/* 10.4.3 step 2 / 4 */
    332	drbg_kcapi_symsetkey(drbg, key);
    333	list_for_each_entry(curr, in, list) {
    334		const unsigned char *pos = curr->buf;
    335		size_t len = curr->len;
    336		/* 10.4.3 step 4.1 */
    337		while (len) {
    338			/* 10.4.3 step 4.2 */
    339			if (drbg_blocklen(drbg) == cnt) {
    340				cnt = 0;
    341				ret = drbg_kcapi_sym(drbg, out, &data);
    342				if (ret)
    343					return ret;
    344			}
    345			out[cnt] ^= *pos;
    346			pos++;
    347			cnt++;
    348			len--;
    349		}
    350	}
    351	/* 10.4.3 step 4.2 for last block */
    352	if (cnt)
    353		ret = drbg_kcapi_sym(drbg, out, &data);
    354
    355	return ret;
    356}
    357
    358/*
    359 * scratchpad usage: drbg_ctr_update is interlinked with drbg_ctr_df
    360 * (and drbg_ctr_bcc, but this function does not need any temporary buffers),
    361 * the scratchpad is used as follows:
    362 * drbg_ctr_update:
    363 *	temp
    364 *		start: drbg->scratchpad
    365 *		length: drbg_statelen(drbg) + drbg_blocklen(drbg)
    366 *			note: the cipher writing into this variable works
    367 *			blocklen-wise. Now, when the statelen is not a multiple
    368 *			of blocklen, the generateion loop below "spills over"
    369 *			by at most blocklen. Thus, we need to give sufficient
    370 *			memory.
    371 *	df_data
    372 *		start: drbg->scratchpad +
    373 *				drbg_statelen(drbg) + drbg_blocklen(drbg)
    374 *		length: drbg_statelen(drbg)
    375 *
    376 * drbg_ctr_df:
    377 *	pad
    378 *		start: df_data + drbg_statelen(drbg)
    379 *		length: drbg_blocklen(drbg)
    380 *	iv
    381 *		start: pad + drbg_blocklen(drbg)
    382 *		length: drbg_blocklen(drbg)
    383 *	temp
    384 *		start: iv + drbg_blocklen(drbg)
    385 *		length: drbg_satelen(drbg) + drbg_blocklen(drbg)
    386 *			note: temp is the buffer that the BCC function operates
    387 *			on. BCC operates blockwise. drbg_statelen(drbg)
    388 *			is sufficient when the DRBG state length is a multiple
    389 *			of the block size. For AES192 (and maybe other ciphers)
    390 *			this is not correct and the length for temp is
    391 *			insufficient (yes, that also means for such ciphers,
    392 *			the final output of all BCC rounds are truncated).
    393 *			Therefore, add drbg_blocklen(drbg) to cover all
    394 *			possibilities.
    395 */
    396
    397/* Derivation Function for CTR DRBG as defined in 10.4.2 */
    398static int drbg_ctr_df(struct drbg_state *drbg,
    399		       unsigned char *df_data, size_t bytes_to_return,
    400		       struct list_head *seedlist)
    401{
    402	int ret = -EFAULT;
    403	unsigned char L_N[8];
    404	/* S3 is input */
    405	struct drbg_string S1, S2, S4, cipherin;
    406	LIST_HEAD(bcc_list);
    407	unsigned char *pad = df_data + drbg_statelen(drbg);
    408	unsigned char *iv = pad + drbg_blocklen(drbg);
    409	unsigned char *temp = iv + drbg_blocklen(drbg);
    410	size_t padlen = 0;
    411	unsigned int templen = 0;
    412	/* 10.4.2 step 7 */
    413	unsigned int i = 0;
    414	/* 10.4.2 step 8 */
    415	const unsigned char *K = (unsigned char *)
    416			   "\x00\x01\x02\x03\x04\x05\x06\x07"
    417			   "\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f"
    418			   "\x10\x11\x12\x13\x14\x15\x16\x17"
    419			   "\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f";
    420	unsigned char *X;
    421	size_t generated_len = 0;
    422	size_t inputlen = 0;
    423	struct drbg_string *seed = NULL;
    424
    425	memset(pad, 0, drbg_blocklen(drbg));
    426	memset(iv, 0, drbg_blocklen(drbg));
    427
    428	/* 10.4.2 step 1 is implicit as we work byte-wise */
    429
    430	/* 10.4.2 step 2 */
    431	if ((512/8) < bytes_to_return)
    432		return -EINVAL;
    433
    434	/* 10.4.2 step 2 -- calculate the entire length of all input data */
    435	list_for_each_entry(seed, seedlist, list)
    436		inputlen += seed->len;
    437	drbg_cpu_to_be32(inputlen, &L_N[0]);
    438
    439	/* 10.4.2 step 3 */
    440	drbg_cpu_to_be32(bytes_to_return, &L_N[4]);
    441
    442	/* 10.4.2 step 5: length is L_N, input_string, one byte, padding */
    443	padlen = (inputlen + sizeof(L_N) + 1) % (drbg_blocklen(drbg));
    444	/* wrap the padlen appropriately */
    445	if (padlen)
    446		padlen = drbg_blocklen(drbg) - padlen;
    447	/*
    448	 * pad / padlen contains the 0x80 byte and the following zero bytes.
    449	 * As the calculated padlen value only covers the number of zero
    450	 * bytes, this value has to be incremented by one for the 0x80 byte.
    451	 */
    452	padlen++;
    453	pad[0] = 0x80;
    454
    455	/* 10.4.2 step 4 -- first fill the linked list and then order it */
    456	drbg_string_fill(&S1, iv, drbg_blocklen(drbg));
    457	list_add_tail(&S1.list, &bcc_list);
    458	drbg_string_fill(&S2, L_N, sizeof(L_N));
    459	list_add_tail(&S2.list, &bcc_list);
    460	list_splice_tail(seedlist, &bcc_list);
    461	drbg_string_fill(&S4, pad, padlen);
    462	list_add_tail(&S4.list, &bcc_list);
    463
    464	/* 10.4.2 step 9 */
    465	while (templen < (drbg_keylen(drbg) + (drbg_blocklen(drbg)))) {
    466		/*
    467		 * 10.4.2 step 9.1 - the padding is implicit as the buffer
    468		 * holds zeros after allocation -- even the increment of i
    469		 * is irrelevant as the increment remains within length of i
    470		 */
    471		drbg_cpu_to_be32(i, iv);
    472		/* 10.4.2 step 9.2 -- BCC and concatenation with temp */
    473		ret = drbg_ctr_bcc(drbg, temp + templen, K, &bcc_list);
    474		if (ret)
    475			goto out;
    476		/* 10.4.2 step 9.3 */
    477		i++;
    478		templen += drbg_blocklen(drbg);
    479	}
    480
    481	/* 10.4.2 step 11 */
    482	X = temp + (drbg_keylen(drbg));
    483	drbg_string_fill(&cipherin, X, drbg_blocklen(drbg));
    484
    485	/* 10.4.2 step 12: overwriting of outval is implemented in next step */
    486
    487	/* 10.4.2 step 13 */
    488	drbg_kcapi_symsetkey(drbg, temp);
    489	while (generated_len < bytes_to_return) {
    490		short blocklen = 0;
    491		/*
    492		 * 10.4.2 step 13.1: the truncation of the key length is
    493		 * implicit as the key is only drbg_blocklen in size based on
    494		 * the implementation of the cipher function callback
    495		 */
    496		ret = drbg_kcapi_sym(drbg, X, &cipherin);
    497		if (ret)
    498			goto out;
    499		blocklen = (drbg_blocklen(drbg) <
    500				(bytes_to_return - generated_len)) ?
    501			    drbg_blocklen(drbg) :
    502				(bytes_to_return - generated_len);
    503		/* 10.4.2 step 13.2 and 14 */
    504		memcpy(df_data + generated_len, X, blocklen);
    505		generated_len += blocklen;
    506	}
    507
    508	ret = 0;
    509
    510out:
    511	memset(iv, 0, drbg_blocklen(drbg));
    512	memset(temp, 0, drbg_statelen(drbg) + drbg_blocklen(drbg));
    513	memset(pad, 0, drbg_blocklen(drbg));
    514	return ret;
    515}
    516
    517/*
    518 * update function of CTR DRBG as defined in 10.2.1.2
    519 *
    520 * The reseed variable has an enhanced meaning compared to the update
    521 * functions of the other DRBGs as follows:
    522 * 0 => initial seed from initialization
    523 * 1 => reseed via drbg_seed
    524 * 2 => first invocation from drbg_ctr_update when addtl is present. In
    525 *      this case, the df_data scratchpad is not deleted so that it is
    526 *      available for another calls to prevent calling the DF function
    527 *      again.
    528 * 3 => second invocation from drbg_ctr_update. When the update function
    529 *      was called with addtl, the df_data memory already contains the
    530 *      DFed addtl information and we do not need to call DF again.
    531 */
    532static int drbg_ctr_update(struct drbg_state *drbg, struct list_head *seed,
    533			   int reseed)
    534{
    535	int ret = -EFAULT;
    536	/* 10.2.1.2 step 1 */
    537	unsigned char *temp = drbg->scratchpad;
    538	unsigned char *df_data = drbg->scratchpad + drbg_statelen(drbg) +
    539				 drbg_blocklen(drbg);
    540
    541	if (3 > reseed)
    542		memset(df_data, 0, drbg_statelen(drbg));
    543
    544	if (!reseed) {
    545		/*
    546		 * The DRBG uses the CTR mode of the underlying AES cipher. The
    547		 * CTR mode increments the counter value after the AES operation
    548		 * but SP800-90A requires that the counter is incremented before
    549		 * the AES operation. Hence, we increment it at the time we set
    550		 * it by one.
    551		 */
    552		crypto_inc(drbg->V, drbg_blocklen(drbg));
    553
    554		ret = crypto_skcipher_setkey(drbg->ctr_handle, drbg->C,
    555					     drbg_keylen(drbg));
    556		if (ret)
    557			goto out;
    558	}
    559
    560	/* 10.2.1.3.2 step 2 and 10.2.1.4.2 step 2 */
    561	if (seed) {
    562		ret = drbg_ctr_df(drbg, df_data, drbg_statelen(drbg), seed);
    563		if (ret)
    564			goto out;
    565	}
    566
    567	ret = drbg_kcapi_sym_ctr(drbg, df_data, drbg_statelen(drbg),
    568				 temp, drbg_statelen(drbg));
    569	if (ret)
    570		return ret;
    571
    572	/* 10.2.1.2 step 5 */
    573	ret = crypto_skcipher_setkey(drbg->ctr_handle, temp,
    574				     drbg_keylen(drbg));
    575	if (ret)
    576		goto out;
    577	/* 10.2.1.2 step 6 */
    578	memcpy(drbg->V, temp + drbg_keylen(drbg), drbg_blocklen(drbg));
    579	/* See above: increment counter by one to compensate timing of CTR op */
    580	crypto_inc(drbg->V, drbg_blocklen(drbg));
    581	ret = 0;
    582
    583out:
    584	memset(temp, 0, drbg_statelen(drbg) + drbg_blocklen(drbg));
    585	if (2 != reseed)
    586		memset(df_data, 0, drbg_statelen(drbg));
    587	return ret;
    588}
    589
    590/*
    591 * scratchpad use: drbg_ctr_update is called independently from
    592 * drbg_ctr_extract_bytes. Therefore, the scratchpad is reused
    593 */
    594/* Generate function of CTR DRBG as defined in 10.2.1.5.2 */
    595static int drbg_ctr_generate(struct drbg_state *drbg,
    596			     unsigned char *buf, unsigned int buflen,
    597			     struct list_head *addtl)
    598{
    599	int ret;
    600	int len = min_t(int, buflen, INT_MAX);
    601
    602	/* 10.2.1.5.2 step 2 */
    603	if (addtl && !list_empty(addtl)) {
    604		ret = drbg_ctr_update(drbg, addtl, 2);
    605		if (ret)
    606			return 0;
    607	}
    608
    609	/* 10.2.1.5.2 step 4.1 */
    610	ret = drbg_kcapi_sym_ctr(drbg, NULL, 0, buf, len);
    611	if (ret)
    612		return ret;
    613
    614	/* 10.2.1.5.2 step 6 */
    615	ret = drbg_ctr_update(drbg, NULL, 3);
    616	if (ret)
    617		len = ret;
    618
    619	return len;
    620}
    621
    622static const struct drbg_state_ops drbg_ctr_ops = {
    623	.update		= drbg_ctr_update,
    624	.generate	= drbg_ctr_generate,
    625	.crypto_init	= drbg_init_sym_kernel,
    626	.crypto_fini	= drbg_fini_sym_kernel,
    627};
    628#endif /* CONFIG_CRYPTO_DRBG_CTR */
    629
    630/******************************************************************
    631 * HMAC DRBG callback functions
    632 ******************************************************************/
    633
    634#if defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_HMAC)
    635static int drbg_kcapi_hash(struct drbg_state *drbg, unsigned char *outval,
    636			   const struct list_head *in);
    637static void drbg_kcapi_hmacsetkey(struct drbg_state *drbg,
    638				  const unsigned char *key);
    639static int drbg_init_hash_kernel(struct drbg_state *drbg);
    640static int drbg_fini_hash_kernel(struct drbg_state *drbg);
    641#endif /* (CONFIG_CRYPTO_DRBG_HASH || CONFIG_CRYPTO_DRBG_HMAC) */
    642
    643#ifdef CONFIG_CRYPTO_DRBG_HMAC
    644#define CRYPTO_DRBG_HMAC_STRING "HMAC "
    645MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha512");
    646MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha512");
    647MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha384");
    648MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha384");
    649MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha256");
    650MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha256");
    651MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha1");
    652MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha1");
    653
    654/* update function of HMAC DRBG as defined in 10.1.2.2 */
    655static int drbg_hmac_update(struct drbg_state *drbg, struct list_head *seed,
    656			    int reseed)
    657{
    658	int ret = -EFAULT;
    659	int i = 0;
    660	struct drbg_string seed1, seed2, vdata;
    661	LIST_HEAD(seedlist);
    662	LIST_HEAD(vdatalist);
    663
    664	if (!reseed) {
    665		/* 10.1.2.3 step 2 -- memset(0) of C is implicit with kzalloc */
    666		memset(drbg->V, 1, drbg_statelen(drbg));
    667		drbg_kcapi_hmacsetkey(drbg, drbg->C);
    668	}
    669
    670	drbg_string_fill(&seed1, drbg->V, drbg_statelen(drbg));
    671	list_add_tail(&seed1.list, &seedlist);
    672	/* buffer of seed2 will be filled in for loop below with one byte */
    673	drbg_string_fill(&seed2, NULL, 1);
    674	list_add_tail(&seed2.list, &seedlist);
    675	/* input data of seed is allowed to be NULL at this point */
    676	if (seed)
    677		list_splice_tail(seed, &seedlist);
    678
    679	drbg_string_fill(&vdata, drbg->V, drbg_statelen(drbg));
    680	list_add_tail(&vdata.list, &vdatalist);
    681	for (i = 2; 0 < i; i--) {
    682		/* first round uses 0x0, second 0x1 */
    683		unsigned char prefix = DRBG_PREFIX0;
    684		if (1 == i)
    685			prefix = DRBG_PREFIX1;
    686		/* 10.1.2.2 step 1 and 4 -- concatenation and HMAC for key */
    687		seed2.buf = &prefix;
    688		ret = drbg_kcapi_hash(drbg, drbg->C, &seedlist);
    689		if (ret)
    690			return ret;
    691		drbg_kcapi_hmacsetkey(drbg, drbg->C);
    692
    693		/* 10.1.2.2 step 2 and 5 -- HMAC for V */
    694		ret = drbg_kcapi_hash(drbg, drbg->V, &vdatalist);
    695		if (ret)
    696			return ret;
    697
    698		/* 10.1.2.2 step 3 */
    699		if (!seed)
    700			return ret;
    701	}
    702
    703	return 0;
    704}
    705
    706/* generate function of HMAC DRBG as defined in 10.1.2.5 */
    707static int drbg_hmac_generate(struct drbg_state *drbg,
    708			      unsigned char *buf,
    709			      unsigned int buflen,
    710			      struct list_head *addtl)
    711{
    712	int len = 0;
    713	int ret = 0;
    714	struct drbg_string data;
    715	LIST_HEAD(datalist);
    716
    717	/* 10.1.2.5 step 2 */
    718	if (addtl && !list_empty(addtl)) {
    719		ret = drbg_hmac_update(drbg, addtl, 1);
    720		if (ret)
    721			return ret;
    722	}
    723
    724	drbg_string_fill(&data, drbg->V, drbg_statelen(drbg));
    725	list_add_tail(&data.list, &datalist);
    726	while (len < buflen) {
    727		unsigned int outlen = 0;
    728		/* 10.1.2.5 step 4.1 */
    729		ret = drbg_kcapi_hash(drbg, drbg->V, &datalist);
    730		if (ret)
    731			return ret;
    732		outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
    733			  drbg_blocklen(drbg) : (buflen - len);
    734
    735		/* 10.1.2.5 step 4.2 */
    736		memcpy(buf + len, drbg->V, outlen);
    737		len += outlen;
    738	}
    739
    740	/* 10.1.2.5 step 6 */
    741	if (addtl && !list_empty(addtl))
    742		ret = drbg_hmac_update(drbg, addtl, 1);
    743	else
    744		ret = drbg_hmac_update(drbg, NULL, 1);
    745	if (ret)
    746		return ret;
    747
    748	return len;
    749}
    750
    751static const struct drbg_state_ops drbg_hmac_ops = {
    752	.update		= drbg_hmac_update,
    753	.generate	= drbg_hmac_generate,
    754	.crypto_init	= drbg_init_hash_kernel,
    755	.crypto_fini	= drbg_fini_hash_kernel,
    756};
    757#endif /* CONFIG_CRYPTO_DRBG_HMAC */
    758
    759/******************************************************************
    760 * Hash DRBG callback functions
    761 ******************************************************************/
    762
    763#ifdef CONFIG_CRYPTO_DRBG_HASH
    764#define CRYPTO_DRBG_HASH_STRING "HASH "
    765MODULE_ALIAS_CRYPTO("drbg_pr_sha512");
    766MODULE_ALIAS_CRYPTO("drbg_nopr_sha512");
    767MODULE_ALIAS_CRYPTO("drbg_pr_sha384");
    768MODULE_ALIAS_CRYPTO("drbg_nopr_sha384");
    769MODULE_ALIAS_CRYPTO("drbg_pr_sha256");
    770MODULE_ALIAS_CRYPTO("drbg_nopr_sha256");
    771MODULE_ALIAS_CRYPTO("drbg_pr_sha1");
    772MODULE_ALIAS_CRYPTO("drbg_nopr_sha1");
    773
    774/*
    775 * Increment buffer
    776 *
    777 * @dst buffer to increment
    778 * @add value to add
    779 */
    780static inline void drbg_add_buf(unsigned char *dst, size_t dstlen,
    781				const unsigned char *add, size_t addlen)
    782{
    783	/* implied: dstlen > addlen */
    784	unsigned char *dstptr;
    785	const unsigned char *addptr;
    786	unsigned int remainder = 0;
    787	size_t len = addlen;
    788
    789	dstptr = dst + (dstlen-1);
    790	addptr = add + (addlen-1);
    791	while (len) {
    792		remainder += *dstptr + *addptr;
    793		*dstptr = remainder & 0xff;
    794		remainder >>= 8;
    795		len--; dstptr--; addptr--;
    796	}
    797	len = dstlen - addlen;
    798	while (len && remainder > 0) {
    799		remainder = *dstptr + 1;
    800		*dstptr = remainder & 0xff;
    801		remainder >>= 8;
    802		len--; dstptr--;
    803	}
    804}
    805
    806/*
    807 * scratchpad usage: as drbg_hash_update and drbg_hash_df are used
    808 * interlinked, the scratchpad is used as follows:
    809 * drbg_hash_update
    810 *	start: drbg->scratchpad
    811 *	length: drbg_statelen(drbg)
    812 * drbg_hash_df:
    813 *	start: drbg->scratchpad + drbg_statelen(drbg)
    814 *	length: drbg_blocklen(drbg)
    815 *
    816 * drbg_hash_process_addtl uses the scratchpad, but fully completes
    817 * before either of the functions mentioned before are invoked. Therefore,
    818 * drbg_hash_process_addtl does not need to be specifically considered.
    819 */
    820
    821/* Derivation Function for Hash DRBG as defined in 10.4.1 */
    822static int drbg_hash_df(struct drbg_state *drbg,
    823			unsigned char *outval, size_t outlen,
    824			struct list_head *entropylist)
    825{
    826	int ret = 0;
    827	size_t len = 0;
    828	unsigned char input[5];
    829	unsigned char *tmp = drbg->scratchpad + drbg_statelen(drbg);
    830	struct drbg_string data;
    831
    832	/* 10.4.1 step 3 */
    833	input[0] = 1;
    834	drbg_cpu_to_be32((outlen * 8), &input[1]);
    835
    836	/* 10.4.1 step 4.1 -- concatenation of data for input into hash */
    837	drbg_string_fill(&data, input, 5);
    838	list_add(&data.list, entropylist);
    839
    840	/* 10.4.1 step 4 */
    841	while (len < outlen) {
    842		short blocklen = 0;
    843		/* 10.4.1 step 4.1 */
    844		ret = drbg_kcapi_hash(drbg, tmp, entropylist);
    845		if (ret)
    846			goto out;
    847		/* 10.4.1 step 4.2 */
    848		input[0]++;
    849		blocklen = (drbg_blocklen(drbg) < (outlen - len)) ?
    850			    drbg_blocklen(drbg) : (outlen - len);
    851		memcpy(outval + len, tmp, blocklen);
    852		len += blocklen;
    853	}
    854
    855out:
    856	memset(tmp, 0, drbg_blocklen(drbg));
    857	return ret;
    858}
    859
    860/* update function for Hash DRBG as defined in 10.1.1.2 / 10.1.1.3 */
    861static int drbg_hash_update(struct drbg_state *drbg, struct list_head *seed,
    862			    int reseed)
    863{
    864	int ret = 0;
    865	struct drbg_string data1, data2;
    866	LIST_HEAD(datalist);
    867	LIST_HEAD(datalist2);
    868	unsigned char *V = drbg->scratchpad;
    869	unsigned char prefix = DRBG_PREFIX1;
    870
    871	if (!seed)
    872		return -EINVAL;
    873
    874	if (reseed) {
    875		/* 10.1.1.3 step 1 */
    876		memcpy(V, drbg->V, drbg_statelen(drbg));
    877		drbg_string_fill(&data1, &prefix, 1);
    878		list_add_tail(&data1.list, &datalist);
    879		drbg_string_fill(&data2, V, drbg_statelen(drbg));
    880		list_add_tail(&data2.list, &datalist);
    881	}
    882	list_splice_tail(seed, &datalist);
    883
    884	/* 10.1.1.2 / 10.1.1.3 step 2 and 3 */
    885	ret = drbg_hash_df(drbg, drbg->V, drbg_statelen(drbg), &datalist);
    886	if (ret)
    887		goto out;
    888
    889	/* 10.1.1.2 / 10.1.1.3 step 4  */
    890	prefix = DRBG_PREFIX0;
    891	drbg_string_fill(&data1, &prefix, 1);
    892	list_add_tail(&data1.list, &datalist2);
    893	drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
    894	list_add_tail(&data2.list, &datalist2);
    895	/* 10.1.1.2 / 10.1.1.3 step 4 */
    896	ret = drbg_hash_df(drbg, drbg->C, drbg_statelen(drbg), &datalist2);
    897
    898out:
    899	memset(drbg->scratchpad, 0, drbg_statelen(drbg));
    900	return ret;
    901}
    902
    903/* processing of additional information string for Hash DRBG */
    904static int drbg_hash_process_addtl(struct drbg_state *drbg,
    905				   struct list_head *addtl)
    906{
    907	int ret = 0;
    908	struct drbg_string data1, data2;
    909	LIST_HEAD(datalist);
    910	unsigned char prefix = DRBG_PREFIX2;
    911
    912	/* 10.1.1.4 step 2 */
    913	if (!addtl || list_empty(addtl))
    914		return 0;
    915
    916	/* 10.1.1.4 step 2a */
    917	drbg_string_fill(&data1, &prefix, 1);
    918	drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
    919	list_add_tail(&data1.list, &datalist);
    920	list_add_tail(&data2.list, &datalist);
    921	list_splice_tail(addtl, &datalist);
    922	ret = drbg_kcapi_hash(drbg, drbg->scratchpad, &datalist);
    923	if (ret)
    924		goto out;
    925
    926	/* 10.1.1.4 step 2b */
    927	drbg_add_buf(drbg->V, drbg_statelen(drbg),
    928		     drbg->scratchpad, drbg_blocklen(drbg));
    929
    930out:
    931	memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
    932	return ret;
    933}
    934
    935/* Hashgen defined in 10.1.1.4 */
    936static int drbg_hash_hashgen(struct drbg_state *drbg,
    937			     unsigned char *buf,
    938			     unsigned int buflen)
    939{
    940	int len = 0;
    941	int ret = 0;
    942	unsigned char *src = drbg->scratchpad;
    943	unsigned char *dst = drbg->scratchpad + drbg_statelen(drbg);
    944	struct drbg_string data;
    945	LIST_HEAD(datalist);
    946
    947	/* 10.1.1.4 step hashgen 2 */
    948	memcpy(src, drbg->V, drbg_statelen(drbg));
    949
    950	drbg_string_fill(&data, src, drbg_statelen(drbg));
    951	list_add_tail(&data.list, &datalist);
    952	while (len < buflen) {
    953		unsigned int outlen = 0;
    954		/* 10.1.1.4 step hashgen 4.1 */
    955		ret = drbg_kcapi_hash(drbg, dst, &datalist);
    956		if (ret) {
    957			len = ret;
    958			goto out;
    959		}
    960		outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
    961			  drbg_blocklen(drbg) : (buflen - len);
    962		/* 10.1.1.4 step hashgen 4.2 */
    963		memcpy(buf + len, dst, outlen);
    964		len += outlen;
    965		/* 10.1.1.4 hashgen step 4.3 */
    966		if (len < buflen)
    967			crypto_inc(src, drbg_statelen(drbg));
    968	}
    969
    970out:
    971	memset(drbg->scratchpad, 0,
    972	       (drbg_statelen(drbg) + drbg_blocklen(drbg)));
    973	return len;
    974}
    975
    976/* generate function for Hash DRBG as defined in  10.1.1.4 */
    977static int drbg_hash_generate(struct drbg_state *drbg,
    978			      unsigned char *buf, unsigned int buflen,
    979			      struct list_head *addtl)
    980{
    981	int len = 0;
    982	int ret = 0;
    983	union {
    984		unsigned char req[8];
    985		__be64 req_int;
    986	} u;
    987	unsigned char prefix = DRBG_PREFIX3;
    988	struct drbg_string data1, data2;
    989	LIST_HEAD(datalist);
    990
    991	/* 10.1.1.4 step 2 */
    992	ret = drbg_hash_process_addtl(drbg, addtl);
    993	if (ret)
    994		return ret;
    995	/* 10.1.1.4 step 3 */
    996	len = drbg_hash_hashgen(drbg, buf, buflen);
    997
    998	/* this is the value H as documented in 10.1.1.4 */
    999	/* 10.1.1.4 step 4 */
   1000	drbg_string_fill(&data1, &prefix, 1);
   1001	list_add_tail(&data1.list, &datalist);
   1002	drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
   1003	list_add_tail(&data2.list, &datalist);
   1004	ret = drbg_kcapi_hash(drbg, drbg->scratchpad, &datalist);
   1005	if (ret) {
   1006		len = ret;
   1007		goto out;
   1008	}
   1009
   1010	/* 10.1.1.4 step 5 */
   1011	drbg_add_buf(drbg->V, drbg_statelen(drbg),
   1012		     drbg->scratchpad, drbg_blocklen(drbg));
   1013	drbg_add_buf(drbg->V, drbg_statelen(drbg),
   1014		     drbg->C, drbg_statelen(drbg));
   1015	u.req_int = cpu_to_be64(drbg->reseed_ctr);
   1016	drbg_add_buf(drbg->V, drbg_statelen(drbg), u.req, 8);
   1017
   1018out:
   1019	memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
   1020	return len;
   1021}
   1022
   1023/*
   1024 * scratchpad usage: as update and generate are used isolated, both
   1025 * can use the scratchpad
   1026 */
   1027static const struct drbg_state_ops drbg_hash_ops = {
   1028	.update		= drbg_hash_update,
   1029	.generate	= drbg_hash_generate,
   1030	.crypto_init	= drbg_init_hash_kernel,
   1031	.crypto_fini	= drbg_fini_hash_kernel,
   1032};
   1033#endif /* CONFIG_CRYPTO_DRBG_HASH */
   1034
   1035/******************************************************************
   1036 * Functions common for DRBG implementations
   1037 ******************************************************************/
   1038
   1039static inline int __drbg_seed(struct drbg_state *drbg, struct list_head *seed,
   1040			      int reseed, enum drbg_seed_state new_seed_state)
   1041{
   1042	int ret = drbg->d_ops->update(drbg, seed, reseed);
   1043
   1044	if (ret)
   1045		return ret;
   1046
   1047	drbg->seeded = new_seed_state;
   1048	drbg->last_seed_time = jiffies;
   1049	/* 10.1.1.2 / 10.1.1.3 step 5 */
   1050	drbg->reseed_ctr = 1;
   1051
   1052	switch (drbg->seeded) {
   1053	case DRBG_SEED_STATE_UNSEEDED:
   1054		/* Impossible, but handle it to silence compiler warnings. */
   1055		fallthrough;
   1056	case DRBG_SEED_STATE_PARTIAL:
   1057		/*
   1058		 * Require frequent reseeds until the seed source is
   1059		 * fully initialized.
   1060		 */
   1061		drbg->reseed_threshold = 50;
   1062		break;
   1063
   1064	case DRBG_SEED_STATE_FULL:
   1065		/*
   1066		 * Seed source has become fully initialized, frequent
   1067		 * reseeds no longer required.
   1068		 */
   1069		drbg->reseed_threshold = drbg_max_requests(drbg);
   1070		break;
   1071	}
   1072
   1073	return ret;
   1074}
   1075
   1076static inline int drbg_get_random_bytes(struct drbg_state *drbg,
   1077					unsigned char *entropy,
   1078					unsigned int entropylen)
   1079{
   1080	int ret;
   1081
   1082	do {
   1083		get_random_bytes(entropy, entropylen);
   1084		ret = drbg_fips_continuous_test(drbg, entropy);
   1085		if (ret && ret != -EAGAIN)
   1086			return ret;
   1087	} while (ret);
   1088
   1089	return 0;
   1090}
   1091
   1092static int drbg_seed_from_random(struct drbg_state *drbg)
   1093{
   1094	struct drbg_string data;
   1095	LIST_HEAD(seedlist);
   1096	unsigned int entropylen = drbg_sec_strength(drbg->core->flags);
   1097	unsigned char entropy[32];
   1098	int ret;
   1099
   1100	BUG_ON(!entropylen);
   1101	BUG_ON(entropylen > sizeof(entropy));
   1102
   1103	drbg_string_fill(&data, entropy, entropylen);
   1104	list_add_tail(&data.list, &seedlist);
   1105
   1106	ret = drbg_get_random_bytes(drbg, entropy, entropylen);
   1107	if (ret)
   1108		goto out;
   1109
   1110	ret = __drbg_seed(drbg, &seedlist, true, DRBG_SEED_STATE_FULL);
   1111
   1112out:
   1113	memzero_explicit(entropy, entropylen);
   1114	return ret;
   1115}
   1116
   1117static bool drbg_nopr_reseed_interval_elapsed(struct drbg_state *drbg)
   1118{
   1119	unsigned long next_reseed;
   1120
   1121	/* Don't ever reseed from get_random_bytes() in test mode. */
   1122	if (list_empty(&drbg->test_data.list))
   1123		return false;
   1124
   1125	/*
   1126	 * Obtain fresh entropy for the nopr DRBGs after 300s have
   1127	 * elapsed in order to still achieve sort of partial
   1128	 * prediction resistance over the time domain at least. Note
   1129	 * that the period of 300s has been chosen to match the
   1130	 * CRNG_RESEED_INTERVAL of the get_random_bytes()' chacha
   1131	 * rngs.
   1132	 */
   1133	next_reseed = drbg->last_seed_time + 300 * HZ;
   1134	return time_after(jiffies, next_reseed);
   1135}
   1136
   1137/*
   1138 * Seeding or reseeding of the DRBG
   1139 *
   1140 * @drbg: DRBG state struct
   1141 * @pers: personalization / additional information buffer
   1142 * @reseed: 0 for initial seed process, 1 for reseeding
   1143 *
   1144 * return:
   1145 *	0 on success
   1146 *	error value otherwise
   1147 */
   1148static int drbg_seed(struct drbg_state *drbg, struct drbg_string *pers,
   1149		     bool reseed)
   1150{
   1151	int ret;
   1152	unsigned char entropy[((32 + 16) * 2)];
   1153	unsigned int entropylen = drbg_sec_strength(drbg->core->flags);
   1154	struct drbg_string data1;
   1155	LIST_HEAD(seedlist);
   1156	enum drbg_seed_state new_seed_state = DRBG_SEED_STATE_FULL;
   1157
   1158	/* 9.1 / 9.2 / 9.3.1 step 3 */
   1159	if (pers && pers->len > (drbg_max_addtl(drbg))) {
   1160		pr_devel("DRBG: personalization string too long %zu\n",
   1161			 pers->len);
   1162		return -EINVAL;
   1163	}
   1164
   1165	if (list_empty(&drbg->test_data.list)) {
   1166		drbg_string_fill(&data1, drbg->test_data.buf,
   1167				 drbg->test_data.len);
   1168		pr_devel("DRBG: using test entropy\n");
   1169	} else {
   1170		/*
   1171		 * Gather entropy equal to the security strength of the DRBG.
   1172		 * With a derivation function, a nonce is required in addition
   1173		 * to the entropy. A nonce must be at least 1/2 of the security
   1174		 * strength of the DRBG in size. Thus, entropy + nonce is 3/2
   1175		 * of the strength. The consideration of a nonce is only
   1176		 * applicable during initial seeding.
   1177		 */
   1178		BUG_ON(!entropylen);
   1179		if (!reseed)
   1180			entropylen = ((entropylen + 1) / 2) * 3;
   1181		BUG_ON((entropylen * 2) > sizeof(entropy));
   1182
   1183		/* Get seed from in-kernel /dev/urandom */
   1184		if (!rng_is_initialized())
   1185			new_seed_state = DRBG_SEED_STATE_PARTIAL;
   1186
   1187		ret = drbg_get_random_bytes(drbg, entropy, entropylen);
   1188		if (ret)
   1189			goto out;
   1190
   1191		if (!drbg->jent) {
   1192			drbg_string_fill(&data1, entropy, entropylen);
   1193			pr_devel("DRBG: (re)seeding with %u bytes of entropy\n",
   1194				 entropylen);
   1195		} else {
   1196			/*
   1197			 * Get seed from Jitter RNG, failures are
   1198			 * fatal only in FIPS mode.
   1199			 */
   1200			ret = crypto_rng_get_bytes(drbg->jent,
   1201						   entropy + entropylen,
   1202						   entropylen);
   1203			if (fips_enabled && ret) {
   1204				pr_devel("DRBG: jent failed with %d\n", ret);
   1205
   1206				/*
   1207				 * Do not treat the transient failure of the
   1208				 * Jitter RNG as an error that needs to be
   1209				 * reported. The combined number of the
   1210				 * maximum reseed threshold times the maximum
   1211				 * number of Jitter RNG transient errors is
   1212				 * less than the reseed threshold required by
   1213				 * SP800-90A allowing us to treat the
   1214				 * transient errors as such.
   1215				 *
   1216				 * However, we mandate that at least the first
   1217				 * seeding operation must succeed with the
   1218				 * Jitter RNG.
   1219				 */
   1220				if (!reseed || ret != -EAGAIN)
   1221					goto out;
   1222			}
   1223
   1224			drbg_string_fill(&data1, entropy, entropylen * 2);
   1225			pr_devel("DRBG: (re)seeding with %u bytes of entropy\n",
   1226				 entropylen * 2);
   1227		}
   1228	}
   1229	list_add_tail(&data1.list, &seedlist);
   1230
   1231	/*
   1232	 * concatenation of entropy with personalization str / addtl input)
   1233	 * the variable pers is directly handed in by the caller, so check its
   1234	 * contents whether it is appropriate
   1235	 */
   1236	if (pers && pers->buf && 0 < pers->len) {
   1237		list_add_tail(&pers->list, &seedlist);
   1238		pr_devel("DRBG: using personalization string\n");
   1239	}
   1240
   1241	if (!reseed) {
   1242		memset(drbg->V, 0, drbg_statelen(drbg));
   1243		memset(drbg->C, 0, drbg_statelen(drbg));
   1244	}
   1245
   1246	ret = __drbg_seed(drbg, &seedlist, reseed, new_seed_state);
   1247
   1248out:
   1249	memzero_explicit(entropy, entropylen * 2);
   1250
   1251	return ret;
   1252}
   1253
   1254/* Free all substructures in a DRBG state without the DRBG state structure */
   1255static inline void drbg_dealloc_state(struct drbg_state *drbg)
   1256{
   1257	if (!drbg)
   1258		return;
   1259	kfree_sensitive(drbg->Vbuf);
   1260	drbg->Vbuf = NULL;
   1261	drbg->V = NULL;
   1262	kfree_sensitive(drbg->Cbuf);
   1263	drbg->Cbuf = NULL;
   1264	drbg->C = NULL;
   1265	kfree_sensitive(drbg->scratchpadbuf);
   1266	drbg->scratchpadbuf = NULL;
   1267	drbg->reseed_ctr = 0;
   1268	drbg->d_ops = NULL;
   1269	drbg->core = NULL;
   1270	if (IS_ENABLED(CONFIG_CRYPTO_FIPS)) {
   1271		kfree_sensitive(drbg->prev);
   1272		drbg->prev = NULL;
   1273		drbg->fips_primed = false;
   1274	}
   1275}
   1276
   1277/*
   1278 * Allocate all sub-structures for a DRBG state.
   1279 * The DRBG state structure must already be allocated.
   1280 */
   1281static inline int drbg_alloc_state(struct drbg_state *drbg)
   1282{
   1283	int ret = -ENOMEM;
   1284	unsigned int sb_size = 0;
   1285
   1286	switch (drbg->core->flags & DRBG_TYPE_MASK) {
   1287#ifdef CONFIG_CRYPTO_DRBG_HMAC
   1288	case DRBG_HMAC:
   1289		drbg->d_ops = &drbg_hmac_ops;
   1290		break;
   1291#endif /* CONFIG_CRYPTO_DRBG_HMAC */
   1292#ifdef CONFIG_CRYPTO_DRBG_HASH
   1293	case DRBG_HASH:
   1294		drbg->d_ops = &drbg_hash_ops;
   1295		break;
   1296#endif /* CONFIG_CRYPTO_DRBG_HASH */
   1297#ifdef CONFIG_CRYPTO_DRBG_CTR
   1298	case DRBG_CTR:
   1299		drbg->d_ops = &drbg_ctr_ops;
   1300		break;
   1301#endif /* CONFIG_CRYPTO_DRBG_CTR */
   1302	default:
   1303		ret = -EOPNOTSUPP;
   1304		goto err;
   1305	}
   1306
   1307	ret = drbg->d_ops->crypto_init(drbg);
   1308	if (ret < 0)
   1309		goto err;
   1310
   1311	drbg->Vbuf = kmalloc(drbg_statelen(drbg) + ret, GFP_KERNEL);
   1312	if (!drbg->Vbuf) {
   1313		ret = -ENOMEM;
   1314		goto fini;
   1315	}
   1316	drbg->V = PTR_ALIGN(drbg->Vbuf, ret + 1);
   1317	drbg->Cbuf = kmalloc(drbg_statelen(drbg) + ret, GFP_KERNEL);
   1318	if (!drbg->Cbuf) {
   1319		ret = -ENOMEM;
   1320		goto fini;
   1321	}
   1322	drbg->C = PTR_ALIGN(drbg->Cbuf, ret + 1);
   1323	/* scratchpad is only generated for CTR and Hash */
   1324	if (drbg->core->flags & DRBG_HMAC)
   1325		sb_size = 0;
   1326	else if (drbg->core->flags & DRBG_CTR)
   1327		sb_size = drbg_statelen(drbg) + drbg_blocklen(drbg) + /* temp */
   1328			  drbg_statelen(drbg) +	/* df_data */
   1329			  drbg_blocklen(drbg) +	/* pad */
   1330			  drbg_blocklen(drbg) +	/* iv */
   1331			  drbg_statelen(drbg) + drbg_blocklen(drbg); /* temp */
   1332	else
   1333		sb_size = drbg_statelen(drbg) + drbg_blocklen(drbg);
   1334
   1335	if (0 < sb_size) {
   1336		drbg->scratchpadbuf = kzalloc(sb_size + ret, GFP_KERNEL);
   1337		if (!drbg->scratchpadbuf) {
   1338			ret = -ENOMEM;
   1339			goto fini;
   1340		}
   1341		drbg->scratchpad = PTR_ALIGN(drbg->scratchpadbuf, ret + 1);
   1342	}
   1343
   1344	if (IS_ENABLED(CONFIG_CRYPTO_FIPS)) {
   1345		drbg->prev = kzalloc(drbg_sec_strength(drbg->core->flags),
   1346				     GFP_KERNEL);
   1347		if (!drbg->prev) {
   1348			ret = -ENOMEM;
   1349			goto fini;
   1350		}
   1351		drbg->fips_primed = false;
   1352	}
   1353
   1354	return 0;
   1355
   1356fini:
   1357	drbg->d_ops->crypto_fini(drbg);
   1358err:
   1359	drbg_dealloc_state(drbg);
   1360	return ret;
   1361}
   1362
   1363/*************************************************************************
   1364 * DRBG interface functions
   1365 *************************************************************************/
   1366
   1367/*
   1368 * DRBG generate function as required by SP800-90A - this function
   1369 * generates random numbers
   1370 *
   1371 * @drbg DRBG state handle
   1372 * @buf Buffer where to store the random numbers -- the buffer must already
   1373 *      be pre-allocated by caller
   1374 * @buflen Length of output buffer - this value defines the number of random
   1375 *	   bytes pulled from DRBG
   1376 * @addtl Additional input that is mixed into state, may be NULL -- note
   1377 *	  the entropy is pulled by the DRBG internally unconditionally
   1378 *	  as defined in SP800-90A. The additional input is mixed into
   1379 *	  the state in addition to the pulled entropy.
   1380 *
   1381 * return: 0 when all bytes are generated; < 0 in case of an error
   1382 */
   1383static int drbg_generate(struct drbg_state *drbg,
   1384			 unsigned char *buf, unsigned int buflen,
   1385			 struct drbg_string *addtl)
   1386{
   1387	int len = 0;
   1388	LIST_HEAD(addtllist);
   1389
   1390	if (!drbg->core) {
   1391		pr_devel("DRBG: not yet seeded\n");
   1392		return -EINVAL;
   1393	}
   1394	if (0 == buflen || !buf) {
   1395		pr_devel("DRBG: no output buffer provided\n");
   1396		return -EINVAL;
   1397	}
   1398	if (addtl && NULL == addtl->buf && 0 < addtl->len) {
   1399		pr_devel("DRBG: wrong format of additional information\n");
   1400		return -EINVAL;
   1401	}
   1402
   1403	/* 9.3.1 step 2 */
   1404	len = -EINVAL;
   1405	if (buflen > (drbg_max_request_bytes(drbg))) {
   1406		pr_devel("DRBG: requested random numbers too large %u\n",
   1407			 buflen);
   1408		goto err;
   1409	}
   1410
   1411	/* 9.3.1 step 3 is implicit with the chosen DRBG */
   1412
   1413	/* 9.3.1 step 4 */
   1414	if (addtl && addtl->len > (drbg_max_addtl(drbg))) {
   1415		pr_devel("DRBG: additional information string too long %zu\n",
   1416			 addtl->len);
   1417		goto err;
   1418	}
   1419	/* 9.3.1 step 5 is implicit with the chosen DRBG */
   1420
   1421	/*
   1422	 * 9.3.1 step 6 and 9 supplemented by 9.3.2 step c is implemented
   1423	 * here. The spec is a bit convoluted here, we make it simpler.
   1424	 */
   1425	if (drbg->reseed_threshold < drbg->reseed_ctr)
   1426		drbg->seeded = DRBG_SEED_STATE_UNSEEDED;
   1427
   1428	if (drbg->pr || drbg->seeded == DRBG_SEED_STATE_UNSEEDED) {
   1429		pr_devel("DRBG: reseeding before generation (prediction "
   1430			 "resistance: %s, state %s)\n",
   1431			 drbg->pr ? "true" : "false",
   1432			 (drbg->seeded ==  DRBG_SEED_STATE_FULL ?
   1433			  "seeded" : "unseeded"));
   1434		/* 9.3.1 steps 7.1 through 7.3 */
   1435		len = drbg_seed(drbg, addtl, true);
   1436		if (len)
   1437			goto err;
   1438		/* 9.3.1 step 7.4 */
   1439		addtl = NULL;
   1440	} else if (rng_is_initialized() &&
   1441		   (drbg->seeded == DRBG_SEED_STATE_PARTIAL ||
   1442		    drbg_nopr_reseed_interval_elapsed(drbg))) {
   1443		len = drbg_seed_from_random(drbg);
   1444		if (len)
   1445			goto err;
   1446	}
   1447
   1448	if (addtl && 0 < addtl->len)
   1449		list_add_tail(&addtl->list, &addtllist);
   1450	/* 9.3.1 step 8 and 10 */
   1451	len = drbg->d_ops->generate(drbg, buf, buflen, &addtllist);
   1452
   1453	/* 10.1.1.4 step 6, 10.1.2.5 step 7, 10.2.1.5.2 step 7 */
   1454	drbg->reseed_ctr++;
   1455	if (0 >= len)
   1456		goto err;
   1457
   1458	/*
   1459	 * Section 11.3.3 requires to re-perform self tests after some
   1460	 * generated random numbers. The chosen value after which self
   1461	 * test is performed is arbitrary, but it should be reasonable.
   1462	 * However, we do not perform the self tests because of the following
   1463	 * reasons: it is mathematically impossible that the initial self tests
   1464	 * were successfully and the following are not. If the initial would
   1465	 * pass and the following would not, the kernel integrity is violated.
   1466	 * In this case, the entire kernel operation is questionable and it
   1467	 * is unlikely that the integrity violation only affects the
   1468	 * correct operation of the DRBG.
   1469	 *
   1470	 * Albeit the following code is commented out, it is provided in
   1471	 * case somebody has a need to implement the test of 11.3.3.
   1472	 */
   1473#if 0
   1474	if (drbg->reseed_ctr && !(drbg->reseed_ctr % 4096)) {
   1475		int err = 0;
   1476		pr_devel("DRBG: start to perform self test\n");
   1477		if (drbg->core->flags & DRBG_HMAC)
   1478			err = alg_test("drbg_pr_hmac_sha256",
   1479				       "drbg_pr_hmac_sha256", 0, 0);
   1480		else if (drbg->core->flags & DRBG_CTR)
   1481			err = alg_test("drbg_pr_ctr_aes128",
   1482				       "drbg_pr_ctr_aes128", 0, 0);
   1483		else
   1484			err = alg_test("drbg_pr_sha256",
   1485				       "drbg_pr_sha256", 0, 0);
   1486		if (err) {
   1487			pr_err("DRBG: periodical self test failed\n");
   1488			/*
   1489			 * uninstantiate implies that from now on, only errors
   1490			 * are returned when reusing this DRBG cipher handle
   1491			 */
   1492			drbg_uninstantiate(drbg);
   1493			return 0;
   1494		} else {
   1495			pr_devel("DRBG: self test successful\n");
   1496		}
   1497	}
   1498#endif
   1499
   1500	/*
   1501	 * All operations were successful, return 0 as mandated by
   1502	 * the kernel crypto API interface.
   1503	 */
   1504	len = 0;
   1505err:
   1506	return len;
   1507}
   1508
   1509/*
   1510 * Wrapper around drbg_generate which can pull arbitrary long strings
   1511 * from the DRBG without hitting the maximum request limitation.
   1512 *
   1513 * Parameters: see drbg_generate
   1514 * Return codes: see drbg_generate -- if one drbg_generate request fails,
   1515 *		 the entire drbg_generate_long request fails
   1516 */
   1517static int drbg_generate_long(struct drbg_state *drbg,
   1518			      unsigned char *buf, unsigned int buflen,
   1519			      struct drbg_string *addtl)
   1520{
   1521	unsigned int len = 0;
   1522	unsigned int slice = 0;
   1523	do {
   1524		int err = 0;
   1525		unsigned int chunk = 0;
   1526		slice = ((buflen - len) / drbg_max_request_bytes(drbg));
   1527		chunk = slice ? drbg_max_request_bytes(drbg) : (buflen - len);
   1528		mutex_lock(&drbg->drbg_mutex);
   1529		err = drbg_generate(drbg, buf + len, chunk, addtl);
   1530		mutex_unlock(&drbg->drbg_mutex);
   1531		if (0 > err)
   1532			return err;
   1533		len += chunk;
   1534	} while (slice > 0 && (len < buflen));
   1535	return 0;
   1536}
   1537
   1538static int drbg_prepare_hrng(struct drbg_state *drbg)
   1539{
   1540	/* We do not need an HRNG in test mode. */
   1541	if (list_empty(&drbg->test_data.list))
   1542		return 0;
   1543
   1544	drbg->jent = crypto_alloc_rng("jitterentropy_rng", 0, 0);
   1545	if (IS_ERR(drbg->jent)) {
   1546		const int err = PTR_ERR(drbg->jent);
   1547
   1548		drbg->jent = NULL;
   1549		if (fips_enabled || err != -ENOENT)
   1550			return err;
   1551		pr_info("DRBG: Continuing without Jitter RNG\n");
   1552	}
   1553
   1554	return 0;
   1555}
   1556
   1557/*
   1558 * DRBG instantiation function as required by SP800-90A - this function
   1559 * sets up the DRBG handle, performs the initial seeding and all sanity
   1560 * checks required by SP800-90A
   1561 *
   1562 * @drbg memory of state -- if NULL, new memory is allocated
   1563 * @pers Personalization string that is mixed into state, may be NULL -- note
   1564 *	 the entropy is pulled by the DRBG internally unconditionally
   1565 *	 as defined in SP800-90A. The additional input is mixed into
   1566 *	 the state in addition to the pulled entropy.
   1567 * @coreref reference to core
   1568 * @pr prediction resistance enabled
   1569 *
   1570 * return
   1571 *	0 on success
   1572 *	error value otherwise
   1573 */
   1574static int drbg_instantiate(struct drbg_state *drbg, struct drbg_string *pers,
   1575			    int coreref, bool pr)
   1576{
   1577	int ret;
   1578	bool reseed = true;
   1579
   1580	pr_devel("DRBG: Initializing DRBG core %d with prediction resistance "
   1581		 "%s\n", coreref, pr ? "enabled" : "disabled");
   1582	mutex_lock(&drbg->drbg_mutex);
   1583
   1584	/* 9.1 step 1 is implicit with the selected DRBG type */
   1585
   1586	/*
   1587	 * 9.1 step 2 is implicit as caller can select prediction resistance
   1588	 * and the flag is copied into drbg->flags --
   1589	 * all DRBG types support prediction resistance
   1590	 */
   1591
   1592	/* 9.1 step 4 is implicit in  drbg_sec_strength */
   1593
   1594	if (!drbg->core) {
   1595		drbg->core = &drbg_cores[coreref];
   1596		drbg->pr = pr;
   1597		drbg->seeded = DRBG_SEED_STATE_UNSEEDED;
   1598		drbg->last_seed_time = 0;
   1599		drbg->reseed_threshold = drbg_max_requests(drbg);
   1600
   1601		ret = drbg_alloc_state(drbg);
   1602		if (ret)
   1603			goto unlock;
   1604
   1605		ret = drbg_prepare_hrng(drbg);
   1606		if (ret)
   1607			goto free_everything;
   1608
   1609		reseed = false;
   1610	}
   1611
   1612	ret = drbg_seed(drbg, pers, reseed);
   1613
   1614	if (ret && !reseed)
   1615		goto free_everything;
   1616
   1617	mutex_unlock(&drbg->drbg_mutex);
   1618	return ret;
   1619
   1620unlock:
   1621	mutex_unlock(&drbg->drbg_mutex);
   1622	return ret;
   1623
   1624free_everything:
   1625	mutex_unlock(&drbg->drbg_mutex);
   1626	drbg_uninstantiate(drbg);
   1627	return ret;
   1628}
   1629
   1630/*
   1631 * DRBG uninstantiate function as required by SP800-90A - this function
   1632 * frees all buffers and the DRBG handle
   1633 *
   1634 * @drbg DRBG state handle
   1635 *
   1636 * return
   1637 *	0 on success
   1638 */
   1639static int drbg_uninstantiate(struct drbg_state *drbg)
   1640{
   1641	if (!IS_ERR_OR_NULL(drbg->jent))
   1642		crypto_free_rng(drbg->jent);
   1643	drbg->jent = NULL;
   1644
   1645	if (drbg->d_ops)
   1646		drbg->d_ops->crypto_fini(drbg);
   1647	drbg_dealloc_state(drbg);
   1648	/* no scrubbing of test_data -- this shall survive an uninstantiate */
   1649	return 0;
   1650}
   1651
   1652/*
   1653 * Helper function for setting the test data in the DRBG
   1654 *
   1655 * @drbg DRBG state handle
   1656 * @data test data
   1657 * @len test data length
   1658 */
   1659static void drbg_kcapi_set_entropy(struct crypto_rng *tfm,
   1660				   const u8 *data, unsigned int len)
   1661{
   1662	struct drbg_state *drbg = crypto_rng_ctx(tfm);
   1663
   1664	mutex_lock(&drbg->drbg_mutex);
   1665	drbg_string_fill(&drbg->test_data, data, len);
   1666	mutex_unlock(&drbg->drbg_mutex);
   1667}
   1668
   1669/***************************************************************
   1670 * Kernel crypto API cipher invocations requested by DRBG
   1671 ***************************************************************/
   1672
   1673#if defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_HMAC)
   1674struct sdesc {
   1675	struct shash_desc shash;
   1676	char ctx[];
   1677};
   1678
   1679static int drbg_init_hash_kernel(struct drbg_state *drbg)
   1680{
   1681	struct sdesc *sdesc;
   1682	struct crypto_shash *tfm;
   1683
   1684	tfm = crypto_alloc_shash(drbg->core->backend_cra_name, 0, 0);
   1685	if (IS_ERR(tfm)) {
   1686		pr_info("DRBG: could not allocate digest TFM handle: %s\n",
   1687				drbg->core->backend_cra_name);
   1688		return PTR_ERR(tfm);
   1689	}
   1690	BUG_ON(drbg_blocklen(drbg) != crypto_shash_digestsize(tfm));
   1691	sdesc = kzalloc(sizeof(struct shash_desc) + crypto_shash_descsize(tfm),
   1692			GFP_KERNEL);
   1693	if (!sdesc) {
   1694		crypto_free_shash(tfm);
   1695		return -ENOMEM;
   1696	}
   1697
   1698	sdesc->shash.tfm = tfm;
   1699	drbg->priv_data = sdesc;
   1700
   1701	return crypto_shash_alignmask(tfm);
   1702}
   1703
   1704static int drbg_fini_hash_kernel(struct drbg_state *drbg)
   1705{
   1706	struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
   1707	if (sdesc) {
   1708		crypto_free_shash(sdesc->shash.tfm);
   1709		kfree_sensitive(sdesc);
   1710	}
   1711	drbg->priv_data = NULL;
   1712	return 0;
   1713}
   1714
   1715static void drbg_kcapi_hmacsetkey(struct drbg_state *drbg,
   1716				  const unsigned char *key)
   1717{
   1718	struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
   1719
   1720	crypto_shash_setkey(sdesc->shash.tfm, key, drbg_statelen(drbg));
   1721}
   1722
   1723static int drbg_kcapi_hash(struct drbg_state *drbg, unsigned char *outval,
   1724			   const struct list_head *in)
   1725{
   1726	struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
   1727	struct drbg_string *input = NULL;
   1728
   1729	crypto_shash_init(&sdesc->shash);
   1730	list_for_each_entry(input, in, list)
   1731		crypto_shash_update(&sdesc->shash, input->buf, input->len);
   1732	return crypto_shash_final(&sdesc->shash, outval);
   1733}
   1734#endif /* (CONFIG_CRYPTO_DRBG_HASH || CONFIG_CRYPTO_DRBG_HMAC) */
   1735
   1736#ifdef CONFIG_CRYPTO_DRBG_CTR
   1737static int drbg_fini_sym_kernel(struct drbg_state *drbg)
   1738{
   1739	struct crypto_cipher *tfm =
   1740		(struct crypto_cipher *)drbg->priv_data;
   1741	if (tfm)
   1742		crypto_free_cipher(tfm);
   1743	drbg->priv_data = NULL;
   1744
   1745	if (drbg->ctr_handle)
   1746		crypto_free_skcipher(drbg->ctr_handle);
   1747	drbg->ctr_handle = NULL;
   1748
   1749	if (drbg->ctr_req)
   1750		skcipher_request_free(drbg->ctr_req);
   1751	drbg->ctr_req = NULL;
   1752
   1753	kfree(drbg->outscratchpadbuf);
   1754	drbg->outscratchpadbuf = NULL;
   1755
   1756	return 0;
   1757}
   1758
   1759static int drbg_init_sym_kernel(struct drbg_state *drbg)
   1760{
   1761	struct crypto_cipher *tfm;
   1762	struct crypto_skcipher *sk_tfm;
   1763	struct skcipher_request *req;
   1764	unsigned int alignmask;
   1765	char ctr_name[CRYPTO_MAX_ALG_NAME];
   1766
   1767	tfm = crypto_alloc_cipher(drbg->core->backend_cra_name, 0, 0);
   1768	if (IS_ERR(tfm)) {
   1769		pr_info("DRBG: could not allocate cipher TFM handle: %s\n",
   1770				drbg->core->backend_cra_name);
   1771		return PTR_ERR(tfm);
   1772	}
   1773	BUG_ON(drbg_blocklen(drbg) != crypto_cipher_blocksize(tfm));
   1774	drbg->priv_data = tfm;
   1775
   1776	if (snprintf(ctr_name, CRYPTO_MAX_ALG_NAME, "ctr(%s)",
   1777	    drbg->core->backend_cra_name) >= CRYPTO_MAX_ALG_NAME) {
   1778		drbg_fini_sym_kernel(drbg);
   1779		return -EINVAL;
   1780	}
   1781	sk_tfm = crypto_alloc_skcipher(ctr_name, 0, 0);
   1782	if (IS_ERR(sk_tfm)) {
   1783		pr_info("DRBG: could not allocate CTR cipher TFM handle: %s\n",
   1784				ctr_name);
   1785		drbg_fini_sym_kernel(drbg);
   1786		return PTR_ERR(sk_tfm);
   1787	}
   1788	drbg->ctr_handle = sk_tfm;
   1789	crypto_init_wait(&drbg->ctr_wait);
   1790
   1791	req = skcipher_request_alloc(sk_tfm, GFP_KERNEL);
   1792	if (!req) {
   1793		pr_info("DRBG: could not allocate request queue\n");
   1794		drbg_fini_sym_kernel(drbg);
   1795		return -ENOMEM;
   1796	}
   1797	drbg->ctr_req = req;
   1798	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
   1799						CRYPTO_TFM_REQ_MAY_SLEEP,
   1800					crypto_req_done, &drbg->ctr_wait);
   1801
   1802	alignmask = crypto_skcipher_alignmask(sk_tfm);
   1803	drbg->outscratchpadbuf = kmalloc(DRBG_OUTSCRATCHLEN + alignmask,
   1804					 GFP_KERNEL);
   1805	if (!drbg->outscratchpadbuf) {
   1806		drbg_fini_sym_kernel(drbg);
   1807		return -ENOMEM;
   1808	}
   1809	drbg->outscratchpad = (u8 *)PTR_ALIGN(drbg->outscratchpadbuf,
   1810					      alignmask + 1);
   1811
   1812	sg_init_table(&drbg->sg_in, 1);
   1813	sg_init_one(&drbg->sg_out, drbg->outscratchpad, DRBG_OUTSCRATCHLEN);
   1814
   1815	return alignmask;
   1816}
   1817
   1818static void drbg_kcapi_symsetkey(struct drbg_state *drbg,
   1819				 const unsigned char *key)
   1820{
   1821	struct crypto_cipher *tfm =
   1822		(struct crypto_cipher *)drbg->priv_data;
   1823
   1824	crypto_cipher_setkey(tfm, key, (drbg_keylen(drbg)));
   1825}
   1826
   1827static int drbg_kcapi_sym(struct drbg_state *drbg, unsigned char *outval,
   1828			  const struct drbg_string *in)
   1829{
   1830	struct crypto_cipher *tfm =
   1831		(struct crypto_cipher *)drbg->priv_data;
   1832
   1833	/* there is only component in *in */
   1834	BUG_ON(in->len < drbg_blocklen(drbg));
   1835	crypto_cipher_encrypt_one(tfm, outval, in->buf);
   1836	return 0;
   1837}
   1838
   1839static int drbg_kcapi_sym_ctr(struct drbg_state *drbg,
   1840			      u8 *inbuf, u32 inlen,
   1841			      u8 *outbuf, u32 outlen)
   1842{
   1843	struct scatterlist *sg_in = &drbg->sg_in, *sg_out = &drbg->sg_out;
   1844	u32 scratchpad_use = min_t(u32, outlen, DRBG_OUTSCRATCHLEN);
   1845	int ret;
   1846
   1847	if (inbuf) {
   1848		/* Use caller-provided input buffer */
   1849		sg_set_buf(sg_in, inbuf, inlen);
   1850	} else {
   1851		/* Use scratchpad for in-place operation */
   1852		inlen = scratchpad_use;
   1853		memset(drbg->outscratchpad, 0, scratchpad_use);
   1854		sg_set_buf(sg_in, drbg->outscratchpad, scratchpad_use);
   1855	}
   1856
   1857	while (outlen) {
   1858		u32 cryptlen = min3(inlen, outlen, (u32)DRBG_OUTSCRATCHLEN);
   1859
   1860		/* Output buffer may not be valid for SGL, use scratchpad */
   1861		skcipher_request_set_crypt(drbg->ctr_req, sg_in, sg_out,
   1862					   cryptlen, drbg->V);
   1863		ret = crypto_wait_req(crypto_skcipher_encrypt(drbg->ctr_req),
   1864					&drbg->ctr_wait);
   1865		if (ret)
   1866			goto out;
   1867
   1868		crypto_init_wait(&drbg->ctr_wait);
   1869
   1870		memcpy(outbuf, drbg->outscratchpad, cryptlen);
   1871		memzero_explicit(drbg->outscratchpad, cryptlen);
   1872
   1873		outlen -= cryptlen;
   1874		outbuf += cryptlen;
   1875	}
   1876	ret = 0;
   1877
   1878out:
   1879	return ret;
   1880}
   1881#endif /* CONFIG_CRYPTO_DRBG_CTR */
   1882
   1883/***************************************************************
   1884 * Kernel crypto API interface to register DRBG
   1885 ***************************************************************/
   1886
   1887/*
   1888 * Look up the DRBG flags by given kernel crypto API cra_name
   1889 * The code uses the drbg_cores definition to do this
   1890 *
   1891 * @cra_name kernel crypto API cra_name
   1892 * @coreref reference to integer which is filled with the pointer to
   1893 *  the applicable core
   1894 * @pr reference for setting prediction resistance
   1895 *
   1896 * return: flags
   1897 */
   1898static inline void drbg_convert_tfm_core(const char *cra_driver_name,
   1899					 int *coreref, bool *pr)
   1900{
   1901	int i = 0;
   1902	size_t start = 0;
   1903	int len = 0;
   1904
   1905	*pr = true;
   1906	/* disassemble the names */
   1907	if (!memcmp(cra_driver_name, "drbg_nopr_", 10)) {
   1908		start = 10;
   1909		*pr = false;
   1910	} else if (!memcmp(cra_driver_name, "drbg_pr_", 8)) {
   1911		start = 8;
   1912	} else {
   1913		return;
   1914	}
   1915
   1916	/* remove the first part */
   1917	len = strlen(cra_driver_name) - start;
   1918	for (i = 0; ARRAY_SIZE(drbg_cores) > i; i++) {
   1919		if (!memcmp(cra_driver_name + start, drbg_cores[i].cra_name,
   1920			    len)) {
   1921			*coreref = i;
   1922			return;
   1923		}
   1924	}
   1925}
   1926
   1927static int drbg_kcapi_init(struct crypto_tfm *tfm)
   1928{
   1929	struct drbg_state *drbg = crypto_tfm_ctx(tfm);
   1930
   1931	mutex_init(&drbg->drbg_mutex);
   1932
   1933	return 0;
   1934}
   1935
   1936static void drbg_kcapi_cleanup(struct crypto_tfm *tfm)
   1937{
   1938	drbg_uninstantiate(crypto_tfm_ctx(tfm));
   1939}
   1940
   1941/*
   1942 * Generate random numbers invoked by the kernel crypto API:
   1943 * The API of the kernel crypto API is extended as follows:
   1944 *
   1945 * src is additional input supplied to the RNG.
   1946 * slen is the length of src.
   1947 * dst is the output buffer where random data is to be stored.
   1948 * dlen is the length of dst.
   1949 */
   1950static int drbg_kcapi_random(struct crypto_rng *tfm,
   1951			     const u8 *src, unsigned int slen,
   1952			     u8 *dst, unsigned int dlen)
   1953{
   1954	struct drbg_state *drbg = crypto_rng_ctx(tfm);
   1955	struct drbg_string *addtl = NULL;
   1956	struct drbg_string string;
   1957
   1958	if (slen) {
   1959		/* linked list variable is now local to allow modification */
   1960		drbg_string_fill(&string, src, slen);
   1961		addtl = &string;
   1962	}
   1963
   1964	return drbg_generate_long(drbg, dst, dlen, addtl);
   1965}
   1966
   1967/*
   1968 * Seed the DRBG invoked by the kernel crypto API
   1969 */
   1970static int drbg_kcapi_seed(struct crypto_rng *tfm,
   1971			   const u8 *seed, unsigned int slen)
   1972{
   1973	struct drbg_state *drbg = crypto_rng_ctx(tfm);
   1974	struct crypto_tfm *tfm_base = crypto_rng_tfm(tfm);
   1975	bool pr = false;
   1976	struct drbg_string string;
   1977	struct drbg_string *seed_string = NULL;
   1978	int coreref = 0;
   1979
   1980	drbg_convert_tfm_core(crypto_tfm_alg_driver_name(tfm_base), &coreref,
   1981			      &pr);
   1982	if (0 < slen) {
   1983		drbg_string_fill(&string, seed, slen);
   1984		seed_string = &string;
   1985	}
   1986
   1987	return drbg_instantiate(drbg, seed_string, coreref, pr);
   1988}
   1989
   1990/***************************************************************
   1991 * Kernel module: code to load the module
   1992 ***************************************************************/
   1993
   1994/*
   1995 * Tests as defined in 11.3.2 in addition to the cipher tests: testing
   1996 * of the error handling.
   1997 *
   1998 * Note: testing of failing seed source as defined in 11.3.2 is not applicable
   1999 * as seed source of get_random_bytes does not fail.
   2000 *
   2001 * Note 2: There is no sensible way of testing the reseed counter
   2002 * enforcement, so skip it.
   2003 */
   2004static inline int __init drbg_healthcheck_sanity(void)
   2005{
   2006	int len = 0;
   2007#define OUTBUFLEN 16
   2008	unsigned char buf[OUTBUFLEN];
   2009	struct drbg_state *drbg = NULL;
   2010	int ret;
   2011	int rc = -EFAULT;
   2012	bool pr = false;
   2013	int coreref = 0;
   2014	struct drbg_string addtl;
   2015	size_t max_addtllen, max_request_bytes;
   2016
   2017	/* only perform test in FIPS mode */
   2018	if (!fips_enabled)
   2019		return 0;
   2020
   2021#ifdef CONFIG_CRYPTO_DRBG_CTR
   2022	drbg_convert_tfm_core("drbg_nopr_ctr_aes128", &coreref, &pr);
   2023#elif defined CONFIG_CRYPTO_DRBG_HASH
   2024	drbg_convert_tfm_core("drbg_nopr_sha256", &coreref, &pr);
   2025#else
   2026	drbg_convert_tfm_core("drbg_nopr_hmac_sha256", &coreref, &pr);
   2027#endif
   2028
   2029	drbg = kzalloc(sizeof(struct drbg_state), GFP_KERNEL);
   2030	if (!drbg)
   2031		return -ENOMEM;
   2032
   2033	mutex_init(&drbg->drbg_mutex);
   2034	drbg->core = &drbg_cores[coreref];
   2035	drbg->reseed_threshold = drbg_max_requests(drbg);
   2036
   2037	/*
   2038	 * if the following tests fail, it is likely that there is a buffer
   2039	 * overflow as buf is much smaller than the requested or provided
   2040	 * string lengths -- in case the error handling does not succeed
   2041	 * we may get an OOPS. And we want to get an OOPS as this is a
   2042	 * grave bug.
   2043	 */
   2044
   2045	max_addtllen = drbg_max_addtl(drbg);
   2046	max_request_bytes = drbg_max_request_bytes(drbg);
   2047	drbg_string_fill(&addtl, buf, max_addtllen + 1);
   2048	/* overflow addtllen with additonal info string */
   2049	len = drbg_generate(drbg, buf, OUTBUFLEN, &addtl);
   2050	BUG_ON(0 < len);
   2051	/* overflow max_bits */
   2052	len = drbg_generate(drbg, buf, (max_request_bytes + 1), NULL);
   2053	BUG_ON(0 < len);
   2054
   2055	/* overflow max addtllen with personalization string */
   2056	ret = drbg_seed(drbg, &addtl, false);
   2057	BUG_ON(0 == ret);
   2058	/* all tests passed */
   2059	rc = 0;
   2060
   2061	pr_devel("DRBG: Sanity tests for failure code paths successfully "
   2062		 "completed\n");
   2063
   2064	kfree(drbg);
   2065	return rc;
   2066}
   2067
   2068static struct rng_alg drbg_algs[22];
   2069
   2070/*
   2071 * Fill the array drbg_algs used to register the different DRBGs
   2072 * with the kernel crypto API. To fill the array, the information
   2073 * from drbg_cores[] is used.
   2074 */
   2075static inline void __init drbg_fill_array(struct rng_alg *alg,
   2076					  const struct drbg_core *core, int pr)
   2077{
   2078	int pos = 0;
   2079	static int priority = 200;
   2080
   2081	memcpy(alg->base.cra_name, "stdrng", 6);
   2082	if (pr) {
   2083		memcpy(alg->base.cra_driver_name, "drbg_pr_", 8);
   2084		pos = 8;
   2085	} else {
   2086		memcpy(alg->base.cra_driver_name, "drbg_nopr_", 10);
   2087		pos = 10;
   2088	}
   2089	memcpy(alg->base.cra_driver_name + pos, core->cra_name,
   2090	       strlen(core->cra_name));
   2091
   2092	alg->base.cra_priority = priority;
   2093	priority++;
   2094	/*
   2095	 * If FIPS mode enabled, the selected DRBG shall have the
   2096	 * highest cra_priority over other stdrng instances to ensure
   2097	 * it is selected.
   2098	 */
   2099	if (fips_enabled)
   2100		alg->base.cra_priority += 200;
   2101
   2102	alg->base.cra_ctxsize 	= sizeof(struct drbg_state);
   2103	alg->base.cra_module	= THIS_MODULE;
   2104	alg->base.cra_init	= drbg_kcapi_init;
   2105	alg->base.cra_exit	= drbg_kcapi_cleanup;
   2106	alg->generate		= drbg_kcapi_random;
   2107	alg->seed		= drbg_kcapi_seed;
   2108	alg->set_ent		= drbg_kcapi_set_entropy;
   2109	alg->seedsize		= 0;
   2110}
   2111
   2112static int __init drbg_init(void)
   2113{
   2114	unsigned int i = 0; /* pointer to drbg_algs */
   2115	unsigned int j = 0; /* pointer to drbg_cores */
   2116	int ret;
   2117
   2118	ret = drbg_healthcheck_sanity();
   2119	if (ret)
   2120		return ret;
   2121
   2122	if (ARRAY_SIZE(drbg_cores) * 2 > ARRAY_SIZE(drbg_algs)) {
   2123		pr_info("DRBG: Cannot register all DRBG types"
   2124			"(slots needed: %zu, slots available: %zu)\n",
   2125			ARRAY_SIZE(drbg_cores) * 2, ARRAY_SIZE(drbg_algs));
   2126		return -EFAULT;
   2127	}
   2128
   2129	/*
   2130	 * each DRBG definition can be used with PR and without PR, thus
   2131	 * we instantiate each DRBG in drbg_cores[] twice.
   2132	 *
   2133	 * As the order of placing them into the drbg_algs array matters
   2134	 * (the later DRBGs receive a higher cra_priority) we register the
   2135	 * prediction resistance DRBGs first as the should not be too
   2136	 * interesting.
   2137	 */
   2138	for (j = 0; ARRAY_SIZE(drbg_cores) > j; j++, i++)
   2139		drbg_fill_array(&drbg_algs[i], &drbg_cores[j], 1);
   2140	for (j = 0; ARRAY_SIZE(drbg_cores) > j; j++, i++)
   2141		drbg_fill_array(&drbg_algs[i], &drbg_cores[j], 0);
   2142	return crypto_register_rngs(drbg_algs, (ARRAY_SIZE(drbg_cores) * 2));
   2143}
   2144
   2145static void __exit drbg_exit(void)
   2146{
   2147	crypto_unregister_rngs(drbg_algs, (ARRAY_SIZE(drbg_cores) * 2));
   2148}
   2149
   2150subsys_initcall(drbg_init);
   2151module_exit(drbg_exit);
   2152#ifndef CRYPTO_DRBG_HASH_STRING
   2153#define CRYPTO_DRBG_HASH_STRING ""
   2154#endif
   2155#ifndef CRYPTO_DRBG_HMAC_STRING
   2156#define CRYPTO_DRBG_HMAC_STRING ""
   2157#endif
   2158#ifndef CRYPTO_DRBG_CTR_STRING
   2159#define CRYPTO_DRBG_CTR_STRING ""
   2160#endif
   2161MODULE_LICENSE("GPL");
   2162MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>");
   2163MODULE_DESCRIPTION("NIST SP800-90A Deterministic Random Bit Generator (DRBG) "
   2164		   "using following cores: "
   2165		   CRYPTO_DRBG_HASH_STRING
   2166		   CRYPTO_DRBG_HMAC_STRING
   2167		   CRYPTO_DRBG_CTR_STRING);
   2168MODULE_ALIAS_CRYPTO("stdrng");
   2169MODULE_IMPORT_NS(CRYPTO_INTERNAL);