cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

ecc.c (43090B)


      1/*
      2 * Copyright (c) 2013, 2014 Kenneth MacKay. All rights reserved.
      3 * Copyright (c) 2019 Vitaly Chikunov <vt@altlinux.org>
      4 *
      5 * Redistribution and use in source and binary forms, with or without
      6 * modification, are permitted provided that the following conditions are
      7 * met:
      8 *  * Redistributions of source code must retain the above copyright
      9 *   notice, this list of conditions and the following disclaimer.
     10 *  * Redistributions in binary form must reproduce the above copyright
     11 *    notice, this list of conditions and the following disclaimer in the
     12 *    documentation and/or other materials provided with the distribution.
     13 *
     14 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     15 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     16 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     17 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     18 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     19 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     20 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     24 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     25 */
     26
     27#include <crypto/ecc_curve.h>
     28#include <linux/module.h>
     29#include <linux/random.h>
     30#include <linux/slab.h>
     31#include <linux/swab.h>
     32#include <linux/fips.h>
     33#include <crypto/ecdh.h>
     34#include <crypto/rng.h>
     35#include <crypto/internal/ecc.h>
     36#include <asm/unaligned.h>
     37#include <linux/ratelimit.h>
     38
     39#include "ecc_curve_defs.h"
     40
     41typedef struct {
     42	u64 m_low;
     43	u64 m_high;
     44} uint128_t;
     45
     46/* Returns curv25519 curve param */
     47const struct ecc_curve *ecc_get_curve25519(void)
     48{
     49	return &ecc_25519;
     50}
     51EXPORT_SYMBOL(ecc_get_curve25519);
     52
     53const struct ecc_curve *ecc_get_curve(unsigned int curve_id)
     54{
     55	switch (curve_id) {
     56	/* In FIPS mode only allow P256 and higher */
     57	case ECC_CURVE_NIST_P192:
     58		return fips_enabled ? NULL : &nist_p192;
     59	case ECC_CURVE_NIST_P256:
     60		return &nist_p256;
     61	case ECC_CURVE_NIST_P384:
     62		return &nist_p384;
     63	default:
     64		return NULL;
     65	}
     66}
     67EXPORT_SYMBOL(ecc_get_curve);
     68
     69static u64 *ecc_alloc_digits_space(unsigned int ndigits)
     70{
     71	size_t len = ndigits * sizeof(u64);
     72
     73	if (!len)
     74		return NULL;
     75
     76	return kmalloc(len, GFP_KERNEL);
     77}
     78
     79static void ecc_free_digits_space(u64 *space)
     80{
     81	kfree_sensitive(space);
     82}
     83
     84struct ecc_point *ecc_alloc_point(unsigned int ndigits)
     85{
     86	struct ecc_point *p = kmalloc(sizeof(*p), GFP_KERNEL);
     87
     88	if (!p)
     89		return NULL;
     90
     91	p->x = ecc_alloc_digits_space(ndigits);
     92	if (!p->x)
     93		goto err_alloc_x;
     94
     95	p->y = ecc_alloc_digits_space(ndigits);
     96	if (!p->y)
     97		goto err_alloc_y;
     98
     99	p->ndigits = ndigits;
    100
    101	return p;
    102
    103err_alloc_y:
    104	ecc_free_digits_space(p->x);
    105err_alloc_x:
    106	kfree(p);
    107	return NULL;
    108}
    109EXPORT_SYMBOL(ecc_alloc_point);
    110
    111void ecc_free_point(struct ecc_point *p)
    112{
    113	if (!p)
    114		return;
    115
    116	kfree_sensitive(p->x);
    117	kfree_sensitive(p->y);
    118	kfree_sensitive(p);
    119}
    120EXPORT_SYMBOL(ecc_free_point);
    121
    122static void vli_clear(u64 *vli, unsigned int ndigits)
    123{
    124	int i;
    125
    126	for (i = 0; i < ndigits; i++)
    127		vli[i] = 0;
    128}
    129
    130/* Returns true if vli == 0, false otherwise. */
    131bool vli_is_zero(const u64 *vli, unsigned int ndigits)
    132{
    133	int i;
    134
    135	for (i = 0; i < ndigits; i++) {
    136		if (vli[i])
    137			return false;
    138	}
    139
    140	return true;
    141}
    142EXPORT_SYMBOL(vli_is_zero);
    143
    144/* Returns nonzero if bit of vli is set. */
    145static u64 vli_test_bit(const u64 *vli, unsigned int bit)
    146{
    147	return (vli[bit / 64] & ((u64)1 << (bit % 64)));
    148}
    149
    150static bool vli_is_negative(const u64 *vli, unsigned int ndigits)
    151{
    152	return vli_test_bit(vli, ndigits * 64 - 1);
    153}
    154
    155/* Counts the number of 64-bit "digits" in vli. */
    156static unsigned int vli_num_digits(const u64 *vli, unsigned int ndigits)
    157{
    158	int i;
    159
    160	/* Search from the end until we find a non-zero digit.
    161	 * We do it in reverse because we expect that most digits will
    162	 * be nonzero.
    163	 */
    164	for (i = ndigits - 1; i >= 0 && vli[i] == 0; i--);
    165
    166	return (i + 1);
    167}
    168
    169/* Counts the number of bits required for vli. */
    170unsigned int vli_num_bits(const u64 *vli, unsigned int ndigits)
    171{
    172	unsigned int i, num_digits;
    173	u64 digit;
    174
    175	num_digits = vli_num_digits(vli, ndigits);
    176	if (num_digits == 0)
    177		return 0;
    178
    179	digit = vli[num_digits - 1];
    180	for (i = 0; digit; i++)
    181		digit >>= 1;
    182
    183	return ((num_digits - 1) * 64 + i);
    184}
    185EXPORT_SYMBOL(vli_num_bits);
    186
    187/* Set dest from unaligned bit string src. */
    188void vli_from_be64(u64 *dest, const void *src, unsigned int ndigits)
    189{
    190	int i;
    191	const u64 *from = src;
    192
    193	for (i = 0; i < ndigits; i++)
    194		dest[i] = get_unaligned_be64(&from[ndigits - 1 - i]);
    195}
    196EXPORT_SYMBOL(vli_from_be64);
    197
    198void vli_from_le64(u64 *dest, const void *src, unsigned int ndigits)
    199{
    200	int i;
    201	const u64 *from = src;
    202
    203	for (i = 0; i < ndigits; i++)
    204		dest[i] = get_unaligned_le64(&from[i]);
    205}
    206EXPORT_SYMBOL(vli_from_le64);
    207
    208/* Sets dest = src. */
    209static void vli_set(u64 *dest, const u64 *src, unsigned int ndigits)
    210{
    211	int i;
    212
    213	for (i = 0; i < ndigits; i++)
    214		dest[i] = src[i];
    215}
    216
    217/* Returns sign of left - right. */
    218int vli_cmp(const u64 *left, const u64 *right, unsigned int ndigits)
    219{
    220	int i;
    221
    222	for (i = ndigits - 1; i >= 0; i--) {
    223		if (left[i] > right[i])
    224			return 1;
    225		else if (left[i] < right[i])
    226			return -1;
    227	}
    228
    229	return 0;
    230}
    231EXPORT_SYMBOL(vli_cmp);
    232
    233/* Computes result = in << c, returning carry. Can modify in place
    234 * (if result == in). 0 < shift < 64.
    235 */
    236static u64 vli_lshift(u64 *result, const u64 *in, unsigned int shift,
    237		      unsigned int ndigits)
    238{
    239	u64 carry = 0;
    240	int i;
    241
    242	for (i = 0; i < ndigits; i++) {
    243		u64 temp = in[i];
    244
    245		result[i] = (temp << shift) | carry;
    246		carry = temp >> (64 - shift);
    247	}
    248
    249	return carry;
    250}
    251
    252/* Computes vli = vli >> 1. */
    253static void vli_rshift1(u64 *vli, unsigned int ndigits)
    254{
    255	u64 *end = vli;
    256	u64 carry = 0;
    257
    258	vli += ndigits;
    259
    260	while (vli-- > end) {
    261		u64 temp = *vli;
    262		*vli = (temp >> 1) | carry;
    263		carry = temp << 63;
    264	}
    265}
    266
    267/* Computes result = left + right, returning carry. Can modify in place. */
    268static u64 vli_add(u64 *result, const u64 *left, const u64 *right,
    269		   unsigned int ndigits)
    270{
    271	u64 carry = 0;
    272	int i;
    273
    274	for (i = 0; i < ndigits; i++) {
    275		u64 sum;
    276
    277		sum = left[i] + right[i] + carry;
    278		if (sum != left[i])
    279			carry = (sum < left[i]);
    280
    281		result[i] = sum;
    282	}
    283
    284	return carry;
    285}
    286
    287/* Computes result = left + right, returning carry. Can modify in place. */
    288static u64 vli_uadd(u64 *result, const u64 *left, u64 right,
    289		    unsigned int ndigits)
    290{
    291	u64 carry = right;
    292	int i;
    293
    294	for (i = 0; i < ndigits; i++) {
    295		u64 sum;
    296
    297		sum = left[i] + carry;
    298		if (sum != left[i])
    299			carry = (sum < left[i]);
    300		else
    301			carry = !!carry;
    302
    303		result[i] = sum;
    304	}
    305
    306	return carry;
    307}
    308
    309/* Computes result = left - right, returning borrow. Can modify in place. */
    310u64 vli_sub(u64 *result, const u64 *left, const u64 *right,
    311		   unsigned int ndigits)
    312{
    313	u64 borrow = 0;
    314	int i;
    315
    316	for (i = 0; i < ndigits; i++) {
    317		u64 diff;
    318
    319		diff = left[i] - right[i] - borrow;
    320		if (diff != left[i])
    321			borrow = (diff > left[i]);
    322
    323		result[i] = diff;
    324	}
    325
    326	return borrow;
    327}
    328EXPORT_SYMBOL(vli_sub);
    329
    330/* Computes result = left - right, returning borrow. Can modify in place. */
    331static u64 vli_usub(u64 *result, const u64 *left, u64 right,
    332	     unsigned int ndigits)
    333{
    334	u64 borrow = right;
    335	int i;
    336
    337	for (i = 0; i < ndigits; i++) {
    338		u64 diff;
    339
    340		diff = left[i] - borrow;
    341		if (diff != left[i])
    342			borrow = (diff > left[i]);
    343
    344		result[i] = diff;
    345	}
    346
    347	return borrow;
    348}
    349
    350static uint128_t mul_64_64(u64 left, u64 right)
    351{
    352	uint128_t result;
    353#if defined(CONFIG_ARCH_SUPPORTS_INT128)
    354	unsigned __int128 m = (unsigned __int128)left * right;
    355
    356	result.m_low  = m;
    357	result.m_high = m >> 64;
    358#else
    359	u64 a0 = left & 0xffffffffull;
    360	u64 a1 = left >> 32;
    361	u64 b0 = right & 0xffffffffull;
    362	u64 b1 = right >> 32;
    363	u64 m0 = a0 * b0;
    364	u64 m1 = a0 * b1;
    365	u64 m2 = a1 * b0;
    366	u64 m3 = a1 * b1;
    367
    368	m2 += (m0 >> 32);
    369	m2 += m1;
    370
    371	/* Overflow */
    372	if (m2 < m1)
    373		m3 += 0x100000000ull;
    374
    375	result.m_low = (m0 & 0xffffffffull) | (m2 << 32);
    376	result.m_high = m3 + (m2 >> 32);
    377#endif
    378	return result;
    379}
    380
    381static uint128_t add_128_128(uint128_t a, uint128_t b)
    382{
    383	uint128_t result;
    384
    385	result.m_low = a.m_low + b.m_low;
    386	result.m_high = a.m_high + b.m_high + (result.m_low < a.m_low);
    387
    388	return result;
    389}
    390
    391static void vli_mult(u64 *result, const u64 *left, const u64 *right,
    392		     unsigned int ndigits)
    393{
    394	uint128_t r01 = { 0, 0 };
    395	u64 r2 = 0;
    396	unsigned int i, k;
    397
    398	/* Compute each digit of result in sequence, maintaining the
    399	 * carries.
    400	 */
    401	for (k = 0; k < ndigits * 2 - 1; k++) {
    402		unsigned int min;
    403
    404		if (k < ndigits)
    405			min = 0;
    406		else
    407			min = (k + 1) - ndigits;
    408
    409		for (i = min; i <= k && i < ndigits; i++) {
    410			uint128_t product;
    411
    412			product = mul_64_64(left[i], right[k - i]);
    413
    414			r01 = add_128_128(r01, product);
    415			r2 += (r01.m_high < product.m_high);
    416		}
    417
    418		result[k] = r01.m_low;
    419		r01.m_low = r01.m_high;
    420		r01.m_high = r2;
    421		r2 = 0;
    422	}
    423
    424	result[ndigits * 2 - 1] = r01.m_low;
    425}
    426
    427/* Compute product = left * right, for a small right value. */
    428static void vli_umult(u64 *result, const u64 *left, u32 right,
    429		      unsigned int ndigits)
    430{
    431	uint128_t r01 = { 0 };
    432	unsigned int k;
    433
    434	for (k = 0; k < ndigits; k++) {
    435		uint128_t product;
    436
    437		product = mul_64_64(left[k], right);
    438		r01 = add_128_128(r01, product);
    439		/* no carry */
    440		result[k] = r01.m_low;
    441		r01.m_low = r01.m_high;
    442		r01.m_high = 0;
    443	}
    444	result[k] = r01.m_low;
    445	for (++k; k < ndigits * 2; k++)
    446		result[k] = 0;
    447}
    448
    449static void vli_square(u64 *result, const u64 *left, unsigned int ndigits)
    450{
    451	uint128_t r01 = { 0, 0 };
    452	u64 r2 = 0;
    453	int i, k;
    454
    455	for (k = 0; k < ndigits * 2 - 1; k++) {
    456		unsigned int min;
    457
    458		if (k < ndigits)
    459			min = 0;
    460		else
    461			min = (k + 1) - ndigits;
    462
    463		for (i = min; i <= k && i <= k - i; i++) {
    464			uint128_t product;
    465
    466			product = mul_64_64(left[i], left[k - i]);
    467
    468			if (i < k - i) {
    469				r2 += product.m_high >> 63;
    470				product.m_high = (product.m_high << 1) |
    471						 (product.m_low >> 63);
    472				product.m_low <<= 1;
    473			}
    474
    475			r01 = add_128_128(r01, product);
    476			r2 += (r01.m_high < product.m_high);
    477		}
    478
    479		result[k] = r01.m_low;
    480		r01.m_low = r01.m_high;
    481		r01.m_high = r2;
    482		r2 = 0;
    483	}
    484
    485	result[ndigits * 2 - 1] = r01.m_low;
    486}
    487
    488/* Computes result = (left + right) % mod.
    489 * Assumes that left < mod and right < mod, result != mod.
    490 */
    491static void vli_mod_add(u64 *result, const u64 *left, const u64 *right,
    492			const u64 *mod, unsigned int ndigits)
    493{
    494	u64 carry;
    495
    496	carry = vli_add(result, left, right, ndigits);
    497
    498	/* result > mod (result = mod + remainder), so subtract mod to
    499	 * get remainder.
    500	 */
    501	if (carry || vli_cmp(result, mod, ndigits) >= 0)
    502		vli_sub(result, result, mod, ndigits);
    503}
    504
    505/* Computes result = (left - right) % mod.
    506 * Assumes that left < mod and right < mod, result != mod.
    507 */
    508static void vli_mod_sub(u64 *result, const u64 *left, const u64 *right,
    509			const u64 *mod, unsigned int ndigits)
    510{
    511	u64 borrow = vli_sub(result, left, right, ndigits);
    512
    513	/* In this case, p_result == -diff == (max int) - diff.
    514	 * Since -x % d == d - x, we can get the correct result from
    515	 * result + mod (with overflow).
    516	 */
    517	if (borrow)
    518		vli_add(result, result, mod, ndigits);
    519}
    520
    521/*
    522 * Computes result = product % mod
    523 * for special form moduli: p = 2^k-c, for small c (note the minus sign)
    524 *
    525 * References:
    526 * R. Crandall, C. Pomerance. Prime Numbers: A Computational Perspective.
    527 * 9 Fast Algorithms for Large-Integer Arithmetic. 9.2.3 Moduli of special form
    528 * Algorithm 9.2.13 (Fast mod operation for special-form moduli).
    529 */
    530static void vli_mmod_special(u64 *result, const u64 *product,
    531			      const u64 *mod, unsigned int ndigits)
    532{
    533	u64 c = -mod[0];
    534	u64 t[ECC_MAX_DIGITS * 2];
    535	u64 r[ECC_MAX_DIGITS * 2];
    536
    537	vli_set(r, product, ndigits * 2);
    538	while (!vli_is_zero(r + ndigits, ndigits)) {
    539		vli_umult(t, r + ndigits, c, ndigits);
    540		vli_clear(r + ndigits, ndigits);
    541		vli_add(r, r, t, ndigits * 2);
    542	}
    543	vli_set(t, mod, ndigits);
    544	vli_clear(t + ndigits, ndigits);
    545	while (vli_cmp(r, t, ndigits * 2) >= 0)
    546		vli_sub(r, r, t, ndigits * 2);
    547	vli_set(result, r, ndigits);
    548}
    549
    550/*
    551 * Computes result = product % mod
    552 * for special form moduli: p = 2^{k-1}+c, for small c (note the plus sign)
    553 * where k-1 does not fit into qword boundary by -1 bit (such as 255).
    554
    555 * References (loosely based on):
    556 * A. Menezes, P. van Oorschot, S. Vanstone. Handbook of Applied Cryptography.
    557 * 14.3.4 Reduction methods for moduli of special form. Algorithm 14.47.
    558 * URL: http://cacr.uwaterloo.ca/hac/about/chap14.pdf
    559 *
    560 * H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, F. Vercauteren.
    561 * Handbook of Elliptic and Hyperelliptic Curve Cryptography.
    562 * Algorithm 10.25 Fast reduction for special form moduli
    563 */
    564static void vli_mmod_special2(u64 *result, const u64 *product,
    565			       const u64 *mod, unsigned int ndigits)
    566{
    567	u64 c2 = mod[0] * 2;
    568	u64 q[ECC_MAX_DIGITS];
    569	u64 r[ECC_MAX_DIGITS * 2];
    570	u64 m[ECC_MAX_DIGITS * 2]; /* expanded mod */
    571	int carry; /* last bit that doesn't fit into q */
    572	int i;
    573
    574	vli_set(m, mod, ndigits);
    575	vli_clear(m + ndigits, ndigits);
    576
    577	vli_set(r, product, ndigits);
    578	/* q and carry are top bits */
    579	vli_set(q, product + ndigits, ndigits);
    580	vli_clear(r + ndigits, ndigits);
    581	carry = vli_is_negative(r, ndigits);
    582	if (carry)
    583		r[ndigits - 1] &= (1ull << 63) - 1;
    584	for (i = 1; carry || !vli_is_zero(q, ndigits); i++) {
    585		u64 qc[ECC_MAX_DIGITS * 2];
    586
    587		vli_umult(qc, q, c2, ndigits);
    588		if (carry)
    589			vli_uadd(qc, qc, mod[0], ndigits * 2);
    590		vli_set(q, qc + ndigits, ndigits);
    591		vli_clear(qc + ndigits, ndigits);
    592		carry = vli_is_negative(qc, ndigits);
    593		if (carry)
    594			qc[ndigits - 1] &= (1ull << 63) - 1;
    595		if (i & 1)
    596			vli_sub(r, r, qc, ndigits * 2);
    597		else
    598			vli_add(r, r, qc, ndigits * 2);
    599	}
    600	while (vli_is_negative(r, ndigits * 2))
    601		vli_add(r, r, m, ndigits * 2);
    602	while (vli_cmp(r, m, ndigits * 2) >= 0)
    603		vli_sub(r, r, m, ndigits * 2);
    604
    605	vli_set(result, r, ndigits);
    606}
    607
    608/*
    609 * Computes result = product % mod, where product is 2N words long.
    610 * Reference: Ken MacKay's micro-ecc.
    611 * Currently only designed to work for curve_p or curve_n.
    612 */
    613static void vli_mmod_slow(u64 *result, u64 *product, const u64 *mod,
    614			  unsigned int ndigits)
    615{
    616	u64 mod_m[2 * ECC_MAX_DIGITS];
    617	u64 tmp[2 * ECC_MAX_DIGITS];
    618	u64 *v[2] = { tmp, product };
    619	u64 carry = 0;
    620	unsigned int i;
    621	/* Shift mod so its highest set bit is at the maximum position. */
    622	int shift = (ndigits * 2 * 64) - vli_num_bits(mod, ndigits);
    623	int word_shift = shift / 64;
    624	int bit_shift = shift % 64;
    625
    626	vli_clear(mod_m, word_shift);
    627	if (bit_shift > 0) {
    628		for (i = 0; i < ndigits; ++i) {
    629			mod_m[word_shift + i] = (mod[i] << bit_shift) | carry;
    630			carry = mod[i] >> (64 - bit_shift);
    631		}
    632	} else
    633		vli_set(mod_m + word_shift, mod, ndigits);
    634
    635	for (i = 1; shift >= 0; --shift) {
    636		u64 borrow = 0;
    637		unsigned int j;
    638
    639		for (j = 0; j < ndigits * 2; ++j) {
    640			u64 diff = v[i][j] - mod_m[j] - borrow;
    641
    642			if (diff != v[i][j])
    643				borrow = (diff > v[i][j]);
    644			v[1 - i][j] = diff;
    645		}
    646		i = !(i ^ borrow); /* Swap the index if there was no borrow */
    647		vli_rshift1(mod_m, ndigits);
    648		mod_m[ndigits - 1] |= mod_m[ndigits] << (64 - 1);
    649		vli_rshift1(mod_m + ndigits, ndigits);
    650	}
    651	vli_set(result, v[i], ndigits);
    652}
    653
    654/* Computes result = product % mod using Barrett's reduction with precomputed
    655 * value mu appended to the mod after ndigits, mu = (2^{2w} / mod) and have
    656 * length ndigits + 1, where mu * (2^w - 1) should not overflow ndigits
    657 * boundary.
    658 *
    659 * Reference:
    660 * R. Brent, P. Zimmermann. Modern Computer Arithmetic. 2010.
    661 * 2.4.1 Barrett's algorithm. Algorithm 2.5.
    662 */
    663static void vli_mmod_barrett(u64 *result, u64 *product, const u64 *mod,
    664			     unsigned int ndigits)
    665{
    666	u64 q[ECC_MAX_DIGITS * 2];
    667	u64 r[ECC_MAX_DIGITS * 2];
    668	const u64 *mu = mod + ndigits;
    669
    670	vli_mult(q, product + ndigits, mu, ndigits);
    671	if (mu[ndigits])
    672		vli_add(q + ndigits, q + ndigits, product + ndigits, ndigits);
    673	vli_mult(r, mod, q + ndigits, ndigits);
    674	vli_sub(r, product, r, ndigits * 2);
    675	while (!vli_is_zero(r + ndigits, ndigits) ||
    676	       vli_cmp(r, mod, ndigits) != -1) {
    677		u64 carry;
    678
    679		carry = vli_sub(r, r, mod, ndigits);
    680		vli_usub(r + ndigits, r + ndigits, carry, ndigits);
    681	}
    682	vli_set(result, r, ndigits);
    683}
    684
    685/* Computes p_result = p_product % curve_p.
    686 * See algorithm 5 and 6 from
    687 * http://www.isys.uni-klu.ac.at/PDF/2001-0126-MT.pdf
    688 */
    689static void vli_mmod_fast_192(u64 *result, const u64 *product,
    690			      const u64 *curve_prime, u64 *tmp)
    691{
    692	const unsigned int ndigits = 3;
    693	int carry;
    694
    695	vli_set(result, product, ndigits);
    696
    697	vli_set(tmp, &product[3], ndigits);
    698	carry = vli_add(result, result, tmp, ndigits);
    699
    700	tmp[0] = 0;
    701	tmp[1] = product[3];
    702	tmp[2] = product[4];
    703	carry += vli_add(result, result, tmp, ndigits);
    704
    705	tmp[0] = tmp[1] = product[5];
    706	tmp[2] = 0;
    707	carry += vli_add(result, result, tmp, ndigits);
    708
    709	while (carry || vli_cmp(curve_prime, result, ndigits) != 1)
    710		carry -= vli_sub(result, result, curve_prime, ndigits);
    711}
    712
    713/* Computes result = product % curve_prime
    714 * from http://www.nsa.gov/ia/_files/nist-routines.pdf
    715 */
    716static void vli_mmod_fast_256(u64 *result, const u64 *product,
    717			      const u64 *curve_prime, u64 *tmp)
    718{
    719	int carry;
    720	const unsigned int ndigits = 4;
    721
    722	/* t */
    723	vli_set(result, product, ndigits);
    724
    725	/* s1 */
    726	tmp[0] = 0;
    727	tmp[1] = product[5] & 0xffffffff00000000ull;
    728	tmp[2] = product[6];
    729	tmp[3] = product[7];
    730	carry = vli_lshift(tmp, tmp, 1, ndigits);
    731	carry += vli_add(result, result, tmp, ndigits);
    732
    733	/* s2 */
    734	tmp[1] = product[6] << 32;
    735	tmp[2] = (product[6] >> 32) | (product[7] << 32);
    736	tmp[3] = product[7] >> 32;
    737	carry += vli_lshift(tmp, tmp, 1, ndigits);
    738	carry += vli_add(result, result, tmp, ndigits);
    739
    740	/* s3 */
    741	tmp[0] = product[4];
    742	tmp[1] = product[5] & 0xffffffff;
    743	tmp[2] = 0;
    744	tmp[3] = product[7];
    745	carry += vli_add(result, result, tmp, ndigits);
    746
    747	/* s4 */
    748	tmp[0] = (product[4] >> 32) | (product[5] << 32);
    749	tmp[1] = (product[5] >> 32) | (product[6] & 0xffffffff00000000ull);
    750	tmp[2] = product[7];
    751	tmp[3] = (product[6] >> 32) | (product[4] << 32);
    752	carry += vli_add(result, result, tmp, ndigits);
    753
    754	/* d1 */
    755	tmp[0] = (product[5] >> 32) | (product[6] << 32);
    756	tmp[1] = (product[6] >> 32);
    757	tmp[2] = 0;
    758	tmp[3] = (product[4] & 0xffffffff) | (product[5] << 32);
    759	carry -= vli_sub(result, result, tmp, ndigits);
    760
    761	/* d2 */
    762	tmp[0] = product[6];
    763	tmp[1] = product[7];
    764	tmp[2] = 0;
    765	tmp[3] = (product[4] >> 32) | (product[5] & 0xffffffff00000000ull);
    766	carry -= vli_sub(result, result, tmp, ndigits);
    767
    768	/* d3 */
    769	tmp[0] = (product[6] >> 32) | (product[7] << 32);
    770	tmp[1] = (product[7] >> 32) | (product[4] << 32);
    771	tmp[2] = (product[4] >> 32) | (product[5] << 32);
    772	tmp[3] = (product[6] << 32);
    773	carry -= vli_sub(result, result, tmp, ndigits);
    774
    775	/* d4 */
    776	tmp[0] = product[7];
    777	tmp[1] = product[4] & 0xffffffff00000000ull;
    778	tmp[2] = product[5];
    779	tmp[3] = product[6] & 0xffffffff00000000ull;
    780	carry -= vli_sub(result, result, tmp, ndigits);
    781
    782	if (carry < 0) {
    783		do {
    784			carry += vli_add(result, result, curve_prime, ndigits);
    785		} while (carry < 0);
    786	} else {
    787		while (carry || vli_cmp(curve_prime, result, ndigits) != 1)
    788			carry -= vli_sub(result, result, curve_prime, ndigits);
    789	}
    790}
    791
    792#define SL32OR32(x32, y32) (((u64)x32 << 32) | y32)
    793#define AND64H(x64)  (x64 & 0xffFFffFF00000000ull)
    794#define AND64L(x64)  (x64 & 0x00000000ffFFffFFull)
    795
    796/* Computes result = product % curve_prime
    797 * from "Mathematical routines for the NIST prime elliptic curves"
    798 */
    799static void vli_mmod_fast_384(u64 *result, const u64 *product,
    800				const u64 *curve_prime, u64 *tmp)
    801{
    802	int carry;
    803	const unsigned int ndigits = 6;
    804
    805	/* t */
    806	vli_set(result, product, ndigits);
    807
    808	/* s1 */
    809	tmp[0] = 0;		// 0 || 0
    810	tmp[1] = 0;		// 0 || 0
    811	tmp[2] = SL32OR32(product[11], (product[10]>>32));	//a22||a21
    812	tmp[3] = product[11]>>32;	// 0 ||a23
    813	tmp[4] = 0;		// 0 || 0
    814	tmp[5] = 0;		// 0 || 0
    815	carry = vli_lshift(tmp, tmp, 1, ndigits);
    816	carry += vli_add(result, result, tmp, ndigits);
    817
    818	/* s2 */
    819	tmp[0] = product[6];	//a13||a12
    820	tmp[1] = product[7];	//a15||a14
    821	tmp[2] = product[8];	//a17||a16
    822	tmp[3] = product[9];	//a19||a18
    823	tmp[4] = product[10];	//a21||a20
    824	tmp[5] = product[11];	//a23||a22
    825	carry += vli_add(result, result, tmp, ndigits);
    826
    827	/* s3 */
    828	tmp[0] = SL32OR32(product[11], (product[10]>>32));	//a22||a21
    829	tmp[1] = SL32OR32(product[6], (product[11]>>32));	//a12||a23
    830	tmp[2] = SL32OR32(product[7], (product[6])>>32);	//a14||a13
    831	tmp[3] = SL32OR32(product[8], (product[7]>>32));	//a16||a15
    832	tmp[4] = SL32OR32(product[9], (product[8]>>32));	//a18||a17
    833	tmp[5] = SL32OR32(product[10], (product[9]>>32));	//a20||a19
    834	carry += vli_add(result, result, tmp, ndigits);
    835
    836	/* s4 */
    837	tmp[0] = AND64H(product[11]);	//a23|| 0
    838	tmp[1] = (product[10]<<32);	//a20|| 0
    839	tmp[2] = product[6];	//a13||a12
    840	tmp[3] = product[7];	//a15||a14
    841	tmp[4] = product[8];	//a17||a16
    842	tmp[5] = product[9];	//a19||a18
    843	carry += vli_add(result, result, tmp, ndigits);
    844
    845	/* s5 */
    846	tmp[0] = 0;		//  0|| 0
    847	tmp[1] = 0;		//  0|| 0
    848	tmp[2] = product[10];	//a21||a20
    849	tmp[3] = product[11];	//a23||a22
    850	tmp[4] = 0;		//  0|| 0
    851	tmp[5] = 0;		//  0|| 0
    852	carry += vli_add(result, result, tmp, ndigits);
    853
    854	/* s6 */
    855	tmp[0] = AND64L(product[10]);	// 0 ||a20
    856	tmp[1] = AND64H(product[10]);	//a21|| 0
    857	tmp[2] = product[11];	//a23||a22
    858	tmp[3] = 0;		// 0 || 0
    859	tmp[4] = 0;		// 0 || 0
    860	tmp[5] = 0;		// 0 || 0
    861	carry += vli_add(result, result, tmp, ndigits);
    862
    863	/* d1 */
    864	tmp[0] = SL32OR32(product[6], (product[11]>>32));	//a12||a23
    865	tmp[1] = SL32OR32(product[7], (product[6]>>32));	//a14||a13
    866	tmp[2] = SL32OR32(product[8], (product[7]>>32));	//a16||a15
    867	tmp[3] = SL32OR32(product[9], (product[8]>>32));	//a18||a17
    868	tmp[4] = SL32OR32(product[10], (product[9]>>32));	//a20||a19
    869	tmp[5] = SL32OR32(product[11], (product[10]>>32));	//a22||a21
    870	carry -= vli_sub(result, result, tmp, ndigits);
    871
    872	/* d2 */
    873	tmp[0] = (product[10]<<32);	//a20|| 0
    874	tmp[1] = SL32OR32(product[11], (product[10]>>32));	//a22||a21
    875	tmp[2] = (product[11]>>32);	// 0 ||a23
    876	tmp[3] = 0;		// 0 || 0
    877	tmp[4] = 0;		// 0 || 0
    878	tmp[5] = 0;		// 0 || 0
    879	carry -= vli_sub(result, result, tmp, ndigits);
    880
    881	/* d3 */
    882	tmp[0] = 0;		// 0 || 0
    883	tmp[1] = AND64H(product[11]);	//a23|| 0
    884	tmp[2] = product[11]>>32;	// 0 ||a23
    885	tmp[3] = 0;		// 0 || 0
    886	tmp[4] = 0;		// 0 || 0
    887	tmp[5] = 0;		// 0 || 0
    888	carry -= vli_sub(result, result, tmp, ndigits);
    889
    890	if (carry < 0) {
    891		do {
    892			carry += vli_add(result, result, curve_prime, ndigits);
    893		} while (carry < 0);
    894	} else {
    895		while (carry || vli_cmp(curve_prime, result, ndigits) != 1)
    896			carry -= vli_sub(result, result, curve_prime, ndigits);
    897	}
    898
    899}
    900
    901#undef SL32OR32
    902#undef AND64H
    903#undef AND64L
    904
    905/* Computes result = product % curve_prime for different curve_primes.
    906 *
    907 * Note that curve_primes are distinguished just by heuristic check and
    908 * not by complete conformance check.
    909 */
    910static bool vli_mmod_fast(u64 *result, u64 *product,
    911			  const struct ecc_curve *curve)
    912{
    913	u64 tmp[2 * ECC_MAX_DIGITS];
    914	const u64 *curve_prime = curve->p;
    915	const unsigned int ndigits = curve->g.ndigits;
    916
    917	/* All NIST curves have name prefix 'nist_' */
    918	if (strncmp(curve->name, "nist_", 5) != 0) {
    919		/* Try to handle Pseudo-Marsenne primes. */
    920		if (curve_prime[ndigits - 1] == -1ull) {
    921			vli_mmod_special(result, product, curve_prime,
    922					 ndigits);
    923			return true;
    924		} else if (curve_prime[ndigits - 1] == 1ull << 63 &&
    925			   curve_prime[ndigits - 2] == 0) {
    926			vli_mmod_special2(result, product, curve_prime,
    927					  ndigits);
    928			return true;
    929		}
    930		vli_mmod_barrett(result, product, curve_prime, ndigits);
    931		return true;
    932	}
    933
    934	switch (ndigits) {
    935	case 3:
    936		vli_mmod_fast_192(result, product, curve_prime, tmp);
    937		break;
    938	case 4:
    939		vli_mmod_fast_256(result, product, curve_prime, tmp);
    940		break;
    941	case 6:
    942		vli_mmod_fast_384(result, product, curve_prime, tmp);
    943		break;
    944	default:
    945		pr_err_ratelimited("ecc: unsupported digits size!\n");
    946		return false;
    947	}
    948
    949	return true;
    950}
    951
    952/* Computes result = (left * right) % mod.
    953 * Assumes that mod is big enough curve order.
    954 */
    955void vli_mod_mult_slow(u64 *result, const u64 *left, const u64 *right,
    956		       const u64 *mod, unsigned int ndigits)
    957{
    958	u64 product[ECC_MAX_DIGITS * 2];
    959
    960	vli_mult(product, left, right, ndigits);
    961	vli_mmod_slow(result, product, mod, ndigits);
    962}
    963EXPORT_SYMBOL(vli_mod_mult_slow);
    964
    965/* Computes result = (left * right) % curve_prime. */
    966static void vli_mod_mult_fast(u64 *result, const u64 *left, const u64 *right,
    967			      const struct ecc_curve *curve)
    968{
    969	u64 product[2 * ECC_MAX_DIGITS];
    970
    971	vli_mult(product, left, right, curve->g.ndigits);
    972	vli_mmod_fast(result, product, curve);
    973}
    974
    975/* Computes result = left^2 % curve_prime. */
    976static void vli_mod_square_fast(u64 *result, const u64 *left,
    977				const struct ecc_curve *curve)
    978{
    979	u64 product[2 * ECC_MAX_DIGITS];
    980
    981	vli_square(product, left, curve->g.ndigits);
    982	vli_mmod_fast(result, product, curve);
    983}
    984
    985#define EVEN(vli) (!(vli[0] & 1))
    986/* Computes result = (1 / p_input) % mod. All VLIs are the same size.
    987 * See "From Euclid's GCD to Montgomery Multiplication to the Great Divide"
    988 * https://labs.oracle.com/techrep/2001/smli_tr-2001-95.pdf
    989 */
    990void vli_mod_inv(u64 *result, const u64 *input, const u64 *mod,
    991			unsigned int ndigits)
    992{
    993	u64 a[ECC_MAX_DIGITS], b[ECC_MAX_DIGITS];
    994	u64 u[ECC_MAX_DIGITS], v[ECC_MAX_DIGITS];
    995	u64 carry;
    996	int cmp_result;
    997
    998	if (vli_is_zero(input, ndigits)) {
    999		vli_clear(result, ndigits);
   1000		return;
   1001	}
   1002
   1003	vli_set(a, input, ndigits);
   1004	vli_set(b, mod, ndigits);
   1005	vli_clear(u, ndigits);
   1006	u[0] = 1;
   1007	vli_clear(v, ndigits);
   1008
   1009	while ((cmp_result = vli_cmp(a, b, ndigits)) != 0) {
   1010		carry = 0;
   1011
   1012		if (EVEN(a)) {
   1013			vli_rshift1(a, ndigits);
   1014
   1015			if (!EVEN(u))
   1016				carry = vli_add(u, u, mod, ndigits);
   1017
   1018			vli_rshift1(u, ndigits);
   1019			if (carry)
   1020				u[ndigits - 1] |= 0x8000000000000000ull;
   1021		} else if (EVEN(b)) {
   1022			vli_rshift1(b, ndigits);
   1023
   1024			if (!EVEN(v))
   1025				carry = vli_add(v, v, mod, ndigits);
   1026
   1027			vli_rshift1(v, ndigits);
   1028			if (carry)
   1029				v[ndigits - 1] |= 0x8000000000000000ull;
   1030		} else if (cmp_result > 0) {
   1031			vli_sub(a, a, b, ndigits);
   1032			vli_rshift1(a, ndigits);
   1033
   1034			if (vli_cmp(u, v, ndigits) < 0)
   1035				vli_add(u, u, mod, ndigits);
   1036
   1037			vli_sub(u, u, v, ndigits);
   1038			if (!EVEN(u))
   1039				carry = vli_add(u, u, mod, ndigits);
   1040
   1041			vli_rshift1(u, ndigits);
   1042			if (carry)
   1043				u[ndigits - 1] |= 0x8000000000000000ull;
   1044		} else {
   1045			vli_sub(b, b, a, ndigits);
   1046			vli_rshift1(b, ndigits);
   1047
   1048			if (vli_cmp(v, u, ndigits) < 0)
   1049				vli_add(v, v, mod, ndigits);
   1050
   1051			vli_sub(v, v, u, ndigits);
   1052			if (!EVEN(v))
   1053				carry = vli_add(v, v, mod, ndigits);
   1054
   1055			vli_rshift1(v, ndigits);
   1056			if (carry)
   1057				v[ndigits - 1] |= 0x8000000000000000ull;
   1058		}
   1059	}
   1060
   1061	vli_set(result, u, ndigits);
   1062}
   1063EXPORT_SYMBOL(vli_mod_inv);
   1064
   1065/* ------ Point operations ------ */
   1066
   1067/* Returns true if p_point is the point at infinity, false otherwise. */
   1068bool ecc_point_is_zero(const struct ecc_point *point)
   1069{
   1070	return (vli_is_zero(point->x, point->ndigits) &&
   1071		vli_is_zero(point->y, point->ndigits));
   1072}
   1073EXPORT_SYMBOL(ecc_point_is_zero);
   1074
   1075/* Point multiplication algorithm using Montgomery's ladder with co-Z
   1076 * coordinates. From https://eprint.iacr.org/2011/338.pdf
   1077 */
   1078
   1079/* Double in place */
   1080static void ecc_point_double_jacobian(u64 *x1, u64 *y1, u64 *z1,
   1081					const struct ecc_curve *curve)
   1082{
   1083	/* t1 = x, t2 = y, t3 = z */
   1084	u64 t4[ECC_MAX_DIGITS];
   1085	u64 t5[ECC_MAX_DIGITS];
   1086	const u64 *curve_prime = curve->p;
   1087	const unsigned int ndigits = curve->g.ndigits;
   1088
   1089	if (vli_is_zero(z1, ndigits))
   1090		return;
   1091
   1092	/* t4 = y1^2 */
   1093	vli_mod_square_fast(t4, y1, curve);
   1094	/* t5 = x1*y1^2 = A */
   1095	vli_mod_mult_fast(t5, x1, t4, curve);
   1096	/* t4 = y1^4 */
   1097	vli_mod_square_fast(t4, t4, curve);
   1098	/* t2 = y1*z1 = z3 */
   1099	vli_mod_mult_fast(y1, y1, z1, curve);
   1100	/* t3 = z1^2 */
   1101	vli_mod_square_fast(z1, z1, curve);
   1102
   1103	/* t1 = x1 + z1^2 */
   1104	vli_mod_add(x1, x1, z1, curve_prime, ndigits);
   1105	/* t3 = 2*z1^2 */
   1106	vli_mod_add(z1, z1, z1, curve_prime, ndigits);
   1107	/* t3 = x1 - z1^2 */
   1108	vli_mod_sub(z1, x1, z1, curve_prime, ndigits);
   1109	/* t1 = x1^2 - z1^4 */
   1110	vli_mod_mult_fast(x1, x1, z1, curve);
   1111
   1112	/* t3 = 2*(x1^2 - z1^4) */
   1113	vli_mod_add(z1, x1, x1, curve_prime, ndigits);
   1114	/* t1 = 3*(x1^2 - z1^4) */
   1115	vli_mod_add(x1, x1, z1, curve_prime, ndigits);
   1116	if (vli_test_bit(x1, 0)) {
   1117		u64 carry = vli_add(x1, x1, curve_prime, ndigits);
   1118
   1119		vli_rshift1(x1, ndigits);
   1120		x1[ndigits - 1] |= carry << 63;
   1121	} else {
   1122		vli_rshift1(x1, ndigits);
   1123	}
   1124	/* t1 = 3/2*(x1^2 - z1^4) = B */
   1125
   1126	/* t3 = B^2 */
   1127	vli_mod_square_fast(z1, x1, curve);
   1128	/* t3 = B^2 - A */
   1129	vli_mod_sub(z1, z1, t5, curve_prime, ndigits);
   1130	/* t3 = B^2 - 2A = x3 */
   1131	vli_mod_sub(z1, z1, t5, curve_prime, ndigits);
   1132	/* t5 = A - x3 */
   1133	vli_mod_sub(t5, t5, z1, curve_prime, ndigits);
   1134	/* t1 = B * (A - x3) */
   1135	vli_mod_mult_fast(x1, x1, t5, curve);
   1136	/* t4 = B * (A - x3) - y1^4 = y3 */
   1137	vli_mod_sub(t4, x1, t4, curve_prime, ndigits);
   1138
   1139	vli_set(x1, z1, ndigits);
   1140	vli_set(z1, y1, ndigits);
   1141	vli_set(y1, t4, ndigits);
   1142}
   1143
   1144/* Modify (x1, y1) => (x1 * z^2, y1 * z^3) */
   1145static void apply_z(u64 *x1, u64 *y1, u64 *z, const struct ecc_curve *curve)
   1146{
   1147	u64 t1[ECC_MAX_DIGITS];
   1148
   1149	vli_mod_square_fast(t1, z, curve);		/* z^2 */
   1150	vli_mod_mult_fast(x1, x1, t1, curve);	/* x1 * z^2 */
   1151	vli_mod_mult_fast(t1, t1, z, curve);	/* z^3 */
   1152	vli_mod_mult_fast(y1, y1, t1, curve);	/* y1 * z^3 */
   1153}
   1154
   1155/* P = (x1, y1) => 2P, (x2, y2) => P' */
   1156static void xycz_initial_double(u64 *x1, u64 *y1, u64 *x2, u64 *y2,
   1157				u64 *p_initial_z, const struct ecc_curve *curve)
   1158{
   1159	u64 z[ECC_MAX_DIGITS];
   1160	const unsigned int ndigits = curve->g.ndigits;
   1161
   1162	vli_set(x2, x1, ndigits);
   1163	vli_set(y2, y1, ndigits);
   1164
   1165	vli_clear(z, ndigits);
   1166	z[0] = 1;
   1167
   1168	if (p_initial_z)
   1169		vli_set(z, p_initial_z, ndigits);
   1170
   1171	apply_z(x1, y1, z, curve);
   1172
   1173	ecc_point_double_jacobian(x1, y1, z, curve);
   1174
   1175	apply_z(x2, y2, z, curve);
   1176}
   1177
   1178/* Input P = (x1, y1, Z), Q = (x2, y2, Z)
   1179 * Output P' = (x1', y1', Z3), P + Q = (x3, y3, Z3)
   1180 * or P => P', Q => P + Q
   1181 */
   1182static void xycz_add(u64 *x1, u64 *y1, u64 *x2, u64 *y2,
   1183			const struct ecc_curve *curve)
   1184{
   1185	/* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
   1186	u64 t5[ECC_MAX_DIGITS];
   1187	const u64 *curve_prime = curve->p;
   1188	const unsigned int ndigits = curve->g.ndigits;
   1189
   1190	/* t5 = x2 - x1 */
   1191	vli_mod_sub(t5, x2, x1, curve_prime, ndigits);
   1192	/* t5 = (x2 - x1)^2 = A */
   1193	vli_mod_square_fast(t5, t5, curve);
   1194	/* t1 = x1*A = B */
   1195	vli_mod_mult_fast(x1, x1, t5, curve);
   1196	/* t3 = x2*A = C */
   1197	vli_mod_mult_fast(x2, x2, t5, curve);
   1198	/* t4 = y2 - y1 */
   1199	vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
   1200	/* t5 = (y2 - y1)^2 = D */
   1201	vli_mod_square_fast(t5, y2, curve);
   1202
   1203	/* t5 = D - B */
   1204	vli_mod_sub(t5, t5, x1, curve_prime, ndigits);
   1205	/* t5 = D - B - C = x3 */
   1206	vli_mod_sub(t5, t5, x2, curve_prime, ndigits);
   1207	/* t3 = C - B */
   1208	vli_mod_sub(x2, x2, x1, curve_prime, ndigits);
   1209	/* t2 = y1*(C - B) */
   1210	vli_mod_mult_fast(y1, y1, x2, curve);
   1211	/* t3 = B - x3 */
   1212	vli_mod_sub(x2, x1, t5, curve_prime, ndigits);
   1213	/* t4 = (y2 - y1)*(B - x3) */
   1214	vli_mod_mult_fast(y2, y2, x2, curve);
   1215	/* t4 = y3 */
   1216	vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
   1217
   1218	vli_set(x2, t5, ndigits);
   1219}
   1220
   1221/* Input P = (x1, y1, Z), Q = (x2, y2, Z)
   1222 * Output P + Q = (x3, y3, Z3), P - Q = (x3', y3', Z3)
   1223 * or P => P - Q, Q => P + Q
   1224 */
   1225static void xycz_add_c(u64 *x1, u64 *y1, u64 *x2, u64 *y2,
   1226			const struct ecc_curve *curve)
   1227{
   1228	/* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
   1229	u64 t5[ECC_MAX_DIGITS];
   1230	u64 t6[ECC_MAX_DIGITS];
   1231	u64 t7[ECC_MAX_DIGITS];
   1232	const u64 *curve_prime = curve->p;
   1233	const unsigned int ndigits = curve->g.ndigits;
   1234
   1235	/* t5 = x2 - x1 */
   1236	vli_mod_sub(t5, x2, x1, curve_prime, ndigits);
   1237	/* t5 = (x2 - x1)^2 = A */
   1238	vli_mod_square_fast(t5, t5, curve);
   1239	/* t1 = x1*A = B */
   1240	vli_mod_mult_fast(x1, x1, t5, curve);
   1241	/* t3 = x2*A = C */
   1242	vli_mod_mult_fast(x2, x2, t5, curve);
   1243	/* t4 = y2 + y1 */
   1244	vli_mod_add(t5, y2, y1, curve_prime, ndigits);
   1245	/* t4 = y2 - y1 */
   1246	vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
   1247
   1248	/* t6 = C - B */
   1249	vli_mod_sub(t6, x2, x1, curve_prime, ndigits);
   1250	/* t2 = y1 * (C - B) */
   1251	vli_mod_mult_fast(y1, y1, t6, curve);
   1252	/* t6 = B + C */
   1253	vli_mod_add(t6, x1, x2, curve_prime, ndigits);
   1254	/* t3 = (y2 - y1)^2 */
   1255	vli_mod_square_fast(x2, y2, curve);
   1256	/* t3 = x3 */
   1257	vli_mod_sub(x2, x2, t6, curve_prime, ndigits);
   1258
   1259	/* t7 = B - x3 */
   1260	vli_mod_sub(t7, x1, x2, curve_prime, ndigits);
   1261	/* t4 = (y2 - y1)*(B - x3) */
   1262	vli_mod_mult_fast(y2, y2, t7, curve);
   1263	/* t4 = y3 */
   1264	vli_mod_sub(y2, y2, y1, curve_prime, ndigits);
   1265
   1266	/* t7 = (y2 + y1)^2 = F */
   1267	vli_mod_square_fast(t7, t5, curve);
   1268	/* t7 = x3' */
   1269	vli_mod_sub(t7, t7, t6, curve_prime, ndigits);
   1270	/* t6 = x3' - B */
   1271	vli_mod_sub(t6, t7, x1, curve_prime, ndigits);
   1272	/* t6 = (y2 + y1)*(x3' - B) */
   1273	vli_mod_mult_fast(t6, t6, t5, curve);
   1274	/* t2 = y3' */
   1275	vli_mod_sub(y1, t6, y1, curve_prime, ndigits);
   1276
   1277	vli_set(x1, t7, ndigits);
   1278}
   1279
   1280static void ecc_point_mult(struct ecc_point *result,
   1281			   const struct ecc_point *point, const u64 *scalar,
   1282			   u64 *initial_z, const struct ecc_curve *curve,
   1283			   unsigned int ndigits)
   1284{
   1285	/* R0 and R1 */
   1286	u64 rx[2][ECC_MAX_DIGITS];
   1287	u64 ry[2][ECC_MAX_DIGITS];
   1288	u64 z[ECC_MAX_DIGITS];
   1289	u64 sk[2][ECC_MAX_DIGITS];
   1290	u64 *curve_prime = curve->p;
   1291	int i, nb;
   1292	int num_bits;
   1293	int carry;
   1294
   1295	carry = vli_add(sk[0], scalar, curve->n, ndigits);
   1296	vli_add(sk[1], sk[0], curve->n, ndigits);
   1297	scalar = sk[!carry];
   1298	num_bits = sizeof(u64) * ndigits * 8 + 1;
   1299
   1300	vli_set(rx[1], point->x, ndigits);
   1301	vli_set(ry[1], point->y, ndigits);
   1302
   1303	xycz_initial_double(rx[1], ry[1], rx[0], ry[0], initial_z, curve);
   1304
   1305	for (i = num_bits - 2; i > 0; i--) {
   1306		nb = !vli_test_bit(scalar, i);
   1307		xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve);
   1308		xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve);
   1309	}
   1310
   1311	nb = !vli_test_bit(scalar, 0);
   1312	xycz_add_c(rx[1 - nb], ry[1 - nb], rx[nb], ry[nb], curve);
   1313
   1314	/* Find final 1/Z value. */
   1315	/* X1 - X0 */
   1316	vli_mod_sub(z, rx[1], rx[0], curve_prime, ndigits);
   1317	/* Yb * (X1 - X0) */
   1318	vli_mod_mult_fast(z, z, ry[1 - nb], curve);
   1319	/* xP * Yb * (X1 - X0) */
   1320	vli_mod_mult_fast(z, z, point->x, curve);
   1321
   1322	/* 1 / (xP * Yb * (X1 - X0)) */
   1323	vli_mod_inv(z, z, curve_prime, point->ndigits);
   1324
   1325	/* yP / (xP * Yb * (X1 - X0)) */
   1326	vli_mod_mult_fast(z, z, point->y, curve);
   1327	/* Xb * yP / (xP * Yb * (X1 - X0)) */
   1328	vli_mod_mult_fast(z, z, rx[1 - nb], curve);
   1329	/* End 1/Z calculation */
   1330
   1331	xycz_add(rx[nb], ry[nb], rx[1 - nb], ry[1 - nb], curve);
   1332
   1333	apply_z(rx[0], ry[0], z, curve);
   1334
   1335	vli_set(result->x, rx[0], ndigits);
   1336	vli_set(result->y, ry[0], ndigits);
   1337}
   1338
   1339/* Computes R = P + Q mod p */
   1340static void ecc_point_add(const struct ecc_point *result,
   1341		   const struct ecc_point *p, const struct ecc_point *q,
   1342		   const struct ecc_curve *curve)
   1343{
   1344	u64 z[ECC_MAX_DIGITS];
   1345	u64 px[ECC_MAX_DIGITS];
   1346	u64 py[ECC_MAX_DIGITS];
   1347	unsigned int ndigits = curve->g.ndigits;
   1348
   1349	vli_set(result->x, q->x, ndigits);
   1350	vli_set(result->y, q->y, ndigits);
   1351	vli_mod_sub(z, result->x, p->x, curve->p, ndigits);
   1352	vli_set(px, p->x, ndigits);
   1353	vli_set(py, p->y, ndigits);
   1354	xycz_add(px, py, result->x, result->y, curve);
   1355	vli_mod_inv(z, z, curve->p, ndigits);
   1356	apply_z(result->x, result->y, z, curve);
   1357}
   1358
   1359/* Computes R = u1P + u2Q mod p using Shamir's trick.
   1360 * Based on: Kenneth MacKay's micro-ecc (2014).
   1361 */
   1362void ecc_point_mult_shamir(const struct ecc_point *result,
   1363			   const u64 *u1, const struct ecc_point *p,
   1364			   const u64 *u2, const struct ecc_point *q,
   1365			   const struct ecc_curve *curve)
   1366{
   1367	u64 z[ECC_MAX_DIGITS];
   1368	u64 sump[2][ECC_MAX_DIGITS];
   1369	u64 *rx = result->x;
   1370	u64 *ry = result->y;
   1371	unsigned int ndigits = curve->g.ndigits;
   1372	unsigned int num_bits;
   1373	struct ecc_point sum = ECC_POINT_INIT(sump[0], sump[1], ndigits);
   1374	const struct ecc_point *points[4];
   1375	const struct ecc_point *point;
   1376	unsigned int idx;
   1377	int i;
   1378
   1379	ecc_point_add(&sum, p, q, curve);
   1380	points[0] = NULL;
   1381	points[1] = p;
   1382	points[2] = q;
   1383	points[3] = &sum;
   1384
   1385	num_bits = max(vli_num_bits(u1, ndigits), vli_num_bits(u2, ndigits));
   1386	i = num_bits - 1;
   1387	idx = (!!vli_test_bit(u1, i)) | ((!!vli_test_bit(u2, i)) << 1);
   1388	point = points[idx];
   1389
   1390	vli_set(rx, point->x, ndigits);
   1391	vli_set(ry, point->y, ndigits);
   1392	vli_clear(z + 1, ndigits - 1);
   1393	z[0] = 1;
   1394
   1395	for (--i; i >= 0; i--) {
   1396		ecc_point_double_jacobian(rx, ry, z, curve);
   1397		idx = (!!vli_test_bit(u1, i)) | ((!!vli_test_bit(u2, i)) << 1);
   1398		point = points[idx];
   1399		if (point) {
   1400			u64 tx[ECC_MAX_DIGITS];
   1401			u64 ty[ECC_MAX_DIGITS];
   1402			u64 tz[ECC_MAX_DIGITS];
   1403
   1404			vli_set(tx, point->x, ndigits);
   1405			vli_set(ty, point->y, ndigits);
   1406			apply_z(tx, ty, z, curve);
   1407			vli_mod_sub(tz, rx, tx, curve->p, ndigits);
   1408			xycz_add(tx, ty, rx, ry, curve);
   1409			vli_mod_mult_fast(z, z, tz, curve);
   1410		}
   1411	}
   1412	vli_mod_inv(z, z, curve->p, ndigits);
   1413	apply_z(rx, ry, z, curve);
   1414}
   1415EXPORT_SYMBOL(ecc_point_mult_shamir);
   1416
   1417static int __ecc_is_key_valid(const struct ecc_curve *curve,
   1418			      const u64 *private_key, unsigned int ndigits)
   1419{
   1420	u64 one[ECC_MAX_DIGITS] = { 1, };
   1421	u64 res[ECC_MAX_DIGITS];
   1422
   1423	if (!private_key)
   1424		return -EINVAL;
   1425
   1426	if (curve->g.ndigits != ndigits)
   1427		return -EINVAL;
   1428
   1429	/* Make sure the private key is in the range [2, n-3]. */
   1430	if (vli_cmp(one, private_key, ndigits) != -1)
   1431		return -EINVAL;
   1432	vli_sub(res, curve->n, one, ndigits);
   1433	vli_sub(res, res, one, ndigits);
   1434	if (vli_cmp(res, private_key, ndigits) != 1)
   1435		return -EINVAL;
   1436
   1437	return 0;
   1438}
   1439
   1440int ecc_is_key_valid(unsigned int curve_id, unsigned int ndigits,
   1441		     const u64 *private_key, unsigned int private_key_len)
   1442{
   1443	int nbytes;
   1444	const struct ecc_curve *curve = ecc_get_curve(curve_id);
   1445
   1446	nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
   1447
   1448	if (private_key_len != nbytes)
   1449		return -EINVAL;
   1450
   1451	return __ecc_is_key_valid(curve, private_key, ndigits);
   1452}
   1453EXPORT_SYMBOL(ecc_is_key_valid);
   1454
   1455/*
   1456 * ECC private keys are generated using the method of extra random bits,
   1457 * equivalent to that described in FIPS 186-4, Appendix B.4.1.
   1458 *
   1459 * d = (c mod(n–1)) + 1    where c is a string of random bits, 64 bits longer
   1460 *                         than requested
   1461 * 0 <= c mod(n-1) <= n-2  and implies that
   1462 * 1 <= d <= n-1
   1463 *
   1464 * This method generates a private key uniformly distributed in the range
   1465 * [1, n-1].
   1466 */
   1467int ecc_gen_privkey(unsigned int curve_id, unsigned int ndigits, u64 *privkey)
   1468{
   1469	const struct ecc_curve *curve = ecc_get_curve(curve_id);
   1470	u64 priv[ECC_MAX_DIGITS];
   1471	unsigned int nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
   1472	unsigned int nbits = vli_num_bits(curve->n, ndigits);
   1473	int err;
   1474
   1475	/* Check that N is included in Table 1 of FIPS 186-4, section 6.1.1 */
   1476	if (nbits < 160 || ndigits > ARRAY_SIZE(priv))
   1477		return -EINVAL;
   1478
   1479	/*
   1480	 * FIPS 186-4 recommends that the private key should be obtained from a
   1481	 * RBG with a security strength equal to or greater than the security
   1482	 * strength associated with N.
   1483	 *
   1484	 * The maximum security strength identified by NIST SP800-57pt1r4 for
   1485	 * ECC is 256 (N >= 512).
   1486	 *
   1487	 * This condition is met by the default RNG because it selects a favored
   1488	 * DRBG with a security strength of 256.
   1489	 */
   1490	if (crypto_get_default_rng())
   1491		return -EFAULT;
   1492
   1493	err = crypto_rng_get_bytes(crypto_default_rng, (u8 *)priv, nbytes);
   1494	crypto_put_default_rng();
   1495	if (err)
   1496		return err;
   1497
   1498	/* Make sure the private key is in the valid range. */
   1499	if (__ecc_is_key_valid(curve, priv, ndigits))
   1500		return -EINVAL;
   1501
   1502	ecc_swap_digits(priv, privkey, ndigits);
   1503
   1504	return 0;
   1505}
   1506EXPORT_SYMBOL(ecc_gen_privkey);
   1507
   1508int ecc_make_pub_key(unsigned int curve_id, unsigned int ndigits,
   1509		     const u64 *private_key, u64 *public_key)
   1510{
   1511	int ret = 0;
   1512	struct ecc_point *pk;
   1513	u64 priv[ECC_MAX_DIGITS];
   1514	const struct ecc_curve *curve = ecc_get_curve(curve_id);
   1515
   1516	if (!private_key || !curve || ndigits > ARRAY_SIZE(priv)) {
   1517		ret = -EINVAL;
   1518		goto out;
   1519	}
   1520
   1521	ecc_swap_digits(private_key, priv, ndigits);
   1522
   1523	pk = ecc_alloc_point(ndigits);
   1524	if (!pk) {
   1525		ret = -ENOMEM;
   1526		goto out;
   1527	}
   1528
   1529	ecc_point_mult(pk, &curve->g, priv, NULL, curve, ndigits);
   1530
   1531	/* SP800-56A rev 3 5.6.2.1.3 key check */
   1532	if (ecc_is_pubkey_valid_full(curve, pk)) {
   1533		ret = -EAGAIN;
   1534		goto err_free_point;
   1535	}
   1536
   1537	ecc_swap_digits(pk->x, public_key, ndigits);
   1538	ecc_swap_digits(pk->y, &public_key[ndigits], ndigits);
   1539
   1540err_free_point:
   1541	ecc_free_point(pk);
   1542out:
   1543	return ret;
   1544}
   1545EXPORT_SYMBOL(ecc_make_pub_key);
   1546
   1547/* SP800-56A section 5.6.2.3.4 partial verification: ephemeral keys only */
   1548int ecc_is_pubkey_valid_partial(const struct ecc_curve *curve,
   1549				struct ecc_point *pk)
   1550{
   1551	u64 yy[ECC_MAX_DIGITS], xxx[ECC_MAX_DIGITS], w[ECC_MAX_DIGITS];
   1552
   1553	if (WARN_ON(pk->ndigits != curve->g.ndigits))
   1554		return -EINVAL;
   1555
   1556	/* Check 1: Verify key is not the zero point. */
   1557	if (ecc_point_is_zero(pk))
   1558		return -EINVAL;
   1559
   1560	/* Check 2: Verify key is in the range [1, p-1]. */
   1561	if (vli_cmp(curve->p, pk->x, pk->ndigits) != 1)
   1562		return -EINVAL;
   1563	if (vli_cmp(curve->p, pk->y, pk->ndigits) != 1)
   1564		return -EINVAL;
   1565
   1566	/* Check 3: Verify that y^2 == (x^3 + a·x + b) mod p */
   1567	vli_mod_square_fast(yy, pk->y, curve); /* y^2 */
   1568	vli_mod_square_fast(xxx, pk->x, curve); /* x^2 */
   1569	vli_mod_mult_fast(xxx, xxx, pk->x, curve); /* x^3 */
   1570	vli_mod_mult_fast(w, curve->a, pk->x, curve); /* a·x */
   1571	vli_mod_add(w, w, curve->b, curve->p, pk->ndigits); /* a·x + b */
   1572	vli_mod_add(w, w, xxx, curve->p, pk->ndigits); /* x^3 + a·x + b */
   1573	if (vli_cmp(yy, w, pk->ndigits) != 0) /* Equation */
   1574		return -EINVAL;
   1575
   1576	return 0;
   1577}
   1578EXPORT_SYMBOL(ecc_is_pubkey_valid_partial);
   1579
   1580/* SP800-56A section 5.6.2.3.3 full verification */
   1581int ecc_is_pubkey_valid_full(const struct ecc_curve *curve,
   1582			     struct ecc_point *pk)
   1583{
   1584	struct ecc_point *nQ;
   1585
   1586	/* Checks 1 through 3 */
   1587	int ret = ecc_is_pubkey_valid_partial(curve, pk);
   1588
   1589	if (ret)
   1590		return ret;
   1591
   1592	/* Check 4: Verify that nQ is the zero point. */
   1593	nQ = ecc_alloc_point(pk->ndigits);
   1594	if (!nQ)
   1595		return -ENOMEM;
   1596
   1597	ecc_point_mult(nQ, pk, curve->n, NULL, curve, pk->ndigits);
   1598	if (!ecc_point_is_zero(nQ))
   1599		ret = -EINVAL;
   1600
   1601	ecc_free_point(nQ);
   1602
   1603	return ret;
   1604}
   1605EXPORT_SYMBOL(ecc_is_pubkey_valid_full);
   1606
   1607int crypto_ecdh_shared_secret(unsigned int curve_id, unsigned int ndigits,
   1608			      const u64 *private_key, const u64 *public_key,
   1609			      u64 *secret)
   1610{
   1611	int ret = 0;
   1612	struct ecc_point *product, *pk;
   1613	u64 priv[ECC_MAX_DIGITS];
   1614	u64 rand_z[ECC_MAX_DIGITS];
   1615	unsigned int nbytes;
   1616	const struct ecc_curve *curve = ecc_get_curve(curve_id);
   1617
   1618	if (!private_key || !public_key || !curve ||
   1619	    ndigits > ARRAY_SIZE(priv) || ndigits > ARRAY_SIZE(rand_z)) {
   1620		ret = -EINVAL;
   1621		goto out;
   1622	}
   1623
   1624	nbytes = ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
   1625
   1626	get_random_bytes(rand_z, nbytes);
   1627
   1628	pk = ecc_alloc_point(ndigits);
   1629	if (!pk) {
   1630		ret = -ENOMEM;
   1631		goto out;
   1632	}
   1633
   1634	ecc_swap_digits(public_key, pk->x, ndigits);
   1635	ecc_swap_digits(&public_key[ndigits], pk->y, ndigits);
   1636	ret = ecc_is_pubkey_valid_partial(curve, pk);
   1637	if (ret)
   1638		goto err_alloc_product;
   1639
   1640	ecc_swap_digits(private_key, priv, ndigits);
   1641
   1642	product = ecc_alloc_point(ndigits);
   1643	if (!product) {
   1644		ret = -ENOMEM;
   1645		goto err_alloc_product;
   1646	}
   1647
   1648	ecc_point_mult(product, pk, priv, rand_z, curve, ndigits);
   1649
   1650	if (ecc_point_is_zero(product)) {
   1651		ret = -EFAULT;
   1652		goto err_validity;
   1653	}
   1654
   1655	ecc_swap_digits(product->x, secret, ndigits);
   1656
   1657err_validity:
   1658	memzero_explicit(priv, sizeof(priv));
   1659	memzero_explicit(rand_z, sizeof(rand_z));
   1660	ecc_free_point(product);
   1661err_alloc_product:
   1662	ecc_free_point(pk);
   1663out:
   1664	return ret;
   1665}
   1666EXPORT_SYMBOL(crypto_ecdh_shared_secret);
   1667
   1668MODULE_LICENSE("Dual BSD/GPL");