cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

gf128mul.c (12760B)


      1/* gf128mul.c - GF(2^128) multiplication functions
      2 *
      3 * Copyright (c) 2003, Dr Brian Gladman, Worcester, UK.
      4 * Copyright (c) 2006, Rik Snel <rsnel@cube.dyndns.org>
      5 *
      6 * Based on Dr Brian Gladman's (GPL'd) work published at
      7 * http://gladman.plushost.co.uk/oldsite/cryptography_technology/index.php
      8 * See the original copyright notice below.
      9 *
     10 * This program is free software; you can redistribute it and/or modify it
     11 * under the terms of the GNU General Public License as published by the Free
     12 * Software Foundation; either version 2 of the License, or (at your option)
     13 * any later version.
     14 */
     15
     16/*
     17 ---------------------------------------------------------------------------
     18 Copyright (c) 2003, Dr Brian Gladman, Worcester, UK.   All rights reserved.
     19
     20 LICENSE TERMS
     21
     22 The free distribution and use of this software in both source and binary
     23 form is allowed (with or without changes) provided that:
     24
     25   1. distributions of this source code include the above copyright
     26      notice, this list of conditions and the following disclaimer;
     27
     28   2. distributions in binary form include the above copyright
     29      notice, this list of conditions and the following disclaimer
     30      in the documentation and/or other associated materials;
     31
     32   3. the copyright holder's name is not used to endorse products
     33      built using this software without specific written permission.
     34
     35 ALTERNATIVELY, provided that this notice is retained in full, this product
     36 may be distributed under the terms of the GNU General Public License (GPL),
     37 in which case the provisions of the GPL apply INSTEAD OF those given above.
     38
     39 DISCLAIMER
     40
     41 This software is provided 'as is' with no explicit or implied warranties
     42 in respect of its properties, including, but not limited to, correctness
     43 and/or fitness for purpose.
     44 ---------------------------------------------------------------------------
     45 Issue 31/01/2006
     46
     47 This file provides fast multiplication in GF(2^128) as required by several
     48 cryptographic authentication modes
     49*/
     50
     51#include <crypto/gf128mul.h>
     52#include <linux/kernel.h>
     53#include <linux/module.h>
     54#include <linux/slab.h>
     55
     56#define gf128mul_dat(q) { \
     57	q(0x00), q(0x01), q(0x02), q(0x03), q(0x04), q(0x05), q(0x06), q(0x07),\
     58	q(0x08), q(0x09), q(0x0a), q(0x0b), q(0x0c), q(0x0d), q(0x0e), q(0x0f),\
     59	q(0x10), q(0x11), q(0x12), q(0x13), q(0x14), q(0x15), q(0x16), q(0x17),\
     60	q(0x18), q(0x19), q(0x1a), q(0x1b), q(0x1c), q(0x1d), q(0x1e), q(0x1f),\
     61	q(0x20), q(0x21), q(0x22), q(0x23), q(0x24), q(0x25), q(0x26), q(0x27),\
     62	q(0x28), q(0x29), q(0x2a), q(0x2b), q(0x2c), q(0x2d), q(0x2e), q(0x2f),\
     63	q(0x30), q(0x31), q(0x32), q(0x33), q(0x34), q(0x35), q(0x36), q(0x37),\
     64	q(0x38), q(0x39), q(0x3a), q(0x3b), q(0x3c), q(0x3d), q(0x3e), q(0x3f),\
     65	q(0x40), q(0x41), q(0x42), q(0x43), q(0x44), q(0x45), q(0x46), q(0x47),\
     66	q(0x48), q(0x49), q(0x4a), q(0x4b), q(0x4c), q(0x4d), q(0x4e), q(0x4f),\
     67	q(0x50), q(0x51), q(0x52), q(0x53), q(0x54), q(0x55), q(0x56), q(0x57),\
     68	q(0x58), q(0x59), q(0x5a), q(0x5b), q(0x5c), q(0x5d), q(0x5e), q(0x5f),\
     69	q(0x60), q(0x61), q(0x62), q(0x63), q(0x64), q(0x65), q(0x66), q(0x67),\
     70	q(0x68), q(0x69), q(0x6a), q(0x6b), q(0x6c), q(0x6d), q(0x6e), q(0x6f),\
     71	q(0x70), q(0x71), q(0x72), q(0x73), q(0x74), q(0x75), q(0x76), q(0x77),\
     72	q(0x78), q(0x79), q(0x7a), q(0x7b), q(0x7c), q(0x7d), q(0x7e), q(0x7f),\
     73	q(0x80), q(0x81), q(0x82), q(0x83), q(0x84), q(0x85), q(0x86), q(0x87),\
     74	q(0x88), q(0x89), q(0x8a), q(0x8b), q(0x8c), q(0x8d), q(0x8e), q(0x8f),\
     75	q(0x90), q(0x91), q(0x92), q(0x93), q(0x94), q(0x95), q(0x96), q(0x97),\
     76	q(0x98), q(0x99), q(0x9a), q(0x9b), q(0x9c), q(0x9d), q(0x9e), q(0x9f),\
     77	q(0xa0), q(0xa1), q(0xa2), q(0xa3), q(0xa4), q(0xa5), q(0xa6), q(0xa7),\
     78	q(0xa8), q(0xa9), q(0xaa), q(0xab), q(0xac), q(0xad), q(0xae), q(0xaf),\
     79	q(0xb0), q(0xb1), q(0xb2), q(0xb3), q(0xb4), q(0xb5), q(0xb6), q(0xb7),\
     80	q(0xb8), q(0xb9), q(0xba), q(0xbb), q(0xbc), q(0xbd), q(0xbe), q(0xbf),\
     81	q(0xc0), q(0xc1), q(0xc2), q(0xc3), q(0xc4), q(0xc5), q(0xc6), q(0xc7),\
     82	q(0xc8), q(0xc9), q(0xca), q(0xcb), q(0xcc), q(0xcd), q(0xce), q(0xcf),\
     83	q(0xd0), q(0xd1), q(0xd2), q(0xd3), q(0xd4), q(0xd5), q(0xd6), q(0xd7),\
     84	q(0xd8), q(0xd9), q(0xda), q(0xdb), q(0xdc), q(0xdd), q(0xde), q(0xdf),\
     85	q(0xe0), q(0xe1), q(0xe2), q(0xe3), q(0xe4), q(0xe5), q(0xe6), q(0xe7),\
     86	q(0xe8), q(0xe9), q(0xea), q(0xeb), q(0xec), q(0xed), q(0xee), q(0xef),\
     87	q(0xf0), q(0xf1), q(0xf2), q(0xf3), q(0xf4), q(0xf5), q(0xf6), q(0xf7),\
     88	q(0xf8), q(0xf9), q(0xfa), q(0xfb), q(0xfc), q(0xfd), q(0xfe), q(0xff) \
     89}
     90
     91/*
     92 * Given a value i in 0..255 as the byte overflow when a field element
     93 * in GF(2^128) is multiplied by x^8, the following macro returns the
     94 * 16-bit value that must be XOR-ed into the low-degree end of the
     95 * product to reduce it modulo the polynomial x^128 + x^7 + x^2 + x + 1.
     96 *
     97 * There are two versions of the macro, and hence two tables: one for
     98 * the "be" convention where the highest-order bit is the coefficient of
     99 * the highest-degree polynomial term, and one for the "le" convention
    100 * where the highest-order bit is the coefficient of the lowest-degree
    101 * polynomial term.  In both cases the values are stored in CPU byte
    102 * endianness such that the coefficients are ordered consistently across
    103 * bytes, i.e. in the "be" table bits 15..0 of the stored value
    104 * correspond to the coefficients of x^15..x^0, and in the "le" table
    105 * bits 15..0 correspond to the coefficients of x^0..x^15.
    106 *
    107 * Therefore, provided that the appropriate byte endianness conversions
    108 * are done by the multiplication functions (and these must be in place
    109 * anyway to support both little endian and big endian CPUs), the "be"
    110 * table can be used for multiplications of both "bbe" and "ble"
    111 * elements, and the "le" table can be used for multiplications of both
    112 * "lle" and "lbe" elements.
    113 */
    114
    115#define xda_be(i) ( \
    116	(i & 0x80 ? 0x4380 : 0) ^ (i & 0x40 ? 0x21c0 : 0) ^ \
    117	(i & 0x20 ? 0x10e0 : 0) ^ (i & 0x10 ? 0x0870 : 0) ^ \
    118	(i & 0x08 ? 0x0438 : 0) ^ (i & 0x04 ? 0x021c : 0) ^ \
    119	(i & 0x02 ? 0x010e : 0) ^ (i & 0x01 ? 0x0087 : 0) \
    120)
    121
    122#define xda_le(i) ( \
    123	(i & 0x80 ? 0xe100 : 0) ^ (i & 0x40 ? 0x7080 : 0) ^ \
    124	(i & 0x20 ? 0x3840 : 0) ^ (i & 0x10 ? 0x1c20 : 0) ^ \
    125	(i & 0x08 ? 0x0e10 : 0) ^ (i & 0x04 ? 0x0708 : 0) ^ \
    126	(i & 0x02 ? 0x0384 : 0) ^ (i & 0x01 ? 0x01c2 : 0) \
    127)
    128
    129static const u16 gf128mul_table_le[256] = gf128mul_dat(xda_le);
    130static const u16 gf128mul_table_be[256] = gf128mul_dat(xda_be);
    131
    132/*
    133 * The following functions multiply a field element by x^8 in
    134 * the polynomial field representation.  They use 64-bit word operations
    135 * to gain speed but compensate for machine endianness and hence work
    136 * correctly on both styles of machine.
    137 */
    138
    139static void gf128mul_x8_lle(be128 *x)
    140{
    141	u64 a = be64_to_cpu(x->a);
    142	u64 b = be64_to_cpu(x->b);
    143	u64 _tt = gf128mul_table_le[b & 0xff];
    144
    145	x->b = cpu_to_be64((b >> 8) | (a << 56));
    146	x->a = cpu_to_be64((a >> 8) ^ (_tt << 48));
    147}
    148
    149static void gf128mul_x8_bbe(be128 *x)
    150{
    151	u64 a = be64_to_cpu(x->a);
    152	u64 b = be64_to_cpu(x->b);
    153	u64 _tt = gf128mul_table_be[a >> 56];
    154
    155	x->a = cpu_to_be64((a << 8) | (b >> 56));
    156	x->b = cpu_to_be64((b << 8) ^ _tt);
    157}
    158
    159void gf128mul_x8_ble(le128 *r, const le128 *x)
    160{
    161	u64 a = le64_to_cpu(x->a);
    162	u64 b = le64_to_cpu(x->b);
    163	u64 _tt = gf128mul_table_be[a >> 56];
    164
    165	r->a = cpu_to_le64((a << 8) | (b >> 56));
    166	r->b = cpu_to_le64((b << 8) ^ _tt);
    167}
    168EXPORT_SYMBOL(gf128mul_x8_ble);
    169
    170void gf128mul_lle(be128 *r, const be128 *b)
    171{
    172	be128 p[8];
    173	int i;
    174
    175	p[0] = *r;
    176	for (i = 0; i < 7; ++i)
    177		gf128mul_x_lle(&p[i + 1], &p[i]);
    178
    179	memset(r, 0, sizeof(*r));
    180	for (i = 0;;) {
    181		u8 ch = ((u8 *)b)[15 - i];
    182
    183		if (ch & 0x80)
    184			be128_xor(r, r, &p[0]);
    185		if (ch & 0x40)
    186			be128_xor(r, r, &p[1]);
    187		if (ch & 0x20)
    188			be128_xor(r, r, &p[2]);
    189		if (ch & 0x10)
    190			be128_xor(r, r, &p[3]);
    191		if (ch & 0x08)
    192			be128_xor(r, r, &p[4]);
    193		if (ch & 0x04)
    194			be128_xor(r, r, &p[5]);
    195		if (ch & 0x02)
    196			be128_xor(r, r, &p[6]);
    197		if (ch & 0x01)
    198			be128_xor(r, r, &p[7]);
    199
    200		if (++i >= 16)
    201			break;
    202
    203		gf128mul_x8_lle(r);
    204	}
    205}
    206EXPORT_SYMBOL(gf128mul_lle);
    207
    208void gf128mul_bbe(be128 *r, const be128 *b)
    209{
    210	be128 p[8];
    211	int i;
    212
    213	p[0] = *r;
    214	for (i = 0; i < 7; ++i)
    215		gf128mul_x_bbe(&p[i + 1], &p[i]);
    216
    217	memset(r, 0, sizeof(*r));
    218	for (i = 0;;) {
    219		u8 ch = ((u8 *)b)[i];
    220
    221		if (ch & 0x80)
    222			be128_xor(r, r, &p[7]);
    223		if (ch & 0x40)
    224			be128_xor(r, r, &p[6]);
    225		if (ch & 0x20)
    226			be128_xor(r, r, &p[5]);
    227		if (ch & 0x10)
    228			be128_xor(r, r, &p[4]);
    229		if (ch & 0x08)
    230			be128_xor(r, r, &p[3]);
    231		if (ch & 0x04)
    232			be128_xor(r, r, &p[2]);
    233		if (ch & 0x02)
    234			be128_xor(r, r, &p[1]);
    235		if (ch & 0x01)
    236			be128_xor(r, r, &p[0]);
    237
    238		if (++i >= 16)
    239			break;
    240
    241		gf128mul_x8_bbe(r);
    242	}
    243}
    244EXPORT_SYMBOL(gf128mul_bbe);
    245
    246/*      This version uses 64k bytes of table space.
    247    A 16 byte buffer has to be multiplied by a 16 byte key
    248    value in GF(2^128).  If we consider a GF(2^128) value in
    249    the buffer's lowest byte, we can construct a table of
    250    the 256 16 byte values that result from the 256 values
    251    of this byte.  This requires 4096 bytes. But we also
    252    need tables for each of the 16 higher bytes in the
    253    buffer as well, which makes 64 kbytes in total.
    254*/
    255/* additional explanation
    256 * t[0][BYTE] contains g*BYTE
    257 * t[1][BYTE] contains g*x^8*BYTE
    258 *  ..
    259 * t[15][BYTE] contains g*x^120*BYTE */
    260struct gf128mul_64k *gf128mul_init_64k_bbe(const be128 *g)
    261{
    262	struct gf128mul_64k *t;
    263	int i, j, k;
    264
    265	t = kzalloc(sizeof(*t), GFP_KERNEL);
    266	if (!t)
    267		goto out;
    268
    269	for (i = 0; i < 16; i++) {
    270		t->t[i] = kzalloc(sizeof(*t->t[i]), GFP_KERNEL);
    271		if (!t->t[i]) {
    272			gf128mul_free_64k(t);
    273			t = NULL;
    274			goto out;
    275		}
    276	}
    277
    278	t->t[0]->t[1] = *g;
    279	for (j = 1; j <= 64; j <<= 1)
    280		gf128mul_x_bbe(&t->t[0]->t[j + j], &t->t[0]->t[j]);
    281
    282	for (i = 0;;) {
    283		for (j = 2; j < 256; j += j)
    284			for (k = 1; k < j; ++k)
    285				be128_xor(&t->t[i]->t[j + k],
    286					  &t->t[i]->t[j], &t->t[i]->t[k]);
    287
    288		if (++i >= 16)
    289			break;
    290
    291		for (j = 128; j > 0; j >>= 1) {
    292			t->t[i]->t[j] = t->t[i - 1]->t[j];
    293			gf128mul_x8_bbe(&t->t[i]->t[j]);
    294		}
    295	}
    296
    297out:
    298	return t;
    299}
    300EXPORT_SYMBOL(gf128mul_init_64k_bbe);
    301
    302void gf128mul_free_64k(struct gf128mul_64k *t)
    303{
    304	int i;
    305
    306	for (i = 0; i < 16; i++)
    307		kfree_sensitive(t->t[i]);
    308	kfree_sensitive(t);
    309}
    310EXPORT_SYMBOL(gf128mul_free_64k);
    311
    312void gf128mul_64k_bbe(be128 *a, const struct gf128mul_64k *t)
    313{
    314	u8 *ap = (u8 *)a;
    315	be128 r[1];
    316	int i;
    317
    318	*r = t->t[0]->t[ap[15]];
    319	for (i = 1; i < 16; ++i)
    320		be128_xor(r, r, &t->t[i]->t[ap[15 - i]]);
    321	*a = *r;
    322}
    323EXPORT_SYMBOL(gf128mul_64k_bbe);
    324
    325/*      This version uses 4k bytes of table space.
    326    A 16 byte buffer has to be multiplied by a 16 byte key
    327    value in GF(2^128).  If we consider a GF(2^128) value in a
    328    single byte, we can construct a table of the 256 16 byte
    329    values that result from the 256 values of this byte.
    330    This requires 4096 bytes. If we take the highest byte in
    331    the buffer and use this table to get the result, we then
    332    have to multiply by x^120 to get the final value. For the
    333    next highest byte the result has to be multiplied by x^112
    334    and so on. But we can do this by accumulating the result
    335    in an accumulator starting with the result for the top
    336    byte.  We repeatedly multiply the accumulator value by
    337    x^8 and then add in (i.e. xor) the 16 bytes of the next
    338    lower byte in the buffer, stopping when we reach the
    339    lowest byte. This requires a 4096 byte table.
    340*/
    341struct gf128mul_4k *gf128mul_init_4k_lle(const be128 *g)
    342{
    343	struct gf128mul_4k *t;
    344	int j, k;
    345
    346	t = kzalloc(sizeof(*t), GFP_KERNEL);
    347	if (!t)
    348		goto out;
    349
    350	t->t[128] = *g;
    351	for (j = 64; j > 0; j >>= 1)
    352		gf128mul_x_lle(&t->t[j], &t->t[j+j]);
    353
    354	for (j = 2; j < 256; j += j)
    355		for (k = 1; k < j; ++k)
    356			be128_xor(&t->t[j + k], &t->t[j], &t->t[k]);
    357
    358out:
    359	return t;
    360}
    361EXPORT_SYMBOL(gf128mul_init_4k_lle);
    362
    363struct gf128mul_4k *gf128mul_init_4k_bbe(const be128 *g)
    364{
    365	struct gf128mul_4k *t;
    366	int j, k;
    367
    368	t = kzalloc(sizeof(*t), GFP_KERNEL);
    369	if (!t)
    370		goto out;
    371
    372	t->t[1] = *g;
    373	for (j = 1; j <= 64; j <<= 1)
    374		gf128mul_x_bbe(&t->t[j + j], &t->t[j]);
    375
    376	for (j = 2; j < 256; j += j)
    377		for (k = 1; k < j; ++k)
    378			be128_xor(&t->t[j + k], &t->t[j], &t->t[k]);
    379
    380out:
    381	return t;
    382}
    383EXPORT_SYMBOL(gf128mul_init_4k_bbe);
    384
    385void gf128mul_4k_lle(be128 *a, const struct gf128mul_4k *t)
    386{
    387	u8 *ap = (u8 *)a;
    388	be128 r[1];
    389	int i = 15;
    390
    391	*r = t->t[ap[15]];
    392	while (i--) {
    393		gf128mul_x8_lle(r);
    394		be128_xor(r, r, &t->t[ap[i]]);
    395	}
    396	*a = *r;
    397}
    398EXPORT_SYMBOL(gf128mul_4k_lle);
    399
    400void gf128mul_4k_bbe(be128 *a, const struct gf128mul_4k *t)
    401{
    402	u8 *ap = (u8 *)a;
    403	be128 r[1];
    404	int i = 0;
    405
    406	*r = t->t[ap[0]];
    407	while (++i < 16) {
    408		gf128mul_x8_bbe(r);
    409		be128_xor(r, r, &t->t[ap[i]]);
    410	}
    411	*a = *r;
    412}
    413EXPORT_SYMBOL(gf128mul_4k_bbe);
    414
    415MODULE_LICENSE("GPL");
    416MODULE_DESCRIPTION("Functions for multiplying elements of GF(2^128)");