gf128mul.c (12760B)
1/* gf128mul.c - GF(2^128) multiplication functions 2 * 3 * Copyright (c) 2003, Dr Brian Gladman, Worcester, UK. 4 * Copyright (c) 2006, Rik Snel <rsnel@cube.dyndns.org> 5 * 6 * Based on Dr Brian Gladman's (GPL'd) work published at 7 * http://gladman.plushost.co.uk/oldsite/cryptography_technology/index.php 8 * See the original copyright notice below. 9 * 10 * This program is free software; you can redistribute it and/or modify it 11 * under the terms of the GNU General Public License as published by the Free 12 * Software Foundation; either version 2 of the License, or (at your option) 13 * any later version. 14 */ 15 16/* 17 --------------------------------------------------------------------------- 18 Copyright (c) 2003, Dr Brian Gladman, Worcester, UK. All rights reserved. 19 20 LICENSE TERMS 21 22 The free distribution and use of this software in both source and binary 23 form is allowed (with or without changes) provided that: 24 25 1. distributions of this source code include the above copyright 26 notice, this list of conditions and the following disclaimer; 27 28 2. distributions in binary form include the above copyright 29 notice, this list of conditions and the following disclaimer 30 in the documentation and/or other associated materials; 31 32 3. the copyright holder's name is not used to endorse products 33 built using this software without specific written permission. 34 35 ALTERNATIVELY, provided that this notice is retained in full, this product 36 may be distributed under the terms of the GNU General Public License (GPL), 37 in which case the provisions of the GPL apply INSTEAD OF those given above. 38 39 DISCLAIMER 40 41 This software is provided 'as is' with no explicit or implied warranties 42 in respect of its properties, including, but not limited to, correctness 43 and/or fitness for purpose. 44 --------------------------------------------------------------------------- 45 Issue 31/01/2006 46 47 This file provides fast multiplication in GF(2^128) as required by several 48 cryptographic authentication modes 49*/ 50 51#include <crypto/gf128mul.h> 52#include <linux/kernel.h> 53#include <linux/module.h> 54#include <linux/slab.h> 55 56#define gf128mul_dat(q) { \ 57 q(0x00), q(0x01), q(0x02), q(0x03), q(0x04), q(0x05), q(0x06), q(0x07),\ 58 q(0x08), q(0x09), q(0x0a), q(0x0b), q(0x0c), q(0x0d), q(0x0e), q(0x0f),\ 59 q(0x10), q(0x11), q(0x12), q(0x13), q(0x14), q(0x15), q(0x16), q(0x17),\ 60 q(0x18), q(0x19), q(0x1a), q(0x1b), q(0x1c), q(0x1d), q(0x1e), q(0x1f),\ 61 q(0x20), q(0x21), q(0x22), q(0x23), q(0x24), q(0x25), q(0x26), q(0x27),\ 62 q(0x28), q(0x29), q(0x2a), q(0x2b), q(0x2c), q(0x2d), q(0x2e), q(0x2f),\ 63 q(0x30), q(0x31), q(0x32), q(0x33), q(0x34), q(0x35), q(0x36), q(0x37),\ 64 q(0x38), q(0x39), q(0x3a), q(0x3b), q(0x3c), q(0x3d), q(0x3e), q(0x3f),\ 65 q(0x40), q(0x41), q(0x42), q(0x43), q(0x44), q(0x45), q(0x46), q(0x47),\ 66 q(0x48), q(0x49), q(0x4a), q(0x4b), q(0x4c), q(0x4d), q(0x4e), q(0x4f),\ 67 q(0x50), q(0x51), q(0x52), q(0x53), q(0x54), q(0x55), q(0x56), q(0x57),\ 68 q(0x58), q(0x59), q(0x5a), q(0x5b), q(0x5c), q(0x5d), q(0x5e), q(0x5f),\ 69 q(0x60), q(0x61), q(0x62), q(0x63), q(0x64), q(0x65), q(0x66), q(0x67),\ 70 q(0x68), q(0x69), q(0x6a), q(0x6b), q(0x6c), q(0x6d), q(0x6e), q(0x6f),\ 71 q(0x70), q(0x71), q(0x72), q(0x73), q(0x74), q(0x75), q(0x76), q(0x77),\ 72 q(0x78), q(0x79), q(0x7a), q(0x7b), q(0x7c), q(0x7d), q(0x7e), q(0x7f),\ 73 q(0x80), q(0x81), q(0x82), q(0x83), q(0x84), q(0x85), q(0x86), q(0x87),\ 74 q(0x88), q(0x89), q(0x8a), q(0x8b), q(0x8c), q(0x8d), q(0x8e), q(0x8f),\ 75 q(0x90), q(0x91), q(0x92), q(0x93), q(0x94), q(0x95), q(0x96), q(0x97),\ 76 q(0x98), q(0x99), q(0x9a), q(0x9b), q(0x9c), q(0x9d), q(0x9e), q(0x9f),\ 77 q(0xa0), q(0xa1), q(0xa2), q(0xa3), q(0xa4), q(0xa5), q(0xa6), q(0xa7),\ 78 q(0xa8), q(0xa9), q(0xaa), q(0xab), q(0xac), q(0xad), q(0xae), q(0xaf),\ 79 q(0xb0), q(0xb1), q(0xb2), q(0xb3), q(0xb4), q(0xb5), q(0xb6), q(0xb7),\ 80 q(0xb8), q(0xb9), q(0xba), q(0xbb), q(0xbc), q(0xbd), q(0xbe), q(0xbf),\ 81 q(0xc0), q(0xc1), q(0xc2), q(0xc3), q(0xc4), q(0xc5), q(0xc6), q(0xc7),\ 82 q(0xc8), q(0xc9), q(0xca), q(0xcb), q(0xcc), q(0xcd), q(0xce), q(0xcf),\ 83 q(0xd0), q(0xd1), q(0xd2), q(0xd3), q(0xd4), q(0xd5), q(0xd6), q(0xd7),\ 84 q(0xd8), q(0xd9), q(0xda), q(0xdb), q(0xdc), q(0xdd), q(0xde), q(0xdf),\ 85 q(0xe0), q(0xe1), q(0xe2), q(0xe3), q(0xe4), q(0xe5), q(0xe6), q(0xe7),\ 86 q(0xe8), q(0xe9), q(0xea), q(0xeb), q(0xec), q(0xed), q(0xee), q(0xef),\ 87 q(0xf0), q(0xf1), q(0xf2), q(0xf3), q(0xf4), q(0xf5), q(0xf6), q(0xf7),\ 88 q(0xf8), q(0xf9), q(0xfa), q(0xfb), q(0xfc), q(0xfd), q(0xfe), q(0xff) \ 89} 90 91/* 92 * Given a value i in 0..255 as the byte overflow when a field element 93 * in GF(2^128) is multiplied by x^8, the following macro returns the 94 * 16-bit value that must be XOR-ed into the low-degree end of the 95 * product to reduce it modulo the polynomial x^128 + x^7 + x^2 + x + 1. 96 * 97 * There are two versions of the macro, and hence two tables: one for 98 * the "be" convention where the highest-order bit is the coefficient of 99 * the highest-degree polynomial term, and one for the "le" convention 100 * where the highest-order bit is the coefficient of the lowest-degree 101 * polynomial term. In both cases the values are stored in CPU byte 102 * endianness such that the coefficients are ordered consistently across 103 * bytes, i.e. in the "be" table bits 15..0 of the stored value 104 * correspond to the coefficients of x^15..x^0, and in the "le" table 105 * bits 15..0 correspond to the coefficients of x^0..x^15. 106 * 107 * Therefore, provided that the appropriate byte endianness conversions 108 * are done by the multiplication functions (and these must be in place 109 * anyway to support both little endian and big endian CPUs), the "be" 110 * table can be used for multiplications of both "bbe" and "ble" 111 * elements, and the "le" table can be used for multiplications of both 112 * "lle" and "lbe" elements. 113 */ 114 115#define xda_be(i) ( \ 116 (i & 0x80 ? 0x4380 : 0) ^ (i & 0x40 ? 0x21c0 : 0) ^ \ 117 (i & 0x20 ? 0x10e0 : 0) ^ (i & 0x10 ? 0x0870 : 0) ^ \ 118 (i & 0x08 ? 0x0438 : 0) ^ (i & 0x04 ? 0x021c : 0) ^ \ 119 (i & 0x02 ? 0x010e : 0) ^ (i & 0x01 ? 0x0087 : 0) \ 120) 121 122#define xda_le(i) ( \ 123 (i & 0x80 ? 0xe100 : 0) ^ (i & 0x40 ? 0x7080 : 0) ^ \ 124 (i & 0x20 ? 0x3840 : 0) ^ (i & 0x10 ? 0x1c20 : 0) ^ \ 125 (i & 0x08 ? 0x0e10 : 0) ^ (i & 0x04 ? 0x0708 : 0) ^ \ 126 (i & 0x02 ? 0x0384 : 0) ^ (i & 0x01 ? 0x01c2 : 0) \ 127) 128 129static const u16 gf128mul_table_le[256] = gf128mul_dat(xda_le); 130static const u16 gf128mul_table_be[256] = gf128mul_dat(xda_be); 131 132/* 133 * The following functions multiply a field element by x^8 in 134 * the polynomial field representation. They use 64-bit word operations 135 * to gain speed but compensate for machine endianness and hence work 136 * correctly on both styles of machine. 137 */ 138 139static void gf128mul_x8_lle(be128 *x) 140{ 141 u64 a = be64_to_cpu(x->a); 142 u64 b = be64_to_cpu(x->b); 143 u64 _tt = gf128mul_table_le[b & 0xff]; 144 145 x->b = cpu_to_be64((b >> 8) | (a << 56)); 146 x->a = cpu_to_be64((a >> 8) ^ (_tt << 48)); 147} 148 149static void gf128mul_x8_bbe(be128 *x) 150{ 151 u64 a = be64_to_cpu(x->a); 152 u64 b = be64_to_cpu(x->b); 153 u64 _tt = gf128mul_table_be[a >> 56]; 154 155 x->a = cpu_to_be64((a << 8) | (b >> 56)); 156 x->b = cpu_to_be64((b << 8) ^ _tt); 157} 158 159void gf128mul_x8_ble(le128 *r, const le128 *x) 160{ 161 u64 a = le64_to_cpu(x->a); 162 u64 b = le64_to_cpu(x->b); 163 u64 _tt = gf128mul_table_be[a >> 56]; 164 165 r->a = cpu_to_le64((a << 8) | (b >> 56)); 166 r->b = cpu_to_le64((b << 8) ^ _tt); 167} 168EXPORT_SYMBOL(gf128mul_x8_ble); 169 170void gf128mul_lle(be128 *r, const be128 *b) 171{ 172 be128 p[8]; 173 int i; 174 175 p[0] = *r; 176 for (i = 0; i < 7; ++i) 177 gf128mul_x_lle(&p[i + 1], &p[i]); 178 179 memset(r, 0, sizeof(*r)); 180 for (i = 0;;) { 181 u8 ch = ((u8 *)b)[15 - i]; 182 183 if (ch & 0x80) 184 be128_xor(r, r, &p[0]); 185 if (ch & 0x40) 186 be128_xor(r, r, &p[1]); 187 if (ch & 0x20) 188 be128_xor(r, r, &p[2]); 189 if (ch & 0x10) 190 be128_xor(r, r, &p[3]); 191 if (ch & 0x08) 192 be128_xor(r, r, &p[4]); 193 if (ch & 0x04) 194 be128_xor(r, r, &p[5]); 195 if (ch & 0x02) 196 be128_xor(r, r, &p[6]); 197 if (ch & 0x01) 198 be128_xor(r, r, &p[7]); 199 200 if (++i >= 16) 201 break; 202 203 gf128mul_x8_lle(r); 204 } 205} 206EXPORT_SYMBOL(gf128mul_lle); 207 208void gf128mul_bbe(be128 *r, const be128 *b) 209{ 210 be128 p[8]; 211 int i; 212 213 p[0] = *r; 214 for (i = 0; i < 7; ++i) 215 gf128mul_x_bbe(&p[i + 1], &p[i]); 216 217 memset(r, 0, sizeof(*r)); 218 for (i = 0;;) { 219 u8 ch = ((u8 *)b)[i]; 220 221 if (ch & 0x80) 222 be128_xor(r, r, &p[7]); 223 if (ch & 0x40) 224 be128_xor(r, r, &p[6]); 225 if (ch & 0x20) 226 be128_xor(r, r, &p[5]); 227 if (ch & 0x10) 228 be128_xor(r, r, &p[4]); 229 if (ch & 0x08) 230 be128_xor(r, r, &p[3]); 231 if (ch & 0x04) 232 be128_xor(r, r, &p[2]); 233 if (ch & 0x02) 234 be128_xor(r, r, &p[1]); 235 if (ch & 0x01) 236 be128_xor(r, r, &p[0]); 237 238 if (++i >= 16) 239 break; 240 241 gf128mul_x8_bbe(r); 242 } 243} 244EXPORT_SYMBOL(gf128mul_bbe); 245 246/* This version uses 64k bytes of table space. 247 A 16 byte buffer has to be multiplied by a 16 byte key 248 value in GF(2^128). If we consider a GF(2^128) value in 249 the buffer's lowest byte, we can construct a table of 250 the 256 16 byte values that result from the 256 values 251 of this byte. This requires 4096 bytes. But we also 252 need tables for each of the 16 higher bytes in the 253 buffer as well, which makes 64 kbytes in total. 254*/ 255/* additional explanation 256 * t[0][BYTE] contains g*BYTE 257 * t[1][BYTE] contains g*x^8*BYTE 258 * .. 259 * t[15][BYTE] contains g*x^120*BYTE */ 260struct gf128mul_64k *gf128mul_init_64k_bbe(const be128 *g) 261{ 262 struct gf128mul_64k *t; 263 int i, j, k; 264 265 t = kzalloc(sizeof(*t), GFP_KERNEL); 266 if (!t) 267 goto out; 268 269 for (i = 0; i < 16; i++) { 270 t->t[i] = kzalloc(sizeof(*t->t[i]), GFP_KERNEL); 271 if (!t->t[i]) { 272 gf128mul_free_64k(t); 273 t = NULL; 274 goto out; 275 } 276 } 277 278 t->t[0]->t[1] = *g; 279 for (j = 1; j <= 64; j <<= 1) 280 gf128mul_x_bbe(&t->t[0]->t[j + j], &t->t[0]->t[j]); 281 282 for (i = 0;;) { 283 for (j = 2; j < 256; j += j) 284 for (k = 1; k < j; ++k) 285 be128_xor(&t->t[i]->t[j + k], 286 &t->t[i]->t[j], &t->t[i]->t[k]); 287 288 if (++i >= 16) 289 break; 290 291 for (j = 128; j > 0; j >>= 1) { 292 t->t[i]->t[j] = t->t[i - 1]->t[j]; 293 gf128mul_x8_bbe(&t->t[i]->t[j]); 294 } 295 } 296 297out: 298 return t; 299} 300EXPORT_SYMBOL(gf128mul_init_64k_bbe); 301 302void gf128mul_free_64k(struct gf128mul_64k *t) 303{ 304 int i; 305 306 for (i = 0; i < 16; i++) 307 kfree_sensitive(t->t[i]); 308 kfree_sensitive(t); 309} 310EXPORT_SYMBOL(gf128mul_free_64k); 311 312void gf128mul_64k_bbe(be128 *a, const struct gf128mul_64k *t) 313{ 314 u8 *ap = (u8 *)a; 315 be128 r[1]; 316 int i; 317 318 *r = t->t[0]->t[ap[15]]; 319 for (i = 1; i < 16; ++i) 320 be128_xor(r, r, &t->t[i]->t[ap[15 - i]]); 321 *a = *r; 322} 323EXPORT_SYMBOL(gf128mul_64k_bbe); 324 325/* This version uses 4k bytes of table space. 326 A 16 byte buffer has to be multiplied by a 16 byte key 327 value in GF(2^128). If we consider a GF(2^128) value in a 328 single byte, we can construct a table of the 256 16 byte 329 values that result from the 256 values of this byte. 330 This requires 4096 bytes. If we take the highest byte in 331 the buffer and use this table to get the result, we then 332 have to multiply by x^120 to get the final value. For the 333 next highest byte the result has to be multiplied by x^112 334 and so on. But we can do this by accumulating the result 335 in an accumulator starting with the result for the top 336 byte. We repeatedly multiply the accumulator value by 337 x^8 and then add in (i.e. xor) the 16 bytes of the next 338 lower byte in the buffer, stopping when we reach the 339 lowest byte. This requires a 4096 byte table. 340*/ 341struct gf128mul_4k *gf128mul_init_4k_lle(const be128 *g) 342{ 343 struct gf128mul_4k *t; 344 int j, k; 345 346 t = kzalloc(sizeof(*t), GFP_KERNEL); 347 if (!t) 348 goto out; 349 350 t->t[128] = *g; 351 for (j = 64; j > 0; j >>= 1) 352 gf128mul_x_lle(&t->t[j], &t->t[j+j]); 353 354 for (j = 2; j < 256; j += j) 355 for (k = 1; k < j; ++k) 356 be128_xor(&t->t[j + k], &t->t[j], &t->t[k]); 357 358out: 359 return t; 360} 361EXPORT_SYMBOL(gf128mul_init_4k_lle); 362 363struct gf128mul_4k *gf128mul_init_4k_bbe(const be128 *g) 364{ 365 struct gf128mul_4k *t; 366 int j, k; 367 368 t = kzalloc(sizeof(*t), GFP_KERNEL); 369 if (!t) 370 goto out; 371 372 t->t[1] = *g; 373 for (j = 1; j <= 64; j <<= 1) 374 gf128mul_x_bbe(&t->t[j + j], &t->t[j]); 375 376 for (j = 2; j < 256; j += j) 377 for (k = 1; k < j; ++k) 378 be128_xor(&t->t[j + k], &t->t[j], &t->t[k]); 379 380out: 381 return t; 382} 383EXPORT_SYMBOL(gf128mul_init_4k_bbe); 384 385void gf128mul_4k_lle(be128 *a, const struct gf128mul_4k *t) 386{ 387 u8 *ap = (u8 *)a; 388 be128 r[1]; 389 int i = 15; 390 391 *r = t->t[ap[15]]; 392 while (i--) { 393 gf128mul_x8_lle(r); 394 be128_xor(r, r, &t->t[ap[i]]); 395 } 396 *a = *r; 397} 398EXPORT_SYMBOL(gf128mul_4k_lle); 399 400void gf128mul_4k_bbe(be128 *a, const struct gf128mul_4k *t) 401{ 402 u8 *ap = (u8 *)a; 403 be128 r[1]; 404 int i = 0; 405 406 *r = t->t[ap[0]]; 407 while (++i < 16) { 408 gf128mul_x8_bbe(r); 409 be128_xor(r, r, &t->t[ap[i]]); 410 } 411 *a = *r; 412} 413EXPORT_SYMBOL(gf128mul_4k_bbe); 414 415MODULE_LICENSE("GPL"); 416MODULE_DESCRIPTION("Functions for multiplying elements of GF(2^128)");