cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

lrw.c (10849B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/* LRW: as defined by Cyril Guyot in
      3 *	http://grouper.ieee.org/groups/1619/email/pdf00017.pdf
      4 *
      5 * Copyright (c) 2006 Rik Snel <rsnel@cube.dyndns.org>
      6 *
      7 * Based on ecb.c
      8 * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
      9 */
     10/* This implementation is checked against the test vectors in the above
     11 * document and by a test vector provided by Ken Buchanan at
     12 * https://www.mail-archive.com/stds-p1619@listserv.ieee.org/msg00173.html
     13 *
     14 * The test vectors are included in the testing module tcrypt.[ch] */
     15
     16#include <crypto/internal/skcipher.h>
     17#include <crypto/scatterwalk.h>
     18#include <linux/err.h>
     19#include <linux/init.h>
     20#include <linux/kernel.h>
     21#include <linux/module.h>
     22#include <linux/scatterlist.h>
     23#include <linux/slab.h>
     24
     25#include <crypto/b128ops.h>
     26#include <crypto/gf128mul.h>
     27
     28#define LRW_BLOCK_SIZE 16
     29
     30struct lrw_tfm_ctx {
     31	struct crypto_skcipher *child;
     32
     33	/*
     34	 * optimizes multiplying a random (non incrementing, as at the
     35	 * start of a new sector) value with key2, we could also have
     36	 * used 4k optimization tables or no optimization at all. In the
     37	 * latter case we would have to store key2 here
     38	 */
     39	struct gf128mul_64k *table;
     40
     41	/*
     42	 * stores:
     43	 *  key2*{ 0,0,...0,0,0,0,1 }, key2*{ 0,0,...0,0,0,1,1 },
     44	 *  key2*{ 0,0,...0,0,1,1,1 }, key2*{ 0,0,...0,1,1,1,1 }
     45	 *  key2*{ 0,0,...1,1,1,1,1 }, etc
     46	 * needed for optimized multiplication of incrementing values
     47	 * with key2
     48	 */
     49	be128 mulinc[128];
     50};
     51
     52struct lrw_request_ctx {
     53	be128 t;
     54	struct skcipher_request subreq;
     55};
     56
     57static inline void lrw_setbit128_bbe(void *b, int bit)
     58{
     59	__set_bit(bit ^ (0x80 -
     60#ifdef __BIG_ENDIAN
     61			 BITS_PER_LONG
     62#else
     63			 BITS_PER_BYTE
     64#endif
     65			), b);
     66}
     67
     68static int lrw_setkey(struct crypto_skcipher *parent, const u8 *key,
     69		      unsigned int keylen)
     70{
     71	struct lrw_tfm_ctx *ctx = crypto_skcipher_ctx(parent);
     72	struct crypto_skcipher *child = ctx->child;
     73	int err, bsize = LRW_BLOCK_SIZE;
     74	const u8 *tweak = key + keylen - bsize;
     75	be128 tmp = { 0 };
     76	int i;
     77
     78	crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
     79	crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(parent) &
     80					 CRYPTO_TFM_REQ_MASK);
     81	err = crypto_skcipher_setkey(child, key, keylen - bsize);
     82	if (err)
     83		return err;
     84
     85	if (ctx->table)
     86		gf128mul_free_64k(ctx->table);
     87
     88	/* initialize multiplication table for Key2 */
     89	ctx->table = gf128mul_init_64k_bbe((be128 *)tweak);
     90	if (!ctx->table)
     91		return -ENOMEM;
     92
     93	/* initialize optimization table */
     94	for (i = 0; i < 128; i++) {
     95		lrw_setbit128_bbe(&tmp, i);
     96		ctx->mulinc[i] = tmp;
     97		gf128mul_64k_bbe(&ctx->mulinc[i], ctx->table);
     98	}
     99
    100	return 0;
    101}
    102
    103/*
    104 * Returns the number of trailing '1' bits in the words of the counter, which is
    105 * represented by 4 32-bit words, arranged from least to most significant.
    106 * At the same time, increments the counter by one.
    107 *
    108 * For example:
    109 *
    110 * u32 counter[4] = { 0xFFFFFFFF, 0x1, 0x0, 0x0 };
    111 * int i = lrw_next_index(&counter);
    112 * // i == 33, counter == { 0x0, 0x2, 0x0, 0x0 }
    113 */
    114static int lrw_next_index(u32 *counter)
    115{
    116	int i, res = 0;
    117
    118	for (i = 0; i < 4; i++) {
    119		if (counter[i] + 1 != 0)
    120			return res + ffz(counter[i]++);
    121
    122		counter[i] = 0;
    123		res += 32;
    124	}
    125
    126	/*
    127	 * If we get here, then x == 128 and we are incrementing the counter
    128	 * from all ones to all zeros. This means we must return index 127, i.e.
    129	 * the one corresponding to key2*{ 1,...,1 }.
    130	 */
    131	return 127;
    132}
    133
    134/*
    135 * We compute the tweak masks twice (both before and after the ECB encryption or
    136 * decryption) to avoid having to allocate a temporary buffer and/or make
    137 * mutliple calls to the 'ecb(..)' instance, which usually would be slower than
    138 * just doing the lrw_next_index() calls again.
    139 */
    140static int lrw_xor_tweak(struct skcipher_request *req, bool second_pass)
    141{
    142	const int bs = LRW_BLOCK_SIZE;
    143	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
    144	const struct lrw_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
    145	struct lrw_request_ctx *rctx = skcipher_request_ctx(req);
    146	be128 t = rctx->t;
    147	struct skcipher_walk w;
    148	__be32 *iv;
    149	u32 counter[4];
    150	int err;
    151
    152	if (second_pass) {
    153		req = &rctx->subreq;
    154		/* set to our TFM to enforce correct alignment: */
    155		skcipher_request_set_tfm(req, tfm);
    156	}
    157
    158	err = skcipher_walk_virt(&w, req, false);
    159	if (err)
    160		return err;
    161
    162	iv = (__be32 *)w.iv;
    163	counter[0] = be32_to_cpu(iv[3]);
    164	counter[1] = be32_to_cpu(iv[2]);
    165	counter[2] = be32_to_cpu(iv[1]);
    166	counter[3] = be32_to_cpu(iv[0]);
    167
    168	while (w.nbytes) {
    169		unsigned int avail = w.nbytes;
    170		be128 *wsrc;
    171		be128 *wdst;
    172
    173		wsrc = w.src.virt.addr;
    174		wdst = w.dst.virt.addr;
    175
    176		do {
    177			be128_xor(wdst++, &t, wsrc++);
    178
    179			/* T <- I*Key2, using the optimization
    180			 * discussed in the specification */
    181			be128_xor(&t, &t,
    182				  &ctx->mulinc[lrw_next_index(counter)]);
    183		} while ((avail -= bs) >= bs);
    184
    185		if (second_pass && w.nbytes == w.total) {
    186			iv[0] = cpu_to_be32(counter[3]);
    187			iv[1] = cpu_to_be32(counter[2]);
    188			iv[2] = cpu_to_be32(counter[1]);
    189			iv[3] = cpu_to_be32(counter[0]);
    190		}
    191
    192		err = skcipher_walk_done(&w, avail);
    193	}
    194
    195	return err;
    196}
    197
    198static int lrw_xor_tweak_pre(struct skcipher_request *req)
    199{
    200	return lrw_xor_tweak(req, false);
    201}
    202
    203static int lrw_xor_tweak_post(struct skcipher_request *req)
    204{
    205	return lrw_xor_tweak(req, true);
    206}
    207
    208static void lrw_crypt_done(struct crypto_async_request *areq, int err)
    209{
    210	struct skcipher_request *req = areq->data;
    211
    212	if (!err) {
    213		struct lrw_request_ctx *rctx = skcipher_request_ctx(req);
    214
    215		rctx->subreq.base.flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
    216		err = lrw_xor_tweak_post(req);
    217	}
    218
    219	skcipher_request_complete(req, err);
    220}
    221
    222static void lrw_init_crypt(struct skcipher_request *req)
    223{
    224	const struct lrw_tfm_ctx *ctx =
    225		crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
    226	struct lrw_request_ctx *rctx = skcipher_request_ctx(req);
    227	struct skcipher_request *subreq = &rctx->subreq;
    228
    229	skcipher_request_set_tfm(subreq, ctx->child);
    230	skcipher_request_set_callback(subreq, req->base.flags, lrw_crypt_done,
    231				      req);
    232	/* pass req->iv as IV (will be used by xor_tweak, ECB will ignore it) */
    233	skcipher_request_set_crypt(subreq, req->dst, req->dst,
    234				   req->cryptlen, req->iv);
    235
    236	/* calculate first value of T */
    237	memcpy(&rctx->t, req->iv, sizeof(rctx->t));
    238
    239	/* T <- I*Key2 */
    240	gf128mul_64k_bbe(&rctx->t, ctx->table);
    241}
    242
    243static int lrw_encrypt(struct skcipher_request *req)
    244{
    245	struct lrw_request_ctx *rctx = skcipher_request_ctx(req);
    246	struct skcipher_request *subreq = &rctx->subreq;
    247
    248	lrw_init_crypt(req);
    249	return lrw_xor_tweak_pre(req) ?:
    250		crypto_skcipher_encrypt(subreq) ?:
    251		lrw_xor_tweak_post(req);
    252}
    253
    254static int lrw_decrypt(struct skcipher_request *req)
    255{
    256	struct lrw_request_ctx *rctx = skcipher_request_ctx(req);
    257	struct skcipher_request *subreq = &rctx->subreq;
    258
    259	lrw_init_crypt(req);
    260	return lrw_xor_tweak_pre(req) ?:
    261		crypto_skcipher_decrypt(subreq) ?:
    262		lrw_xor_tweak_post(req);
    263}
    264
    265static int lrw_init_tfm(struct crypto_skcipher *tfm)
    266{
    267	struct skcipher_instance *inst = skcipher_alg_instance(tfm);
    268	struct crypto_skcipher_spawn *spawn = skcipher_instance_ctx(inst);
    269	struct lrw_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
    270	struct crypto_skcipher *cipher;
    271
    272	cipher = crypto_spawn_skcipher(spawn);
    273	if (IS_ERR(cipher))
    274		return PTR_ERR(cipher);
    275
    276	ctx->child = cipher;
    277
    278	crypto_skcipher_set_reqsize(tfm, crypto_skcipher_reqsize(cipher) +
    279					 sizeof(struct lrw_request_ctx));
    280
    281	return 0;
    282}
    283
    284static void lrw_exit_tfm(struct crypto_skcipher *tfm)
    285{
    286	struct lrw_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
    287
    288	if (ctx->table)
    289		gf128mul_free_64k(ctx->table);
    290	crypto_free_skcipher(ctx->child);
    291}
    292
    293static void lrw_free_instance(struct skcipher_instance *inst)
    294{
    295	crypto_drop_skcipher(skcipher_instance_ctx(inst));
    296	kfree(inst);
    297}
    298
    299static int lrw_create(struct crypto_template *tmpl, struct rtattr **tb)
    300{
    301	struct crypto_skcipher_spawn *spawn;
    302	struct skcipher_instance *inst;
    303	struct skcipher_alg *alg;
    304	const char *cipher_name;
    305	char ecb_name[CRYPTO_MAX_ALG_NAME];
    306	u32 mask;
    307	int err;
    308
    309	err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SKCIPHER, &mask);
    310	if (err)
    311		return err;
    312
    313	cipher_name = crypto_attr_alg_name(tb[1]);
    314	if (IS_ERR(cipher_name))
    315		return PTR_ERR(cipher_name);
    316
    317	inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
    318	if (!inst)
    319		return -ENOMEM;
    320
    321	spawn = skcipher_instance_ctx(inst);
    322
    323	err = crypto_grab_skcipher(spawn, skcipher_crypto_instance(inst),
    324				   cipher_name, 0, mask);
    325	if (err == -ENOENT) {
    326		err = -ENAMETOOLONG;
    327		if (snprintf(ecb_name, CRYPTO_MAX_ALG_NAME, "ecb(%s)",
    328			     cipher_name) >= CRYPTO_MAX_ALG_NAME)
    329			goto err_free_inst;
    330
    331		err = crypto_grab_skcipher(spawn,
    332					   skcipher_crypto_instance(inst),
    333					   ecb_name, 0, mask);
    334	}
    335
    336	if (err)
    337		goto err_free_inst;
    338
    339	alg = crypto_skcipher_spawn_alg(spawn);
    340
    341	err = -EINVAL;
    342	if (alg->base.cra_blocksize != LRW_BLOCK_SIZE)
    343		goto err_free_inst;
    344
    345	if (crypto_skcipher_alg_ivsize(alg))
    346		goto err_free_inst;
    347
    348	err = crypto_inst_setname(skcipher_crypto_instance(inst), "lrw",
    349				  &alg->base);
    350	if (err)
    351		goto err_free_inst;
    352
    353	err = -EINVAL;
    354	cipher_name = alg->base.cra_name;
    355
    356	/* Alas we screwed up the naming so we have to mangle the
    357	 * cipher name.
    358	 */
    359	if (!strncmp(cipher_name, "ecb(", 4)) {
    360		unsigned len;
    361
    362		len = strlcpy(ecb_name, cipher_name + 4, sizeof(ecb_name));
    363		if (len < 2 || len >= sizeof(ecb_name))
    364			goto err_free_inst;
    365
    366		if (ecb_name[len - 1] != ')')
    367			goto err_free_inst;
    368
    369		ecb_name[len - 1] = 0;
    370
    371		if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME,
    372			     "lrw(%s)", ecb_name) >= CRYPTO_MAX_ALG_NAME) {
    373			err = -ENAMETOOLONG;
    374			goto err_free_inst;
    375		}
    376	} else
    377		goto err_free_inst;
    378
    379	inst->alg.base.cra_priority = alg->base.cra_priority;
    380	inst->alg.base.cra_blocksize = LRW_BLOCK_SIZE;
    381	inst->alg.base.cra_alignmask = alg->base.cra_alignmask |
    382				       (__alignof__(be128) - 1);
    383
    384	inst->alg.ivsize = LRW_BLOCK_SIZE;
    385	inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(alg) +
    386				LRW_BLOCK_SIZE;
    387	inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(alg) +
    388				LRW_BLOCK_SIZE;
    389
    390	inst->alg.base.cra_ctxsize = sizeof(struct lrw_tfm_ctx);
    391
    392	inst->alg.init = lrw_init_tfm;
    393	inst->alg.exit = lrw_exit_tfm;
    394
    395	inst->alg.setkey = lrw_setkey;
    396	inst->alg.encrypt = lrw_encrypt;
    397	inst->alg.decrypt = lrw_decrypt;
    398
    399	inst->free = lrw_free_instance;
    400
    401	err = skcipher_register_instance(tmpl, inst);
    402	if (err) {
    403err_free_inst:
    404		lrw_free_instance(inst);
    405	}
    406	return err;
    407}
    408
    409static struct crypto_template lrw_tmpl = {
    410	.name = "lrw",
    411	.create = lrw_create,
    412	.module = THIS_MODULE,
    413};
    414
    415static int __init lrw_module_init(void)
    416{
    417	return crypto_register_template(&lrw_tmpl);
    418}
    419
    420static void __exit lrw_module_exit(void)
    421{
    422	crypto_unregister_template(&lrw_tmpl);
    423}
    424
    425subsys_initcall(lrw_module_init);
    426module_exit(lrw_module_exit);
    427
    428MODULE_LICENSE("GPL");
    429MODULE_DESCRIPTION("LRW block cipher mode");
    430MODULE_ALIAS_CRYPTO("lrw");
    431MODULE_SOFTDEP("pre: ecb");