cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

utmath.c (12991B)


      1// SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0
      2/*******************************************************************************
      3 *
      4 * Module Name: utmath - Integer math support routines
      5 *
      6 ******************************************************************************/
      7
      8#include <acpi/acpi.h>
      9#include "accommon.h"
     10
     11#define _COMPONENT          ACPI_UTILITIES
     12ACPI_MODULE_NAME("utmath")
     13
     14/* Structures used only for 64-bit divide */
     15typedef struct uint64_struct {
     16	u32 lo;
     17	u32 hi;
     18
     19} uint64_struct;
     20
     21typedef union uint64_overlay {
     22	u64 full;
     23	struct uint64_struct part;
     24
     25} uint64_overlay;
     26
     27/*
     28 * Optional support for 64-bit double-precision integer multiply and shift.
     29 * This code is configurable and is implemented in order to support 32-bit
     30 * kernel environments where a 64-bit double-precision math library is not
     31 * available.
     32 */
     33#ifndef ACPI_USE_NATIVE_MATH64
     34
     35/*******************************************************************************
     36 *
     37 * FUNCTION:    acpi_ut_short_multiply
     38 *
     39 * PARAMETERS:  multiplicand        - 64-bit multiplicand
     40 *              multiplier          - 32-bit multiplier
     41 *              out_product         - Pointer to where the product is returned
     42 *
     43 * DESCRIPTION: Perform a short multiply.
     44 *
     45 ******************************************************************************/
     46
     47acpi_status
     48acpi_ut_short_multiply(u64 multiplicand, u32 multiplier, u64 *out_product)
     49{
     50	union uint64_overlay multiplicand_ovl;
     51	union uint64_overlay product;
     52	u32 carry32;
     53
     54	ACPI_FUNCTION_TRACE(ut_short_multiply);
     55
     56	multiplicand_ovl.full = multiplicand;
     57
     58	/*
     59	 * The Product is 64 bits, the carry is always 32 bits,
     60	 * and is generated by the second multiply.
     61	 */
     62	ACPI_MUL_64_BY_32(0, multiplicand_ovl.part.hi, multiplier,
     63			  product.part.hi, carry32);
     64
     65	ACPI_MUL_64_BY_32(0, multiplicand_ovl.part.lo, multiplier,
     66			  product.part.lo, carry32);
     67
     68	product.part.hi += carry32;
     69
     70	/* Return only what was requested */
     71
     72	if (out_product) {
     73		*out_product = product.full;
     74	}
     75
     76	return_ACPI_STATUS(AE_OK);
     77}
     78
     79/*******************************************************************************
     80 *
     81 * FUNCTION:    acpi_ut_short_shift_left
     82 *
     83 * PARAMETERS:  operand             - 64-bit shift operand
     84 *              count               - 32-bit shift count
     85 *              out_result          - Pointer to where the result is returned
     86 *
     87 * DESCRIPTION: Perform a short left shift.
     88 *
     89 ******************************************************************************/
     90
     91acpi_status acpi_ut_short_shift_left(u64 operand, u32 count, u64 *out_result)
     92{
     93	union uint64_overlay operand_ovl;
     94
     95	ACPI_FUNCTION_TRACE(ut_short_shift_left);
     96
     97	operand_ovl.full = operand;
     98
     99	if ((count & 63) >= 32) {
    100		operand_ovl.part.hi = operand_ovl.part.lo;
    101		operand_ovl.part.lo = 0;
    102		count = (count & 63) - 32;
    103	}
    104	ACPI_SHIFT_LEFT_64_BY_32(operand_ovl.part.hi,
    105				 operand_ovl.part.lo, count);
    106
    107	/* Return only what was requested */
    108
    109	if (out_result) {
    110		*out_result = operand_ovl.full;
    111	}
    112
    113	return_ACPI_STATUS(AE_OK);
    114}
    115
    116/*******************************************************************************
    117 *
    118 * FUNCTION:    acpi_ut_short_shift_right
    119 *
    120 * PARAMETERS:  operand             - 64-bit shift operand
    121 *              count               - 32-bit shift count
    122 *              out_result          - Pointer to where the result is returned
    123 *
    124 * DESCRIPTION: Perform a short right shift.
    125 *
    126 ******************************************************************************/
    127
    128acpi_status acpi_ut_short_shift_right(u64 operand, u32 count, u64 *out_result)
    129{
    130	union uint64_overlay operand_ovl;
    131
    132	ACPI_FUNCTION_TRACE(ut_short_shift_right);
    133
    134	operand_ovl.full = operand;
    135
    136	if ((count & 63) >= 32) {
    137		operand_ovl.part.lo = operand_ovl.part.hi;
    138		operand_ovl.part.hi = 0;
    139		count = (count & 63) - 32;
    140	}
    141	ACPI_SHIFT_RIGHT_64_BY_32(operand_ovl.part.hi,
    142				  operand_ovl.part.lo, count);
    143
    144	/* Return only what was requested */
    145
    146	if (out_result) {
    147		*out_result = operand_ovl.full;
    148	}
    149
    150	return_ACPI_STATUS(AE_OK);
    151}
    152#else
    153
    154/*******************************************************************************
    155 *
    156 * FUNCTION:    acpi_ut_short_multiply
    157 *
    158 * PARAMETERS:  See function headers above
    159 *
    160 * DESCRIPTION: Native version of the ut_short_multiply function.
    161 *
    162 ******************************************************************************/
    163
    164acpi_status
    165acpi_ut_short_multiply(u64 multiplicand, u32 multiplier, u64 *out_product)
    166{
    167
    168	ACPI_FUNCTION_TRACE(ut_short_multiply);
    169
    170	/* Return only what was requested */
    171
    172	if (out_product) {
    173		*out_product = multiplicand * multiplier;
    174	}
    175
    176	return_ACPI_STATUS(AE_OK);
    177}
    178
    179/*******************************************************************************
    180 *
    181 * FUNCTION:    acpi_ut_short_shift_left
    182 *
    183 * PARAMETERS:  See function headers above
    184 *
    185 * DESCRIPTION: Native version of the ut_short_shift_left function.
    186 *
    187 ******************************************************************************/
    188
    189acpi_status acpi_ut_short_shift_left(u64 operand, u32 count, u64 *out_result)
    190{
    191
    192	ACPI_FUNCTION_TRACE(ut_short_shift_left);
    193
    194	/* Return only what was requested */
    195
    196	if (out_result) {
    197		*out_result = operand << count;
    198	}
    199
    200	return_ACPI_STATUS(AE_OK);
    201}
    202
    203/*******************************************************************************
    204 *
    205 * FUNCTION:    acpi_ut_short_shift_right
    206 *
    207 * PARAMETERS:  See function headers above
    208 *
    209 * DESCRIPTION: Native version of the ut_short_shift_right function.
    210 *
    211 ******************************************************************************/
    212
    213acpi_status acpi_ut_short_shift_right(u64 operand, u32 count, u64 *out_result)
    214{
    215
    216	ACPI_FUNCTION_TRACE(ut_short_shift_right);
    217
    218	/* Return only what was requested */
    219
    220	if (out_result) {
    221		*out_result = operand >> count;
    222	}
    223
    224	return_ACPI_STATUS(AE_OK);
    225}
    226#endif
    227
    228/*
    229 * Optional support for 64-bit double-precision integer divide. This code
    230 * is configurable and is implemented in order to support 32-bit kernel
    231 * environments where a 64-bit double-precision math library is not available.
    232 *
    233 * Support for a more normal 64-bit divide/modulo (with check for a divide-
    234 * by-zero) appears after this optional section of code.
    235 */
    236#ifndef ACPI_USE_NATIVE_DIVIDE
    237
    238/*******************************************************************************
    239 *
    240 * FUNCTION:    acpi_ut_short_divide
    241 *
    242 * PARAMETERS:  dividend            - 64-bit dividend
    243 *              divisor             - 32-bit divisor
    244 *              out_quotient        - Pointer to where the quotient is returned
    245 *              out_remainder       - Pointer to where the remainder is returned
    246 *
    247 * RETURN:      Status (Checks for divide-by-zero)
    248 *
    249 * DESCRIPTION: Perform a short (maximum 64 bits divided by 32 bits)
    250 *              divide and modulo. The result is a 64-bit quotient and a
    251 *              32-bit remainder.
    252 *
    253 ******************************************************************************/
    254
    255acpi_status
    256acpi_ut_short_divide(u64 dividend,
    257		     u32 divisor, u64 *out_quotient, u32 *out_remainder)
    258{
    259	union uint64_overlay dividend_ovl;
    260	union uint64_overlay quotient;
    261	u32 remainder32;
    262
    263	ACPI_FUNCTION_TRACE(ut_short_divide);
    264
    265	/* Always check for a zero divisor */
    266
    267	if (divisor == 0) {
    268		ACPI_ERROR((AE_INFO, "Divide by zero"));
    269		return_ACPI_STATUS(AE_AML_DIVIDE_BY_ZERO);
    270	}
    271
    272	dividend_ovl.full = dividend;
    273
    274	/*
    275	 * The quotient is 64 bits, the remainder is always 32 bits,
    276	 * and is generated by the second divide.
    277	 */
    278	ACPI_DIV_64_BY_32(0, dividend_ovl.part.hi, divisor,
    279			  quotient.part.hi, remainder32);
    280
    281	ACPI_DIV_64_BY_32(remainder32, dividend_ovl.part.lo, divisor,
    282			  quotient.part.lo, remainder32);
    283
    284	/* Return only what was requested */
    285
    286	if (out_quotient) {
    287		*out_quotient = quotient.full;
    288	}
    289	if (out_remainder) {
    290		*out_remainder = remainder32;
    291	}
    292
    293	return_ACPI_STATUS(AE_OK);
    294}
    295
    296/*******************************************************************************
    297 *
    298 * FUNCTION:    acpi_ut_divide
    299 *
    300 * PARAMETERS:  in_dividend         - Dividend
    301 *              in_divisor          - Divisor
    302 *              out_quotient        - Pointer to where the quotient is returned
    303 *              out_remainder       - Pointer to where the remainder is returned
    304 *
    305 * RETURN:      Status (Checks for divide-by-zero)
    306 *
    307 * DESCRIPTION: Perform a divide and modulo.
    308 *
    309 ******************************************************************************/
    310
    311acpi_status
    312acpi_ut_divide(u64 in_dividend,
    313	       u64 in_divisor, u64 *out_quotient, u64 *out_remainder)
    314{
    315	union uint64_overlay dividend;
    316	union uint64_overlay divisor;
    317	union uint64_overlay quotient;
    318	union uint64_overlay remainder;
    319	union uint64_overlay normalized_dividend;
    320	union uint64_overlay normalized_divisor;
    321	u32 partial1;
    322	union uint64_overlay partial2;
    323	union uint64_overlay partial3;
    324
    325	ACPI_FUNCTION_TRACE(ut_divide);
    326
    327	/* Always check for a zero divisor */
    328
    329	if (in_divisor == 0) {
    330		ACPI_ERROR((AE_INFO, "Divide by zero"));
    331		return_ACPI_STATUS(AE_AML_DIVIDE_BY_ZERO);
    332	}
    333
    334	divisor.full = in_divisor;
    335	dividend.full = in_dividend;
    336	if (divisor.part.hi == 0) {
    337		/*
    338		 * 1) Simplest case is where the divisor is 32 bits, we can
    339		 * just do two divides
    340		 */
    341		remainder.part.hi = 0;
    342
    343		/*
    344		 * The quotient is 64 bits, the remainder is always 32 bits,
    345		 * and is generated by the second divide.
    346		 */
    347		ACPI_DIV_64_BY_32(0, dividend.part.hi, divisor.part.lo,
    348				  quotient.part.hi, partial1);
    349
    350		ACPI_DIV_64_BY_32(partial1, dividend.part.lo, divisor.part.lo,
    351				  quotient.part.lo, remainder.part.lo);
    352	}
    353
    354	else {
    355		/*
    356		 * 2) The general case where the divisor is a full 64 bits
    357		 * is more difficult
    358		 */
    359		quotient.part.hi = 0;
    360		normalized_dividend = dividend;
    361		normalized_divisor = divisor;
    362
    363		/* Normalize the operands (shift until the divisor is < 32 bits) */
    364
    365		do {
    366			ACPI_SHIFT_RIGHT_64(normalized_divisor.part.hi,
    367					    normalized_divisor.part.lo);
    368			ACPI_SHIFT_RIGHT_64(normalized_dividend.part.hi,
    369					    normalized_dividend.part.lo);
    370
    371		} while (normalized_divisor.part.hi != 0);
    372
    373		/* Partial divide */
    374
    375		ACPI_DIV_64_BY_32(normalized_dividend.part.hi,
    376				  normalized_dividend.part.lo,
    377				  normalized_divisor.part.lo, quotient.part.lo,
    378				  partial1);
    379
    380		/*
    381		 * The quotient is always 32 bits, and simply requires
    382		 * adjustment. The 64-bit remainder must be generated.
    383		 */
    384		partial1 = quotient.part.lo * divisor.part.hi;
    385		partial2.full = (u64) quotient.part.lo * divisor.part.lo;
    386		partial3.full = (u64) partial2.part.hi + partial1;
    387
    388		remainder.part.hi = partial3.part.lo;
    389		remainder.part.lo = partial2.part.lo;
    390
    391		if (partial3.part.hi == 0) {
    392			if (partial3.part.lo >= dividend.part.hi) {
    393				if (partial3.part.lo == dividend.part.hi) {
    394					if (partial2.part.lo > dividend.part.lo) {
    395						quotient.part.lo--;
    396						remainder.full -= divisor.full;
    397					}
    398				} else {
    399					quotient.part.lo--;
    400					remainder.full -= divisor.full;
    401				}
    402			}
    403
    404			remainder.full = remainder.full - dividend.full;
    405			remainder.part.hi = (u32)-((s32)remainder.part.hi);
    406			remainder.part.lo = (u32)-((s32)remainder.part.lo);
    407
    408			if (remainder.part.lo) {
    409				remainder.part.hi--;
    410			}
    411		}
    412	}
    413
    414	/* Return only what was requested */
    415
    416	if (out_quotient) {
    417		*out_quotient = quotient.full;
    418	}
    419	if (out_remainder) {
    420		*out_remainder = remainder.full;
    421	}
    422
    423	return_ACPI_STATUS(AE_OK);
    424}
    425
    426#else
    427
    428/*******************************************************************************
    429 *
    430 * FUNCTION:    acpi_ut_short_divide, acpi_ut_divide
    431 *
    432 * PARAMETERS:  See function headers above
    433 *
    434 * DESCRIPTION: Native versions of the ut_divide functions. Use these if either
    435 *              1) The target is a 64-bit platform and therefore 64-bit
    436 *                 integer math is supported directly by the machine.
    437 *              2) The target is a 32-bit or 16-bit platform, and the
    438 *                 double-precision integer math library is available to
    439 *                 perform the divide.
    440 *
    441 ******************************************************************************/
    442
    443acpi_status
    444acpi_ut_short_divide(u64 in_dividend,
    445		     u32 divisor, u64 *out_quotient, u32 *out_remainder)
    446{
    447
    448	ACPI_FUNCTION_TRACE(ut_short_divide);
    449
    450	/* Always check for a zero divisor */
    451
    452	if (divisor == 0) {
    453		ACPI_ERROR((AE_INFO, "Divide by zero"));
    454		return_ACPI_STATUS(AE_AML_DIVIDE_BY_ZERO);
    455	}
    456
    457	/* Return only what was requested */
    458
    459	if (out_quotient) {
    460		*out_quotient = in_dividend / divisor;
    461	}
    462	if (out_remainder) {
    463		*out_remainder = (u32) (in_dividend % divisor);
    464	}
    465
    466	return_ACPI_STATUS(AE_OK);
    467}
    468
    469acpi_status
    470acpi_ut_divide(u64 in_dividend,
    471	       u64 in_divisor, u64 *out_quotient, u64 *out_remainder)
    472{
    473	ACPI_FUNCTION_TRACE(ut_divide);
    474
    475	/* Always check for a zero divisor */
    476
    477	if (in_divisor == 0) {
    478		ACPI_ERROR((AE_INFO, "Divide by zero"));
    479		return_ACPI_STATUS(AE_AML_DIVIDE_BY_ZERO);
    480	}
    481
    482	/* Return only what was requested */
    483
    484	if (out_quotient) {
    485		*out_quotient = in_dividend / in_divisor;
    486	}
    487	if (out_remainder) {
    488		*out_remainder = in_dividend % in_divisor;
    489	}
    490
    491	return_ACPI_STATUS(AE_OK);
    492}
    493
    494#endif