cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

cppc_acpi.c (45761B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
      4 *
      5 * (C) Copyright 2014, 2015 Linaro Ltd.
      6 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
      7 *
      8 * CPPC describes a few methods for controlling CPU performance using
      9 * information from a per CPU table called CPC. This table is described in
     10 * the ACPI v5.0+ specification. The table consists of a list of
     11 * registers which may be memory mapped or hardware registers and also may
     12 * include some static integer values.
     13 *
     14 * CPU performance is on an abstract continuous scale as against a discretized
     15 * P-state scale which is tied to CPU frequency only. In brief, the basic
     16 * operation involves:
     17 *
     18 * - OS makes a CPU performance request. (Can provide min and max bounds)
     19 *
     20 * - Platform (such as BMC) is free to optimize request within requested bounds
     21 *   depending on power/thermal budgets etc.
     22 *
     23 * - Platform conveys its decision back to OS
     24 *
     25 * The communication between OS and platform occurs through another medium
     26 * called (PCC) Platform Communication Channel. This is a generic mailbox like
     27 * mechanism which includes doorbell semantics to indicate register updates.
     28 * See drivers/mailbox/pcc.c for details on PCC.
     29 *
     30 * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
     31 * above specifications.
     32 */
     33
     34#define pr_fmt(fmt)	"ACPI CPPC: " fmt
     35
     36#include <linux/delay.h>
     37#include <linux/iopoll.h>
     38#include <linux/ktime.h>
     39#include <linux/rwsem.h>
     40#include <linux/wait.h>
     41#include <linux/topology.h>
     42
     43#include <acpi/cppc_acpi.h>
     44
     45struct cppc_pcc_data {
     46	struct pcc_mbox_chan *pcc_channel;
     47	void __iomem *pcc_comm_addr;
     48	bool pcc_channel_acquired;
     49	unsigned int deadline_us;
     50	unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
     51
     52	bool pending_pcc_write_cmd;	/* Any pending/batched PCC write cmds? */
     53	bool platform_owns_pcc;		/* Ownership of PCC subspace */
     54	unsigned int pcc_write_cnt;	/* Running count of PCC write commands */
     55
     56	/*
     57	 * Lock to provide controlled access to the PCC channel.
     58	 *
     59	 * For performance critical usecases(currently cppc_set_perf)
     60	 *	We need to take read_lock and check if channel belongs to OSPM
     61	 * before reading or writing to PCC subspace
     62	 *	We need to take write_lock before transferring the channel
     63	 * ownership to the platform via a Doorbell
     64	 *	This allows us to batch a number of CPPC requests if they happen
     65	 * to originate in about the same time
     66	 *
     67	 * For non-performance critical usecases(init)
     68	 *	Take write_lock for all purposes which gives exclusive access
     69	 */
     70	struct rw_semaphore pcc_lock;
     71
     72	/* Wait queue for CPUs whose requests were batched */
     73	wait_queue_head_t pcc_write_wait_q;
     74	ktime_t last_cmd_cmpl_time;
     75	ktime_t last_mpar_reset;
     76	int mpar_count;
     77	int refcount;
     78};
     79
     80/* Array to represent the PCC channel per subspace ID */
     81static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES];
     82/* The cpu_pcc_subspace_idx contains per CPU subspace ID */
     83static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx);
     84
     85/*
     86 * The cpc_desc structure contains the ACPI register details
     87 * as described in the per CPU _CPC tables. The details
     88 * include the type of register (e.g. PCC, System IO, FFH etc.)
     89 * and destination addresses which lets us READ/WRITE CPU performance
     90 * information using the appropriate I/O methods.
     91 */
     92static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
     93
     94/* pcc mapped address + header size + offset within PCC subspace */
     95#define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \
     96						0x8 + (offs))
     97
     98/* Check if a CPC register is in PCC */
     99#define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&		\
    100				(cpc)->cpc_entry.reg.space_id ==	\
    101				ACPI_ADR_SPACE_PLATFORM_COMM)
    102
    103/* Check if a CPC register is in SystemMemory */
    104#define CPC_IN_SYSTEM_MEMORY(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&	\
    105				(cpc)->cpc_entry.reg.space_id ==	\
    106				ACPI_ADR_SPACE_SYSTEM_MEMORY)
    107
    108/* Check if a CPC register is in SystemIo */
    109#define CPC_IN_SYSTEM_IO(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&	\
    110				(cpc)->cpc_entry.reg.space_id ==	\
    111				ACPI_ADR_SPACE_SYSTEM_IO)
    112
    113/* Evaluates to True if reg is a NULL register descriptor */
    114#define IS_NULL_REG(reg) ((reg)->space_id ==  ACPI_ADR_SPACE_SYSTEM_MEMORY && \
    115				(reg)->address == 0 &&			\
    116				(reg)->bit_width == 0 &&		\
    117				(reg)->bit_offset == 0 &&		\
    118				(reg)->access_width == 0)
    119
    120/* Evaluates to True if an optional cpc field is supported */
    121#define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ?		\
    122				!!(cpc)->cpc_entry.int_value :		\
    123				!IS_NULL_REG(&(cpc)->cpc_entry.reg))
    124/*
    125 * Arbitrary Retries in case the remote processor is slow to respond
    126 * to PCC commands. Keeping it high enough to cover emulators where
    127 * the processors run painfully slow.
    128 */
    129#define NUM_RETRIES 500ULL
    130
    131#define OVER_16BTS_MASK ~0xFFFFULL
    132
    133#define define_one_cppc_ro(_name)		\
    134static struct kobj_attribute _name =		\
    135__ATTR(_name, 0444, show_##_name, NULL)
    136
    137#define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
    138
    139#define show_cppc_data(access_fn, struct_name, member_name)		\
    140	static ssize_t show_##member_name(struct kobject *kobj,		\
    141				struct kobj_attribute *attr, char *buf)	\
    142	{								\
    143		struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);		\
    144		struct struct_name st_name = {0};			\
    145		int ret;						\
    146									\
    147		ret = access_fn(cpc_ptr->cpu_id, &st_name);		\
    148		if (ret)						\
    149			return ret;					\
    150									\
    151		return scnprintf(buf, PAGE_SIZE, "%llu\n",		\
    152				(u64)st_name.member_name);		\
    153	}								\
    154	define_one_cppc_ro(member_name)
    155
    156show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
    157show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
    158show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
    159show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
    160show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_freq);
    161show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_freq);
    162
    163show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
    164show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);
    165
    166static ssize_t show_feedback_ctrs(struct kobject *kobj,
    167		struct kobj_attribute *attr, char *buf)
    168{
    169	struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
    170	struct cppc_perf_fb_ctrs fb_ctrs = {0};
    171	int ret;
    172
    173	ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
    174	if (ret)
    175		return ret;
    176
    177	return scnprintf(buf, PAGE_SIZE, "ref:%llu del:%llu\n",
    178			fb_ctrs.reference, fb_ctrs.delivered);
    179}
    180define_one_cppc_ro(feedback_ctrs);
    181
    182static struct attribute *cppc_attrs[] = {
    183	&feedback_ctrs.attr,
    184	&reference_perf.attr,
    185	&wraparound_time.attr,
    186	&highest_perf.attr,
    187	&lowest_perf.attr,
    188	&lowest_nonlinear_perf.attr,
    189	&nominal_perf.attr,
    190	&nominal_freq.attr,
    191	&lowest_freq.attr,
    192	NULL
    193};
    194ATTRIBUTE_GROUPS(cppc);
    195
    196static struct kobj_type cppc_ktype = {
    197	.sysfs_ops = &kobj_sysfs_ops,
    198	.default_groups = cppc_groups,
    199};
    200
    201static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit)
    202{
    203	int ret, status;
    204	struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
    205	struct acpi_pcct_shared_memory __iomem *generic_comm_base =
    206		pcc_ss_data->pcc_comm_addr;
    207
    208	if (!pcc_ss_data->platform_owns_pcc)
    209		return 0;
    210
    211	/*
    212	 * Poll PCC status register every 3us(delay_us) for maximum of
    213	 * deadline_us(timeout_us) until PCC command complete bit is set(cond)
    214	 */
    215	ret = readw_relaxed_poll_timeout(&generic_comm_base->status, status,
    216					status & PCC_CMD_COMPLETE_MASK, 3,
    217					pcc_ss_data->deadline_us);
    218
    219	if (likely(!ret)) {
    220		pcc_ss_data->platform_owns_pcc = false;
    221		if (chk_err_bit && (status & PCC_ERROR_MASK))
    222			ret = -EIO;
    223	}
    224
    225	if (unlikely(ret))
    226		pr_err("PCC check channel failed for ss: %d. ret=%d\n",
    227		       pcc_ss_id, ret);
    228
    229	return ret;
    230}
    231
    232/*
    233 * This function transfers the ownership of the PCC to the platform
    234 * So it must be called while holding write_lock(pcc_lock)
    235 */
    236static int send_pcc_cmd(int pcc_ss_id, u16 cmd)
    237{
    238	int ret = -EIO, i;
    239	struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
    240	struct acpi_pcct_shared_memory __iomem *generic_comm_base =
    241		pcc_ss_data->pcc_comm_addr;
    242	unsigned int time_delta;
    243
    244	/*
    245	 * For CMD_WRITE we know for a fact the caller should have checked
    246	 * the channel before writing to PCC space
    247	 */
    248	if (cmd == CMD_READ) {
    249		/*
    250		 * If there are pending cpc_writes, then we stole the channel
    251		 * before write completion, so first send a WRITE command to
    252		 * platform
    253		 */
    254		if (pcc_ss_data->pending_pcc_write_cmd)
    255			send_pcc_cmd(pcc_ss_id, CMD_WRITE);
    256
    257		ret = check_pcc_chan(pcc_ss_id, false);
    258		if (ret)
    259			goto end;
    260	} else /* CMD_WRITE */
    261		pcc_ss_data->pending_pcc_write_cmd = FALSE;
    262
    263	/*
    264	 * Handle the Minimum Request Turnaround Time(MRTT)
    265	 * "The minimum amount of time that OSPM must wait after the completion
    266	 * of a command before issuing the next command, in microseconds"
    267	 */
    268	if (pcc_ss_data->pcc_mrtt) {
    269		time_delta = ktime_us_delta(ktime_get(),
    270					    pcc_ss_data->last_cmd_cmpl_time);
    271		if (pcc_ss_data->pcc_mrtt > time_delta)
    272			udelay(pcc_ss_data->pcc_mrtt - time_delta);
    273	}
    274
    275	/*
    276	 * Handle the non-zero Maximum Periodic Access Rate(MPAR)
    277	 * "The maximum number of periodic requests that the subspace channel can
    278	 * support, reported in commands per minute. 0 indicates no limitation."
    279	 *
    280	 * This parameter should be ideally zero or large enough so that it can
    281	 * handle maximum number of requests that all the cores in the system can
    282	 * collectively generate. If it is not, we will follow the spec and just
    283	 * not send the request to the platform after hitting the MPAR limit in
    284	 * any 60s window
    285	 */
    286	if (pcc_ss_data->pcc_mpar) {
    287		if (pcc_ss_data->mpar_count == 0) {
    288			time_delta = ktime_ms_delta(ktime_get(),
    289						    pcc_ss_data->last_mpar_reset);
    290			if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) {
    291				pr_debug("PCC cmd for subspace %d not sent due to MPAR limit",
    292					 pcc_ss_id);
    293				ret = -EIO;
    294				goto end;
    295			}
    296			pcc_ss_data->last_mpar_reset = ktime_get();
    297			pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar;
    298		}
    299		pcc_ss_data->mpar_count--;
    300	}
    301
    302	/* Write to the shared comm region. */
    303	writew_relaxed(cmd, &generic_comm_base->command);
    304
    305	/* Flip CMD COMPLETE bit */
    306	writew_relaxed(0, &generic_comm_base->status);
    307
    308	pcc_ss_data->platform_owns_pcc = true;
    309
    310	/* Ring doorbell */
    311	ret = mbox_send_message(pcc_ss_data->pcc_channel->mchan, &cmd);
    312	if (ret < 0) {
    313		pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n",
    314		       pcc_ss_id, cmd, ret);
    315		goto end;
    316	}
    317
    318	/* wait for completion and check for PCC error bit */
    319	ret = check_pcc_chan(pcc_ss_id, true);
    320
    321	if (pcc_ss_data->pcc_mrtt)
    322		pcc_ss_data->last_cmd_cmpl_time = ktime_get();
    323
    324	if (pcc_ss_data->pcc_channel->mchan->mbox->txdone_irq)
    325		mbox_chan_txdone(pcc_ss_data->pcc_channel->mchan, ret);
    326	else
    327		mbox_client_txdone(pcc_ss_data->pcc_channel->mchan, ret);
    328
    329end:
    330	if (cmd == CMD_WRITE) {
    331		if (unlikely(ret)) {
    332			for_each_possible_cpu(i) {
    333				struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
    334
    335				if (!desc)
    336					continue;
    337
    338				if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt)
    339					desc->write_cmd_status = ret;
    340			}
    341		}
    342		pcc_ss_data->pcc_write_cnt++;
    343		wake_up_all(&pcc_ss_data->pcc_write_wait_q);
    344	}
    345
    346	return ret;
    347}
    348
    349static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
    350{
    351	if (ret < 0)
    352		pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
    353				*(u16 *)msg, ret);
    354	else
    355		pr_debug("TX completed. CMD sent:%x, ret:%d\n",
    356				*(u16 *)msg, ret);
    357}
    358
    359static struct mbox_client cppc_mbox_cl = {
    360	.tx_done = cppc_chan_tx_done,
    361	.knows_txdone = true,
    362};
    363
    364static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
    365{
    366	int result = -EFAULT;
    367	acpi_status status = AE_OK;
    368	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
    369	struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
    370	struct acpi_buffer state = {0, NULL};
    371	union acpi_object  *psd = NULL;
    372	struct acpi_psd_package *pdomain;
    373
    374	status = acpi_evaluate_object_typed(handle, "_PSD", NULL,
    375					    &buffer, ACPI_TYPE_PACKAGE);
    376	if (status == AE_NOT_FOUND)	/* _PSD is optional */
    377		return 0;
    378	if (ACPI_FAILURE(status))
    379		return -ENODEV;
    380
    381	psd = buffer.pointer;
    382	if (!psd || psd->package.count != 1) {
    383		pr_debug("Invalid _PSD data\n");
    384		goto end;
    385	}
    386
    387	pdomain = &(cpc_ptr->domain_info);
    388
    389	state.length = sizeof(struct acpi_psd_package);
    390	state.pointer = pdomain;
    391
    392	status = acpi_extract_package(&(psd->package.elements[0]),
    393		&format, &state);
    394	if (ACPI_FAILURE(status)) {
    395		pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
    396		goto end;
    397	}
    398
    399	if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
    400		pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
    401		goto end;
    402	}
    403
    404	if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
    405		pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
    406		goto end;
    407	}
    408
    409	if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
    410	    pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
    411	    pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
    412		pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
    413		goto end;
    414	}
    415
    416	result = 0;
    417end:
    418	kfree(buffer.pointer);
    419	return result;
    420}
    421
    422bool acpi_cpc_valid(void)
    423{
    424	struct cpc_desc *cpc_ptr;
    425	int cpu;
    426
    427	for_each_present_cpu(cpu) {
    428		cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
    429		if (!cpc_ptr)
    430			return false;
    431	}
    432
    433	return true;
    434}
    435EXPORT_SYMBOL_GPL(acpi_cpc_valid);
    436
    437bool cppc_allow_fast_switch(void)
    438{
    439	struct cpc_register_resource *desired_reg;
    440	struct cpc_desc *cpc_ptr;
    441	int cpu;
    442
    443	for_each_possible_cpu(cpu) {
    444		cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
    445		desired_reg = &cpc_ptr->cpc_regs[DESIRED_PERF];
    446		if (!CPC_IN_SYSTEM_MEMORY(desired_reg) &&
    447				!CPC_IN_SYSTEM_IO(desired_reg))
    448			return false;
    449	}
    450
    451	return true;
    452}
    453EXPORT_SYMBOL_GPL(cppc_allow_fast_switch);
    454
    455/**
    456 * acpi_get_psd_map - Map the CPUs in the freq domain of a given cpu
    457 * @cpu: Find all CPUs that share a domain with cpu.
    458 * @cpu_data: Pointer to CPU specific CPPC data including PSD info.
    459 *
    460 *	Return: 0 for success or negative value for err.
    461 */
    462int acpi_get_psd_map(unsigned int cpu, struct cppc_cpudata *cpu_data)
    463{
    464	struct cpc_desc *cpc_ptr, *match_cpc_ptr;
    465	struct acpi_psd_package *match_pdomain;
    466	struct acpi_psd_package *pdomain;
    467	int count_target, i;
    468
    469	/*
    470	 * Now that we have _PSD data from all CPUs, let's setup P-state
    471	 * domain info.
    472	 */
    473	cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
    474	if (!cpc_ptr)
    475		return -EFAULT;
    476
    477	pdomain = &(cpc_ptr->domain_info);
    478	cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
    479	if (pdomain->num_processors <= 1)
    480		return 0;
    481
    482	/* Validate the Domain info */
    483	count_target = pdomain->num_processors;
    484	if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
    485		cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ALL;
    486	else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
    487		cpu_data->shared_type = CPUFREQ_SHARED_TYPE_HW;
    488	else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
    489		cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ANY;
    490
    491	for_each_possible_cpu(i) {
    492		if (i == cpu)
    493			continue;
    494
    495		match_cpc_ptr = per_cpu(cpc_desc_ptr, i);
    496		if (!match_cpc_ptr)
    497			goto err_fault;
    498
    499		match_pdomain = &(match_cpc_ptr->domain_info);
    500		if (match_pdomain->domain != pdomain->domain)
    501			continue;
    502
    503		/* Here i and cpu are in the same domain */
    504		if (match_pdomain->num_processors != count_target)
    505			goto err_fault;
    506
    507		if (pdomain->coord_type != match_pdomain->coord_type)
    508			goto err_fault;
    509
    510		cpumask_set_cpu(i, cpu_data->shared_cpu_map);
    511	}
    512
    513	return 0;
    514
    515err_fault:
    516	/* Assume no coordination on any error parsing domain info */
    517	cpumask_clear(cpu_data->shared_cpu_map);
    518	cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
    519	cpu_data->shared_type = CPUFREQ_SHARED_TYPE_NONE;
    520
    521	return -EFAULT;
    522}
    523EXPORT_SYMBOL_GPL(acpi_get_psd_map);
    524
    525static int register_pcc_channel(int pcc_ss_idx)
    526{
    527	struct pcc_mbox_chan *pcc_chan;
    528	u64 usecs_lat;
    529
    530	if (pcc_ss_idx >= 0) {
    531		pcc_chan = pcc_mbox_request_channel(&cppc_mbox_cl, pcc_ss_idx);
    532
    533		if (IS_ERR(pcc_chan)) {
    534			pr_err("Failed to find PCC channel for subspace %d\n",
    535			       pcc_ss_idx);
    536			return -ENODEV;
    537		}
    538
    539		pcc_data[pcc_ss_idx]->pcc_channel = pcc_chan;
    540		/*
    541		 * cppc_ss->latency is just a Nominal value. In reality
    542		 * the remote processor could be much slower to reply.
    543		 * So add an arbitrary amount of wait on top of Nominal.
    544		 */
    545		usecs_lat = NUM_RETRIES * pcc_chan->latency;
    546		pcc_data[pcc_ss_idx]->deadline_us = usecs_lat;
    547		pcc_data[pcc_ss_idx]->pcc_mrtt = pcc_chan->min_turnaround_time;
    548		pcc_data[pcc_ss_idx]->pcc_mpar = pcc_chan->max_access_rate;
    549		pcc_data[pcc_ss_idx]->pcc_nominal = pcc_chan->latency;
    550
    551		pcc_data[pcc_ss_idx]->pcc_comm_addr =
    552			acpi_os_ioremap(pcc_chan->shmem_base_addr,
    553					pcc_chan->shmem_size);
    554		if (!pcc_data[pcc_ss_idx]->pcc_comm_addr) {
    555			pr_err("Failed to ioremap PCC comm region mem for %d\n",
    556			       pcc_ss_idx);
    557			return -ENOMEM;
    558		}
    559
    560		/* Set flag so that we don't come here for each CPU. */
    561		pcc_data[pcc_ss_idx]->pcc_channel_acquired = true;
    562	}
    563
    564	return 0;
    565}
    566
    567/**
    568 * cpc_ffh_supported() - check if FFH reading supported
    569 *
    570 * Check if the architecture has support for functional fixed hardware
    571 * read/write capability.
    572 *
    573 * Return: true for supported, false for not supported
    574 */
    575bool __weak cpc_ffh_supported(void)
    576{
    577	return false;
    578}
    579
    580/**
    581 * cpc_supported_by_cpu() - check if CPPC is supported by CPU
    582 *
    583 * Check if the architectural support for CPPC is present even
    584 * if the _OSC hasn't prescribed it
    585 *
    586 * Return: true for supported, false for not supported
    587 */
    588bool __weak cpc_supported_by_cpu(void)
    589{
    590	return false;
    591}
    592
    593/**
    594 * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
    595 *
    596 * Check and allocate the cppc_pcc_data memory.
    597 * In some processor configurations it is possible that same subspace
    598 * is shared between multiple CPUs. This is seen especially in CPUs
    599 * with hardware multi-threading support.
    600 *
    601 * Return: 0 for success, errno for failure
    602 */
    603static int pcc_data_alloc(int pcc_ss_id)
    604{
    605	if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES)
    606		return -EINVAL;
    607
    608	if (pcc_data[pcc_ss_id]) {
    609		pcc_data[pcc_ss_id]->refcount++;
    610	} else {
    611		pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data),
    612					      GFP_KERNEL);
    613		if (!pcc_data[pcc_ss_id])
    614			return -ENOMEM;
    615		pcc_data[pcc_ss_id]->refcount++;
    616	}
    617
    618	return 0;
    619}
    620
    621/* Check if CPPC revision + num_ent combination is supported */
    622static bool is_cppc_supported(int revision, int num_ent)
    623{
    624	int expected_num_ent;
    625
    626	switch (revision) {
    627	case CPPC_V2_REV:
    628		expected_num_ent = CPPC_V2_NUM_ENT;
    629		break;
    630	case CPPC_V3_REV:
    631		expected_num_ent = CPPC_V3_NUM_ENT;
    632		break;
    633	default:
    634		pr_debug("Firmware exports unsupported CPPC revision: %d\n",
    635			revision);
    636		return false;
    637	}
    638
    639	if (expected_num_ent != num_ent) {
    640		pr_debug("Firmware exports %d entries. Expected: %d for CPPC rev:%d\n",
    641			num_ent, expected_num_ent, revision);
    642		return false;
    643	}
    644
    645	return true;
    646}
    647
    648/*
    649 * An example CPC table looks like the following.
    650 *
    651 *  Name (_CPC, Package() {
    652 *      17,							// NumEntries
    653 *      1,							// Revision
    654 *      ResourceTemplate() {Register(PCC, 32, 0, 0x120, 2)},	// Highest Performance
    655 *      ResourceTemplate() {Register(PCC, 32, 0, 0x124, 2)},	// Nominal Performance
    656 *      ResourceTemplate() {Register(PCC, 32, 0, 0x128, 2)},	// Lowest Nonlinear Performance
    657 *      ResourceTemplate() {Register(PCC, 32, 0, 0x12C, 2)},	// Lowest Performance
    658 *      ResourceTemplate() {Register(PCC, 32, 0, 0x130, 2)},	// Guaranteed Performance Register
    659 *      ResourceTemplate() {Register(PCC, 32, 0, 0x110, 2)},	// Desired Performance Register
    660 *      ResourceTemplate() {Register(SystemMemory, 0, 0, 0, 0)},
    661 *      ...
    662 *      ...
    663 *      ...
    664 *  }
    665 * Each Register() encodes how to access that specific register.
    666 * e.g. a sample PCC entry has the following encoding:
    667 *
    668 *  Register (
    669 *      PCC,	// AddressSpaceKeyword
    670 *      8,	// RegisterBitWidth
    671 *      8,	// RegisterBitOffset
    672 *      0x30,	// RegisterAddress
    673 *      9,	// AccessSize (subspace ID)
    674 *  )
    675 */
    676
    677#ifndef arch_init_invariance_cppc
    678static inline void arch_init_invariance_cppc(void) { }
    679#endif
    680
    681/**
    682 * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
    683 * @pr: Ptr to acpi_processor containing this CPU's logical ID.
    684 *
    685 *	Return: 0 for success or negative value for err.
    686 */
    687int acpi_cppc_processor_probe(struct acpi_processor *pr)
    688{
    689	struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
    690	union acpi_object *out_obj, *cpc_obj;
    691	struct cpc_desc *cpc_ptr;
    692	struct cpc_reg *gas_t;
    693	struct device *cpu_dev;
    694	acpi_handle handle = pr->handle;
    695	unsigned int num_ent, i, cpc_rev;
    696	int pcc_subspace_id = -1;
    697	acpi_status status;
    698	int ret = -ENODATA;
    699
    700	if (!osc_sb_cppc2_support_acked) {
    701		pr_debug("CPPC v2 _OSC not acked\n");
    702		if (!cpc_supported_by_cpu())
    703			return -ENODEV;
    704	}
    705
    706	/* Parse the ACPI _CPC table for this CPU. */
    707	status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
    708			ACPI_TYPE_PACKAGE);
    709	if (ACPI_FAILURE(status)) {
    710		ret = -ENODEV;
    711		goto out_buf_free;
    712	}
    713
    714	out_obj = (union acpi_object *) output.pointer;
    715
    716	cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
    717	if (!cpc_ptr) {
    718		ret = -ENOMEM;
    719		goto out_buf_free;
    720	}
    721
    722	/* First entry is NumEntries. */
    723	cpc_obj = &out_obj->package.elements[0];
    724	if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
    725		num_ent = cpc_obj->integer.value;
    726		if (num_ent <= 1) {
    727			pr_debug("Unexpected _CPC NumEntries value (%d) for CPU:%d\n",
    728				 num_ent, pr->id);
    729			goto out_free;
    730		}
    731	} else {
    732		pr_debug("Unexpected _CPC NumEntries entry type (%d) for CPU:%d\n",
    733			 cpc_obj->type, pr->id);
    734		goto out_free;
    735	}
    736	cpc_ptr->num_entries = num_ent;
    737
    738	/* Second entry should be revision. */
    739	cpc_obj = &out_obj->package.elements[1];
    740	if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
    741		cpc_rev = cpc_obj->integer.value;
    742	} else {
    743		pr_debug("Unexpected _CPC Revision entry type (%d) for CPU:%d\n",
    744			 cpc_obj->type, pr->id);
    745		goto out_free;
    746	}
    747	cpc_ptr->version = cpc_rev;
    748
    749	if (!is_cppc_supported(cpc_rev, num_ent))
    750		goto out_free;
    751
    752	/* Iterate through remaining entries in _CPC */
    753	for (i = 2; i < num_ent; i++) {
    754		cpc_obj = &out_obj->package.elements[i];
    755
    756		if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
    757			cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
    758			cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
    759		} else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
    760			gas_t = (struct cpc_reg *)
    761				cpc_obj->buffer.pointer;
    762
    763			/*
    764			 * The PCC Subspace index is encoded inside
    765			 * the CPC table entries. The same PCC index
    766			 * will be used for all the PCC entries,
    767			 * so extract it only once.
    768			 */
    769			if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
    770				if (pcc_subspace_id < 0) {
    771					pcc_subspace_id = gas_t->access_width;
    772					if (pcc_data_alloc(pcc_subspace_id))
    773						goto out_free;
    774				} else if (pcc_subspace_id != gas_t->access_width) {
    775					pr_debug("Mismatched PCC ids in _CPC for CPU:%d\n",
    776						 pr->id);
    777					goto out_free;
    778				}
    779			} else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
    780				if (gas_t->address) {
    781					void __iomem *addr;
    782
    783					if (!osc_cpc_flexible_adr_space_confirmed) {
    784						pr_debug("Flexible address space capability not supported\n");
    785						goto out_free;
    786					}
    787
    788					addr = ioremap(gas_t->address, gas_t->bit_width/8);
    789					if (!addr)
    790						goto out_free;
    791					cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
    792				}
    793			} else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
    794				if (gas_t->access_width < 1 || gas_t->access_width > 3) {
    795					/*
    796					 * 1 = 8-bit, 2 = 16-bit, and 3 = 32-bit.
    797					 * SystemIO doesn't implement 64-bit
    798					 * registers.
    799					 */
    800					pr_debug("Invalid access width %d for SystemIO register in _CPC\n",
    801						 gas_t->access_width);
    802					goto out_free;
    803				}
    804				if (gas_t->address & OVER_16BTS_MASK) {
    805					/* SystemIO registers use 16-bit integer addresses */
    806					pr_debug("Invalid IO port %llu for SystemIO register in _CPC\n",
    807						 gas_t->address);
    808					goto out_free;
    809				}
    810				if (!osc_cpc_flexible_adr_space_confirmed) {
    811					pr_debug("Flexible address space capability not supported\n");
    812					goto out_free;
    813				}
    814			} else {
    815				if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
    816					/* Support only PCC, SystemMemory, SystemIO, and FFH type regs. */
    817					pr_debug("Unsupported register type (%d) in _CPC\n",
    818						 gas_t->space_id);
    819					goto out_free;
    820				}
    821			}
    822
    823			cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
    824			memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
    825		} else {
    826			pr_debug("Invalid entry type (%d) in _CPC for CPU:%d\n",
    827				 i, pr->id);
    828			goto out_free;
    829		}
    830	}
    831	per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id;
    832
    833	/*
    834	 * Initialize the remaining cpc_regs as unsupported.
    835	 * Example: In case FW exposes CPPC v2, the below loop will initialize
    836	 * LOWEST_FREQ and NOMINAL_FREQ regs as unsupported
    837	 */
    838	for (i = num_ent - 2; i < MAX_CPC_REG_ENT; i++) {
    839		cpc_ptr->cpc_regs[i].type = ACPI_TYPE_INTEGER;
    840		cpc_ptr->cpc_regs[i].cpc_entry.int_value = 0;
    841	}
    842
    843
    844	/* Store CPU Logical ID */
    845	cpc_ptr->cpu_id = pr->id;
    846
    847	/* Parse PSD data for this CPU */
    848	ret = acpi_get_psd(cpc_ptr, handle);
    849	if (ret)
    850		goto out_free;
    851
    852	/* Register PCC channel once for all PCC subspace ID. */
    853	if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) {
    854		ret = register_pcc_channel(pcc_subspace_id);
    855		if (ret)
    856			goto out_free;
    857
    858		init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock);
    859		init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q);
    860	}
    861
    862	/* Everything looks okay */
    863	pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
    864
    865	/* Add per logical CPU nodes for reading its feedback counters. */
    866	cpu_dev = get_cpu_device(pr->id);
    867	if (!cpu_dev) {
    868		ret = -EINVAL;
    869		goto out_free;
    870	}
    871
    872	/* Plug PSD data into this CPU's CPC descriptor. */
    873	per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
    874
    875	ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
    876			"acpi_cppc");
    877	if (ret) {
    878		per_cpu(cpc_desc_ptr, pr->id) = NULL;
    879		kobject_put(&cpc_ptr->kobj);
    880		goto out_free;
    881	}
    882
    883	arch_init_invariance_cppc();
    884
    885	kfree(output.pointer);
    886	return 0;
    887
    888out_free:
    889	/* Free all the mapped sys mem areas for this CPU */
    890	for (i = 2; i < cpc_ptr->num_entries; i++) {
    891		void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
    892
    893		if (addr)
    894			iounmap(addr);
    895	}
    896	kfree(cpc_ptr);
    897
    898out_buf_free:
    899	kfree(output.pointer);
    900	return ret;
    901}
    902EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
    903
    904/**
    905 * acpi_cppc_processor_exit - Cleanup CPC structs.
    906 * @pr: Ptr to acpi_processor containing this CPU's logical ID.
    907 *
    908 * Return: Void
    909 */
    910void acpi_cppc_processor_exit(struct acpi_processor *pr)
    911{
    912	struct cpc_desc *cpc_ptr;
    913	unsigned int i;
    914	void __iomem *addr;
    915	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id);
    916
    917	if (pcc_ss_id >= 0 && pcc_data[pcc_ss_id]) {
    918		if (pcc_data[pcc_ss_id]->pcc_channel_acquired) {
    919			pcc_data[pcc_ss_id]->refcount--;
    920			if (!pcc_data[pcc_ss_id]->refcount) {
    921				pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel);
    922				kfree(pcc_data[pcc_ss_id]);
    923				pcc_data[pcc_ss_id] = NULL;
    924			}
    925		}
    926	}
    927
    928	cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
    929	if (!cpc_ptr)
    930		return;
    931
    932	/* Free all the mapped sys mem areas for this CPU */
    933	for (i = 2; i < cpc_ptr->num_entries; i++) {
    934		addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
    935		if (addr)
    936			iounmap(addr);
    937	}
    938
    939	kobject_put(&cpc_ptr->kobj);
    940	kfree(cpc_ptr);
    941}
    942EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
    943
    944/**
    945 * cpc_read_ffh() - Read FFH register
    946 * @cpunum:	CPU number to read
    947 * @reg:	cppc register information
    948 * @val:	place holder for return value
    949 *
    950 * Read bit_width bits from a specified address and bit_offset
    951 *
    952 * Return: 0 for success and error code
    953 */
    954int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
    955{
    956	return -ENOTSUPP;
    957}
    958
    959/**
    960 * cpc_write_ffh() - Write FFH register
    961 * @cpunum:	CPU number to write
    962 * @reg:	cppc register information
    963 * @val:	value to write
    964 *
    965 * Write value of bit_width bits to a specified address and bit_offset
    966 *
    967 * Return: 0 for success and error code
    968 */
    969int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
    970{
    971	return -ENOTSUPP;
    972}
    973
    974/*
    975 * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
    976 * as fast as possible. We have already mapped the PCC subspace during init, so
    977 * we can directly write to it.
    978 */
    979
    980static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
    981{
    982	void __iomem *vaddr = NULL;
    983	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
    984	struct cpc_reg *reg = &reg_res->cpc_entry.reg;
    985
    986	if (reg_res->type == ACPI_TYPE_INTEGER) {
    987		*val = reg_res->cpc_entry.int_value;
    988		return 0;
    989	}
    990
    991	*val = 0;
    992
    993	if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
    994		u32 width = 8 << (reg->access_width - 1);
    995		u32 val_u32;
    996		acpi_status status;
    997
    998		status = acpi_os_read_port((acpi_io_address)reg->address,
    999					   &val_u32, width);
   1000		if (ACPI_FAILURE(status)) {
   1001			pr_debug("Error: Failed to read SystemIO port %llx\n",
   1002				 reg->address);
   1003			return -EFAULT;
   1004		}
   1005
   1006		*val = val_u32;
   1007		return 0;
   1008	} else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
   1009		vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
   1010	else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
   1011		vaddr = reg_res->sys_mem_vaddr;
   1012	else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
   1013		return cpc_read_ffh(cpu, reg, val);
   1014	else
   1015		return acpi_os_read_memory((acpi_physical_address)reg->address,
   1016				val, reg->bit_width);
   1017
   1018	switch (reg->bit_width) {
   1019	case 8:
   1020		*val = readb_relaxed(vaddr);
   1021		break;
   1022	case 16:
   1023		*val = readw_relaxed(vaddr);
   1024		break;
   1025	case 32:
   1026		*val = readl_relaxed(vaddr);
   1027		break;
   1028	case 64:
   1029		*val = readq_relaxed(vaddr);
   1030		break;
   1031	default:
   1032		pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n",
   1033			 reg->bit_width, pcc_ss_id);
   1034		return -EFAULT;
   1035	}
   1036
   1037	return 0;
   1038}
   1039
   1040static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
   1041{
   1042	int ret_val = 0;
   1043	void __iomem *vaddr = NULL;
   1044	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
   1045	struct cpc_reg *reg = &reg_res->cpc_entry.reg;
   1046
   1047	if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
   1048		u32 width = 8 << (reg->access_width - 1);
   1049		acpi_status status;
   1050
   1051		status = acpi_os_write_port((acpi_io_address)reg->address,
   1052					    (u32)val, width);
   1053		if (ACPI_FAILURE(status)) {
   1054			pr_debug("Error: Failed to write SystemIO port %llx\n",
   1055				 reg->address);
   1056			return -EFAULT;
   1057		}
   1058
   1059		return 0;
   1060	} else if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
   1061		vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
   1062	else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
   1063		vaddr = reg_res->sys_mem_vaddr;
   1064	else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
   1065		return cpc_write_ffh(cpu, reg, val);
   1066	else
   1067		return acpi_os_write_memory((acpi_physical_address)reg->address,
   1068				val, reg->bit_width);
   1069
   1070	switch (reg->bit_width) {
   1071	case 8:
   1072		writeb_relaxed(val, vaddr);
   1073		break;
   1074	case 16:
   1075		writew_relaxed(val, vaddr);
   1076		break;
   1077	case 32:
   1078		writel_relaxed(val, vaddr);
   1079		break;
   1080	case 64:
   1081		writeq_relaxed(val, vaddr);
   1082		break;
   1083	default:
   1084		pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n",
   1085			 reg->bit_width, pcc_ss_id);
   1086		ret_val = -EFAULT;
   1087		break;
   1088	}
   1089
   1090	return ret_val;
   1091}
   1092
   1093static int cppc_get_perf(int cpunum, enum cppc_regs reg_idx, u64 *perf)
   1094{
   1095	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
   1096	struct cpc_register_resource *reg;
   1097
   1098	if (!cpc_desc) {
   1099		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
   1100		return -ENODEV;
   1101	}
   1102
   1103	reg = &cpc_desc->cpc_regs[reg_idx];
   1104
   1105	if (CPC_IN_PCC(reg)) {
   1106		int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
   1107		struct cppc_pcc_data *pcc_ss_data = NULL;
   1108		int ret = 0;
   1109
   1110		if (pcc_ss_id < 0)
   1111			return -EIO;
   1112
   1113		pcc_ss_data = pcc_data[pcc_ss_id];
   1114
   1115		down_write(&pcc_ss_data->pcc_lock);
   1116
   1117		if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0)
   1118			cpc_read(cpunum, reg, perf);
   1119		else
   1120			ret = -EIO;
   1121
   1122		up_write(&pcc_ss_data->pcc_lock);
   1123
   1124		return ret;
   1125	}
   1126
   1127	cpc_read(cpunum, reg, perf);
   1128
   1129	return 0;
   1130}
   1131
   1132/**
   1133 * cppc_get_desired_perf - Get the desired performance register value.
   1134 * @cpunum: CPU from which to get desired performance.
   1135 * @desired_perf: Return address.
   1136 *
   1137 * Return: 0 for success, -EIO otherwise.
   1138 */
   1139int cppc_get_desired_perf(int cpunum, u64 *desired_perf)
   1140{
   1141	return cppc_get_perf(cpunum, DESIRED_PERF, desired_perf);
   1142}
   1143EXPORT_SYMBOL_GPL(cppc_get_desired_perf);
   1144
   1145/**
   1146 * cppc_get_nominal_perf - Get the nominal performance register value.
   1147 * @cpunum: CPU from which to get nominal performance.
   1148 * @nominal_perf: Return address.
   1149 *
   1150 * Return: 0 for success, -EIO otherwise.
   1151 */
   1152int cppc_get_nominal_perf(int cpunum, u64 *nominal_perf)
   1153{
   1154	return cppc_get_perf(cpunum, NOMINAL_PERF, nominal_perf);
   1155}
   1156
   1157/**
   1158 * cppc_get_perf_caps - Get a CPU's performance capabilities.
   1159 * @cpunum: CPU from which to get capabilities info.
   1160 * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
   1161 *
   1162 * Return: 0 for success with perf_caps populated else -ERRNO.
   1163 */
   1164int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
   1165{
   1166	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
   1167	struct cpc_register_resource *highest_reg, *lowest_reg,
   1168		*lowest_non_linear_reg, *nominal_reg, *guaranteed_reg,
   1169		*low_freq_reg = NULL, *nom_freq_reg = NULL;
   1170	u64 high, low, guaranteed, nom, min_nonlinear, low_f = 0, nom_f = 0;
   1171	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
   1172	struct cppc_pcc_data *pcc_ss_data = NULL;
   1173	int ret = 0, regs_in_pcc = 0;
   1174
   1175	if (!cpc_desc) {
   1176		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
   1177		return -ENODEV;
   1178	}
   1179
   1180	highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
   1181	lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
   1182	lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
   1183	nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
   1184	low_freq_reg = &cpc_desc->cpc_regs[LOWEST_FREQ];
   1185	nom_freq_reg = &cpc_desc->cpc_regs[NOMINAL_FREQ];
   1186	guaranteed_reg = &cpc_desc->cpc_regs[GUARANTEED_PERF];
   1187
   1188	/* Are any of the regs PCC ?*/
   1189	if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
   1190		CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg) ||
   1191		CPC_IN_PCC(low_freq_reg) || CPC_IN_PCC(nom_freq_reg)) {
   1192		if (pcc_ss_id < 0) {
   1193			pr_debug("Invalid pcc_ss_id\n");
   1194			return -ENODEV;
   1195		}
   1196		pcc_ss_data = pcc_data[pcc_ss_id];
   1197		regs_in_pcc = 1;
   1198		down_write(&pcc_ss_data->pcc_lock);
   1199		/* Ring doorbell once to update PCC subspace */
   1200		if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
   1201			ret = -EIO;
   1202			goto out_err;
   1203		}
   1204	}
   1205
   1206	cpc_read(cpunum, highest_reg, &high);
   1207	perf_caps->highest_perf = high;
   1208
   1209	cpc_read(cpunum, lowest_reg, &low);
   1210	perf_caps->lowest_perf = low;
   1211
   1212	cpc_read(cpunum, nominal_reg, &nom);
   1213	perf_caps->nominal_perf = nom;
   1214
   1215	if (guaranteed_reg->type != ACPI_TYPE_BUFFER  ||
   1216	    IS_NULL_REG(&guaranteed_reg->cpc_entry.reg)) {
   1217		perf_caps->guaranteed_perf = 0;
   1218	} else {
   1219		cpc_read(cpunum, guaranteed_reg, &guaranteed);
   1220		perf_caps->guaranteed_perf = guaranteed;
   1221	}
   1222
   1223	cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
   1224	perf_caps->lowest_nonlinear_perf = min_nonlinear;
   1225
   1226	if (!high || !low || !nom || !min_nonlinear)
   1227		ret = -EFAULT;
   1228
   1229	/* Read optional lowest and nominal frequencies if present */
   1230	if (CPC_SUPPORTED(low_freq_reg))
   1231		cpc_read(cpunum, low_freq_reg, &low_f);
   1232
   1233	if (CPC_SUPPORTED(nom_freq_reg))
   1234		cpc_read(cpunum, nom_freq_reg, &nom_f);
   1235
   1236	perf_caps->lowest_freq = low_f;
   1237	perf_caps->nominal_freq = nom_f;
   1238
   1239
   1240out_err:
   1241	if (regs_in_pcc)
   1242		up_write(&pcc_ss_data->pcc_lock);
   1243	return ret;
   1244}
   1245EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
   1246
   1247/**
   1248 * cppc_get_perf_ctrs - Read a CPU's performance feedback counters.
   1249 * @cpunum: CPU from which to read counters.
   1250 * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
   1251 *
   1252 * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
   1253 */
   1254int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
   1255{
   1256	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
   1257	struct cpc_register_resource *delivered_reg, *reference_reg,
   1258		*ref_perf_reg, *ctr_wrap_reg;
   1259	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
   1260	struct cppc_pcc_data *pcc_ss_data = NULL;
   1261	u64 delivered, reference, ref_perf, ctr_wrap_time;
   1262	int ret = 0, regs_in_pcc = 0;
   1263
   1264	if (!cpc_desc) {
   1265		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
   1266		return -ENODEV;
   1267	}
   1268
   1269	delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
   1270	reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
   1271	ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
   1272	ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
   1273
   1274	/*
   1275	 * If reference perf register is not supported then we should
   1276	 * use the nominal perf value
   1277	 */
   1278	if (!CPC_SUPPORTED(ref_perf_reg))
   1279		ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
   1280
   1281	/* Are any of the regs PCC ?*/
   1282	if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
   1283		CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
   1284		if (pcc_ss_id < 0) {
   1285			pr_debug("Invalid pcc_ss_id\n");
   1286			return -ENODEV;
   1287		}
   1288		pcc_ss_data = pcc_data[pcc_ss_id];
   1289		down_write(&pcc_ss_data->pcc_lock);
   1290		regs_in_pcc = 1;
   1291		/* Ring doorbell once to update PCC subspace */
   1292		if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
   1293			ret = -EIO;
   1294			goto out_err;
   1295		}
   1296	}
   1297
   1298	cpc_read(cpunum, delivered_reg, &delivered);
   1299	cpc_read(cpunum, reference_reg, &reference);
   1300	cpc_read(cpunum, ref_perf_reg, &ref_perf);
   1301
   1302	/*
   1303	 * Per spec, if ctr_wrap_time optional register is unsupported, then the
   1304	 * performance counters are assumed to never wrap during the lifetime of
   1305	 * platform
   1306	 */
   1307	ctr_wrap_time = (u64)(~((u64)0));
   1308	if (CPC_SUPPORTED(ctr_wrap_reg))
   1309		cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
   1310
   1311	if (!delivered || !reference ||	!ref_perf) {
   1312		ret = -EFAULT;
   1313		goto out_err;
   1314	}
   1315
   1316	perf_fb_ctrs->delivered = delivered;
   1317	perf_fb_ctrs->reference = reference;
   1318	perf_fb_ctrs->reference_perf = ref_perf;
   1319	perf_fb_ctrs->wraparound_time = ctr_wrap_time;
   1320out_err:
   1321	if (regs_in_pcc)
   1322		up_write(&pcc_ss_data->pcc_lock);
   1323	return ret;
   1324}
   1325EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
   1326
   1327/**
   1328 * cppc_set_enable - Set to enable CPPC on the processor by writing the
   1329 * Continuous Performance Control package EnableRegister field.
   1330 * @cpu: CPU for which to enable CPPC register.
   1331 * @enable: 0 - disable, 1 - enable CPPC feature on the processor.
   1332 *
   1333 * Return: 0 for success, -ERRNO or -EIO otherwise.
   1334 */
   1335int cppc_set_enable(int cpu, bool enable)
   1336{
   1337	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
   1338	struct cpc_register_resource *enable_reg;
   1339	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
   1340	struct cppc_pcc_data *pcc_ss_data = NULL;
   1341	int ret = -EINVAL;
   1342
   1343	if (!cpc_desc) {
   1344		pr_debug("No CPC descriptor for CPU:%d\n", cpu);
   1345		return -EINVAL;
   1346	}
   1347
   1348	enable_reg = &cpc_desc->cpc_regs[ENABLE];
   1349
   1350	if (CPC_IN_PCC(enable_reg)) {
   1351
   1352		if (pcc_ss_id < 0)
   1353			return -EIO;
   1354
   1355		ret = cpc_write(cpu, enable_reg, enable);
   1356		if (ret)
   1357			return ret;
   1358
   1359		pcc_ss_data = pcc_data[pcc_ss_id];
   1360
   1361		down_write(&pcc_ss_data->pcc_lock);
   1362		/* after writing CPC, transfer the ownership of PCC to platfrom */
   1363		ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
   1364		up_write(&pcc_ss_data->pcc_lock);
   1365		return ret;
   1366	}
   1367
   1368	return cpc_write(cpu, enable_reg, enable);
   1369}
   1370EXPORT_SYMBOL_GPL(cppc_set_enable);
   1371
   1372/**
   1373 * cppc_set_perf - Set a CPU's performance controls.
   1374 * @cpu: CPU for which to set performance controls.
   1375 * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
   1376 *
   1377 * Return: 0 for success, -ERRNO otherwise.
   1378 */
   1379int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
   1380{
   1381	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
   1382	struct cpc_register_resource *desired_reg;
   1383	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
   1384	struct cppc_pcc_data *pcc_ss_data = NULL;
   1385	int ret = 0;
   1386
   1387	if (!cpc_desc) {
   1388		pr_debug("No CPC descriptor for CPU:%d\n", cpu);
   1389		return -ENODEV;
   1390	}
   1391
   1392	desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
   1393
   1394	/*
   1395	 * This is Phase-I where we want to write to CPC registers
   1396	 * -> We want all CPUs to be able to execute this phase in parallel
   1397	 *
   1398	 * Since read_lock can be acquired by multiple CPUs simultaneously we
   1399	 * achieve that goal here
   1400	 */
   1401	if (CPC_IN_PCC(desired_reg)) {
   1402		if (pcc_ss_id < 0) {
   1403			pr_debug("Invalid pcc_ss_id\n");
   1404			return -ENODEV;
   1405		}
   1406		pcc_ss_data = pcc_data[pcc_ss_id];
   1407		down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */
   1408		if (pcc_ss_data->platform_owns_pcc) {
   1409			ret = check_pcc_chan(pcc_ss_id, false);
   1410			if (ret) {
   1411				up_read(&pcc_ss_data->pcc_lock);
   1412				return ret;
   1413			}
   1414		}
   1415		/*
   1416		 * Update the pending_write to make sure a PCC CMD_READ will not
   1417		 * arrive and steal the channel during the switch to write lock
   1418		 */
   1419		pcc_ss_data->pending_pcc_write_cmd = true;
   1420		cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt;
   1421		cpc_desc->write_cmd_status = 0;
   1422	}
   1423
   1424	/*
   1425	 * Skip writing MIN/MAX until Linux knows how to come up with
   1426	 * useful values.
   1427	 */
   1428	cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
   1429
   1430	if (CPC_IN_PCC(desired_reg))
   1431		up_read(&pcc_ss_data->pcc_lock);	/* END Phase-I */
   1432	/*
   1433	 * This is Phase-II where we transfer the ownership of PCC to Platform
   1434	 *
   1435	 * Short Summary: Basically if we think of a group of cppc_set_perf
   1436	 * requests that happened in short overlapping interval. The last CPU to
   1437	 * come out of Phase-I will enter Phase-II and ring the doorbell.
   1438	 *
   1439	 * We have the following requirements for Phase-II:
   1440	 *     1. We want to execute Phase-II only when there are no CPUs
   1441	 * currently executing in Phase-I
   1442	 *     2. Once we start Phase-II we want to avoid all other CPUs from
   1443	 * entering Phase-I.
   1444	 *     3. We want only one CPU among all those who went through Phase-I
   1445	 * to run phase-II
   1446	 *
   1447	 * If write_trylock fails to get the lock and doesn't transfer the
   1448	 * PCC ownership to the platform, then one of the following will be TRUE
   1449	 *     1. There is at-least one CPU in Phase-I which will later execute
   1450	 * write_trylock, so the CPUs in Phase-I will be responsible for
   1451	 * executing the Phase-II.
   1452	 *     2. Some other CPU has beaten this CPU to successfully execute the
   1453	 * write_trylock and has already acquired the write_lock. We know for a
   1454	 * fact it (other CPU acquiring the write_lock) couldn't have happened
   1455	 * before this CPU's Phase-I as we held the read_lock.
   1456	 *     3. Some other CPU executing pcc CMD_READ has stolen the
   1457	 * down_write, in which case, send_pcc_cmd will check for pending
   1458	 * CMD_WRITE commands by checking the pending_pcc_write_cmd.
   1459	 * So this CPU can be certain that its request will be delivered
   1460	 *    So in all cases, this CPU knows that its request will be delivered
   1461	 * by another CPU and can return
   1462	 *
   1463	 * After getting the down_write we still need to check for
   1464	 * pending_pcc_write_cmd to take care of the following scenario
   1465	 *    The thread running this code could be scheduled out between
   1466	 * Phase-I and Phase-II. Before it is scheduled back on, another CPU
   1467	 * could have delivered the request to Platform by triggering the
   1468	 * doorbell and transferred the ownership of PCC to platform. So this
   1469	 * avoids triggering an unnecessary doorbell and more importantly before
   1470	 * triggering the doorbell it makes sure that the PCC channel ownership
   1471	 * is still with OSPM.
   1472	 *   pending_pcc_write_cmd can also be cleared by a different CPU, if
   1473	 * there was a pcc CMD_READ waiting on down_write and it steals the lock
   1474	 * before the pcc CMD_WRITE is completed. send_pcc_cmd checks for this
   1475	 * case during a CMD_READ and if there are pending writes it delivers
   1476	 * the write command before servicing the read command
   1477	 */
   1478	if (CPC_IN_PCC(desired_reg)) {
   1479		if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */
   1480			/* Update only if there are pending write commands */
   1481			if (pcc_ss_data->pending_pcc_write_cmd)
   1482				send_pcc_cmd(pcc_ss_id, CMD_WRITE);
   1483			up_write(&pcc_ss_data->pcc_lock);	/* END Phase-II */
   1484		} else
   1485			/* Wait until pcc_write_cnt is updated by send_pcc_cmd */
   1486			wait_event(pcc_ss_data->pcc_write_wait_q,
   1487				   cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt);
   1488
   1489		/* send_pcc_cmd updates the status in case of failure */
   1490		ret = cpc_desc->write_cmd_status;
   1491	}
   1492	return ret;
   1493}
   1494EXPORT_SYMBOL_GPL(cppc_set_perf);
   1495
   1496/**
   1497 * cppc_get_transition_latency - returns frequency transition latency in ns
   1498 *
   1499 * ACPI CPPC does not explicitly specify how a platform can specify the
   1500 * transition latency for performance change requests. The closest we have
   1501 * is the timing information from the PCCT tables which provides the info
   1502 * on the number and frequency of PCC commands the platform can handle.
   1503 *
   1504 * If desired_reg is in the SystemMemory or SystemIo ACPI address space,
   1505 * then assume there is no latency.
   1506 */
   1507unsigned int cppc_get_transition_latency(int cpu_num)
   1508{
   1509	/*
   1510	 * Expected transition latency is based on the PCCT timing values
   1511	 * Below are definition from ACPI spec:
   1512	 * pcc_nominal- Expected latency to process a command, in microseconds
   1513	 * pcc_mpar   - The maximum number of periodic requests that the subspace
   1514	 *              channel can support, reported in commands per minute. 0
   1515	 *              indicates no limitation.
   1516	 * pcc_mrtt   - The minimum amount of time that OSPM must wait after the
   1517	 *              completion of a command before issuing the next command,
   1518	 *              in microseconds.
   1519	 */
   1520	unsigned int latency_ns = 0;
   1521	struct cpc_desc *cpc_desc;
   1522	struct cpc_register_resource *desired_reg;
   1523	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num);
   1524	struct cppc_pcc_data *pcc_ss_data;
   1525
   1526	cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
   1527	if (!cpc_desc)
   1528		return CPUFREQ_ETERNAL;
   1529
   1530	desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
   1531	if (CPC_IN_SYSTEM_MEMORY(desired_reg) || CPC_IN_SYSTEM_IO(desired_reg))
   1532		return 0;
   1533	else if (!CPC_IN_PCC(desired_reg))
   1534		return CPUFREQ_ETERNAL;
   1535
   1536	if (pcc_ss_id < 0)
   1537		return CPUFREQ_ETERNAL;
   1538
   1539	pcc_ss_data = pcc_data[pcc_ss_id];
   1540	if (pcc_ss_data->pcc_mpar)
   1541		latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar);
   1542
   1543	latency_ns = max(latency_ns, pcc_ss_data->pcc_nominal * 1000);
   1544	latency_ns = max(latency_ns, pcc_ss_data->pcc_mrtt * 1000);
   1545
   1546	return latency_ns;
   1547}
   1548EXPORT_SYMBOL_GPL(cppc_get_transition_latency);