cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

pptt.c (26401B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * pptt.c - parsing of Processor Properties Topology Table (PPTT)
      4 *
      5 * Copyright (C) 2018, ARM
      6 *
      7 * This file implements parsing of the Processor Properties Topology Table
      8 * which is optionally used to describe the processor and cache topology.
      9 * Due to the relative pointers used throughout the table, this doesn't
     10 * leverage the existing subtable parsing in the kernel.
     11 *
     12 * The PPTT structure is an inverted tree, with each node potentially
     13 * holding one or two inverted tree data structures describing
     14 * the caches available at that level. Each cache structure optionally
     15 * contains properties describing the cache at a given level which can be
     16 * used to override hardware probed values.
     17 */
     18#define pr_fmt(fmt) "ACPI PPTT: " fmt
     19
     20#include <linux/acpi.h>
     21#include <linux/cacheinfo.h>
     22#include <acpi/processor.h>
     23
     24static struct acpi_subtable_header *fetch_pptt_subtable(struct acpi_table_header *table_hdr,
     25							u32 pptt_ref)
     26{
     27	struct acpi_subtable_header *entry;
     28
     29	/* there isn't a subtable at reference 0 */
     30	if (pptt_ref < sizeof(struct acpi_subtable_header))
     31		return NULL;
     32
     33	if (pptt_ref + sizeof(struct acpi_subtable_header) > table_hdr->length)
     34		return NULL;
     35
     36	entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr, pptt_ref);
     37
     38	if (entry->length == 0)
     39		return NULL;
     40
     41	if (pptt_ref + entry->length > table_hdr->length)
     42		return NULL;
     43
     44	return entry;
     45}
     46
     47static struct acpi_pptt_processor *fetch_pptt_node(struct acpi_table_header *table_hdr,
     48						   u32 pptt_ref)
     49{
     50	return (struct acpi_pptt_processor *)fetch_pptt_subtable(table_hdr, pptt_ref);
     51}
     52
     53static struct acpi_pptt_cache *fetch_pptt_cache(struct acpi_table_header *table_hdr,
     54						u32 pptt_ref)
     55{
     56	return (struct acpi_pptt_cache *)fetch_pptt_subtable(table_hdr, pptt_ref);
     57}
     58
     59static struct acpi_subtable_header *acpi_get_pptt_resource(struct acpi_table_header *table_hdr,
     60							   struct acpi_pptt_processor *node,
     61							   int resource)
     62{
     63	u32 *ref;
     64
     65	if (resource >= node->number_of_priv_resources)
     66		return NULL;
     67
     68	ref = ACPI_ADD_PTR(u32, node, sizeof(struct acpi_pptt_processor));
     69	ref += resource;
     70
     71	return fetch_pptt_subtable(table_hdr, *ref);
     72}
     73
     74static inline bool acpi_pptt_match_type(int table_type, int type)
     75{
     76	return ((table_type & ACPI_PPTT_MASK_CACHE_TYPE) == type ||
     77		table_type & ACPI_PPTT_CACHE_TYPE_UNIFIED & type);
     78}
     79
     80/**
     81 * acpi_pptt_walk_cache() - Attempt to find the requested acpi_pptt_cache
     82 * @table_hdr: Pointer to the head of the PPTT table
     83 * @local_level: passed res reflects this cache level
     84 * @res: cache resource in the PPTT we want to walk
     85 * @found: returns a pointer to the requested level if found
     86 * @level: the requested cache level
     87 * @type: the requested cache type
     88 *
     89 * Attempt to find a given cache level, while counting the max number
     90 * of cache levels for the cache node.
     91 *
     92 * Given a pptt resource, verify that it is a cache node, then walk
     93 * down each level of caches, counting how many levels are found
     94 * as well as checking the cache type (icache, dcache, unified). If a
     95 * level & type match, then we set found, and continue the search.
     96 * Once the entire cache branch has been walked return its max
     97 * depth.
     98 *
     99 * Return: The cache structure and the level we terminated with.
    100 */
    101static unsigned int acpi_pptt_walk_cache(struct acpi_table_header *table_hdr,
    102					 unsigned int local_level,
    103					 struct acpi_subtable_header *res,
    104					 struct acpi_pptt_cache **found,
    105					 unsigned int level, int type)
    106{
    107	struct acpi_pptt_cache *cache;
    108
    109	if (res->type != ACPI_PPTT_TYPE_CACHE)
    110		return 0;
    111
    112	cache = (struct acpi_pptt_cache *) res;
    113	while (cache) {
    114		local_level++;
    115
    116		if (local_level == level &&
    117		    cache->flags & ACPI_PPTT_CACHE_TYPE_VALID &&
    118		    acpi_pptt_match_type(cache->attributes, type)) {
    119			if (*found != NULL && cache != *found)
    120				pr_warn("Found duplicate cache level/type unable to determine uniqueness\n");
    121
    122			pr_debug("Found cache @ level %u\n", level);
    123			*found = cache;
    124			/*
    125			 * continue looking at this node's resource list
    126			 * to verify that we don't find a duplicate
    127			 * cache node.
    128			 */
    129		}
    130		cache = fetch_pptt_cache(table_hdr, cache->next_level_of_cache);
    131	}
    132	return local_level;
    133}
    134
    135static struct acpi_pptt_cache *
    136acpi_find_cache_level(struct acpi_table_header *table_hdr,
    137		      struct acpi_pptt_processor *cpu_node,
    138		      unsigned int *starting_level, unsigned int level,
    139		      int type)
    140{
    141	struct acpi_subtable_header *res;
    142	unsigned int number_of_levels = *starting_level;
    143	int resource = 0;
    144	struct acpi_pptt_cache *ret = NULL;
    145	unsigned int local_level;
    146
    147	/* walk down from processor node */
    148	while ((res = acpi_get_pptt_resource(table_hdr, cpu_node, resource))) {
    149		resource++;
    150
    151		local_level = acpi_pptt_walk_cache(table_hdr, *starting_level,
    152						   res, &ret, level, type);
    153		/*
    154		 * we are looking for the max depth. Since its potentially
    155		 * possible for a given node to have resources with differing
    156		 * depths verify that the depth we have found is the largest.
    157		 */
    158		if (number_of_levels < local_level)
    159			number_of_levels = local_level;
    160	}
    161	if (number_of_levels > *starting_level)
    162		*starting_level = number_of_levels;
    163
    164	return ret;
    165}
    166
    167/**
    168 * acpi_count_levels() - Given a PPTT table, and a CPU node, count the caches
    169 * @table_hdr: Pointer to the head of the PPTT table
    170 * @cpu_node: processor node we wish to count caches for
    171 *
    172 * Given a processor node containing a processing unit, walk into it and count
    173 * how many levels exist solely for it, and then walk up each level until we hit
    174 * the root node (ignore the package level because it may be possible to have
    175 * caches that exist across packages). Count the number of cache levels that
    176 * exist at each level on the way up.
    177 *
    178 * Return: Total number of levels found.
    179 */
    180static int acpi_count_levels(struct acpi_table_header *table_hdr,
    181			     struct acpi_pptt_processor *cpu_node)
    182{
    183	int total_levels = 0;
    184
    185	do {
    186		acpi_find_cache_level(table_hdr, cpu_node, &total_levels, 0, 0);
    187		cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent);
    188	} while (cpu_node);
    189
    190	return total_levels;
    191}
    192
    193/**
    194 * acpi_pptt_leaf_node() - Given a processor node, determine if its a leaf
    195 * @table_hdr: Pointer to the head of the PPTT table
    196 * @node: passed node is checked to see if its a leaf
    197 *
    198 * Determine if the *node parameter is a leaf node by iterating the
    199 * PPTT table, looking for nodes which reference it.
    200 *
    201 * Return: 0 if we find a node referencing the passed node (or table error),
    202 * or 1 if we don't.
    203 */
    204static int acpi_pptt_leaf_node(struct acpi_table_header *table_hdr,
    205			       struct acpi_pptt_processor *node)
    206{
    207	struct acpi_subtable_header *entry;
    208	unsigned long table_end;
    209	u32 node_entry;
    210	struct acpi_pptt_processor *cpu_node;
    211	u32 proc_sz;
    212
    213	if (table_hdr->revision > 1)
    214		return (node->flags & ACPI_PPTT_ACPI_LEAF_NODE);
    215
    216	table_end = (unsigned long)table_hdr + table_hdr->length;
    217	node_entry = ACPI_PTR_DIFF(node, table_hdr);
    218	entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr,
    219			     sizeof(struct acpi_table_pptt));
    220	proc_sz = sizeof(struct acpi_pptt_processor *);
    221
    222	while ((unsigned long)entry + proc_sz < table_end) {
    223		cpu_node = (struct acpi_pptt_processor *)entry;
    224		if (entry->type == ACPI_PPTT_TYPE_PROCESSOR &&
    225		    cpu_node->parent == node_entry)
    226			return 0;
    227		if (entry->length == 0)
    228			return 0;
    229		entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry,
    230				     entry->length);
    231
    232	}
    233	return 1;
    234}
    235
    236/**
    237 * acpi_find_processor_node() - Given a PPTT table find the requested processor
    238 * @table_hdr:  Pointer to the head of the PPTT table
    239 * @acpi_cpu_id: CPU we are searching for
    240 *
    241 * Find the subtable entry describing the provided processor.
    242 * This is done by iterating the PPTT table looking for processor nodes
    243 * which have an acpi_processor_id that matches the acpi_cpu_id parameter
    244 * passed into the function. If we find a node that matches this criteria
    245 * we verify that its a leaf node in the topology rather than depending
    246 * on the valid flag, which doesn't need to be set for leaf nodes.
    247 *
    248 * Return: NULL, or the processors acpi_pptt_processor*
    249 */
    250static struct acpi_pptt_processor *acpi_find_processor_node(struct acpi_table_header *table_hdr,
    251							    u32 acpi_cpu_id)
    252{
    253	struct acpi_subtable_header *entry;
    254	unsigned long table_end;
    255	struct acpi_pptt_processor *cpu_node;
    256	u32 proc_sz;
    257
    258	table_end = (unsigned long)table_hdr + table_hdr->length;
    259	entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr,
    260			     sizeof(struct acpi_table_pptt));
    261	proc_sz = sizeof(struct acpi_pptt_processor *);
    262
    263	/* find the processor structure associated with this cpuid */
    264	while ((unsigned long)entry + proc_sz < table_end) {
    265		cpu_node = (struct acpi_pptt_processor *)entry;
    266
    267		if (entry->length == 0) {
    268			pr_warn("Invalid zero length subtable\n");
    269			break;
    270		}
    271		if (entry->type == ACPI_PPTT_TYPE_PROCESSOR &&
    272		    acpi_cpu_id == cpu_node->acpi_processor_id &&
    273		     acpi_pptt_leaf_node(table_hdr, cpu_node)) {
    274			return (struct acpi_pptt_processor *)entry;
    275		}
    276
    277		entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry,
    278				     entry->length);
    279	}
    280
    281	return NULL;
    282}
    283
    284static int acpi_find_cache_levels(struct acpi_table_header *table_hdr,
    285				  u32 acpi_cpu_id)
    286{
    287	int number_of_levels = 0;
    288	struct acpi_pptt_processor *cpu;
    289
    290	cpu = acpi_find_processor_node(table_hdr, acpi_cpu_id);
    291	if (cpu)
    292		number_of_levels = acpi_count_levels(table_hdr, cpu);
    293
    294	return number_of_levels;
    295}
    296
    297static u8 acpi_cache_type(enum cache_type type)
    298{
    299	switch (type) {
    300	case CACHE_TYPE_DATA:
    301		pr_debug("Looking for data cache\n");
    302		return ACPI_PPTT_CACHE_TYPE_DATA;
    303	case CACHE_TYPE_INST:
    304		pr_debug("Looking for instruction cache\n");
    305		return ACPI_PPTT_CACHE_TYPE_INSTR;
    306	default:
    307	case CACHE_TYPE_UNIFIED:
    308		pr_debug("Looking for unified cache\n");
    309		/*
    310		 * It is important that ACPI_PPTT_CACHE_TYPE_UNIFIED
    311		 * contains the bit pattern that will match both
    312		 * ACPI unified bit patterns because we use it later
    313		 * to match both cases.
    314		 */
    315		return ACPI_PPTT_CACHE_TYPE_UNIFIED;
    316	}
    317}
    318
    319static struct acpi_pptt_cache *acpi_find_cache_node(struct acpi_table_header *table_hdr,
    320						    u32 acpi_cpu_id,
    321						    enum cache_type type,
    322						    unsigned int level,
    323						    struct acpi_pptt_processor **node)
    324{
    325	unsigned int total_levels = 0;
    326	struct acpi_pptt_cache *found = NULL;
    327	struct acpi_pptt_processor *cpu_node;
    328	u8 acpi_type = acpi_cache_type(type);
    329
    330	pr_debug("Looking for CPU %d's level %u cache type %d\n",
    331		 acpi_cpu_id, level, acpi_type);
    332
    333	cpu_node = acpi_find_processor_node(table_hdr, acpi_cpu_id);
    334
    335	while (cpu_node && !found) {
    336		found = acpi_find_cache_level(table_hdr, cpu_node,
    337					      &total_levels, level, acpi_type);
    338		*node = cpu_node;
    339		cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent);
    340	}
    341
    342	return found;
    343}
    344
    345/**
    346 * update_cache_properties() - Update cacheinfo for the given processor
    347 * @this_leaf: Kernel cache info structure being updated
    348 * @found_cache: The PPTT node describing this cache instance
    349 * @cpu_node: A unique reference to describe this cache instance
    350 * @revision: The revision of the PPTT table
    351 *
    352 * The ACPI spec implies that the fields in the cache structures are used to
    353 * extend and correct the information probed from the hardware. Lets only
    354 * set fields that we determine are VALID.
    355 *
    356 * Return: nothing. Side effect of updating the global cacheinfo
    357 */
    358static void update_cache_properties(struct cacheinfo *this_leaf,
    359				    struct acpi_pptt_cache *found_cache,
    360				    struct acpi_pptt_processor *cpu_node,
    361				    u8 revision)
    362{
    363	struct acpi_pptt_cache_v1* found_cache_v1;
    364
    365	this_leaf->fw_token = cpu_node;
    366	if (found_cache->flags & ACPI_PPTT_SIZE_PROPERTY_VALID)
    367		this_leaf->size = found_cache->size;
    368	if (found_cache->flags & ACPI_PPTT_LINE_SIZE_VALID)
    369		this_leaf->coherency_line_size = found_cache->line_size;
    370	if (found_cache->flags & ACPI_PPTT_NUMBER_OF_SETS_VALID)
    371		this_leaf->number_of_sets = found_cache->number_of_sets;
    372	if (found_cache->flags & ACPI_PPTT_ASSOCIATIVITY_VALID)
    373		this_leaf->ways_of_associativity = found_cache->associativity;
    374	if (found_cache->flags & ACPI_PPTT_WRITE_POLICY_VALID) {
    375		switch (found_cache->attributes & ACPI_PPTT_MASK_WRITE_POLICY) {
    376		case ACPI_PPTT_CACHE_POLICY_WT:
    377			this_leaf->attributes = CACHE_WRITE_THROUGH;
    378			break;
    379		case ACPI_PPTT_CACHE_POLICY_WB:
    380			this_leaf->attributes = CACHE_WRITE_BACK;
    381			break;
    382		}
    383	}
    384	if (found_cache->flags & ACPI_PPTT_ALLOCATION_TYPE_VALID) {
    385		switch (found_cache->attributes & ACPI_PPTT_MASK_ALLOCATION_TYPE) {
    386		case ACPI_PPTT_CACHE_READ_ALLOCATE:
    387			this_leaf->attributes |= CACHE_READ_ALLOCATE;
    388			break;
    389		case ACPI_PPTT_CACHE_WRITE_ALLOCATE:
    390			this_leaf->attributes |= CACHE_WRITE_ALLOCATE;
    391			break;
    392		case ACPI_PPTT_CACHE_RW_ALLOCATE:
    393		case ACPI_PPTT_CACHE_RW_ALLOCATE_ALT:
    394			this_leaf->attributes |=
    395				CACHE_READ_ALLOCATE | CACHE_WRITE_ALLOCATE;
    396			break;
    397		}
    398	}
    399	/*
    400	 * If cache type is NOCACHE, then the cache hasn't been specified
    401	 * via other mechanisms.  Update the type if a cache type has been
    402	 * provided.
    403	 *
    404	 * Note, we assume such caches are unified based on conventional system
    405	 * design and known examples.  Significant work is required elsewhere to
    406	 * fully support data/instruction only type caches which are only
    407	 * specified in PPTT.
    408	 */
    409	if (this_leaf->type == CACHE_TYPE_NOCACHE &&
    410	    found_cache->flags & ACPI_PPTT_CACHE_TYPE_VALID)
    411		this_leaf->type = CACHE_TYPE_UNIFIED;
    412
    413	if (revision >= 3 && (found_cache->flags & ACPI_PPTT_CACHE_ID_VALID)) {
    414		found_cache_v1 = ACPI_ADD_PTR(struct acpi_pptt_cache_v1,
    415	                                      found_cache, sizeof(struct acpi_pptt_cache));
    416		this_leaf->id = found_cache_v1->cache_id;
    417		this_leaf->attributes |= CACHE_ID;
    418	}
    419}
    420
    421static void cache_setup_acpi_cpu(struct acpi_table_header *table,
    422				 unsigned int cpu)
    423{
    424	struct acpi_pptt_cache *found_cache;
    425	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
    426	u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
    427	struct cacheinfo *this_leaf;
    428	unsigned int index = 0;
    429	struct acpi_pptt_processor *cpu_node = NULL;
    430
    431	while (index < get_cpu_cacheinfo(cpu)->num_leaves) {
    432		this_leaf = this_cpu_ci->info_list + index;
    433		found_cache = acpi_find_cache_node(table, acpi_cpu_id,
    434						   this_leaf->type,
    435						   this_leaf->level,
    436						   &cpu_node);
    437		pr_debug("found = %p %p\n", found_cache, cpu_node);
    438		if (found_cache)
    439			update_cache_properties(this_leaf, found_cache,
    440			                        cpu_node, table->revision);
    441
    442		index++;
    443	}
    444}
    445
    446static bool flag_identical(struct acpi_table_header *table_hdr,
    447			   struct acpi_pptt_processor *cpu)
    448{
    449	struct acpi_pptt_processor *next;
    450
    451	/* heterogeneous machines must use PPTT revision > 1 */
    452	if (table_hdr->revision < 2)
    453		return false;
    454
    455	/* Locate the last node in the tree with IDENTICAL set */
    456	if (cpu->flags & ACPI_PPTT_ACPI_IDENTICAL) {
    457		next = fetch_pptt_node(table_hdr, cpu->parent);
    458		if (!(next && next->flags & ACPI_PPTT_ACPI_IDENTICAL))
    459			return true;
    460	}
    461
    462	return false;
    463}
    464
    465/* Passing level values greater than this will result in search termination */
    466#define PPTT_ABORT_PACKAGE 0xFF
    467
    468static struct acpi_pptt_processor *acpi_find_processor_tag(struct acpi_table_header *table_hdr,
    469							   struct acpi_pptt_processor *cpu,
    470							   int level, int flag)
    471{
    472	struct acpi_pptt_processor *prev_node;
    473
    474	while (cpu && level) {
    475		/* special case the identical flag to find last identical */
    476		if (flag == ACPI_PPTT_ACPI_IDENTICAL) {
    477			if (flag_identical(table_hdr, cpu))
    478				break;
    479		} else if (cpu->flags & flag)
    480			break;
    481		pr_debug("level %d\n", level);
    482		prev_node = fetch_pptt_node(table_hdr, cpu->parent);
    483		if (prev_node == NULL)
    484			break;
    485		cpu = prev_node;
    486		level--;
    487	}
    488	return cpu;
    489}
    490
    491static void acpi_pptt_warn_missing(void)
    492{
    493	pr_warn_once("No PPTT table found, CPU and cache topology may be inaccurate\n");
    494}
    495
    496/**
    497 * topology_get_acpi_cpu_tag() - Find a unique topology value for a feature
    498 * @table: Pointer to the head of the PPTT table
    499 * @cpu: Kernel logical CPU number
    500 * @level: A level that terminates the search
    501 * @flag: A flag which terminates the search
    502 *
    503 * Get a unique value given a CPU, and a topology level, that can be
    504 * matched to determine which cpus share common topological features
    505 * at that level.
    506 *
    507 * Return: Unique value, or -ENOENT if unable to locate CPU
    508 */
    509static int topology_get_acpi_cpu_tag(struct acpi_table_header *table,
    510				     unsigned int cpu, int level, int flag)
    511{
    512	struct acpi_pptt_processor *cpu_node;
    513	u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
    514
    515	cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
    516	if (cpu_node) {
    517		cpu_node = acpi_find_processor_tag(table, cpu_node,
    518						   level, flag);
    519		/*
    520		 * As per specification if the processor structure represents
    521		 * an actual processor, then ACPI processor ID must be valid.
    522		 * For processor containers ACPI_PPTT_ACPI_PROCESSOR_ID_VALID
    523		 * should be set if the UID is valid
    524		 */
    525		if (level == 0 ||
    526		    cpu_node->flags & ACPI_PPTT_ACPI_PROCESSOR_ID_VALID)
    527			return cpu_node->acpi_processor_id;
    528		return ACPI_PTR_DIFF(cpu_node, table);
    529	}
    530	pr_warn_once("PPTT table found, but unable to locate core %d (%d)\n",
    531		    cpu, acpi_cpu_id);
    532	return -ENOENT;
    533}
    534
    535static int find_acpi_cpu_topology_tag(unsigned int cpu, int level, int flag)
    536{
    537	struct acpi_table_header *table;
    538	acpi_status status;
    539	int retval;
    540
    541	status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
    542	if (ACPI_FAILURE(status)) {
    543		acpi_pptt_warn_missing();
    544		return -ENOENT;
    545	}
    546	retval = topology_get_acpi_cpu_tag(table, cpu, level, flag);
    547	pr_debug("Topology Setup ACPI CPU %d, level %d ret = %d\n",
    548		 cpu, level, retval);
    549	acpi_put_table(table);
    550
    551	return retval;
    552}
    553
    554/**
    555 * check_acpi_cpu_flag() - Determine if CPU node has a flag set
    556 * @cpu: Kernel logical CPU number
    557 * @rev: The minimum PPTT revision defining the flag
    558 * @flag: The flag itself
    559 *
    560 * Check the node representing a CPU for a given flag.
    561 *
    562 * Return: -ENOENT if the PPTT doesn't exist, the CPU cannot be found or
    563 *	   the table revision isn't new enough.
    564 *	   1, any passed flag set
    565 *	   0, flag unset
    566 */
    567static int check_acpi_cpu_flag(unsigned int cpu, int rev, u32 flag)
    568{
    569	struct acpi_table_header *table;
    570	acpi_status status;
    571	u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
    572	struct acpi_pptt_processor *cpu_node = NULL;
    573	int ret = -ENOENT;
    574
    575	status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
    576	if (ACPI_FAILURE(status)) {
    577		acpi_pptt_warn_missing();
    578		return ret;
    579	}
    580
    581	if (table->revision >= rev)
    582		cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
    583
    584	if (cpu_node)
    585		ret = (cpu_node->flags & flag) != 0;
    586
    587	acpi_put_table(table);
    588
    589	return ret;
    590}
    591
    592/**
    593 * acpi_find_last_cache_level() - Determines the number of cache levels for a PE
    594 * @cpu: Kernel logical CPU number
    595 *
    596 * Given a logical CPU number, returns the number of levels of cache represented
    597 * in the PPTT. Errors caused by lack of a PPTT table, or otherwise, return 0
    598 * indicating we didn't find any cache levels.
    599 *
    600 * Return: Cache levels visible to this core.
    601 */
    602int acpi_find_last_cache_level(unsigned int cpu)
    603{
    604	u32 acpi_cpu_id;
    605	struct acpi_table_header *table;
    606	int number_of_levels = 0;
    607	acpi_status status;
    608
    609	pr_debug("Cache Setup find last level CPU=%d\n", cpu);
    610
    611	acpi_cpu_id = get_acpi_id_for_cpu(cpu);
    612	status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
    613	if (ACPI_FAILURE(status)) {
    614		acpi_pptt_warn_missing();
    615	} else {
    616		number_of_levels = acpi_find_cache_levels(table, acpi_cpu_id);
    617		acpi_put_table(table);
    618	}
    619	pr_debug("Cache Setup find last level level=%d\n", number_of_levels);
    620
    621	return number_of_levels;
    622}
    623
    624/**
    625 * cache_setup_acpi() - Override CPU cache topology with data from the PPTT
    626 * @cpu: Kernel logical CPU number
    627 *
    628 * Updates the global cache info provided by cpu_get_cacheinfo()
    629 * when there are valid properties in the acpi_pptt_cache nodes. A
    630 * successful parse may not result in any updates if none of the
    631 * cache levels have any valid flags set.  Further, a unique value is
    632 * associated with each known CPU cache entry. This unique value
    633 * can be used to determine whether caches are shared between CPUs.
    634 *
    635 * Return: -ENOENT on failure to find table, or 0 on success
    636 */
    637int cache_setup_acpi(unsigned int cpu)
    638{
    639	struct acpi_table_header *table;
    640	acpi_status status;
    641
    642	pr_debug("Cache Setup ACPI CPU %d\n", cpu);
    643
    644	status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
    645	if (ACPI_FAILURE(status)) {
    646		acpi_pptt_warn_missing();
    647		return -ENOENT;
    648	}
    649
    650	cache_setup_acpi_cpu(table, cpu);
    651	acpi_put_table(table);
    652
    653	return status;
    654}
    655
    656/**
    657 * acpi_pptt_cpu_is_thread() - Determine if CPU is a thread
    658 * @cpu: Kernel logical CPU number
    659 *
    660 * Return: 1, a thread
    661 *         0, not a thread
    662 *         -ENOENT ,if the PPTT doesn't exist, the CPU cannot be found or
    663 *         the table revision isn't new enough.
    664 */
    665int acpi_pptt_cpu_is_thread(unsigned int cpu)
    666{
    667	return check_acpi_cpu_flag(cpu, 2, ACPI_PPTT_ACPI_PROCESSOR_IS_THREAD);
    668}
    669
    670/**
    671 * find_acpi_cpu_topology() - Determine a unique topology value for a given CPU
    672 * @cpu: Kernel logical CPU number
    673 * @level: The topological level for which we would like a unique ID
    674 *
    675 * Determine a topology unique ID for each thread/core/cluster/mc_grouping
    676 * /socket/etc. This ID can then be used to group peers, which will have
    677 * matching ids.
    678 *
    679 * The search terminates when either the requested level is found or
    680 * we reach a root node. Levels beyond the termination point will return the
    681 * same unique ID. The unique id for level 0 is the acpi processor id. All
    682 * other levels beyond this use a generated value to uniquely identify
    683 * a topological feature.
    684 *
    685 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
    686 * Otherwise returns a value which represents a unique topological feature.
    687 */
    688int find_acpi_cpu_topology(unsigned int cpu, int level)
    689{
    690	return find_acpi_cpu_topology_tag(cpu, level, 0);
    691}
    692
    693/**
    694 * find_acpi_cpu_cache_topology() - Determine a unique cache topology value
    695 * @cpu: Kernel logical CPU number
    696 * @level: The cache level for which we would like a unique ID
    697 *
    698 * Determine a unique ID for each unified cache in the system
    699 *
    700 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
    701 * Otherwise returns a value which represents a unique topological feature.
    702 */
    703int find_acpi_cpu_cache_topology(unsigned int cpu, int level)
    704{
    705	struct acpi_table_header *table;
    706	struct acpi_pptt_cache *found_cache;
    707	acpi_status status;
    708	u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
    709	struct acpi_pptt_processor *cpu_node = NULL;
    710	int ret = -1;
    711
    712	status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
    713	if (ACPI_FAILURE(status)) {
    714		acpi_pptt_warn_missing();
    715		return -ENOENT;
    716	}
    717
    718	found_cache = acpi_find_cache_node(table, acpi_cpu_id,
    719					   CACHE_TYPE_UNIFIED,
    720					   level,
    721					   &cpu_node);
    722	if (found_cache)
    723		ret = ACPI_PTR_DIFF(cpu_node, table);
    724
    725	acpi_put_table(table);
    726
    727	return ret;
    728}
    729
    730/**
    731 * find_acpi_cpu_topology_package() - Determine a unique CPU package value
    732 * @cpu: Kernel logical CPU number
    733 *
    734 * Determine a topology unique package ID for the given CPU.
    735 * This ID can then be used to group peers, which will have matching ids.
    736 *
    737 * The search terminates when either a level is found with the PHYSICAL_PACKAGE
    738 * flag set or we reach a root node.
    739 *
    740 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
    741 * Otherwise returns a value which represents the package for this CPU.
    742 */
    743int find_acpi_cpu_topology_package(unsigned int cpu)
    744{
    745	return find_acpi_cpu_topology_tag(cpu, PPTT_ABORT_PACKAGE,
    746					  ACPI_PPTT_PHYSICAL_PACKAGE);
    747}
    748
    749/**
    750 * find_acpi_cpu_topology_cluster() - Determine a unique CPU cluster value
    751 * @cpu: Kernel logical CPU number
    752 *
    753 * Determine a topology unique cluster ID for the given CPU/thread.
    754 * This ID can then be used to group peers, which will have matching ids.
    755 *
    756 * The cluster, if present is the level of topology above CPUs. In a
    757 * multi-thread CPU, it will be the level above the CPU, not the thread.
    758 * It may not exist in single CPU systems. In simple multi-CPU systems,
    759 * it may be equal to the package topology level.
    760 *
    761 * Return: -ENOENT if the PPTT doesn't exist, the CPU cannot be found
    762 * or there is no toplogy level above the CPU..
    763 * Otherwise returns a value which represents the package for this CPU.
    764 */
    765
    766int find_acpi_cpu_topology_cluster(unsigned int cpu)
    767{
    768	struct acpi_table_header *table;
    769	acpi_status status;
    770	struct acpi_pptt_processor *cpu_node, *cluster_node;
    771	u32 acpi_cpu_id;
    772	int retval;
    773	int is_thread;
    774
    775	status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
    776	if (ACPI_FAILURE(status)) {
    777		acpi_pptt_warn_missing();
    778		return -ENOENT;
    779	}
    780
    781	acpi_cpu_id = get_acpi_id_for_cpu(cpu);
    782	cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
    783	if (cpu_node == NULL || !cpu_node->parent) {
    784		retval = -ENOENT;
    785		goto put_table;
    786	}
    787
    788	is_thread = cpu_node->flags & ACPI_PPTT_ACPI_PROCESSOR_IS_THREAD;
    789	cluster_node = fetch_pptt_node(table, cpu_node->parent);
    790	if (cluster_node == NULL) {
    791		retval = -ENOENT;
    792		goto put_table;
    793	}
    794	if (is_thread) {
    795		if (!cluster_node->parent) {
    796			retval = -ENOENT;
    797			goto put_table;
    798		}
    799		cluster_node = fetch_pptt_node(table, cluster_node->parent);
    800		if (cluster_node == NULL) {
    801			retval = -ENOENT;
    802			goto put_table;
    803		}
    804	}
    805	if (cluster_node->flags & ACPI_PPTT_ACPI_PROCESSOR_ID_VALID)
    806		retval = cluster_node->acpi_processor_id;
    807	else
    808		retval = ACPI_PTR_DIFF(cluster_node, table);
    809
    810put_table:
    811	acpi_put_table(table);
    812
    813	return retval;
    814}
    815
    816/**
    817 * find_acpi_cpu_topology_hetero_id() - Get a core architecture tag
    818 * @cpu: Kernel logical CPU number
    819 *
    820 * Determine a unique heterogeneous tag for the given CPU. CPUs with the same
    821 * implementation should have matching tags.
    822 *
    823 * The returned tag can be used to group peers with identical implementation.
    824 *
    825 * The search terminates when a level is found with the identical implementation
    826 * flag set or we reach a root node.
    827 *
    828 * Due to limitations in the PPTT data structure, there may be rare situations
    829 * where two cores in a heterogeneous machine may be identical, but won't have
    830 * the same tag.
    831 *
    832 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
    833 * Otherwise returns a value which represents a group of identical cores
    834 * similar to this CPU.
    835 */
    836int find_acpi_cpu_topology_hetero_id(unsigned int cpu)
    837{
    838	return find_acpi_cpu_topology_tag(cpu, PPTT_ABORT_PACKAGE,
    839					  ACPI_PPTT_ACPI_IDENTICAL);
    840}