pptt.c (26401B)
1// SPDX-License-Identifier: GPL-2.0 2/* 3 * pptt.c - parsing of Processor Properties Topology Table (PPTT) 4 * 5 * Copyright (C) 2018, ARM 6 * 7 * This file implements parsing of the Processor Properties Topology Table 8 * which is optionally used to describe the processor and cache topology. 9 * Due to the relative pointers used throughout the table, this doesn't 10 * leverage the existing subtable parsing in the kernel. 11 * 12 * The PPTT structure is an inverted tree, with each node potentially 13 * holding one or two inverted tree data structures describing 14 * the caches available at that level. Each cache structure optionally 15 * contains properties describing the cache at a given level which can be 16 * used to override hardware probed values. 17 */ 18#define pr_fmt(fmt) "ACPI PPTT: " fmt 19 20#include <linux/acpi.h> 21#include <linux/cacheinfo.h> 22#include <acpi/processor.h> 23 24static struct acpi_subtable_header *fetch_pptt_subtable(struct acpi_table_header *table_hdr, 25 u32 pptt_ref) 26{ 27 struct acpi_subtable_header *entry; 28 29 /* there isn't a subtable at reference 0 */ 30 if (pptt_ref < sizeof(struct acpi_subtable_header)) 31 return NULL; 32 33 if (pptt_ref + sizeof(struct acpi_subtable_header) > table_hdr->length) 34 return NULL; 35 36 entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr, pptt_ref); 37 38 if (entry->length == 0) 39 return NULL; 40 41 if (pptt_ref + entry->length > table_hdr->length) 42 return NULL; 43 44 return entry; 45} 46 47static struct acpi_pptt_processor *fetch_pptt_node(struct acpi_table_header *table_hdr, 48 u32 pptt_ref) 49{ 50 return (struct acpi_pptt_processor *)fetch_pptt_subtable(table_hdr, pptt_ref); 51} 52 53static struct acpi_pptt_cache *fetch_pptt_cache(struct acpi_table_header *table_hdr, 54 u32 pptt_ref) 55{ 56 return (struct acpi_pptt_cache *)fetch_pptt_subtable(table_hdr, pptt_ref); 57} 58 59static struct acpi_subtable_header *acpi_get_pptt_resource(struct acpi_table_header *table_hdr, 60 struct acpi_pptt_processor *node, 61 int resource) 62{ 63 u32 *ref; 64 65 if (resource >= node->number_of_priv_resources) 66 return NULL; 67 68 ref = ACPI_ADD_PTR(u32, node, sizeof(struct acpi_pptt_processor)); 69 ref += resource; 70 71 return fetch_pptt_subtable(table_hdr, *ref); 72} 73 74static inline bool acpi_pptt_match_type(int table_type, int type) 75{ 76 return ((table_type & ACPI_PPTT_MASK_CACHE_TYPE) == type || 77 table_type & ACPI_PPTT_CACHE_TYPE_UNIFIED & type); 78} 79 80/** 81 * acpi_pptt_walk_cache() - Attempt to find the requested acpi_pptt_cache 82 * @table_hdr: Pointer to the head of the PPTT table 83 * @local_level: passed res reflects this cache level 84 * @res: cache resource in the PPTT we want to walk 85 * @found: returns a pointer to the requested level if found 86 * @level: the requested cache level 87 * @type: the requested cache type 88 * 89 * Attempt to find a given cache level, while counting the max number 90 * of cache levels for the cache node. 91 * 92 * Given a pptt resource, verify that it is a cache node, then walk 93 * down each level of caches, counting how many levels are found 94 * as well as checking the cache type (icache, dcache, unified). If a 95 * level & type match, then we set found, and continue the search. 96 * Once the entire cache branch has been walked return its max 97 * depth. 98 * 99 * Return: The cache structure and the level we terminated with. 100 */ 101static unsigned int acpi_pptt_walk_cache(struct acpi_table_header *table_hdr, 102 unsigned int local_level, 103 struct acpi_subtable_header *res, 104 struct acpi_pptt_cache **found, 105 unsigned int level, int type) 106{ 107 struct acpi_pptt_cache *cache; 108 109 if (res->type != ACPI_PPTT_TYPE_CACHE) 110 return 0; 111 112 cache = (struct acpi_pptt_cache *) res; 113 while (cache) { 114 local_level++; 115 116 if (local_level == level && 117 cache->flags & ACPI_PPTT_CACHE_TYPE_VALID && 118 acpi_pptt_match_type(cache->attributes, type)) { 119 if (*found != NULL && cache != *found) 120 pr_warn("Found duplicate cache level/type unable to determine uniqueness\n"); 121 122 pr_debug("Found cache @ level %u\n", level); 123 *found = cache; 124 /* 125 * continue looking at this node's resource list 126 * to verify that we don't find a duplicate 127 * cache node. 128 */ 129 } 130 cache = fetch_pptt_cache(table_hdr, cache->next_level_of_cache); 131 } 132 return local_level; 133} 134 135static struct acpi_pptt_cache * 136acpi_find_cache_level(struct acpi_table_header *table_hdr, 137 struct acpi_pptt_processor *cpu_node, 138 unsigned int *starting_level, unsigned int level, 139 int type) 140{ 141 struct acpi_subtable_header *res; 142 unsigned int number_of_levels = *starting_level; 143 int resource = 0; 144 struct acpi_pptt_cache *ret = NULL; 145 unsigned int local_level; 146 147 /* walk down from processor node */ 148 while ((res = acpi_get_pptt_resource(table_hdr, cpu_node, resource))) { 149 resource++; 150 151 local_level = acpi_pptt_walk_cache(table_hdr, *starting_level, 152 res, &ret, level, type); 153 /* 154 * we are looking for the max depth. Since its potentially 155 * possible for a given node to have resources with differing 156 * depths verify that the depth we have found is the largest. 157 */ 158 if (number_of_levels < local_level) 159 number_of_levels = local_level; 160 } 161 if (number_of_levels > *starting_level) 162 *starting_level = number_of_levels; 163 164 return ret; 165} 166 167/** 168 * acpi_count_levels() - Given a PPTT table, and a CPU node, count the caches 169 * @table_hdr: Pointer to the head of the PPTT table 170 * @cpu_node: processor node we wish to count caches for 171 * 172 * Given a processor node containing a processing unit, walk into it and count 173 * how many levels exist solely for it, and then walk up each level until we hit 174 * the root node (ignore the package level because it may be possible to have 175 * caches that exist across packages). Count the number of cache levels that 176 * exist at each level on the way up. 177 * 178 * Return: Total number of levels found. 179 */ 180static int acpi_count_levels(struct acpi_table_header *table_hdr, 181 struct acpi_pptt_processor *cpu_node) 182{ 183 int total_levels = 0; 184 185 do { 186 acpi_find_cache_level(table_hdr, cpu_node, &total_levels, 0, 0); 187 cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent); 188 } while (cpu_node); 189 190 return total_levels; 191} 192 193/** 194 * acpi_pptt_leaf_node() - Given a processor node, determine if its a leaf 195 * @table_hdr: Pointer to the head of the PPTT table 196 * @node: passed node is checked to see if its a leaf 197 * 198 * Determine if the *node parameter is a leaf node by iterating the 199 * PPTT table, looking for nodes which reference it. 200 * 201 * Return: 0 if we find a node referencing the passed node (or table error), 202 * or 1 if we don't. 203 */ 204static int acpi_pptt_leaf_node(struct acpi_table_header *table_hdr, 205 struct acpi_pptt_processor *node) 206{ 207 struct acpi_subtable_header *entry; 208 unsigned long table_end; 209 u32 node_entry; 210 struct acpi_pptt_processor *cpu_node; 211 u32 proc_sz; 212 213 if (table_hdr->revision > 1) 214 return (node->flags & ACPI_PPTT_ACPI_LEAF_NODE); 215 216 table_end = (unsigned long)table_hdr + table_hdr->length; 217 node_entry = ACPI_PTR_DIFF(node, table_hdr); 218 entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr, 219 sizeof(struct acpi_table_pptt)); 220 proc_sz = sizeof(struct acpi_pptt_processor *); 221 222 while ((unsigned long)entry + proc_sz < table_end) { 223 cpu_node = (struct acpi_pptt_processor *)entry; 224 if (entry->type == ACPI_PPTT_TYPE_PROCESSOR && 225 cpu_node->parent == node_entry) 226 return 0; 227 if (entry->length == 0) 228 return 0; 229 entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry, 230 entry->length); 231 232 } 233 return 1; 234} 235 236/** 237 * acpi_find_processor_node() - Given a PPTT table find the requested processor 238 * @table_hdr: Pointer to the head of the PPTT table 239 * @acpi_cpu_id: CPU we are searching for 240 * 241 * Find the subtable entry describing the provided processor. 242 * This is done by iterating the PPTT table looking for processor nodes 243 * which have an acpi_processor_id that matches the acpi_cpu_id parameter 244 * passed into the function. If we find a node that matches this criteria 245 * we verify that its a leaf node in the topology rather than depending 246 * on the valid flag, which doesn't need to be set for leaf nodes. 247 * 248 * Return: NULL, or the processors acpi_pptt_processor* 249 */ 250static struct acpi_pptt_processor *acpi_find_processor_node(struct acpi_table_header *table_hdr, 251 u32 acpi_cpu_id) 252{ 253 struct acpi_subtable_header *entry; 254 unsigned long table_end; 255 struct acpi_pptt_processor *cpu_node; 256 u32 proc_sz; 257 258 table_end = (unsigned long)table_hdr + table_hdr->length; 259 entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr, 260 sizeof(struct acpi_table_pptt)); 261 proc_sz = sizeof(struct acpi_pptt_processor *); 262 263 /* find the processor structure associated with this cpuid */ 264 while ((unsigned long)entry + proc_sz < table_end) { 265 cpu_node = (struct acpi_pptt_processor *)entry; 266 267 if (entry->length == 0) { 268 pr_warn("Invalid zero length subtable\n"); 269 break; 270 } 271 if (entry->type == ACPI_PPTT_TYPE_PROCESSOR && 272 acpi_cpu_id == cpu_node->acpi_processor_id && 273 acpi_pptt_leaf_node(table_hdr, cpu_node)) { 274 return (struct acpi_pptt_processor *)entry; 275 } 276 277 entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry, 278 entry->length); 279 } 280 281 return NULL; 282} 283 284static int acpi_find_cache_levels(struct acpi_table_header *table_hdr, 285 u32 acpi_cpu_id) 286{ 287 int number_of_levels = 0; 288 struct acpi_pptt_processor *cpu; 289 290 cpu = acpi_find_processor_node(table_hdr, acpi_cpu_id); 291 if (cpu) 292 number_of_levels = acpi_count_levels(table_hdr, cpu); 293 294 return number_of_levels; 295} 296 297static u8 acpi_cache_type(enum cache_type type) 298{ 299 switch (type) { 300 case CACHE_TYPE_DATA: 301 pr_debug("Looking for data cache\n"); 302 return ACPI_PPTT_CACHE_TYPE_DATA; 303 case CACHE_TYPE_INST: 304 pr_debug("Looking for instruction cache\n"); 305 return ACPI_PPTT_CACHE_TYPE_INSTR; 306 default: 307 case CACHE_TYPE_UNIFIED: 308 pr_debug("Looking for unified cache\n"); 309 /* 310 * It is important that ACPI_PPTT_CACHE_TYPE_UNIFIED 311 * contains the bit pattern that will match both 312 * ACPI unified bit patterns because we use it later 313 * to match both cases. 314 */ 315 return ACPI_PPTT_CACHE_TYPE_UNIFIED; 316 } 317} 318 319static struct acpi_pptt_cache *acpi_find_cache_node(struct acpi_table_header *table_hdr, 320 u32 acpi_cpu_id, 321 enum cache_type type, 322 unsigned int level, 323 struct acpi_pptt_processor **node) 324{ 325 unsigned int total_levels = 0; 326 struct acpi_pptt_cache *found = NULL; 327 struct acpi_pptt_processor *cpu_node; 328 u8 acpi_type = acpi_cache_type(type); 329 330 pr_debug("Looking for CPU %d's level %u cache type %d\n", 331 acpi_cpu_id, level, acpi_type); 332 333 cpu_node = acpi_find_processor_node(table_hdr, acpi_cpu_id); 334 335 while (cpu_node && !found) { 336 found = acpi_find_cache_level(table_hdr, cpu_node, 337 &total_levels, level, acpi_type); 338 *node = cpu_node; 339 cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent); 340 } 341 342 return found; 343} 344 345/** 346 * update_cache_properties() - Update cacheinfo for the given processor 347 * @this_leaf: Kernel cache info structure being updated 348 * @found_cache: The PPTT node describing this cache instance 349 * @cpu_node: A unique reference to describe this cache instance 350 * @revision: The revision of the PPTT table 351 * 352 * The ACPI spec implies that the fields in the cache structures are used to 353 * extend and correct the information probed from the hardware. Lets only 354 * set fields that we determine are VALID. 355 * 356 * Return: nothing. Side effect of updating the global cacheinfo 357 */ 358static void update_cache_properties(struct cacheinfo *this_leaf, 359 struct acpi_pptt_cache *found_cache, 360 struct acpi_pptt_processor *cpu_node, 361 u8 revision) 362{ 363 struct acpi_pptt_cache_v1* found_cache_v1; 364 365 this_leaf->fw_token = cpu_node; 366 if (found_cache->flags & ACPI_PPTT_SIZE_PROPERTY_VALID) 367 this_leaf->size = found_cache->size; 368 if (found_cache->flags & ACPI_PPTT_LINE_SIZE_VALID) 369 this_leaf->coherency_line_size = found_cache->line_size; 370 if (found_cache->flags & ACPI_PPTT_NUMBER_OF_SETS_VALID) 371 this_leaf->number_of_sets = found_cache->number_of_sets; 372 if (found_cache->flags & ACPI_PPTT_ASSOCIATIVITY_VALID) 373 this_leaf->ways_of_associativity = found_cache->associativity; 374 if (found_cache->flags & ACPI_PPTT_WRITE_POLICY_VALID) { 375 switch (found_cache->attributes & ACPI_PPTT_MASK_WRITE_POLICY) { 376 case ACPI_PPTT_CACHE_POLICY_WT: 377 this_leaf->attributes = CACHE_WRITE_THROUGH; 378 break; 379 case ACPI_PPTT_CACHE_POLICY_WB: 380 this_leaf->attributes = CACHE_WRITE_BACK; 381 break; 382 } 383 } 384 if (found_cache->flags & ACPI_PPTT_ALLOCATION_TYPE_VALID) { 385 switch (found_cache->attributes & ACPI_PPTT_MASK_ALLOCATION_TYPE) { 386 case ACPI_PPTT_CACHE_READ_ALLOCATE: 387 this_leaf->attributes |= CACHE_READ_ALLOCATE; 388 break; 389 case ACPI_PPTT_CACHE_WRITE_ALLOCATE: 390 this_leaf->attributes |= CACHE_WRITE_ALLOCATE; 391 break; 392 case ACPI_PPTT_CACHE_RW_ALLOCATE: 393 case ACPI_PPTT_CACHE_RW_ALLOCATE_ALT: 394 this_leaf->attributes |= 395 CACHE_READ_ALLOCATE | CACHE_WRITE_ALLOCATE; 396 break; 397 } 398 } 399 /* 400 * If cache type is NOCACHE, then the cache hasn't been specified 401 * via other mechanisms. Update the type if a cache type has been 402 * provided. 403 * 404 * Note, we assume such caches are unified based on conventional system 405 * design and known examples. Significant work is required elsewhere to 406 * fully support data/instruction only type caches which are only 407 * specified in PPTT. 408 */ 409 if (this_leaf->type == CACHE_TYPE_NOCACHE && 410 found_cache->flags & ACPI_PPTT_CACHE_TYPE_VALID) 411 this_leaf->type = CACHE_TYPE_UNIFIED; 412 413 if (revision >= 3 && (found_cache->flags & ACPI_PPTT_CACHE_ID_VALID)) { 414 found_cache_v1 = ACPI_ADD_PTR(struct acpi_pptt_cache_v1, 415 found_cache, sizeof(struct acpi_pptt_cache)); 416 this_leaf->id = found_cache_v1->cache_id; 417 this_leaf->attributes |= CACHE_ID; 418 } 419} 420 421static void cache_setup_acpi_cpu(struct acpi_table_header *table, 422 unsigned int cpu) 423{ 424 struct acpi_pptt_cache *found_cache; 425 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); 426 u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu); 427 struct cacheinfo *this_leaf; 428 unsigned int index = 0; 429 struct acpi_pptt_processor *cpu_node = NULL; 430 431 while (index < get_cpu_cacheinfo(cpu)->num_leaves) { 432 this_leaf = this_cpu_ci->info_list + index; 433 found_cache = acpi_find_cache_node(table, acpi_cpu_id, 434 this_leaf->type, 435 this_leaf->level, 436 &cpu_node); 437 pr_debug("found = %p %p\n", found_cache, cpu_node); 438 if (found_cache) 439 update_cache_properties(this_leaf, found_cache, 440 cpu_node, table->revision); 441 442 index++; 443 } 444} 445 446static bool flag_identical(struct acpi_table_header *table_hdr, 447 struct acpi_pptt_processor *cpu) 448{ 449 struct acpi_pptt_processor *next; 450 451 /* heterogeneous machines must use PPTT revision > 1 */ 452 if (table_hdr->revision < 2) 453 return false; 454 455 /* Locate the last node in the tree with IDENTICAL set */ 456 if (cpu->flags & ACPI_PPTT_ACPI_IDENTICAL) { 457 next = fetch_pptt_node(table_hdr, cpu->parent); 458 if (!(next && next->flags & ACPI_PPTT_ACPI_IDENTICAL)) 459 return true; 460 } 461 462 return false; 463} 464 465/* Passing level values greater than this will result in search termination */ 466#define PPTT_ABORT_PACKAGE 0xFF 467 468static struct acpi_pptt_processor *acpi_find_processor_tag(struct acpi_table_header *table_hdr, 469 struct acpi_pptt_processor *cpu, 470 int level, int flag) 471{ 472 struct acpi_pptt_processor *prev_node; 473 474 while (cpu && level) { 475 /* special case the identical flag to find last identical */ 476 if (flag == ACPI_PPTT_ACPI_IDENTICAL) { 477 if (flag_identical(table_hdr, cpu)) 478 break; 479 } else if (cpu->flags & flag) 480 break; 481 pr_debug("level %d\n", level); 482 prev_node = fetch_pptt_node(table_hdr, cpu->parent); 483 if (prev_node == NULL) 484 break; 485 cpu = prev_node; 486 level--; 487 } 488 return cpu; 489} 490 491static void acpi_pptt_warn_missing(void) 492{ 493 pr_warn_once("No PPTT table found, CPU and cache topology may be inaccurate\n"); 494} 495 496/** 497 * topology_get_acpi_cpu_tag() - Find a unique topology value for a feature 498 * @table: Pointer to the head of the PPTT table 499 * @cpu: Kernel logical CPU number 500 * @level: A level that terminates the search 501 * @flag: A flag which terminates the search 502 * 503 * Get a unique value given a CPU, and a topology level, that can be 504 * matched to determine which cpus share common topological features 505 * at that level. 506 * 507 * Return: Unique value, or -ENOENT if unable to locate CPU 508 */ 509static int topology_get_acpi_cpu_tag(struct acpi_table_header *table, 510 unsigned int cpu, int level, int flag) 511{ 512 struct acpi_pptt_processor *cpu_node; 513 u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu); 514 515 cpu_node = acpi_find_processor_node(table, acpi_cpu_id); 516 if (cpu_node) { 517 cpu_node = acpi_find_processor_tag(table, cpu_node, 518 level, flag); 519 /* 520 * As per specification if the processor structure represents 521 * an actual processor, then ACPI processor ID must be valid. 522 * For processor containers ACPI_PPTT_ACPI_PROCESSOR_ID_VALID 523 * should be set if the UID is valid 524 */ 525 if (level == 0 || 526 cpu_node->flags & ACPI_PPTT_ACPI_PROCESSOR_ID_VALID) 527 return cpu_node->acpi_processor_id; 528 return ACPI_PTR_DIFF(cpu_node, table); 529 } 530 pr_warn_once("PPTT table found, but unable to locate core %d (%d)\n", 531 cpu, acpi_cpu_id); 532 return -ENOENT; 533} 534 535static int find_acpi_cpu_topology_tag(unsigned int cpu, int level, int flag) 536{ 537 struct acpi_table_header *table; 538 acpi_status status; 539 int retval; 540 541 status = acpi_get_table(ACPI_SIG_PPTT, 0, &table); 542 if (ACPI_FAILURE(status)) { 543 acpi_pptt_warn_missing(); 544 return -ENOENT; 545 } 546 retval = topology_get_acpi_cpu_tag(table, cpu, level, flag); 547 pr_debug("Topology Setup ACPI CPU %d, level %d ret = %d\n", 548 cpu, level, retval); 549 acpi_put_table(table); 550 551 return retval; 552} 553 554/** 555 * check_acpi_cpu_flag() - Determine if CPU node has a flag set 556 * @cpu: Kernel logical CPU number 557 * @rev: The minimum PPTT revision defining the flag 558 * @flag: The flag itself 559 * 560 * Check the node representing a CPU for a given flag. 561 * 562 * Return: -ENOENT if the PPTT doesn't exist, the CPU cannot be found or 563 * the table revision isn't new enough. 564 * 1, any passed flag set 565 * 0, flag unset 566 */ 567static int check_acpi_cpu_flag(unsigned int cpu, int rev, u32 flag) 568{ 569 struct acpi_table_header *table; 570 acpi_status status; 571 u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu); 572 struct acpi_pptt_processor *cpu_node = NULL; 573 int ret = -ENOENT; 574 575 status = acpi_get_table(ACPI_SIG_PPTT, 0, &table); 576 if (ACPI_FAILURE(status)) { 577 acpi_pptt_warn_missing(); 578 return ret; 579 } 580 581 if (table->revision >= rev) 582 cpu_node = acpi_find_processor_node(table, acpi_cpu_id); 583 584 if (cpu_node) 585 ret = (cpu_node->flags & flag) != 0; 586 587 acpi_put_table(table); 588 589 return ret; 590} 591 592/** 593 * acpi_find_last_cache_level() - Determines the number of cache levels for a PE 594 * @cpu: Kernel logical CPU number 595 * 596 * Given a logical CPU number, returns the number of levels of cache represented 597 * in the PPTT. Errors caused by lack of a PPTT table, or otherwise, return 0 598 * indicating we didn't find any cache levels. 599 * 600 * Return: Cache levels visible to this core. 601 */ 602int acpi_find_last_cache_level(unsigned int cpu) 603{ 604 u32 acpi_cpu_id; 605 struct acpi_table_header *table; 606 int number_of_levels = 0; 607 acpi_status status; 608 609 pr_debug("Cache Setup find last level CPU=%d\n", cpu); 610 611 acpi_cpu_id = get_acpi_id_for_cpu(cpu); 612 status = acpi_get_table(ACPI_SIG_PPTT, 0, &table); 613 if (ACPI_FAILURE(status)) { 614 acpi_pptt_warn_missing(); 615 } else { 616 number_of_levels = acpi_find_cache_levels(table, acpi_cpu_id); 617 acpi_put_table(table); 618 } 619 pr_debug("Cache Setup find last level level=%d\n", number_of_levels); 620 621 return number_of_levels; 622} 623 624/** 625 * cache_setup_acpi() - Override CPU cache topology with data from the PPTT 626 * @cpu: Kernel logical CPU number 627 * 628 * Updates the global cache info provided by cpu_get_cacheinfo() 629 * when there are valid properties in the acpi_pptt_cache nodes. A 630 * successful parse may not result in any updates if none of the 631 * cache levels have any valid flags set. Further, a unique value is 632 * associated with each known CPU cache entry. This unique value 633 * can be used to determine whether caches are shared between CPUs. 634 * 635 * Return: -ENOENT on failure to find table, or 0 on success 636 */ 637int cache_setup_acpi(unsigned int cpu) 638{ 639 struct acpi_table_header *table; 640 acpi_status status; 641 642 pr_debug("Cache Setup ACPI CPU %d\n", cpu); 643 644 status = acpi_get_table(ACPI_SIG_PPTT, 0, &table); 645 if (ACPI_FAILURE(status)) { 646 acpi_pptt_warn_missing(); 647 return -ENOENT; 648 } 649 650 cache_setup_acpi_cpu(table, cpu); 651 acpi_put_table(table); 652 653 return status; 654} 655 656/** 657 * acpi_pptt_cpu_is_thread() - Determine if CPU is a thread 658 * @cpu: Kernel logical CPU number 659 * 660 * Return: 1, a thread 661 * 0, not a thread 662 * -ENOENT ,if the PPTT doesn't exist, the CPU cannot be found or 663 * the table revision isn't new enough. 664 */ 665int acpi_pptt_cpu_is_thread(unsigned int cpu) 666{ 667 return check_acpi_cpu_flag(cpu, 2, ACPI_PPTT_ACPI_PROCESSOR_IS_THREAD); 668} 669 670/** 671 * find_acpi_cpu_topology() - Determine a unique topology value for a given CPU 672 * @cpu: Kernel logical CPU number 673 * @level: The topological level for which we would like a unique ID 674 * 675 * Determine a topology unique ID for each thread/core/cluster/mc_grouping 676 * /socket/etc. This ID can then be used to group peers, which will have 677 * matching ids. 678 * 679 * The search terminates when either the requested level is found or 680 * we reach a root node. Levels beyond the termination point will return the 681 * same unique ID. The unique id for level 0 is the acpi processor id. All 682 * other levels beyond this use a generated value to uniquely identify 683 * a topological feature. 684 * 685 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found. 686 * Otherwise returns a value which represents a unique topological feature. 687 */ 688int find_acpi_cpu_topology(unsigned int cpu, int level) 689{ 690 return find_acpi_cpu_topology_tag(cpu, level, 0); 691} 692 693/** 694 * find_acpi_cpu_cache_topology() - Determine a unique cache topology value 695 * @cpu: Kernel logical CPU number 696 * @level: The cache level for which we would like a unique ID 697 * 698 * Determine a unique ID for each unified cache in the system 699 * 700 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found. 701 * Otherwise returns a value which represents a unique topological feature. 702 */ 703int find_acpi_cpu_cache_topology(unsigned int cpu, int level) 704{ 705 struct acpi_table_header *table; 706 struct acpi_pptt_cache *found_cache; 707 acpi_status status; 708 u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu); 709 struct acpi_pptt_processor *cpu_node = NULL; 710 int ret = -1; 711 712 status = acpi_get_table(ACPI_SIG_PPTT, 0, &table); 713 if (ACPI_FAILURE(status)) { 714 acpi_pptt_warn_missing(); 715 return -ENOENT; 716 } 717 718 found_cache = acpi_find_cache_node(table, acpi_cpu_id, 719 CACHE_TYPE_UNIFIED, 720 level, 721 &cpu_node); 722 if (found_cache) 723 ret = ACPI_PTR_DIFF(cpu_node, table); 724 725 acpi_put_table(table); 726 727 return ret; 728} 729 730/** 731 * find_acpi_cpu_topology_package() - Determine a unique CPU package value 732 * @cpu: Kernel logical CPU number 733 * 734 * Determine a topology unique package ID for the given CPU. 735 * This ID can then be used to group peers, which will have matching ids. 736 * 737 * The search terminates when either a level is found with the PHYSICAL_PACKAGE 738 * flag set or we reach a root node. 739 * 740 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found. 741 * Otherwise returns a value which represents the package for this CPU. 742 */ 743int find_acpi_cpu_topology_package(unsigned int cpu) 744{ 745 return find_acpi_cpu_topology_tag(cpu, PPTT_ABORT_PACKAGE, 746 ACPI_PPTT_PHYSICAL_PACKAGE); 747} 748 749/** 750 * find_acpi_cpu_topology_cluster() - Determine a unique CPU cluster value 751 * @cpu: Kernel logical CPU number 752 * 753 * Determine a topology unique cluster ID for the given CPU/thread. 754 * This ID can then be used to group peers, which will have matching ids. 755 * 756 * The cluster, if present is the level of topology above CPUs. In a 757 * multi-thread CPU, it will be the level above the CPU, not the thread. 758 * It may not exist in single CPU systems. In simple multi-CPU systems, 759 * it may be equal to the package topology level. 760 * 761 * Return: -ENOENT if the PPTT doesn't exist, the CPU cannot be found 762 * or there is no toplogy level above the CPU.. 763 * Otherwise returns a value which represents the package for this CPU. 764 */ 765 766int find_acpi_cpu_topology_cluster(unsigned int cpu) 767{ 768 struct acpi_table_header *table; 769 acpi_status status; 770 struct acpi_pptt_processor *cpu_node, *cluster_node; 771 u32 acpi_cpu_id; 772 int retval; 773 int is_thread; 774 775 status = acpi_get_table(ACPI_SIG_PPTT, 0, &table); 776 if (ACPI_FAILURE(status)) { 777 acpi_pptt_warn_missing(); 778 return -ENOENT; 779 } 780 781 acpi_cpu_id = get_acpi_id_for_cpu(cpu); 782 cpu_node = acpi_find_processor_node(table, acpi_cpu_id); 783 if (cpu_node == NULL || !cpu_node->parent) { 784 retval = -ENOENT; 785 goto put_table; 786 } 787 788 is_thread = cpu_node->flags & ACPI_PPTT_ACPI_PROCESSOR_IS_THREAD; 789 cluster_node = fetch_pptt_node(table, cpu_node->parent); 790 if (cluster_node == NULL) { 791 retval = -ENOENT; 792 goto put_table; 793 } 794 if (is_thread) { 795 if (!cluster_node->parent) { 796 retval = -ENOENT; 797 goto put_table; 798 } 799 cluster_node = fetch_pptt_node(table, cluster_node->parent); 800 if (cluster_node == NULL) { 801 retval = -ENOENT; 802 goto put_table; 803 } 804 } 805 if (cluster_node->flags & ACPI_PPTT_ACPI_PROCESSOR_ID_VALID) 806 retval = cluster_node->acpi_processor_id; 807 else 808 retval = ACPI_PTR_DIFF(cluster_node, table); 809 810put_table: 811 acpi_put_table(table); 812 813 return retval; 814} 815 816/** 817 * find_acpi_cpu_topology_hetero_id() - Get a core architecture tag 818 * @cpu: Kernel logical CPU number 819 * 820 * Determine a unique heterogeneous tag for the given CPU. CPUs with the same 821 * implementation should have matching tags. 822 * 823 * The returned tag can be used to group peers with identical implementation. 824 * 825 * The search terminates when a level is found with the identical implementation 826 * flag set or we reach a root node. 827 * 828 * Due to limitations in the PPTT data structure, there may be rare situations 829 * where two cores in a heterogeneous machine may be identical, but won't have 830 * the same tag. 831 * 832 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found. 833 * Otherwise returns a value which represents a group of identical cores 834 * similar to this CPU. 835 */ 836int find_acpi_cpu_topology_hetero_id(unsigned int cpu) 837{ 838 return find_acpi_cpu_topology_tag(cpu, PPTT_ABORT_PACKAGE, 839 ACPI_PPTT_ACPI_IDENTICAL); 840}