scan.c (69116B)
1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * scan.c - support for transforming the ACPI namespace into individual objects 4 */ 5 6#define pr_fmt(fmt) "ACPI: " fmt 7 8#include <linux/module.h> 9#include <linux/init.h> 10#include <linux/slab.h> 11#include <linux/kernel.h> 12#include <linux/acpi.h> 13#include <linux/acpi_iort.h> 14#include <linux/acpi_viot.h> 15#include <linux/iommu.h> 16#include <linux/signal.h> 17#include <linux/kthread.h> 18#include <linux/dmi.h> 19#include <linux/dma-map-ops.h> 20#include <linux/platform_data/x86/apple.h> 21#include <linux/pgtable.h> 22#include <linux/crc32.h> 23 24#include "internal.h" 25 26extern struct acpi_device *acpi_root; 27 28#define ACPI_BUS_CLASS "system_bus" 29#define ACPI_BUS_HID "LNXSYBUS" 30#define ACPI_BUS_DEVICE_NAME "System Bus" 31 32#define ACPI_IS_ROOT_DEVICE(device) (!(device)->parent) 33 34#define INVALID_ACPI_HANDLE ((acpi_handle)empty_zero_page) 35 36static const char *dummy_hid = "device"; 37 38static LIST_HEAD(acpi_dep_list); 39static DEFINE_MUTEX(acpi_dep_list_lock); 40LIST_HEAD(acpi_bus_id_list); 41static DEFINE_MUTEX(acpi_scan_lock); 42static LIST_HEAD(acpi_scan_handlers_list); 43DEFINE_MUTEX(acpi_device_lock); 44LIST_HEAD(acpi_wakeup_device_list); 45static DEFINE_MUTEX(acpi_hp_context_lock); 46 47/* 48 * The UART device described by the SPCR table is the only object which needs 49 * special-casing. Everything else is covered by ACPI namespace paths in STAO 50 * table. 51 */ 52static u64 spcr_uart_addr; 53 54void acpi_scan_lock_acquire(void) 55{ 56 mutex_lock(&acpi_scan_lock); 57} 58EXPORT_SYMBOL_GPL(acpi_scan_lock_acquire); 59 60void acpi_scan_lock_release(void) 61{ 62 mutex_unlock(&acpi_scan_lock); 63} 64EXPORT_SYMBOL_GPL(acpi_scan_lock_release); 65 66void acpi_lock_hp_context(void) 67{ 68 mutex_lock(&acpi_hp_context_lock); 69} 70 71void acpi_unlock_hp_context(void) 72{ 73 mutex_unlock(&acpi_hp_context_lock); 74} 75 76void acpi_initialize_hp_context(struct acpi_device *adev, 77 struct acpi_hotplug_context *hp, 78 int (*notify)(struct acpi_device *, u32), 79 void (*uevent)(struct acpi_device *, u32)) 80{ 81 acpi_lock_hp_context(); 82 hp->notify = notify; 83 hp->uevent = uevent; 84 acpi_set_hp_context(adev, hp); 85 acpi_unlock_hp_context(); 86} 87EXPORT_SYMBOL_GPL(acpi_initialize_hp_context); 88 89int acpi_scan_add_handler(struct acpi_scan_handler *handler) 90{ 91 if (!handler) 92 return -EINVAL; 93 94 list_add_tail(&handler->list_node, &acpi_scan_handlers_list); 95 return 0; 96} 97 98int acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler *handler, 99 const char *hotplug_profile_name) 100{ 101 int error; 102 103 error = acpi_scan_add_handler(handler); 104 if (error) 105 return error; 106 107 acpi_sysfs_add_hotplug_profile(&handler->hotplug, hotplug_profile_name); 108 return 0; 109} 110 111bool acpi_scan_is_offline(struct acpi_device *adev, bool uevent) 112{ 113 struct acpi_device_physical_node *pn; 114 bool offline = true; 115 char *envp[] = { "EVENT=offline", NULL }; 116 117 /* 118 * acpi_container_offline() calls this for all of the container's 119 * children under the container's physical_node_lock lock. 120 */ 121 mutex_lock_nested(&adev->physical_node_lock, SINGLE_DEPTH_NESTING); 122 123 list_for_each_entry(pn, &adev->physical_node_list, node) 124 if (device_supports_offline(pn->dev) && !pn->dev->offline) { 125 if (uevent) 126 kobject_uevent_env(&pn->dev->kobj, KOBJ_CHANGE, envp); 127 128 offline = false; 129 break; 130 } 131 132 mutex_unlock(&adev->physical_node_lock); 133 return offline; 134} 135 136static acpi_status acpi_bus_offline(acpi_handle handle, u32 lvl, void *data, 137 void **ret_p) 138{ 139 struct acpi_device *device = acpi_fetch_acpi_dev(handle); 140 struct acpi_device_physical_node *pn; 141 bool second_pass = (bool)data; 142 acpi_status status = AE_OK; 143 144 if (!device) 145 return AE_OK; 146 147 if (device->handler && !device->handler->hotplug.enabled) { 148 *ret_p = &device->dev; 149 return AE_SUPPORT; 150 } 151 152 mutex_lock(&device->physical_node_lock); 153 154 list_for_each_entry(pn, &device->physical_node_list, node) { 155 int ret; 156 157 if (second_pass) { 158 /* Skip devices offlined by the first pass. */ 159 if (pn->put_online) 160 continue; 161 } else { 162 pn->put_online = false; 163 } 164 ret = device_offline(pn->dev); 165 if (ret >= 0) { 166 pn->put_online = !ret; 167 } else { 168 *ret_p = pn->dev; 169 if (second_pass) { 170 status = AE_ERROR; 171 break; 172 } 173 } 174 } 175 176 mutex_unlock(&device->physical_node_lock); 177 178 return status; 179} 180 181static acpi_status acpi_bus_online(acpi_handle handle, u32 lvl, void *data, 182 void **ret_p) 183{ 184 struct acpi_device *device = acpi_fetch_acpi_dev(handle); 185 struct acpi_device_physical_node *pn; 186 187 if (!device) 188 return AE_OK; 189 190 mutex_lock(&device->physical_node_lock); 191 192 list_for_each_entry(pn, &device->physical_node_list, node) 193 if (pn->put_online) { 194 device_online(pn->dev); 195 pn->put_online = false; 196 } 197 198 mutex_unlock(&device->physical_node_lock); 199 200 return AE_OK; 201} 202 203static int acpi_scan_try_to_offline(struct acpi_device *device) 204{ 205 acpi_handle handle = device->handle; 206 struct device *errdev = NULL; 207 acpi_status status; 208 209 /* 210 * Carry out two passes here and ignore errors in the first pass, 211 * because if the devices in question are memory blocks and 212 * CONFIG_MEMCG is set, one of the blocks may hold data structures 213 * that the other blocks depend on, but it is not known in advance which 214 * block holds them. 215 * 216 * If the first pass is successful, the second one isn't needed, though. 217 */ 218 status = acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 219 NULL, acpi_bus_offline, (void *)false, 220 (void **)&errdev); 221 if (status == AE_SUPPORT) { 222 dev_warn(errdev, "Offline disabled.\n"); 223 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 224 acpi_bus_online, NULL, NULL, NULL); 225 return -EPERM; 226 } 227 acpi_bus_offline(handle, 0, (void *)false, (void **)&errdev); 228 if (errdev) { 229 errdev = NULL; 230 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 231 NULL, acpi_bus_offline, (void *)true, 232 (void **)&errdev); 233 if (!errdev) 234 acpi_bus_offline(handle, 0, (void *)true, 235 (void **)&errdev); 236 237 if (errdev) { 238 dev_warn(errdev, "Offline failed.\n"); 239 acpi_bus_online(handle, 0, NULL, NULL); 240 acpi_walk_namespace(ACPI_TYPE_ANY, handle, 241 ACPI_UINT32_MAX, acpi_bus_online, 242 NULL, NULL, NULL); 243 return -EBUSY; 244 } 245 } 246 return 0; 247} 248 249static int acpi_scan_hot_remove(struct acpi_device *device) 250{ 251 acpi_handle handle = device->handle; 252 unsigned long long sta; 253 acpi_status status; 254 255 if (device->handler && device->handler->hotplug.demand_offline) { 256 if (!acpi_scan_is_offline(device, true)) 257 return -EBUSY; 258 } else { 259 int error = acpi_scan_try_to_offline(device); 260 if (error) 261 return error; 262 } 263 264 acpi_handle_debug(handle, "Ejecting\n"); 265 266 acpi_bus_trim(device); 267 268 acpi_evaluate_lck(handle, 0); 269 /* 270 * TBD: _EJD support. 271 */ 272 status = acpi_evaluate_ej0(handle); 273 if (status == AE_NOT_FOUND) 274 return -ENODEV; 275 else if (ACPI_FAILURE(status)) 276 return -EIO; 277 278 /* 279 * Verify if eject was indeed successful. If not, log an error 280 * message. No need to call _OST since _EJ0 call was made OK. 281 */ 282 status = acpi_evaluate_integer(handle, "_STA", NULL, &sta); 283 if (ACPI_FAILURE(status)) { 284 acpi_handle_warn(handle, 285 "Status check after eject failed (0x%x)\n", status); 286 } else if (sta & ACPI_STA_DEVICE_ENABLED) { 287 acpi_handle_warn(handle, 288 "Eject incomplete - status 0x%llx\n", sta); 289 } 290 291 return 0; 292} 293 294static int acpi_scan_device_not_present(struct acpi_device *adev) 295{ 296 if (!acpi_device_enumerated(adev)) { 297 dev_warn(&adev->dev, "Still not present\n"); 298 return -EALREADY; 299 } 300 acpi_bus_trim(adev); 301 return 0; 302} 303 304static int acpi_scan_device_check(struct acpi_device *adev) 305{ 306 int error; 307 308 acpi_bus_get_status(adev); 309 if (adev->status.present || adev->status.functional) { 310 /* 311 * This function is only called for device objects for which 312 * matching scan handlers exist. The only situation in which 313 * the scan handler is not attached to this device object yet 314 * is when the device has just appeared (either it wasn't 315 * present at all before or it was removed and then added 316 * again). 317 */ 318 if (adev->handler) { 319 dev_warn(&adev->dev, "Already enumerated\n"); 320 return -EALREADY; 321 } 322 error = acpi_bus_scan(adev->handle); 323 if (error) { 324 dev_warn(&adev->dev, "Namespace scan failure\n"); 325 return error; 326 } 327 if (!adev->handler) { 328 dev_warn(&adev->dev, "Enumeration failure\n"); 329 error = -ENODEV; 330 } 331 } else { 332 error = acpi_scan_device_not_present(adev); 333 } 334 return error; 335} 336 337static int acpi_scan_bus_check(struct acpi_device *adev) 338{ 339 struct acpi_scan_handler *handler = adev->handler; 340 struct acpi_device *child; 341 int error; 342 343 acpi_bus_get_status(adev); 344 if (!(adev->status.present || adev->status.functional)) { 345 acpi_scan_device_not_present(adev); 346 return 0; 347 } 348 if (handler && handler->hotplug.scan_dependent) 349 return handler->hotplug.scan_dependent(adev); 350 351 error = acpi_bus_scan(adev->handle); 352 if (error) { 353 dev_warn(&adev->dev, "Namespace scan failure\n"); 354 return error; 355 } 356 list_for_each_entry(child, &adev->children, node) { 357 error = acpi_scan_bus_check(child); 358 if (error) 359 return error; 360 } 361 return 0; 362} 363 364static int acpi_generic_hotplug_event(struct acpi_device *adev, u32 type) 365{ 366 switch (type) { 367 case ACPI_NOTIFY_BUS_CHECK: 368 return acpi_scan_bus_check(adev); 369 case ACPI_NOTIFY_DEVICE_CHECK: 370 return acpi_scan_device_check(adev); 371 case ACPI_NOTIFY_EJECT_REQUEST: 372 case ACPI_OST_EC_OSPM_EJECT: 373 if (adev->handler && !adev->handler->hotplug.enabled) { 374 dev_info(&adev->dev, "Eject disabled\n"); 375 return -EPERM; 376 } 377 acpi_evaluate_ost(adev->handle, ACPI_NOTIFY_EJECT_REQUEST, 378 ACPI_OST_SC_EJECT_IN_PROGRESS, NULL); 379 return acpi_scan_hot_remove(adev); 380 } 381 return -EINVAL; 382} 383 384void acpi_device_hotplug(struct acpi_device *adev, u32 src) 385{ 386 u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE; 387 int error = -ENODEV; 388 389 lock_device_hotplug(); 390 mutex_lock(&acpi_scan_lock); 391 392 /* 393 * The device object's ACPI handle cannot become invalid as long as we 394 * are holding acpi_scan_lock, but it might have become invalid before 395 * that lock was acquired. 396 */ 397 if (adev->handle == INVALID_ACPI_HANDLE) 398 goto err_out; 399 400 if (adev->flags.is_dock_station) { 401 error = dock_notify(adev, src); 402 } else if (adev->flags.hotplug_notify) { 403 error = acpi_generic_hotplug_event(adev, src); 404 } else { 405 int (*notify)(struct acpi_device *, u32); 406 407 acpi_lock_hp_context(); 408 notify = adev->hp ? adev->hp->notify : NULL; 409 acpi_unlock_hp_context(); 410 /* 411 * There may be additional notify handlers for device objects 412 * without the .event() callback, so ignore them here. 413 */ 414 if (notify) 415 error = notify(adev, src); 416 else 417 goto out; 418 } 419 switch (error) { 420 case 0: 421 ost_code = ACPI_OST_SC_SUCCESS; 422 break; 423 case -EPERM: 424 ost_code = ACPI_OST_SC_EJECT_NOT_SUPPORTED; 425 break; 426 case -EBUSY: 427 ost_code = ACPI_OST_SC_DEVICE_BUSY; 428 break; 429 default: 430 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE; 431 break; 432 } 433 434 err_out: 435 acpi_evaluate_ost(adev->handle, src, ost_code, NULL); 436 437 out: 438 acpi_bus_put_acpi_device(adev); 439 mutex_unlock(&acpi_scan_lock); 440 unlock_device_hotplug(); 441} 442 443static void acpi_free_power_resources_lists(struct acpi_device *device) 444{ 445 int i; 446 447 if (device->wakeup.flags.valid) 448 acpi_power_resources_list_free(&device->wakeup.resources); 449 450 if (!device->power.flags.power_resources) 451 return; 452 453 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) { 454 struct acpi_device_power_state *ps = &device->power.states[i]; 455 acpi_power_resources_list_free(&ps->resources); 456 } 457} 458 459static void acpi_device_release(struct device *dev) 460{ 461 struct acpi_device *acpi_dev = to_acpi_device(dev); 462 463 acpi_free_properties(acpi_dev); 464 acpi_free_pnp_ids(&acpi_dev->pnp); 465 acpi_free_power_resources_lists(acpi_dev); 466 kfree(acpi_dev); 467} 468 469static void acpi_device_del(struct acpi_device *device) 470{ 471 struct acpi_device_bus_id *acpi_device_bus_id; 472 473 mutex_lock(&acpi_device_lock); 474 if (device->parent) 475 list_del(&device->node); 476 477 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) 478 if (!strcmp(acpi_device_bus_id->bus_id, 479 acpi_device_hid(device))) { 480 ida_free(&acpi_device_bus_id->instance_ida, 481 device->pnp.instance_no); 482 if (ida_is_empty(&acpi_device_bus_id->instance_ida)) { 483 list_del(&acpi_device_bus_id->node); 484 kfree_const(acpi_device_bus_id->bus_id); 485 kfree(acpi_device_bus_id); 486 } 487 break; 488 } 489 490 list_del(&device->wakeup_list); 491 mutex_unlock(&acpi_device_lock); 492 493 acpi_power_add_remove_device(device, false); 494 acpi_device_remove_files(device); 495 if (device->remove) 496 device->remove(device); 497 498 device_del(&device->dev); 499} 500 501static BLOCKING_NOTIFIER_HEAD(acpi_reconfig_chain); 502 503static LIST_HEAD(acpi_device_del_list); 504static DEFINE_MUTEX(acpi_device_del_lock); 505 506static void acpi_device_del_work_fn(struct work_struct *work_not_used) 507{ 508 for (;;) { 509 struct acpi_device *adev; 510 511 mutex_lock(&acpi_device_del_lock); 512 513 if (list_empty(&acpi_device_del_list)) { 514 mutex_unlock(&acpi_device_del_lock); 515 break; 516 } 517 adev = list_first_entry(&acpi_device_del_list, 518 struct acpi_device, del_list); 519 list_del(&adev->del_list); 520 521 mutex_unlock(&acpi_device_del_lock); 522 523 blocking_notifier_call_chain(&acpi_reconfig_chain, 524 ACPI_RECONFIG_DEVICE_REMOVE, adev); 525 526 acpi_device_del(adev); 527 /* 528 * Drop references to all power resources that might have been 529 * used by the device. 530 */ 531 acpi_power_transition(adev, ACPI_STATE_D3_COLD); 532 acpi_dev_put(adev); 533 } 534} 535 536/** 537 * acpi_scan_drop_device - Drop an ACPI device object. 538 * @handle: Handle of an ACPI namespace node, not used. 539 * @context: Address of the ACPI device object to drop. 540 * 541 * This is invoked by acpi_ns_delete_node() during the removal of the ACPI 542 * namespace node the device object pointed to by @context is attached to. 543 * 544 * The unregistration is carried out asynchronously to avoid running 545 * acpi_device_del() under the ACPICA's namespace mutex and the list is used to 546 * ensure the correct ordering (the device objects must be unregistered in the 547 * same order in which the corresponding namespace nodes are deleted). 548 */ 549static void acpi_scan_drop_device(acpi_handle handle, void *context) 550{ 551 static DECLARE_WORK(work, acpi_device_del_work_fn); 552 struct acpi_device *adev = context; 553 554 mutex_lock(&acpi_device_del_lock); 555 556 /* 557 * Use the ACPI hotplug workqueue which is ordered, so this work item 558 * won't run after any hotplug work items submitted subsequently. That 559 * prevents attempts to register device objects identical to those being 560 * deleted from happening concurrently (such attempts result from 561 * hotplug events handled via the ACPI hotplug workqueue). It also will 562 * run after all of the work items submitted previously, which helps 563 * those work items to ensure that they are not accessing stale device 564 * objects. 565 */ 566 if (list_empty(&acpi_device_del_list)) 567 acpi_queue_hotplug_work(&work); 568 569 list_add_tail(&adev->del_list, &acpi_device_del_list); 570 /* Make acpi_ns_validate_handle() return NULL for this handle. */ 571 adev->handle = INVALID_ACPI_HANDLE; 572 573 mutex_unlock(&acpi_device_del_lock); 574} 575 576static struct acpi_device *handle_to_device(acpi_handle handle, 577 void (*callback)(void *)) 578{ 579 struct acpi_device *adev = NULL; 580 acpi_status status; 581 582 status = acpi_get_data_full(handle, acpi_scan_drop_device, 583 (void **)&adev, callback); 584 if (ACPI_FAILURE(status) || !adev) { 585 acpi_handle_debug(handle, "No context!\n"); 586 return NULL; 587 } 588 return adev; 589} 590 591/** 592 * acpi_fetch_acpi_dev - Retrieve ACPI device object. 593 * @handle: ACPI handle associated with the requested ACPI device object. 594 * 595 * Return a pointer to the ACPI device object associated with @handle, if 596 * present, or NULL otherwise. 597 */ 598struct acpi_device *acpi_fetch_acpi_dev(acpi_handle handle) 599{ 600 return handle_to_device(handle, NULL); 601} 602EXPORT_SYMBOL_GPL(acpi_fetch_acpi_dev); 603 604static void get_acpi_device(void *dev) 605{ 606 acpi_dev_get(dev); 607} 608 609struct acpi_device *acpi_bus_get_acpi_device(acpi_handle handle) 610{ 611 return handle_to_device(handle, get_acpi_device); 612} 613EXPORT_SYMBOL_GPL(acpi_bus_get_acpi_device); 614 615static struct acpi_device_bus_id *acpi_device_bus_id_match(const char *dev_id) 616{ 617 struct acpi_device_bus_id *acpi_device_bus_id; 618 619 /* Find suitable bus_id and instance number in acpi_bus_id_list. */ 620 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) { 621 if (!strcmp(acpi_device_bus_id->bus_id, dev_id)) 622 return acpi_device_bus_id; 623 } 624 return NULL; 625} 626 627static int acpi_device_set_name(struct acpi_device *device, 628 struct acpi_device_bus_id *acpi_device_bus_id) 629{ 630 struct ida *instance_ida = &acpi_device_bus_id->instance_ida; 631 int result; 632 633 result = ida_alloc(instance_ida, GFP_KERNEL); 634 if (result < 0) 635 return result; 636 637 device->pnp.instance_no = result; 638 dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, result); 639 return 0; 640} 641 642static int acpi_tie_acpi_dev(struct acpi_device *adev) 643{ 644 acpi_handle handle = adev->handle; 645 acpi_status status; 646 647 if (!handle) 648 return 0; 649 650 status = acpi_attach_data(handle, acpi_scan_drop_device, adev); 651 if (ACPI_FAILURE(status)) { 652 acpi_handle_err(handle, "Unable to attach device data\n"); 653 return -ENODEV; 654 } 655 656 return 0; 657} 658 659static void acpi_store_pld_crc(struct acpi_device *adev) 660{ 661 struct acpi_pld_info *pld; 662 acpi_status status; 663 664 status = acpi_get_physical_device_location(adev->handle, &pld); 665 if (ACPI_FAILURE(status)) 666 return; 667 668 adev->pld_crc = crc32(~0, pld, sizeof(*pld)); 669 ACPI_FREE(pld); 670} 671 672static int __acpi_device_add(struct acpi_device *device, 673 void (*release)(struct device *)) 674{ 675 struct acpi_device_bus_id *acpi_device_bus_id; 676 int result; 677 678 /* 679 * Linkage 680 * ------- 681 * Link this device to its parent and siblings. 682 */ 683 INIT_LIST_HEAD(&device->children); 684 INIT_LIST_HEAD(&device->node); 685 INIT_LIST_HEAD(&device->wakeup_list); 686 INIT_LIST_HEAD(&device->physical_node_list); 687 INIT_LIST_HEAD(&device->del_list); 688 mutex_init(&device->physical_node_lock); 689 690 mutex_lock(&acpi_device_lock); 691 692 acpi_device_bus_id = acpi_device_bus_id_match(acpi_device_hid(device)); 693 if (acpi_device_bus_id) { 694 result = acpi_device_set_name(device, acpi_device_bus_id); 695 if (result) 696 goto err_unlock; 697 } else { 698 acpi_device_bus_id = kzalloc(sizeof(*acpi_device_bus_id), 699 GFP_KERNEL); 700 if (!acpi_device_bus_id) { 701 result = -ENOMEM; 702 goto err_unlock; 703 } 704 acpi_device_bus_id->bus_id = 705 kstrdup_const(acpi_device_hid(device), GFP_KERNEL); 706 if (!acpi_device_bus_id->bus_id) { 707 kfree(acpi_device_bus_id); 708 result = -ENOMEM; 709 goto err_unlock; 710 } 711 712 ida_init(&acpi_device_bus_id->instance_ida); 713 714 result = acpi_device_set_name(device, acpi_device_bus_id); 715 if (result) { 716 kfree_const(acpi_device_bus_id->bus_id); 717 kfree(acpi_device_bus_id); 718 goto err_unlock; 719 } 720 721 list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list); 722 } 723 724 if (device->parent) 725 list_add_tail(&device->node, &device->parent->children); 726 727 if (device->wakeup.flags.valid) 728 list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list); 729 730 acpi_store_pld_crc(device); 731 732 mutex_unlock(&acpi_device_lock); 733 734 if (device->parent) 735 device->dev.parent = &device->parent->dev; 736 737 device->dev.bus = &acpi_bus_type; 738 device->dev.release = release; 739 result = device_add(&device->dev); 740 if (result) { 741 dev_err(&device->dev, "Error registering device\n"); 742 goto err; 743 } 744 745 result = acpi_device_setup_files(device); 746 if (result) 747 pr_err("Error creating sysfs interface for device %s\n", 748 dev_name(&device->dev)); 749 750 return 0; 751 752err: 753 mutex_lock(&acpi_device_lock); 754 755 if (device->parent) 756 list_del(&device->node); 757 758 list_del(&device->wakeup_list); 759 760err_unlock: 761 mutex_unlock(&acpi_device_lock); 762 763 acpi_detach_data(device->handle, acpi_scan_drop_device); 764 765 return result; 766} 767 768int acpi_device_add(struct acpi_device *adev, void (*release)(struct device *)) 769{ 770 int ret; 771 772 ret = acpi_tie_acpi_dev(adev); 773 if (ret) 774 return ret; 775 776 return __acpi_device_add(adev, release); 777} 778 779/* -------------------------------------------------------------------------- 780 Device Enumeration 781 -------------------------------------------------------------------------- */ 782static bool acpi_info_matches_ids(struct acpi_device_info *info, 783 const char * const ids[]) 784{ 785 struct acpi_pnp_device_id_list *cid_list = NULL; 786 int i, index; 787 788 if (!(info->valid & ACPI_VALID_HID)) 789 return false; 790 791 index = match_string(ids, -1, info->hardware_id.string); 792 if (index >= 0) 793 return true; 794 795 if (info->valid & ACPI_VALID_CID) 796 cid_list = &info->compatible_id_list; 797 798 if (!cid_list) 799 return false; 800 801 for (i = 0; i < cid_list->count; i++) { 802 index = match_string(ids, -1, cid_list->ids[i].string); 803 if (index >= 0) 804 return true; 805 } 806 807 return false; 808} 809 810/* List of HIDs for which we ignore matching ACPI devices, when checking _DEP lists. */ 811static const char * const acpi_ignore_dep_ids[] = { 812 "PNP0D80", /* Windows-compatible System Power Management Controller */ 813 "INT33BD", /* Intel Baytrail Mailbox Device */ 814 NULL 815}; 816 817/* List of HIDs for which we honor deps of matching ACPI devs, when checking _DEP lists. */ 818static const char * const acpi_honor_dep_ids[] = { 819 "INT3472", /* Camera sensor PMIC / clk and regulator info */ 820 NULL 821}; 822 823static struct acpi_device *acpi_bus_get_parent(acpi_handle handle) 824{ 825 struct acpi_device *device; 826 acpi_status status; 827 828 /* 829 * Fixed hardware devices do not appear in the namespace and do not 830 * have handles, but we fabricate acpi_devices for them, so we have 831 * to deal with them specially. 832 */ 833 if (!handle) 834 return acpi_root; 835 836 do { 837 status = acpi_get_parent(handle, &handle); 838 if (ACPI_FAILURE(status)) 839 return status == AE_NULL_ENTRY ? NULL : acpi_root; 840 841 device = acpi_fetch_acpi_dev(handle); 842 } while (!device); 843 return device; 844} 845 846acpi_status 847acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd) 848{ 849 acpi_status status; 850 acpi_handle tmp; 851 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL}; 852 union acpi_object *obj; 853 854 status = acpi_get_handle(handle, "_EJD", &tmp); 855 if (ACPI_FAILURE(status)) 856 return status; 857 858 status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer); 859 if (ACPI_SUCCESS(status)) { 860 obj = buffer.pointer; 861 status = acpi_get_handle(ACPI_ROOT_OBJECT, obj->string.pointer, 862 ejd); 863 kfree(buffer.pointer); 864 } 865 return status; 866} 867EXPORT_SYMBOL_GPL(acpi_bus_get_ejd); 868 869static int acpi_bus_extract_wakeup_device_power_package(struct acpi_device *dev) 870{ 871 acpi_handle handle = dev->handle; 872 struct acpi_device_wakeup *wakeup = &dev->wakeup; 873 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 874 union acpi_object *package = NULL; 875 union acpi_object *element = NULL; 876 acpi_status status; 877 int err = -ENODATA; 878 879 INIT_LIST_HEAD(&wakeup->resources); 880 881 /* _PRW */ 882 status = acpi_evaluate_object(handle, "_PRW", NULL, &buffer); 883 if (ACPI_FAILURE(status)) { 884 acpi_handle_info(handle, "_PRW evaluation failed: %s\n", 885 acpi_format_exception(status)); 886 return err; 887 } 888 889 package = (union acpi_object *)buffer.pointer; 890 891 if (!package || package->package.count < 2) 892 goto out; 893 894 element = &(package->package.elements[0]); 895 if (!element) 896 goto out; 897 898 if (element->type == ACPI_TYPE_PACKAGE) { 899 if ((element->package.count < 2) || 900 (element->package.elements[0].type != 901 ACPI_TYPE_LOCAL_REFERENCE) 902 || (element->package.elements[1].type != ACPI_TYPE_INTEGER)) 903 goto out; 904 905 wakeup->gpe_device = 906 element->package.elements[0].reference.handle; 907 wakeup->gpe_number = 908 (u32) element->package.elements[1].integer.value; 909 } else if (element->type == ACPI_TYPE_INTEGER) { 910 wakeup->gpe_device = NULL; 911 wakeup->gpe_number = element->integer.value; 912 } else { 913 goto out; 914 } 915 916 element = &(package->package.elements[1]); 917 if (element->type != ACPI_TYPE_INTEGER) 918 goto out; 919 920 wakeup->sleep_state = element->integer.value; 921 922 err = acpi_extract_power_resources(package, 2, &wakeup->resources); 923 if (err) 924 goto out; 925 926 if (!list_empty(&wakeup->resources)) { 927 int sleep_state; 928 929 err = acpi_power_wakeup_list_init(&wakeup->resources, 930 &sleep_state); 931 if (err) { 932 acpi_handle_warn(handle, "Retrieving current states " 933 "of wakeup power resources failed\n"); 934 acpi_power_resources_list_free(&wakeup->resources); 935 goto out; 936 } 937 if (sleep_state < wakeup->sleep_state) { 938 acpi_handle_warn(handle, "Overriding _PRW sleep state " 939 "(S%d) by S%d from power resources\n", 940 (int)wakeup->sleep_state, sleep_state); 941 wakeup->sleep_state = sleep_state; 942 } 943 } 944 945 out: 946 kfree(buffer.pointer); 947 return err; 948} 949 950static bool acpi_wakeup_gpe_init(struct acpi_device *device) 951{ 952 static const struct acpi_device_id button_device_ids[] = { 953 {"PNP0C0C", 0}, /* Power button */ 954 {"PNP0C0D", 0}, /* Lid */ 955 {"PNP0C0E", 0}, /* Sleep button */ 956 {"", 0}, 957 }; 958 struct acpi_device_wakeup *wakeup = &device->wakeup; 959 acpi_status status; 960 961 wakeup->flags.notifier_present = 0; 962 963 /* Power button, Lid switch always enable wakeup */ 964 if (!acpi_match_device_ids(device, button_device_ids)) { 965 if (!acpi_match_device_ids(device, &button_device_ids[1])) { 966 /* Do not use Lid/sleep button for S5 wakeup */ 967 if (wakeup->sleep_state == ACPI_STATE_S5) 968 wakeup->sleep_state = ACPI_STATE_S4; 969 } 970 acpi_mark_gpe_for_wake(wakeup->gpe_device, wakeup->gpe_number); 971 device_set_wakeup_capable(&device->dev, true); 972 return true; 973 } 974 975 status = acpi_setup_gpe_for_wake(device->handle, wakeup->gpe_device, 976 wakeup->gpe_number); 977 return ACPI_SUCCESS(status); 978} 979 980static void acpi_bus_get_wakeup_device_flags(struct acpi_device *device) 981{ 982 int err; 983 984 /* Presence of _PRW indicates wake capable */ 985 if (!acpi_has_method(device->handle, "_PRW")) 986 return; 987 988 err = acpi_bus_extract_wakeup_device_power_package(device); 989 if (err) { 990 dev_err(&device->dev, "Unable to extract wakeup power resources"); 991 return; 992 } 993 994 device->wakeup.flags.valid = acpi_wakeup_gpe_init(device); 995 device->wakeup.prepare_count = 0; 996 /* 997 * Call _PSW/_DSW object to disable its ability to wake the sleeping 998 * system for the ACPI device with the _PRW object. 999 * The _PSW object is deprecated in ACPI 3.0 and is replaced by _DSW. 1000 * So it is necessary to call _DSW object first. Only when it is not 1001 * present will the _PSW object used. 1002 */ 1003 err = acpi_device_sleep_wake(device, 0, 0, 0); 1004 if (err) 1005 pr_debug("error in _DSW or _PSW evaluation\n"); 1006} 1007 1008static void acpi_bus_init_power_state(struct acpi_device *device, int state) 1009{ 1010 struct acpi_device_power_state *ps = &device->power.states[state]; 1011 char pathname[5] = { '_', 'P', 'R', '0' + state, '\0' }; 1012 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 1013 acpi_status status; 1014 1015 INIT_LIST_HEAD(&ps->resources); 1016 1017 /* Evaluate "_PRx" to get referenced power resources */ 1018 status = acpi_evaluate_object(device->handle, pathname, NULL, &buffer); 1019 if (ACPI_SUCCESS(status)) { 1020 union acpi_object *package = buffer.pointer; 1021 1022 if (buffer.length && package 1023 && package->type == ACPI_TYPE_PACKAGE 1024 && package->package.count) 1025 acpi_extract_power_resources(package, 0, &ps->resources); 1026 1027 ACPI_FREE(buffer.pointer); 1028 } 1029 1030 /* Evaluate "_PSx" to see if we can do explicit sets */ 1031 pathname[2] = 'S'; 1032 if (acpi_has_method(device->handle, pathname)) 1033 ps->flags.explicit_set = 1; 1034 1035 /* State is valid if there are means to put the device into it. */ 1036 if (!list_empty(&ps->resources) || ps->flags.explicit_set) 1037 ps->flags.valid = 1; 1038 1039 ps->power = -1; /* Unknown - driver assigned */ 1040 ps->latency = -1; /* Unknown - driver assigned */ 1041} 1042 1043static void acpi_bus_get_power_flags(struct acpi_device *device) 1044{ 1045 unsigned long long dsc = ACPI_STATE_D0; 1046 u32 i; 1047 1048 /* Presence of _PS0|_PR0 indicates 'power manageable' */ 1049 if (!acpi_has_method(device->handle, "_PS0") && 1050 !acpi_has_method(device->handle, "_PR0")) 1051 return; 1052 1053 device->flags.power_manageable = 1; 1054 1055 /* 1056 * Power Management Flags 1057 */ 1058 if (acpi_has_method(device->handle, "_PSC")) 1059 device->power.flags.explicit_get = 1; 1060 1061 if (acpi_has_method(device->handle, "_IRC")) 1062 device->power.flags.inrush_current = 1; 1063 1064 if (acpi_has_method(device->handle, "_DSW")) 1065 device->power.flags.dsw_present = 1; 1066 1067 acpi_evaluate_integer(device->handle, "_DSC", NULL, &dsc); 1068 device->power.state_for_enumeration = dsc; 1069 1070 /* 1071 * Enumerate supported power management states 1072 */ 1073 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) 1074 acpi_bus_init_power_state(device, i); 1075 1076 INIT_LIST_HEAD(&device->power.states[ACPI_STATE_D3_COLD].resources); 1077 1078 /* Set the defaults for D0 and D3hot (always supported). */ 1079 device->power.states[ACPI_STATE_D0].flags.valid = 1; 1080 device->power.states[ACPI_STATE_D0].power = 100; 1081 device->power.states[ACPI_STATE_D3_HOT].flags.valid = 1; 1082 1083 /* 1084 * Use power resources only if the D0 list of them is populated, because 1085 * some platforms may provide _PR3 only to indicate D3cold support and 1086 * in those cases the power resources list returned by it may be bogus. 1087 */ 1088 if (!list_empty(&device->power.states[ACPI_STATE_D0].resources)) { 1089 device->power.flags.power_resources = 1; 1090 /* 1091 * D3cold is supported if the D3hot list of power resources is 1092 * not empty. 1093 */ 1094 if (!list_empty(&device->power.states[ACPI_STATE_D3_HOT].resources)) 1095 device->power.states[ACPI_STATE_D3_COLD].flags.valid = 1; 1096 } 1097 1098 if (acpi_bus_init_power(device)) 1099 device->flags.power_manageable = 0; 1100} 1101 1102static void acpi_bus_get_flags(struct acpi_device *device) 1103{ 1104 /* Presence of _STA indicates 'dynamic_status' */ 1105 if (acpi_has_method(device->handle, "_STA")) 1106 device->flags.dynamic_status = 1; 1107 1108 /* Presence of _RMV indicates 'removable' */ 1109 if (acpi_has_method(device->handle, "_RMV")) 1110 device->flags.removable = 1; 1111 1112 /* Presence of _EJD|_EJ0 indicates 'ejectable' */ 1113 if (acpi_has_method(device->handle, "_EJD") || 1114 acpi_has_method(device->handle, "_EJ0")) 1115 device->flags.ejectable = 1; 1116} 1117 1118static void acpi_device_get_busid(struct acpi_device *device) 1119{ 1120 char bus_id[5] = { '?', 0 }; 1121 struct acpi_buffer buffer = { sizeof(bus_id), bus_id }; 1122 int i = 0; 1123 1124 /* 1125 * Bus ID 1126 * ------ 1127 * The device's Bus ID is simply the object name. 1128 * TBD: Shouldn't this value be unique (within the ACPI namespace)? 1129 */ 1130 if (ACPI_IS_ROOT_DEVICE(device)) { 1131 strcpy(device->pnp.bus_id, "ACPI"); 1132 return; 1133 } 1134 1135 switch (device->device_type) { 1136 case ACPI_BUS_TYPE_POWER_BUTTON: 1137 strcpy(device->pnp.bus_id, "PWRF"); 1138 break; 1139 case ACPI_BUS_TYPE_SLEEP_BUTTON: 1140 strcpy(device->pnp.bus_id, "SLPF"); 1141 break; 1142 case ACPI_BUS_TYPE_ECDT_EC: 1143 strcpy(device->pnp.bus_id, "ECDT"); 1144 break; 1145 default: 1146 acpi_get_name(device->handle, ACPI_SINGLE_NAME, &buffer); 1147 /* Clean up trailing underscores (if any) */ 1148 for (i = 3; i > 1; i--) { 1149 if (bus_id[i] == '_') 1150 bus_id[i] = '\0'; 1151 else 1152 break; 1153 } 1154 strcpy(device->pnp.bus_id, bus_id); 1155 break; 1156 } 1157} 1158 1159/* 1160 * acpi_ata_match - see if an acpi object is an ATA device 1161 * 1162 * If an acpi object has one of the ACPI ATA methods defined, 1163 * then we can safely call it an ATA device. 1164 */ 1165bool acpi_ata_match(acpi_handle handle) 1166{ 1167 return acpi_has_method(handle, "_GTF") || 1168 acpi_has_method(handle, "_GTM") || 1169 acpi_has_method(handle, "_STM") || 1170 acpi_has_method(handle, "_SDD"); 1171} 1172 1173/* 1174 * acpi_bay_match - see if an acpi object is an ejectable driver bay 1175 * 1176 * If an acpi object is ejectable and has one of the ACPI ATA methods defined, 1177 * then we can safely call it an ejectable drive bay 1178 */ 1179bool acpi_bay_match(acpi_handle handle) 1180{ 1181 acpi_handle phandle; 1182 1183 if (!acpi_has_method(handle, "_EJ0")) 1184 return false; 1185 if (acpi_ata_match(handle)) 1186 return true; 1187 if (ACPI_FAILURE(acpi_get_parent(handle, &phandle))) 1188 return false; 1189 1190 return acpi_ata_match(phandle); 1191} 1192 1193bool acpi_device_is_battery(struct acpi_device *adev) 1194{ 1195 struct acpi_hardware_id *hwid; 1196 1197 list_for_each_entry(hwid, &adev->pnp.ids, list) 1198 if (!strcmp("PNP0C0A", hwid->id)) 1199 return true; 1200 1201 return false; 1202} 1203 1204static bool is_ejectable_bay(struct acpi_device *adev) 1205{ 1206 acpi_handle handle = adev->handle; 1207 1208 if (acpi_has_method(handle, "_EJ0") && acpi_device_is_battery(adev)) 1209 return true; 1210 1211 return acpi_bay_match(handle); 1212} 1213 1214/* 1215 * acpi_dock_match - see if an acpi object has a _DCK method 1216 */ 1217bool acpi_dock_match(acpi_handle handle) 1218{ 1219 return acpi_has_method(handle, "_DCK"); 1220} 1221 1222static acpi_status 1223acpi_backlight_cap_match(acpi_handle handle, u32 level, void *context, 1224 void **return_value) 1225{ 1226 long *cap = context; 1227 1228 if (acpi_has_method(handle, "_BCM") && 1229 acpi_has_method(handle, "_BCL")) { 1230 acpi_handle_debug(handle, "Found generic backlight support\n"); 1231 *cap |= ACPI_VIDEO_BACKLIGHT; 1232 /* We have backlight support, no need to scan further */ 1233 return AE_CTRL_TERMINATE; 1234 } 1235 return 0; 1236} 1237 1238/* Returns true if the ACPI object is a video device which can be 1239 * handled by video.ko. 1240 * The device will get a Linux specific CID added in scan.c to 1241 * identify the device as an ACPI graphics device 1242 * Be aware that the graphics device may not be physically present 1243 * Use acpi_video_get_capabilities() to detect general ACPI video 1244 * capabilities of present cards 1245 */ 1246long acpi_is_video_device(acpi_handle handle) 1247{ 1248 long video_caps = 0; 1249 1250 /* Is this device able to support video switching ? */ 1251 if (acpi_has_method(handle, "_DOD") || acpi_has_method(handle, "_DOS")) 1252 video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING; 1253 1254 /* Is this device able to retrieve a video ROM ? */ 1255 if (acpi_has_method(handle, "_ROM")) 1256 video_caps |= ACPI_VIDEO_ROM_AVAILABLE; 1257 1258 /* Is this device able to configure which video head to be POSTed ? */ 1259 if (acpi_has_method(handle, "_VPO") && 1260 acpi_has_method(handle, "_GPD") && 1261 acpi_has_method(handle, "_SPD")) 1262 video_caps |= ACPI_VIDEO_DEVICE_POSTING; 1263 1264 /* Only check for backlight functionality if one of the above hit. */ 1265 if (video_caps) 1266 acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1267 ACPI_UINT32_MAX, acpi_backlight_cap_match, NULL, 1268 &video_caps, NULL); 1269 1270 return video_caps; 1271} 1272EXPORT_SYMBOL(acpi_is_video_device); 1273 1274const char *acpi_device_hid(struct acpi_device *device) 1275{ 1276 struct acpi_hardware_id *hid; 1277 1278 if (list_empty(&device->pnp.ids)) 1279 return dummy_hid; 1280 1281 hid = list_first_entry(&device->pnp.ids, struct acpi_hardware_id, list); 1282 return hid->id; 1283} 1284EXPORT_SYMBOL(acpi_device_hid); 1285 1286static void acpi_add_id(struct acpi_device_pnp *pnp, const char *dev_id) 1287{ 1288 struct acpi_hardware_id *id; 1289 1290 id = kmalloc(sizeof(*id), GFP_KERNEL); 1291 if (!id) 1292 return; 1293 1294 id->id = kstrdup_const(dev_id, GFP_KERNEL); 1295 if (!id->id) { 1296 kfree(id); 1297 return; 1298 } 1299 1300 list_add_tail(&id->list, &pnp->ids); 1301 pnp->type.hardware_id = 1; 1302} 1303 1304/* 1305 * Old IBM workstations have a DSDT bug wherein the SMBus object 1306 * lacks the SMBUS01 HID and the methods do not have the necessary "_" 1307 * prefix. Work around this. 1308 */ 1309static bool acpi_ibm_smbus_match(acpi_handle handle) 1310{ 1311 char node_name[ACPI_PATH_SEGMENT_LENGTH]; 1312 struct acpi_buffer path = { sizeof(node_name), node_name }; 1313 1314 if (!dmi_name_in_vendors("IBM")) 1315 return false; 1316 1317 /* Look for SMBS object */ 1318 if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &path)) || 1319 strcmp("SMBS", path.pointer)) 1320 return false; 1321 1322 /* Does it have the necessary (but misnamed) methods? */ 1323 if (acpi_has_method(handle, "SBI") && 1324 acpi_has_method(handle, "SBR") && 1325 acpi_has_method(handle, "SBW")) 1326 return true; 1327 1328 return false; 1329} 1330 1331static bool acpi_object_is_system_bus(acpi_handle handle) 1332{ 1333 acpi_handle tmp; 1334 1335 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_SB", &tmp)) && 1336 tmp == handle) 1337 return true; 1338 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_TZ", &tmp)) && 1339 tmp == handle) 1340 return true; 1341 1342 return false; 1343} 1344 1345static void acpi_set_pnp_ids(acpi_handle handle, struct acpi_device_pnp *pnp, 1346 int device_type) 1347{ 1348 struct acpi_device_info *info = NULL; 1349 struct acpi_pnp_device_id_list *cid_list; 1350 int i; 1351 1352 switch (device_type) { 1353 case ACPI_BUS_TYPE_DEVICE: 1354 if (handle == ACPI_ROOT_OBJECT) { 1355 acpi_add_id(pnp, ACPI_SYSTEM_HID); 1356 break; 1357 } 1358 1359 acpi_get_object_info(handle, &info); 1360 if (!info) { 1361 pr_err("%s: Error reading device info\n", __func__); 1362 return; 1363 } 1364 1365 if (info->valid & ACPI_VALID_HID) { 1366 acpi_add_id(pnp, info->hardware_id.string); 1367 pnp->type.platform_id = 1; 1368 } 1369 if (info->valid & ACPI_VALID_CID) { 1370 cid_list = &info->compatible_id_list; 1371 for (i = 0; i < cid_list->count; i++) 1372 acpi_add_id(pnp, cid_list->ids[i].string); 1373 } 1374 if (info->valid & ACPI_VALID_ADR) { 1375 pnp->bus_address = info->address; 1376 pnp->type.bus_address = 1; 1377 } 1378 if (info->valid & ACPI_VALID_UID) 1379 pnp->unique_id = kstrdup(info->unique_id.string, 1380 GFP_KERNEL); 1381 if (info->valid & ACPI_VALID_CLS) 1382 acpi_add_id(pnp, info->class_code.string); 1383 1384 kfree(info); 1385 1386 /* 1387 * Some devices don't reliably have _HIDs & _CIDs, so add 1388 * synthetic HIDs to make sure drivers can find them. 1389 */ 1390 if (acpi_is_video_device(handle)) 1391 acpi_add_id(pnp, ACPI_VIDEO_HID); 1392 else if (acpi_bay_match(handle)) 1393 acpi_add_id(pnp, ACPI_BAY_HID); 1394 else if (acpi_dock_match(handle)) 1395 acpi_add_id(pnp, ACPI_DOCK_HID); 1396 else if (acpi_ibm_smbus_match(handle)) 1397 acpi_add_id(pnp, ACPI_SMBUS_IBM_HID); 1398 else if (list_empty(&pnp->ids) && 1399 acpi_object_is_system_bus(handle)) { 1400 /* \_SB, \_TZ, LNXSYBUS */ 1401 acpi_add_id(pnp, ACPI_BUS_HID); 1402 strcpy(pnp->device_name, ACPI_BUS_DEVICE_NAME); 1403 strcpy(pnp->device_class, ACPI_BUS_CLASS); 1404 } 1405 1406 break; 1407 case ACPI_BUS_TYPE_POWER: 1408 acpi_add_id(pnp, ACPI_POWER_HID); 1409 break; 1410 case ACPI_BUS_TYPE_PROCESSOR: 1411 acpi_add_id(pnp, ACPI_PROCESSOR_OBJECT_HID); 1412 break; 1413 case ACPI_BUS_TYPE_THERMAL: 1414 acpi_add_id(pnp, ACPI_THERMAL_HID); 1415 break; 1416 case ACPI_BUS_TYPE_POWER_BUTTON: 1417 acpi_add_id(pnp, ACPI_BUTTON_HID_POWERF); 1418 break; 1419 case ACPI_BUS_TYPE_SLEEP_BUTTON: 1420 acpi_add_id(pnp, ACPI_BUTTON_HID_SLEEPF); 1421 break; 1422 case ACPI_BUS_TYPE_ECDT_EC: 1423 acpi_add_id(pnp, ACPI_ECDT_HID); 1424 break; 1425 } 1426} 1427 1428void acpi_free_pnp_ids(struct acpi_device_pnp *pnp) 1429{ 1430 struct acpi_hardware_id *id, *tmp; 1431 1432 list_for_each_entry_safe(id, tmp, &pnp->ids, list) { 1433 kfree_const(id->id); 1434 kfree(id); 1435 } 1436 kfree(pnp->unique_id); 1437} 1438 1439/** 1440 * acpi_dma_supported - Check DMA support for the specified device. 1441 * @adev: The pointer to acpi device 1442 * 1443 * Return false if DMA is not supported. Otherwise, return true 1444 */ 1445bool acpi_dma_supported(const struct acpi_device *adev) 1446{ 1447 if (!adev) 1448 return false; 1449 1450 if (adev->flags.cca_seen) 1451 return true; 1452 1453 /* 1454 * Per ACPI 6.0 sec 6.2.17, assume devices can do cache-coherent 1455 * DMA on "Intel platforms". Presumably that includes all x86 and 1456 * ia64, and other arches will set CONFIG_ACPI_CCA_REQUIRED=y. 1457 */ 1458 if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED)) 1459 return true; 1460 1461 return false; 1462} 1463 1464/** 1465 * acpi_get_dma_attr - Check the supported DMA attr for the specified device. 1466 * @adev: The pointer to acpi device 1467 * 1468 * Return enum dev_dma_attr. 1469 */ 1470enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev) 1471{ 1472 if (!acpi_dma_supported(adev)) 1473 return DEV_DMA_NOT_SUPPORTED; 1474 1475 if (adev->flags.coherent_dma) 1476 return DEV_DMA_COHERENT; 1477 else 1478 return DEV_DMA_NON_COHERENT; 1479} 1480 1481/** 1482 * acpi_dma_get_range() - Get device DMA parameters. 1483 * 1484 * @dev: device to configure 1485 * @dma_addr: pointer device DMA address result 1486 * @offset: pointer to the DMA offset result 1487 * @size: pointer to DMA range size result 1488 * 1489 * Evaluate DMA regions and return respectively DMA region start, offset 1490 * and size in dma_addr, offset and size on parsing success; it does not 1491 * update the passed in values on failure. 1492 * 1493 * Return 0 on success, < 0 on failure. 1494 */ 1495int acpi_dma_get_range(struct device *dev, u64 *dma_addr, u64 *offset, 1496 u64 *size) 1497{ 1498 struct acpi_device *adev; 1499 LIST_HEAD(list); 1500 struct resource_entry *rentry; 1501 int ret; 1502 struct device *dma_dev = dev; 1503 u64 len, dma_start = U64_MAX, dma_end = 0, dma_offset = 0; 1504 1505 /* 1506 * Walk the device tree chasing an ACPI companion with a _DMA 1507 * object while we go. Stop if we find a device with an ACPI 1508 * companion containing a _DMA method. 1509 */ 1510 do { 1511 adev = ACPI_COMPANION(dma_dev); 1512 if (adev && acpi_has_method(adev->handle, METHOD_NAME__DMA)) 1513 break; 1514 1515 dma_dev = dma_dev->parent; 1516 } while (dma_dev); 1517 1518 if (!dma_dev) 1519 return -ENODEV; 1520 1521 if (!acpi_has_method(adev->handle, METHOD_NAME__CRS)) { 1522 acpi_handle_warn(adev->handle, "_DMA is valid only if _CRS is present\n"); 1523 return -EINVAL; 1524 } 1525 1526 ret = acpi_dev_get_dma_resources(adev, &list); 1527 if (ret > 0) { 1528 list_for_each_entry(rentry, &list, node) { 1529 if (dma_offset && rentry->offset != dma_offset) { 1530 ret = -EINVAL; 1531 dev_warn(dma_dev, "Can't handle multiple windows with different offsets\n"); 1532 goto out; 1533 } 1534 dma_offset = rentry->offset; 1535 1536 /* Take lower and upper limits */ 1537 if (rentry->res->start < dma_start) 1538 dma_start = rentry->res->start; 1539 if (rentry->res->end > dma_end) 1540 dma_end = rentry->res->end; 1541 } 1542 1543 if (dma_start >= dma_end) { 1544 ret = -EINVAL; 1545 dev_dbg(dma_dev, "Invalid DMA regions configuration\n"); 1546 goto out; 1547 } 1548 1549 *dma_addr = dma_start - dma_offset; 1550 len = dma_end - dma_start; 1551 *size = max(len, len + 1); 1552 *offset = dma_offset; 1553 } 1554 out: 1555 acpi_dev_free_resource_list(&list); 1556 1557 return ret >= 0 ? 0 : ret; 1558} 1559 1560#ifdef CONFIG_IOMMU_API 1561int acpi_iommu_fwspec_init(struct device *dev, u32 id, 1562 struct fwnode_handle *fwnode, 1563 const struct iommu_ops *ops) 1564{ 1565 int ret = iommu_fwspec_init(dev, fwnode, ops); 1566 1567 if (!ret) 1568 ret = iommu_fwspec_add_ids(dev, &id, 1); 1569 1570 return ret; 1571} 1572 1573static inline const struct iommu_ops *acpi_iommu_fwspec_ops(struct device *dev) 1574{ 1575 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev); 1576 1577 return fwspec ? fwspec->ops : NULL; 1578} 1579 1580static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev, 1581 const u32 *id_in) 1582{ 1583 int err; 1584 const struct iommu_ops *ops; 1585 1586 /* 1587 * If we already translated the fwspec there is nothing left to do, 1588 * return the iommu_ops. 1589 */ 1590 ops = acpi_iommu_fwspec_ops(dev); 1591 if (ops) 1592 return ops; 1593 1594 err = iort_iommu_configure_id(dev, id_in); 1595 if (err && err != -EPROBE_DEFER) 1596 err = viot_iommu_configure(dev); 1597 1598 /* 1599 * If we have reason to believe the IOMMU driver missed the initial 1600 * iommu_probe_device() call for dev, replay it to get things in order. 1601 */ 1602 if (!err && dev->bus && !device_iommu_mapped(dev)) 1603 err = iommu_probe_device(dev); 1604 1605 /* Ignore all other errors apart from EPROBE_DEFER */ 1606 if (err == -EPROBE_DEFER) { 1607 return ERR_PTR(err); 1608 } else if (err) { 1609 dev_dbg(dev, "Adding to IOMMU failed: %d\n", err); 1610 return NULL; 1611 } 1612 return acpi_iommu_fwspec_ops(dev); 1613} 1614 1615#else /* !CONFIG_IOMMU_API */ 1616 1617int acpi_iommu_fwspec_init(struct device *dev, u32 id, 1618 struct fwnode_handle *fwnode, 1619 const struct iommu_ops *ops) 1620{ 1621 return -ENODEV; 1622} 1623 1624static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev, 1625 const u32 *id_in) 1626{ 1627 return NULL; 1628} 1629 1630#endif /* !CONFIG_IOMMU_API */ 1631 1632/** 1633 * acpi_dma_configure_id - Set-up DMA configuration for the device. 1634 * @dev: The pointer to the device 1635 * @attr: device dma attributes 1636 * @input_id: input device id const value pointer 1637 */ 1638int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr, 1639 const u32 *input_id) 1640{ 1641 const struct iommu_ops *iommu; 1642 u64 dma_addr = 0, size = 0; 1643 1644 if (attr == DEV_DMA_NOT_SUPPORTED) { 1645 set_dma_ops(dev, &dma_dummy_ops); 1646 return 0; 1647 } 1648 1649 acpi_arch_dma_setup(dev, &dma_addr, &size); 1650 1651 iommu = acpi_iommu_configure_id(dev, input_id); 1652 if (PTR_ERR(iommu) == -EPROBE_DEFER) 1653 return -EPROBE_DEFER; 1654 1655 arch_setup_dma_ops(dev, dma_addr, size, 1656 iommu, attr == DEV_DMA_COHERENT); 1657 1658 return 0; 1659} 1660EXPORT_SYMBOL_GPL(acpi_dma_configure_id); 1661 1662static void acpi_init_coherency(struct acpi_device *adev) 1663{ 1664 unsigned long long cca = 0; 1665 acpi_status status; 1666 struct acpi_device *parent = adev->parent; 1667 1668 if (parent && parent->flags.cca_seen) { 1669 /* 1670 * From ACPI spec, OSPM will ignore _CCA if an ancestor 1671 * already saw one. 1672 */ 1673 adev->flags.cca_seen = 1; 1674 cca = parent->flags.coherent_dma; 1675 } else { 1676 status = acpi_evaluate_integer(adev->handle, "_CCA", 1677 NULL, &cca); 1678 if (ACPI_SUCCESS(status)) 1679 adev->flags.cca_seen = 1; 1680 else if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED)) 1681 /* 1682 * If architecture does not specify that _CCA is 1683 * required for DMA-able devices (e.g. x86), 1684 * we default to _CCA=1. 1685 */ 1686 cca = 1; 1687 else 1688 acpi_handle_debug(adev->handle, 1689 "ACPI device is missing _CCA.\n"); 1690 } 1691 1692 adev->flags.coherent_dma = cca; 1693} 1694 1695static int acpi_check_serial_bus_slave(struct acpi_resource *ares, void *data) 1696{ 1697 bool *is_serial_bus_slave_p = data; 1698 1699 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS) 1700 return 1; 1701 1702 *is_serial_bus_slave_p = true; 1703 1704 /* no need to do more checking */ 1705 return -1; 1706} 1707 1708static bool acpi_is_indirect_io_slave(struct acpi_device *device) 1709{ 1710 struct acpi_device *parent = device->parent; 1711 static const struct acpi_device_id indirect_io_hosts[] = { 1712 {"HISI0191", 0}, 1713 {} 1714 }; 1715 1716 return parent && !acpi_match_device_ids(parent, indirect_io_hosts); 1717} 1718 1719static bool acpi_device_enumeration_by_parent(struct acpi_device *device) 1720{ 1721 struct list_head resource_list; 1722 bool is_serial_bus_slave = false; 1723 static const struct acpi_device_id ignore_serial_bus_ids[] = { 1724 /* 1725 * These devices have multiple SerialBus resources and a client 1726 * device must be instantiated for each of them, each with 1727 * its own device id. 1728 * Normally we only instantiate one client device for the first 1729 * resource, using the ACPI HID as id. These special cases are handled 1730 * by the drivers/platform/x86/serial-multi-instantiate.c driver, which 1731 * knows which client device id to use for each resource. 1732 */ 1733 {"BSG1160", }, 1734 {"BSG2150", }, 1735 {"CSC3551", }, 1736 {"INT33FE", }, 1737 {"INT3515", }, 1738 /* Non-conforming _HID for Cirrus Logic already released */ 1739 {"CLSA0100", }, 1740 /* 1741 * Some ACPI devs contain SerialBus resources even though they are not 1742 * attached to a serial bus at all. 1743 */ 1744 {"MSHW0028", }, 1745 /* 1746 * HIDs of device with an UartSerialBusV2 resource for which userspace 1747 * expects a regular tty cdev to be created (instead of the in kernel 1748 * serdev) and which have a kernel driver which expects a platform_dev 1749 * such as the rfkill-gpio driver. 1750 */ 1751 {"BCM4752", }, 1752 {"LNV4752", }, 1753 {} 1754 }; 1755 1756 if (acpi_is_indirect_io_slave(device)) 1757 return true; 1758 1759 /* Macs use device properties in lieu of _CRS resources */ 1760 if (x86_apple_machine && 1761 (fwnode_property_present(&device->fwnode, "spiSclkPeriod") || 1762 fwnode_property_present(&device->fwnode, "i2cAddress") || 1763 fwnode_property_present(&device->fwnode, "baud"))) 1764 return true; 1765 1766 if (!acpi_match_device_ids(device, ignore_serial_bus_ids)) 1767 return false; 1768 1769 INIT_LIST_HEAD(&resource_list); 1770 acpi_dev_get_resources(device, &resource_list, 1771 acpi_check_serial_bus_slave, 1772 &is_serial_bus_slave); 1773 acpi_dev_free_resource_list(&resource_list); 1774 1775 return is_serial_bus_slave; 1776} 1777 1778void acpi_init_device_object(struct acpi_device *device, acpi_handle handle, 1779 int type) 1780{ 1781 INIT_LIST_HEAD(&device->pnp.ids); 1782 device->device_type = type; 1783 device->handle = handle; 1784 device->parent = acpi_bus_get_parent(handle); 1785 fwnode_init(&device->fwnode, &acpi_device_fwnode_ops); 1786 acpi_set_device_status(device, ACPI_STA_DEFAULT); 1787 acpi_device_get_busid(device); 1788 acpi_set_pnp_ids(handle, &device->pnp, type); 1789 acpi_init_properties(device); 1790 acpi_bus_get_flags(device); 1791 device->flags.match_driver = false; 1792 device->flags.initialized = true; 1793 device->flags.enumeration_by_parent = 1794 acpi_device_enumeration_by_parent(device); 1795 acpi_device_clear_enumerated(device); 1796 device_initialize(&device->dev); 1797 dev_set_uevent_suppress(&device->dev, true); 1798 acpi_init_coherency(device); 1799} 1800 1801static void acpi_scan_dep_init(struct acpi_device *adev) 1802{ 1803 struct acpi_dep_data *dep; 1804 1805 list_for_each_entry(dep, &acpi_dep_list, node) { 1806 if (dep->consumer == adev->handle) { 1807 if (dep->honor_dep) 1808 adev->flags.honor_deps = 1; 1809 1810 adev->dep_unmet++; 1811 } 1812 } 1813} 1814 1815void acpi_device_add_finalize(struct acpi_device *device) 1816{ 1817 dev_set_uevent_suppress(&device->dev, false); 1818 kobject_uevent(&device->dev.kobj, KOBJ_ADD); 1819} 1820 1821static void acpi_scan_init_status(struct acpi_device *adev) 1822{ 1823 if (acpi_bus_get_status(adev)) 1824 acpi_set_device_status(adev, 0); 1825} 1826 1827static int acpi_add_single_object(struct acpi_device **child, 1828 acpi_handle handle, int type, bool dep_init) 1829{ 1830 struct acpi_device *device; 1831 bool release_dep_lock = false; 1832 int result; 1833 1834 device = kzalloc(sizeof(struct acpi_device), GFP_KERNEL); 1835 if (!device) 1836 return -ENOMEM; 1837 1838 acpi_init_device_object(device, handle, type); 1839 /* 1840 * Getting the status is delayed till here so that we can call 1841 * acpi_bus_get_status() and use its quirk handling. Note that 1842 * this must be done before the get power-/wakeup_dev-flags calls. 1843 */ 1844 if (type == ACPI_BUS_TYPE_DEVICE || type == ACPI_BUS_TYPE_PROCESSOR) { 1845 if (dep_init) { 1846 mutex_lock(&acpi_dep_list_lock); 1847 /* 1848 * Hold the lock until the acpi_tie_acpi_dev() call 1849 * below to prevent concurrent acpi_scan_clear_dep() 1850 * from deleting a dependency list entry without 1851 * updating dep_unmet for the device. 1852 */ 1853 release_dep_lock = true; 1854 acpi_scan_dep_init(device); 1855 } 1856 acpi_scan_init_status(device); 1857 } 1858 1859 acpi_bus_get_power_flags(device); 1860 acpi_bus_get_wakeup_device_flags(device); 1861 1862 result = acpi_tie_acpi_dev(device); 1863 1864 if (release_dep_lock) 1865 mutex_unlock(&acpi_dep_list_lock); 1866 1867 if (!result) 1868 result = __acpi_device_add(device, acpi_device_release); 1869 1870 if (result) { 1871 acpi_device_release(&device->dev); 1872 return result; 1873 } 1874 1875 acpi_power_add_remove_device(device, true); 1876 acpi_device_add_finalize(device); 1877 1878 acpi_handle_debug(handle, "Added as %s, parent %s\n", 1879 dev_name(&device->dev), device->parent ? 1880 dev_name(&device->parent->dev) : "(null)"); 1881 1882 *child = device; 1883 return 0; 1884} 1885 1886static acpi_status acpi_get_resource_memory(struct acpi_resource *ares, 1887 void *context) 1888{ 1889 struct resource *res = context; 1890 1891 if (acpi_dev_resource_memory(ares, res)) 1892 return AE_CTRL_TERMINATE; 1893 1894 return AE_OK; 1895} 1896 1897static bool acpi_device_should_be_hidden(acpi_handle handle) 1898{ 1899 acpi_status status; 1900 struct resource res; 1901 1902 /* Check if it should ignore the UART device */ 1903 if (!(spcr_uart_addr && acpi_has_method(handle, METHOD_NAME__CRS))) 1904 return false; 1905 1906 /* 1907 * The UART device described in SPCR table is assumed to have only one 1908 * memory resource present. So we only look for the first one here. 1909 */ 1910 status = acpi_walk_resources(handle, METHOD_NAME__CRS, 1911 acpi_get_resource_memory, &res); 1912 if (ACPI_FAILURE(status) || res.start != spcr_uart_addr) 1913 return false; 1914 1915 acpi_handle_info(handle, "The UART device @%pa in SPCR table will be hidden\n", 1916 &res.start); 1917 1918 return true; 1919} 1920 1921bool acpi_device_is_present(const struct acpi_device *adev) 1922{ 1923 return adev->status.present || adev->status.functional; 1924} 1925 1926static bool acpi_scan_handler_matching(struct acpi_scan_handler *handler, 1927 const char *idstr, 1928 const struct acpi_device_id **matchid) 1929{ 1930 const struct acpi_device_id *devid; 1931 1932 if (handler->match) 1933 return handler->match(idstr, matchid); 1934 1935 for (devid = handler->ids; devid->id[0]; devid++) 1936 if (!strcmp((char *)devid->id, idstr)) { 1937 if (matchid) 1938 *matchid = devid; 1939 1940 return true; 1941 } 1942 1943 return false; 1944} 1945 1946static struct acpi_scan_handler *acpi_scan_match_handler(const char *idstr, 1947 const struct acpi_device_id **matchid) 1948{ 1949 struct acpi_scan_handler *handler; 1950 1951 list_for_each_entry(handler, &acpi_scan_handlers_list, list_node) 1952 if (acpi_scan_handler_matching(handler, idstr, matchid)) 1953 return handler; 1954 1955 return NULL; 1956} 1957 1958void acpi_scan_hotplug_enabled(struct acpi_hotplug_profile *hotplug, bool val) 1959{ 1960 if (!!hotplug->enabled == !!val) 1961 return; 1962 1963 mutex_lock(&acpi_scan_lock); 1964 1965 hotplug->enabled = val; 1966 1967 mutex_unlock(&acpi_scan_lock); 1968} 1969 1970static void acpi_scan_init_hotplug(struct acpi_device *adev) 1971{ 1972 struct acpi_hardware_id *hwid; 1973 1974 if (acpi_dock_match(adev->handle) || is_ejectable_bay(adev)) { 1975 acpi_dock_add(adev); 1976 return; 1977 } 1978 list_for_each_entry(hwid, &adev->pnp.ids, list) { 1979 struct acpi_scan_handler *handler; 1980 1981 handler = acpi_scan_match_handler(hwid->id, NULL); 1982 if (handler) { 1983 adev->flags.hotplug_notify = true; 1984 break; 1985 } 1986 } 1987} 1988 1989static u32 acpi_scan_check_dep(acpi_handle handle, bool check_dep) 1990{ 1991 struct acpi_handle_list dep_devices; 1992 acpi_status status; 1993 u32 count; 1994 int i; 1995 1996 /* 1997 * Check for _HID here to avoid deferring the enumeration of: 1998 * 1. PCI devices. 1999 * 2. ACPI nodes describing USB ports. 2000 * Still, checking for _HID catches more then just these cases ... 2001 */ 2002 if (!check_dep || !acpi_has_method(handle, "_DEP") || 2003 !acpi_has_method(handle, "_HID")) 2004 return 0; 2005 2006 status = acpi_evaluate_reference(handle, "_DEP", NULL, &dep_devices); 2007 if (ACPI_FAILURE(status)) { 2008 acpi_handle_debug(handle, "Failed to evaluate _DEP.\n"); 2009 return 0; 2010 } 2011 2012 for (count = 0, i = 0; i < dep_devices.count; i++) { 2013 struct acpi_device_info *info; 2014 struct acpi_dep_data *dep; 2015 bool skip, honor_dep; 2016 2017 status = acpi_get_object_info(dep_devices.handles[i], &info); 2018 if (ACPI_FAILURE(status)) { 2019 acpi_handle_debug(handle, "Error reading _DEP device info\n"); 2020 continue; 2021 } 2022 2023 skip = acpi_info_matches_ids(info, acpi_ignore_dep_ids); 2024 honor_dep = acpi_info_matches_ids(info, acpi_honor_dep_ids); 2025 kfree(info); 2026 2027 if (skip) 2028 continue; 2029 2030 dep = kzalloc(sizeof(*dep), GFP_KERNEL); 2031 if (!dep) 2032 continue; 2033 2034 count++; 2035 2036 dep->supplier = dep_devices.handles[i]; 2037 dep->consumer = handle; 2038 dep->honor_dep = honor_dep; 2039 2040 mutex_lock(&acpi_dep_list_lock); 2041 list_add_tail(&dep->node , &acpi_dep_list); 2042 mutex_unlock(&acpi_dep_list_lock); 2043 } 2044 2045 return count; 2046} 2047 2048static bool acpi_bus_scan_second_pass; 2049 2050static acpi_status acpi_bus_check_add(acpi_handle handle, bool check_dep, 2051 struct acpi_device **adev_p) 2052{ 2053 struct acpi_device *device = acpi_fetch_acpi_dev(handle); 2054 acpi_object_type acpi_type; 2055 int type; 2056 2057 if (device) 2058 goto out; 2059 2060 if (ACPI_FAILURE(acpi_get_type(handle, &acpi_type))) 2061 return AE_OK; 2062 2063 switch (acpi_type) { 2064 case ACPI_TYPE_DEVICE: 2065 if (acpi_device_should_be_hidden(handle)) 2066 return AE_OK; 2067 2068 /* Bail out if there are dependencies. */ 2069 if (acpi_scan_check_dep(handle, check_dep) > 0) { 2070 acpi_bus_scan_second_pass = true; 2071 return AE_CTRL_DEPTH; 2072 } 2073 2074 fallthrough; 2075 case ACPI_TYPE_ANY: /* for ACPI_ROOT_OBJECT */ 2076 type = ACPI_BUS_TYPE_DEVICE; 2077 break; 2078 2079 case ACPI_TYPE_PROCESSOR: 2080 type = ACPI_BUS_TYPE_PROCESSOR; 2081 break; 2082 2083 case ACPI_TYPE_THERMAL: 2084 type = ACPI_BUS_TYPE_THERMAL; 2085 break; 2086 2087 case ACPI_TYPE_POWER: 2088 acpi_add_power_resource(handle); 2089 fallthrough; 2090 default: 2091 return AE_OK; 2092 } 2093 2094 /* 2095 * If check_dep is true at this point, the device has no dependencies, 2096 * or the creation of the device object would have been postponed above. 2097 */ 2098 acpi_add_single_object(&device, handle, type, !check_dep); 2099 if (!device) 2100 return AE_CTRL_DEPTH; 2101 2102 acpi_scan_init_hotplug(device); 2103 2104out: 2105 if (!*adev_p) 2106 *adev_p = device; 2107 2108 return AE_OK; 2109} 2110 2111static acpi_status acpi_bus_check_add_1(acpi_handle handle, u32 lvl_not_used, 2112 void *not_used, void **ret_p) 2113{ 2114 return acpi_bus_check_add(handle, true, (struct acpi_device **)ret_p); 2115} 2116 2117static acpi_status acpi_bus_check_add_2(acpi_handle handle, u32 lvl_not_used, 2118 void *not_used, void **ret_p) 2119{ 2120 return acpi_bus_check_add(handle, false, (struct acpi_device **)ret_p); 2121} 2122 2123static void acpi_default_enumeration(struct acpi_device *device) 2124{ 2125 /* 2126 * Do not enumerate devices with enumeration_by_parent flag set as 2127 * they will be enumerated by their respective parents. 2128 */ 2129 if (!device->flags.enumeration_by_parent) { 2130 acpi_create_platform_device(device, NULL); 2131 acpi_device_set_enumerated(device); 2132 } else { 2133 blocking_notifier_call_chain(&acpi_reconfig_chain, 2134 ACPI_RECONFIG_DEVICE_ADD, device); 2135 } 2136} 2137 2138static const struct acpi_device_id generic_device_ids[] = { 2139 {ACPI_DT_NAMESPACE_HID, }, 2140 {"", }, 2141}; 2142 2143static int acpi_generic_device_attach(struct acpi_device *adev, 2144 const struct acpi_device_id *not_used) 2145{ 2146 /* 2147 * Since ACPI_DT_NAMESPACE_HID is the only ID handled here, the test 2148 * below can be unconditional. 2149 */ 2150 if (adev->data.of_compatible) 2151 acpi_default_enumeration(adev); 2152 2153 return 1; 2154} 2155 2156static struct acpi_scan_handler generic_device_handler = { 2157 .ids = generic_device_ids, 2158 .attach = acpi_generic_device_attach, 2159}; 2160 2161static int acpi_scan_attach_handler(struct acpi_device *device) 2162{ 2163 struct acpi_hardware_id *hwid; 2164 int ret = 0; 2165 2166 list_for_each_entry(hwid, &device->pnp.ids, list) { 2167 const struct acpi_device_id *devid; 2168 struct acpi_scan_handler *handler; 2169 2170 handler = acpi_scan_match_handler(hwid->id, &devid); 2171 if (handler) { 2172 if (!handler->attach) { 2173 device->pnp.type.platform_id = 0; 2174 continue; 2175 } 2176 device->handler = handler; 2177 ret = handler->attach(device, devid); 2178 if (ret > 0) 2179 break; 2180 2181 device->handler = NULL; 2182 if (ret < 0) 2183 break; 2184 } 2185 } 2186 2187 return ret; 2188} 2189 2190static void acpi_bus_attach(struct acpi_device *device, bool first_pass) 2191{ 2192 struct acpi_device *child; 2193 bool skip = !first_pass && device->flags.visited; 2194 acpi_handle ejd; 2195 int ret; 2196 2197 if (skip) 2198 goto ok; 2199 2200 if (ACPI_SUCCESS(acpi_bus_get_ejd(device->handle, &ejd))) 2201 register_dock_dependent_device(device, ejd); 2202 2203 acpi_bus_get_status(device); 2204 /* Skip devices that are not ready for enumeration (e.g. not present) */ 2205 if (!acpi_dev_ready_for_enumeration(device)) { 2206 device->flags.initialized = false; 2207 acpi_device_clear_enumerated(device); 2208 device->flags.power_manageable = 0; 2209 return; 2210 } 2211 if (device->handler) 2212 goto ok; 2213 2214 if (!device->flags.initialized) { 2215 device->flags.power_manageable = 2216 device->power.states[ACPI_STATE_D0].flags.valid; 2217 if (acpi_bus_init_power(device)) 2218 device->flags.power_manageable = 0; 2219 2220 device->flags.initialized = true; 2221 } else if (device->flags.visited) { 2222 goto ok; 2223 } 2224 2225 ret = acpi_scan_attach_handler(device); 2226 if (ret < 0) 2227 return; 2228 2229 device->flags.match_driver = true; 2230 if (ret > 0 && !device->flags.enumeration_by_parent) { 2231 acpi_device_set_enumerated(device); 2232 goto ok; 2233 } 2234 2235 ret = device_attach(&device->dev); 2236 if (ret < 0) 2237 return; 2238 2239 if (device->pnp.type.platform_id || device->flags.enumeration_by_parent) 2240 acpi_default_enumeration(device); 2241 else 2242 acpi_device_set_enumerated(device); 2243 2244 ok: 2245 list_for_each_entry(child, &device->children, node) 2246 acpi_bus_attach(child, first_pass); 2247 2248 if (!skip && device->handler && device->handler->hotplug.notify_online) 2249 device->handler->hotplug.notify_online(device); 2250} 2251 2252static int acpi_dev_get_first_consumer_dev_cb(struct acpi_dep_data *dep, void *data) 2253{ 2254 struct acpi_device *adev; 2255 2256 adev = acpi_bus_get_acpi_device(dep->consumer); 2257 if (adev) { 2258 *(struct acpi_device **)data = adev; 2259 return 1; 2260 } 2261 /* Continue parsing if the device object is not present. */ 2262 return 0; 2263} 2264 2265struct acpi_scan_clear_dep_work { 2266 struct work_struct work; 2267 struct acpi_device *adev; 2268}; 2269 2270static void acpi_scan_clear_dep_fn(struct work_struct *work) 2271{ 2272 struct acpi_scan_clear_dep_work *cdw; 2273 2274 cdw = container_of(work, struct acpi_scan_clear_dep_work, work); 2275 2276 acpi_scan_lock_acquire(); 2277 acpi_bus_attach(cdw->adev, true); 2278 acpi_scan_lock_release(); 2279 2280 acpi_dev_put(cdw->adev); 2281 kfree(cdw); 2282} 2283 2284static bool acpi_scan_clear_dep_queue(struct acpi_device *adev) 2285{ 2286 struct acpi_scan_clear_dep_work *cdw; 2287 2288 if (adev->dep_unmet) 2289 return false; 2290 2291 cdw = kmalloc(sizeof(*cdw), GFP_KERNEL); 2292 if (!cdw) 2293 return false; 2294 2295 cdw->adev = adev; 2296 INIT_WORK(&cdw->work, acpi_scan_clear_dep_fn); 2297 /* 2298 * Since the work function may block on the lock until the entire 2299 * initial enumeration of devices is complete, put it into the unbound 2300 * workqueue. 2301 */ 2302 queue_work(system_unbound_wq, &cdw->work); 2303 2304 return true; 2305} 2306 2307static int acpi_scan_clear_dep(struct acpi_dep_data *dep, void *data) 2308{ 2309 struct acpi_device *adev = acpi_bus_get_acpi_device(dep->consumer); 2310 2311 if (adev) { 2312 adev->dep_unmet--; 2313 if (!acpi_scan_clear_dep_queue(adev)) 2314 acpi_dev_put(adev); 2315 } 2316 2317 list_del(&dep->node); 2318 kfree(dep); 2319 2320 return 0; 2321} 2322 2323/** 2324 * acpi_walk_dep_device_list - Apply a callback to every entry in acpi_dep_list 2325 * @handle: The ACPI handle of the supplier device 2326 * @callback: Pointer to the callback function to apply 2327 * @data: Pointer to some data to pass to the callback 2328 * 2329 * The return value of the callback determines this function's behaviour. If 0 2330 * is returned we continue to iterate over acpi_dep_list. If a positive value 2331 * is returned then the loop is broken but this function returns 0. If a 2332 * negative value is returned by the callback then the loop is broken and that 2333 * value is returned as the final error. 2334 */ 2335static int acpi_walk_dep_device_list(acpi_handle handle, 2336 int (*callback)(struct acpi_dep_data *, void *), 2337 void *data) 2338{ 2339 struct acpi_dep_data *dep, *tmp; 2340 int ret = 0; 2341 2342 mutex_lock(&acpi_dep_list_lock); 2343 list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) { 2344 if (dep->supplier == handle) { 2345 ret = callback(dep, data); 2346 if (ret) 2347 break; 2348 } 2349 } 2350 mutex_unlock(&acpi_dep_list_lock); 2351 2352 return ret > 0 ? 0 : ret; 2353} 2354 2355/** 2356 * acpi_dev_clear_dependencies - Inform consumers that the device is now active 2357 * @supplier: Pointer to the supplier &struct acpi_device 2358 * 2359 * Clear dependencies on the given device. 2360 */ 2361void acpi_dev_clear_dependencies(struct acpi_device *supplier) 2362{ 2363 acpi_walk_dep_device_list(supplier->handle, acpi_scan_clear_dep, NULL); 2364} 2365EXPORT_SYMBOL_GPL(acpi_dev_clear_dependencies); 2366 2367/** 2368 * acpi_dev_ready_for_enumeration - Check if the ACPI device is ready for enumeration 2369 * @device: Pointer to the &struct acpi_device to check 2370 * 2371 * Check if the device is present and has no unmet dependencies. 2372 * 2373 * Return true if the device is ready for enumeratino. Otherwise, return false. 2374 */ 2375bool acpi_dev_ready_for_enumeration(const struct acpi_device *device) 2376{ 2377 if (device->flags.honor_deps && device->dep_unmet) 2378 return false; 2379 2380 return acpi_device_is_present(device); 2381} 2382EXPORT_SYMBOL_GPL(acpi_dev_ready_for_enumeration); 2383 2384/** 2385 * acpi_dev_get_first_consumer_dev - Return ACPI device dependent on @supplier 2386 * @supplier: Pointer to the dependee device 2387 * 2388 * Returns the first &struct acpi_device which declares itself dependent on 2389 * @supplier via the _DEP buffer, parsed from the acpi_dep_list. 2390 * 2391 * The caller is responsible for putting the reference to adev when it is no 2392 * longer needed. 2393 */ 2394struct acpi_device *acpi_dev_get_first_consumer_dev(struct acpi_device *supplier) 2395{ 2396 struct acpi_device *adev = NULL; 2397 2398 acpi_walk_dep_device_list(supplier->handle, 2399 acpi_dev_get_first_consumer_dev_cb, &adev); 2400 2401 return adev; 2402} 2403EXPORT_SYMBOL_GPL(acpi_dev_get_first_consumer_dev); 2404 2405/** 2406 * acpi_bus_scan - Add ACPI device node objects in a given namespace scope. 2407 * @handle: Root of the namespace scope to scan. 2408 * 2409 * Scan a given ACPI tree (probably recently hot-plugged) and create and add 2410 * found devices. 2411 * 2412 * If no devices were found, -ENODEV is returned, but it does not mean that 2413 * there has been a real error. There just have been no suitable ACPI objects 2414 * in the table trunk from which the kernel could create a device and add an 2415 * appropriate driver. 2416 * 2417 * Must be called under acpi_scan_lock. 2418 */ 2419int acpi_bus_scan(acpi_handle handle) 2420{ 2421 struct acpi_device *device = NULL; 2422 2423 acpi_bus_scan_second_pass = false; 2424 2425 /* Pass 1: Avoid enumerating devices with missing dependencies. */ 2426 2427 if (ACPI_SUCCESS(acpi_bus_check_add(handle, true, &device))) 2428 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 2429 acpi_bus_check_add_1, NULL, NULL, 2430 (void **)&device); 2431 2432 if (!device) 2433 return -ENODEV; 2434 2435 acpi_bus_attach(device, true); 2436 2437 if (!acpi_bus_scan_second_pass) 2438 return 0; 2439 2440 /* Pass 2: Enumerate all of the remaining devices. */ 2441 2442 device = NULL; 2443 2444 if (ACPI_SUCCESS(acpi_bus_check_add(handle, false, &device))) 2445 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX, 2446 acpi_bus_check_add_2, NULL, NULL, 2447 (void **)&device); 2448 2449 acpi_bus_attach(device, false); 2450 2451 return 0; 2452} 2453EXPORT_SYMBOL(acpi_bus_scan); 2454 2455/** 2456 * acpi_bus_trim - Detach scan handlers and drivers from ACPI device objects. 2457 * @adev: Root of the ACPI namespace scope to walk. 2458 * 2459 * Must be called under acpi_scan_lock. 2460 */ 2461void acpi_bus_trim(struct acpi_device *adev) 2462{ 2463 struct acpi_scan_handler *handler = adev->handler; 2464 struct acpi_device *child; 2465 2466 list_for_each_entry_reverse(child, &adev->children, node) 2467 acpi_bus_trim(child); 2468 2469 adev->flags.match_driver = false; 2470 if (handler) { 2471 if (handler->detach) 2472 handler->detach(adev); 2473 2474 adev->handler = NULL; 2475 } else { 2476 device_release_driver(&adev->dev); 2477 } 2478 /* 2479 * Most likely, the device is going away, so put it into D3cold before 2480 * that. 2481 */ 2482 acpi_device_set_power(adev, ACPI_STATE_D3_COLD); 2483 adev->flags.initialized = false; 2484 acpi_device_clear_enumerated(adev); 2485} 2486EXPORT_SYMBOL_GPL(acpi_bus_trim); 2487 2488int acpi_bus_register_early_device(int type) 2489{ 2490 struct acpi_device *device = NULL; 2491 int result; 2492 2493 result = acpi_add_single_object(&device, NULL, type, false); 2494 if (result) 2495 return result; 2496 2497 device->flags.match_driver = true; 2498 return device_attach(&device->dev); 2499} 2500EXPORT_SYMBOL_GPL(acpi_bus_register_early_device); 2501 2502static void acpi_bus_scan_fixed(void) 2503{ 2504 if (!(acpi_gbl_FADT.flags & ACPI_FADT_POWER_BUTTON)) { 2505 struct acpi_device *adev = NULL; 2506 2507 acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_POWER_BUTTON, 2508 false); 2509 if (adev) { 2510 adev->flags.match_driver = true; 2511 if (device_attach(&adev->dev) >= 0) 2512 device_init_wakeup(&adev->dev, true); 2513 else 2514 dev_dbg(&adev->dev, "No driver\n"); 2515 } 2516 } 2517 2518 if (!(acpi_gbl_FADT.flags & ACPI_FADT_SLEEP_BUTTON)) { 2519 struct acpi_device *adev = NULL; 2520 2521 acpi_add_single_object(&adev, NULL, ACPI_BUS_TYPE_SLEEP_BUTTON, 2522 false); 2523 if (adev) { 2524 adev->flags.match_driver = true; 2525 if (device_attach(&adev->dev) < 0) 2526 dev_dbg(&adev->dev, "No driver\n"); 2527 } 2528 } 2529} 2530 2531static void __init acpi_get_spcr_uart_addr(void) 2532{ 2533 acpi_status status; 2534 struct acpi_table_spcr *spcr_ptr; 2535 2536 status = acpi_get_table(ACPI_SIG_SPCR, 0, 2537 (struct acpi_table_header **)&spcr_ptr); 2538 if (ACPI_FAILURE(status)) { 2539 pr_warn("STAO table present, but SPCR is missing\n"); 2540 return; 2541 } 2542 2543 spcr_uart_addr = spcr_ptr->serial_port.address; 2544 acpi_put_table((struct acpi_table_header *)spcr_ptr); 2545} 2546 2547static bool acpi_scan_initialized; 2548 2549void __init acpi_scan_init(void) 2550{ 2551 acpi_status status; 2552 struct acpi_table_stao *stao_ptr; 2553 2554 acpi_pci_root_init(); 2555 acpi_pci_link_init(); 2556 acpi_processor_init(); 2557 acpi_platform_init(); 2558 acpi_lpss_init(); 2559 acpi_apd_init(); 2560 acpi_cmos_rtc_init(); 2561 acpi_container_init(); 2562 acpi_memory_hotplug_init(); 2563 acpi_watchdog_init(); 2564 acpi_pnp_init(); 2565 acpi_int340x_thermal_init(); 2566 acpi_amba_init(); 2567 acpi_init_lpit(); 2568 2569 acpi_scan_add_handler(&generic_device_handler); 2570 2571 /* 2572 * If there is STAO table, check whether it needs to ignore the UART 2573 * device in SPCR table. 2574 */ 2575 status = acpi_get_table(ACPI_SIG_STAO, 0, 2576 (struct acpi_table_header **)&stao_ptr); 2577 if (ACPI_SUCCESS(status)) { 2578 if (stao_ptr->header.length > sizeof(struct acpi_table_stao)) 2579 pr_info("STAO Name List not yet supported.\n"); 2580 2581 if (stao_ptr->ignore_uart) 2582 acpi_get_spcr_uart_addr(); 2583 2584 acpi_put_table((struct acpi_table_header *)stao_ptr); 2585 } 2586 2587 acpi_gpe_apply_masked_gpes(); 2588 acpi_update_all_gpes(); 2589 2590 /* 2591 * Although we call __add_memory() that is documented to require the 2592 * device_hotplug_lock, it is not necessary here because this is an 2593 * early code when userspace or any other code path cannot trigger 2594 * hotplug/hotunplug operations. 2595 */ 2596 mutex_lock(&acpi_scan_lock); 2597 /* 2598 * Enumerate devices in the ACPI namespace. 2599 */ 2600 if (acpi_bus_scan(ACPI_ROOT_OBJECT)) 2601 goto unlock; 2602 2603 acpi_root = acpi_fetch_acpi_dev(ACPI_ROOT_OBJECT); 2604 if (!acpi_root) 2605 goto unlock; 2606 2607 /* Fixed feature devices do not exist on HW-reduced platform */ 2608 if (!acpi_gbl_reduced_hardware) 2609 acpi_bus_scan_fixed(); 2610 2611 acpi_turn_off_unused_power_resources(); 2612 2613 acpi_scan_initialized = true; 2614 2615unlock: 2616 mutex_unlock(&acpi_scan_lock); 2617} 2618 2619static struct acpi_probe_entry *ape; 2620static int acpi_probe_count; 2621static DEFINE_MUTEX(acpi_probe_mutex); 2622 2623static int __init acpi_match_madt(union acpi_subtable_headers *header, 2624 const unsigned long end) 2625{ 2626 if (!ape->subtable_valid || ape->subtable_valid(&header->common, ape)) 2627 if (!ape->probe_subtbl(header, end)) 2628 acpi_probe_count++; 2629 2630 return 0; 2631} 2632 2633int __init __acpi_probe_device_table(struct acpi_probe_entry *ap_head, int nr) 2634{ 2635 int count = 0; 2636 2637 if (acpi_disabled) 2638 return 0; 2639 2640 mutex_lock(&acpi_probe_mutex); 2641 for (ape = ap_head; nr; ape++, nr--) { 2642 if (ACPI_COMPARE_NAMESEG(ACPI_SIG_MADT, ape->id)) { 2643 acpi_probe_count = 0; 2644 acpi_table_parse_madt(ape->type, acpi_match_madt, 0); 2645 count += acpi_probe_count; 2646 } else { 2647 int res; 2648 res = acpi_table_parse(ape->id, ape->probe_table); 2649 if (!res) 2650 count++; 2651 } 2652 } 2653 mutex_unlock(&acpi_probe_mutex); 2654 2655 return count; 2656} 2657 2658static void acpi_table_events_fn(struct work_struct *work) 2659{ 2660 acpi_scan_lock_acquire(); 2661 acpi_bus_scan(ACPI_ROOT_OBJECT); 2662 acpi_scan_lock_release(); 2663 2664 kfree(work); 2665} 2666 2667void acpi_scan_table_notify(void) 2668{ 2669 struct work_struct *work; 2670 2671 if (!acpi_scan_initialized) 2672 return; 2673 2674 work = kmalloc(sizeof(*work), GFP_KERNEL); 2675 if (!work) 2676 return; 2677 2678 INIT_WORK(work, acpi_table_events_fn); 2679 schedule_work(work); 2680} 2681 2682int acpi_reconfig_notifier_register(struct notifier_block *nb) 2683{ 2684 return blocking_notifier_chain_register(&acpi_reconfig_chain, nb); 2685} 2686EXPORT_SYMBOL(acpi_reconfig_notifier_register); 2687 2688int acpi_reconfig_notifier_unregister(struct notifier_block *nb) 2689{ 2690 return blocking_notifier_chain_unregister(&acpi_reconfig_chain, nb); 2691} 2692EXPORT_SYMBOL(acpi_reconfig_notifier_unregister);