cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

libata-sff.c (83727B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/*
      3 *  libata-sff.c - helper library for PCI IDE BMDMA
      4 *
      5 *  Copyright 2003-2006 Red Hat, Inc.  All rights reserved.
      6 *  Copyright 2003-2006 Jeff Garzik
      7 *
      8 *  libata documentation is available via 'make {ps|pdf}docs',
      9 *  as Documentation/driver-api/libata.rst
     10 *
     11 *  Hardware documentation available from http://www.t13.org/ and
     12 *  http://www.sata-io.org/
     13 */
     14
     15#include <linux/kernel.h>
     16#include <linux/gfp.h>
     17#include <linux/pci.h>
     18#include <linux/module.h>
     19#include <linux/libata.h>
     20#include <linux/highmem.h>
     21#include <trace/events/libata.h>
     22#include "libata.h"
     23
     24static struct workqueue_struct *ata_sff_wq;
     25
     26const struct ata_port_operations ata_sff_port_ops = {
     27	.inherits		= &ata_base_port_ops,
     28
     29	.qc_prep		= ata_noop_qc_prep,
     30	.qc_issue		= ata_sff_qc_issue,
     31	.qc_fill_rtf		= ata_sff_qc_fill_rtf,
     32
     33	.freeze			= ata_sff_freeze,
     34	.thaw			= ata_sff_thaw,
     35	.prereset		= ata_sff_prereset,
     36	.softreset		= ata_sff_softreset,
     37	.hardreset		= sata_sff_hardreset,
     38	.postreset		= ata_sff_postreset,
     39	.error_handler		= ata_sff_error_handler,
     40
     41	.sff_dev_select		= ata_sff_dev_select,
     42	.sff_check_status	= ata_sff_check_status,
     43	.sff_tf_load		= ata_sff_tf_load,
     44	.sff_tf_read		= ata_sff_tf_read,
     45	.sff_exec_command	= ata_sff_exec_command,
     46	.sff_data_xfer		= ata_sff_data_xfer,
     47	.sff_drain_fifo		= ata_sff_drain_fifo,
     48
     49	.lost_interrupt		= ata_sff_lost_interrupt,
     50};
     51EXPORT_SYMBOL_GPL(ata_sff_port_ops);
     52
     53/**
     54 *	ata_sff_check_status - Read device status reg & clear interrupt
     55 *	@ap: port where the device is
     56 *
     57 *	Reads ATA taskfile status register for currently-selected device
     58 *	and return its value. This also clears pending interrupts
     59 *      from this device
     60 *
     61 *	LOCKING:
     62 *	Inherited from caller.
     63 */
     64u8 ata_sff_check_status(struct ata_port *ap)
     65{
     66	return ioread8(ap->ioaddr.status_addr);
     67}
     68EXPORT_SYMBOL_GPL(ata_sff_check_status);
     69
     70/**
     71 *	ata_sff_altstatus - Read device alternate status reg
     72 *	@ap: port where the device is
     73 *	@status: pointer to a status value
     74 *
     75 *	Reads ATA alternate status register for currently-selected device
     76 *	and return its value.
     77 *
     78 *	RETURN:
     79 *	true if the register exists, false if not.
     80 *
     81 *	LOCKING:
     82 *	Inherited from caller.
     83 */
     84static bool ata_sff_altstatus(struct ata_port *ap, u8 *status)
     85{
     86	u8 tmp;
     87
     88	if (ap->ops->sff_check_altstatus) {
     89		tmp = ap->ops->sff_check_altstatus(ap);
     90		goto read;
     91	}
     92	if (ap->ioaddr.altstatus_addr) {
     93		tmp = ioread8(ap->ioaddr.altstatus_addr);
     94		goto read;
     95	}
     96	return false;
     97
     98read:
     99	if (status)
    100		*status = tmp;
    101	return true;
    102}
    103
    104/**
    105 *	ata_sff_irq_status - Check if the device is busy
    106 *	@ap: port where the device is
    107 *
    108 *	Determine if the port is currently busy. Uses altstatus
    109 *	if available in order to avoid clearing shared IRQ status
    110 *	when finding an IRQ source. Non ctl capable devices don't
    111 *	share interrupt lines fortunately for us.
    112 *
    113 *	LOCKING:
    114 *	Inherited from caller.
    115 */
    116static u8 ata_sff_irq_status(struct ata_port *ap)
    117{
    118	u8 status;
    119
    120	/* Not us: We are busy */
    121	if (ata_sff_altstatus(ap, &status) && (status & ATA_BUSY))
    122		return status;
    123	/* Clear INTRQ latch */
    124	status = ap->ops->sff_check_status(ap);
    125	return status;
    126}
    127
    128/**
    129 *	ata_sff_sync - Flush writes
    130 *	@ap: Port to wait for.
    131 *
    132 *	CAUTION:
    133 *	If we have an mmio device with no ctl and no altstatus
    134 *	method this will fail. No such devices are known to exist.
    135 *
    136 *	LOCKING:
    137 *	Inherited from caller.
    138 */
    139
    140static void ata_sff_sync(struct ata_port *ap)
    141{
    142	ata_sff_altstatus(ap, NULL);
    143}
    144
    145/**
    146 *	ata_sff_pause		-	Flush writes and wait 400nS
    147 *	@ap: Port to pause for.
    148 *
    149 *	CAUTION:
    150 *	If we have an mmio device with no ctl and no altstatus
    151 *	method this will fail. No such devices are known to exist.
    152 *
    153 *	LOCKING:
    154 *	Inherited from caller.
    155 */
    156
    157void ata_sff_pause(struct ata_port *ap)
    158{
    159	ata_sff_sync(ap);
    160	ndelay(400);
    161}
    162EXPORT_SYMBOL_GPL(ata_sff_pause);
    163
    164/**
    165 *	ata_sff_dma_pause	-	Pause before commencing DMA
    166 *	@ap: Port to pause for.
    167 *
    168 *	Perform I/O fencing and ensure sufficient cycle delays occur
    169 *	for the HDMA1:0 transition
    170 */
    171
    172void ata_sff_dma_pause(struct ata_port *ap)
    173{
    174	/*
    175	 * An altstatus read will cause the needed delay without
    176	 * messing up the IRQ status
    177	 */
    178	if (ata_sff_altstatus(ap, NULL))
    179		return;
    180	/* There are no DMA controllers without ctl. BUG here to ensure
    181	   we never violate the HDMA1:0 transition timing and risk
    182	   corruption. */
    183	BUG();
    184}
    185EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
    186
    187/**
    188 *	ata_sff_busy_sleep - sleep until BSY clears, or timeout
    189 *	@ap: port containing status register to be polled
    190 *	@tmout_pat: impatience timeout in msecs
    191 *	@tmout: overall timeout in msecs
    192 *
    193 *	Sleep until ATA Status register bit BSY clears,
    194 *	or a timeout occurs.
    195 *
    196 *	LOCKING:
    197 *	Kernel thread context (may sleep).
    198 *
    199 *	RETURNS:
    200 *	0 on success, -errno otherwise.
    201 */
    202int ata_sff_busy_sleep(struct ata_port *ap,
    203		       unsigned long tmout_pat, unsigned long tmout)
    204{
    205	unsigned long timer_start, timeout;
    206	u8 status;
    207
    208	status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
    209	timer_start = jiffies;
    210	timeout = ata_deadline(timer_start, tmout_pat);
    211	while (status != 0xff && (status & ATA_BUSY) &&
    212	       time_before(jiffies, timeout)) {
    213		ata_msleep(ap, 50);
    214		status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
    215	}
    216
    217	if (status != 0xff && (status & ATA_BUSY))
    218		ata_port_warn(ap,
    219			      "port is slow to respond, please be patient (Status 0x%x)\n",
    220			      status);
    221
    222	timeout = ata_deadline(timer_start, tmout);
    223	while (status != 0xff && (status & ATA_BUSY) &&
    224	       time_before(jiffies, timeout)) {
    225		ata_msleep(ap, 50);
    226		status = ap->ops->sff_check_status(ap);
    227	}
    228
    229	if (status == 0xff)
    230		return -ENODEV;
    231
    232	if (status & ATA_BUSY) {
    233		ata_port_err(ap,
    234			     "port failed to respond (%lu secs, Status 0x%x)\n",
    235			     DIV_ROUND_UP(tmout, 1000), status);
    236		return -EBUSY;
    237	}
    238
    239	return 0;
    240}
    241EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
    242
    243static int ata_sff_check_ready(struct ata_link *link)
    244{
    245	u8 status = link->ap->ops->sff_check_status(link->ap);
    246
    247	return ata_check_ready(status);
    248}
    249
    250/**
    251 *	ata_sff_wait_ready - sleep until BSY clears, or timeout
    252 *	@link: SFF link to wait ready status for
    253 *	@deadline: deadline jiffies for the operation
    254 *
    255 *	Sleep until ATA Status register bit BSY clears, or timeout
    256 *	occurs.
    257 *
    258 *	LOCKING:
    259 *	Kernel thread context (may sleep).
    260 *
    261 *	RETURNS:
    262 *	0 on success, -errno otherwise.
    263 */
    264int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
    265{
    266	return ata_wait_ready(link, deadline, ata_sff_check_ready);
    267}
    268EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
    269
    270/**
    271 *	ata_sff_set_devctl - Write device control reg
    272 *	@ap: port where the device is
    273 *	@ctl: value to write
    274 *
    275 *	Writes ATA device control register.
    276 *
    277 *	RETURN:
    278 *	true if the register exists, false if not.
    279 *
    280 *	LOCKING:
    281 *	Inherited from caller.
    282 */
    283static bool ata_sff_set_devctl(struct ata_port *ap, u8 ctl)
    284{
    285	if (ap->ops->sff_set_devctl) {
    286		ap->ops->sff_set_devctl(ap, ctl);
    287		return true;
    288	}
    289	if (ap->ioaddr.ctl_addr) {
    290		iowrite8(ctl, ap->ioaddr.ctl_addr);
    291		return true;
    292	}
    293
    294	return false;
    295}
    296
    297/**
    298 *	ata_sff_dev_select - Select device 0/1 on ATA bus
    299 *	@ap: ATA channel to manipulate
    300 *	@device: ATA device (numbered from zero) to select
    301 *
    302 *	Use the method defined in the ATA specification to
    303 *	make either device 0, or device 1, active on the
    304 *	ATA channel.  Works with both PIO and MMIO.
    305 *
    306 *	May be used as the dev_select() entry in ata_port_operations.
    307 *
    308 *	LOCKING:
    309 *	caller.
    310 */
    311void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
    312{
    313	u8 tmp;
    314
    315	if (device == 0)
    316		tmp = ATA_DEVICE_OBS;
    317	else
    318		tmp = ATA_DEVICE_OBS | ATA_DEV1;
    319
    320	iowrite8(tmp, ap->ioaddr.device_addr);
    321	ata_sff_pause(ap);	/* needed; also flushes, for mmio */
    322}
    323EXPORT_SYMBOL_GPL(ata_sff_dev_select);
    324
    325/**
    326 *	ata_dev_select - Select device 0/1 on ATA bus
    327 *	@ap: ATA channel to manipulate
    328 *	@device: ATA device (numbered from zero) to select
    329 *	@wait: non-zero to wait for Status register BSY bit to clear
    330 *	@can_sleep: non-zero if context allows sleeping
    331 *
    332 *	Use the method defined in the ATA specification to
    333 *	make either device 0, or device 1, active on the
    334 *	ATA channel.
    335 *
    336 *	This is a high-level version of ata_sff_dev_select(), which
    337 *	additionally provides the services of inserting the proper
    338 *	pauses and status polling, where needed.
    339 *
    340 *	LOCKING:
    341 *	caller.
    342 */
    343static void ata_dev_select(struct ata_port *ap, unsigned int device,
    344			   unsigned int wait, unsigned int can_sleep)
    345{
    346	if (wait)
    347		ata_wait_idle(ap);
    348
    349	ap->ops->sff_dev_select(ap, device);
    350
    351	if (wait) {
    352		if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
    353			ata_msleep(ap, 150);
    354		ata_wait_idle(ap);
    355	}
    356}
    357
    358/**
    359 *	ata_sff_irq_on - Enable interrupts on a port.
    360 *	@ap: Port on which interrupts are enabled.
    361 *
    362 *	Enable interrupts on a legacy IDE device using MMIO or PIO,
    363 *	wait for idle, clear any pending interrupts.
    364 *
    365 *	Note: may NOT be used as the sff_irq_on() entry in
    366 *	ata_port_operations.
    367 *
    368 *	LOCKING:
    369 *	Inherited from caller.
    370 */
    371void ata_sff_irq_on(struct ata_port *ap)
    372{
    373	if (ap->ops->sff_irq_on) {
    374		ap->ops->sff_irq_on(ap);
    375		return;
    376	}
    377
    378	ap->ctl &= ~ATA_NIEN;
    379	ap->last_ctl = ap->ctl;
    380
    381	ata_sff_set_devctl(ap, ap->ctl);
    382	ata_wait_idle(ap);
    383
    384	if (ap->ops->sff_irq_clear)
    385		ap->ops->sff_irq_clear(ap);
    386}
    387EXPORT_SYMBOL_GPL(ata_sff_irq_on);
    388
    389/**
    390 *	ata_sff_tf_load - send taskfile registers to host controller
    391 *	@ap: Port to which output is sent
    392 *	@tf: ATA taskfile register set
    393 *
    394 *	Outputs ATA taskfile to standard ATA host controller.
    395 *
    396 *	LOCKING:
    397 *	Inherited from caller.
    398 */
    399void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
    400{
    401	struct ata_ioports *ioaddr = &ap->ioaddr;
    402	unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
    403
    404	if (tf->ctl != ap->last_ctl) {
    405		if (ioaddr->ctl_addr)
    406			iowrite8(tf->ctl, ioaddr->ctl_addr);
    407		ap->last_ctl = tf->ctl;
    408		ata_wait_idle(ap);
    409	}
    410
    411	if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
    412		WARN_ON_ONCE(!ioaddr->ctl_addr);
    413		iowrite8(tf->hob_feature, ioaddr->feature_addr);
    414		iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
    415		iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
    416		iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
    417		iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
    418	}
    419
    420	if (is_addr) {
    421		iowrite8(tf->feature, ioaddr->feature_addr);
    422		iowrite8(tf->nsect, ioaddr->nsect_addr);
    423		iowrite8(tf->lbal, ioaddr->lbal_addr);
    424		iowrite8(tf->lbam, ioaddr->lbam_addr);
    425		iowrite8(tf->lbah, ioaddr->lbah_addr);
    426	}
    427
    428	if (tf->flags & ATA_TFLAG_DEVICE)
    429		iowrite8(tf->device, ioaddr->device_addr);
    430
    431	ata_wait_idle(ap);
    432}
    433EXPORT_SYMBOL_GPL(ata_sff_tf_load);
    434
    435/**
    436 *	ata_sff_tf_read - input device's ATA taskfile shadow registers
    437 *	@ap: Port from which input is read
    438 *	@tf: ATA taskfile register set for storing input
    439 *
    440 *	Reads ATA taskfile registers for currently-selected device
    441 *	into @tf. Assumes the device has a fully SFF compliant task file
    442 *	layout and behaviour. If you device does not (eg has a different
    443 *	status method) then you will need to provide a replacement tf_read
    444 *
    445 *	LOCKING:
    446 *	Inherited from caller.
    447 */
    448void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
    449{
    450	struct ata_ioports *ioaddr = &ap->ioaddr;
    451
    452	tf->status = ata_sff_check_status(ap);
    453	tf->error = ioread8(ioaddr->error_addr);
    454	tf->nsect = ioread8(ioaddr->nsect_addr);
    455	tf->lbal = ioread8(ioaddr->lbal_addr);
    456	tf->lbam = ioread8(ioaddr->lbam_addr);
    457	tf->lbah = ioread8(ioaddr->lbah_addr);
    458	tf->device = ioread8(ioaddr->device_addr);
    459
    460	if (tf->flags & ATA_TFLAG_LBA48) {
    461		if (likely(ioaddr->ctl_addr)) {
    462			iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
    463			tf->hob_feature = ioread8(ioaddr->error_addr);
    464			tf->hob_nsect = ioread8(ioaddr->nsect_addr);
    465			tf->hob_lbal = ioread8(ioaddr->lbal_addr);
    466			tf->hob_lbam = ioread8(ioaddr->lbam_addr);
    467			tf->hob_lbah = ioread8(ioaddr->lbah_addr);
    468			iowrite8(tf->ctl, ioaddr->ctl_addr);
    469			ap->last_ctl = tf->ctl;
    470		} else
    471			WARN_ON_ONCE(1);
    472	}
    473}
    474EXPORT_SYMBOL_GPL(ata_sff_tf_read);
    475
    476/**
    477 *	ata_sff_exec_command - issue ATA command to host controller
    478 *	@ap: port to which command is being issued
    479 *	@tf: ATA taskfile register set
    480 *
    481 *	Issues ATA command, with proper synchronization with interrupt
    482 *	handler / other threads.
    483 *
    484 *	LOCKING:
    485 *	spin_lock_irqsave(host lock)
    486 */
    487void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
    488{
    489	iowrite8(tf->command, ap->ioaddr.command_addr);
    490	ata_sff_pause(ap);
    491}
    492EXPORT_SYMBOL_GPL(ata_sff_exec_command);
    493
    494/**
    495 *	ata_tf_to_host - issue ATA taskfile to host controller
    496 *	@ap: port to which command is being issued
    497 *	@tf: ATA taskfile register set
    498 *	@tag: tag of the associated command
    499 *
    500 *	Issues ATA taskfile register set to ATA host controller,
    501 *	with proper synchronization with interrupt handler and
    502 *	other threads.
    503 *
    504 *	LOCKING:
    505 *	spin_lock_irqsave(host lock)
    506 */
    507static inline void ata_tf_to_host(struct ata_port *ap,
    508				  const struct ata_taskfile *tf,
    509				  unsigned int tag)
    510{
    511	trace_ata_tf_load(ap, tf);
    512	ap->ops->sff_tf_load(ap, tf);
    513	trace_ata_exec_command(ap, tf, tag);
    514	ap->ops->sff_exec_command(ap, tf);
    515}
    516
    517/**
    518 *	ata_sff_data_xfer - Transfer data by PIO
    519 *	@qc: queued command
    520 *	@buf: data buffer
    521 *	@buflen: buffer length
    522 *	@rw: read/write
    523 *
    524 *	Transfer data from/to the device data register by PIO.
    525 *
    526 *	LOCKING:
    527 *	Inherited from caller.
    528 *
    529 *	RETURNS:
    530 *	Bytes consumed.
    531 */
    532unsigned int ata_sff_data_xfer(struct ata_queued_cmd *qc, unsigned char *buf,
    533			       unsigned int buflen, int rw)
    534{
    535	struct ata_port *ap = qc->dev->link->ap;
    536	void __iomem *data_addr = ap->ioaddr.data_addr;
    537	unsigned int words = buflen >> 1;
    538
    539	/* Transfer multiple of 2 bytes */
    540	if (rw == READ)
    541		ioread16_rep(data_addr, buf, words);
    542	else
    543		iowrite16_rep(data_addr, buf, words);
    544
    545	/* Transfer trailing byte, if any. */
    546	if (unlikely(buflen & 0x01)) {
    547		unsigned char pad[2] = { };
    548
    549		/* Point buf to the tail of buffer */
    550		buf += buflen - 1;
    551
    552		/*
    553		 * Use io*16_rep() accessors here as well to avoid pointlessly
    554		 * swapping bytes to and from on the big endian machines...
    555		 */
    556		if (rw == READ) {
    557			ioread16_rep(data_addr, pad, 1);
    558			*buf = pad[0];
    559		} else {
    560			pad[0] = *buf;
    561			iowrite16_rep(data_addr, pad, 1);
    562		}
    563		words++;
    564	}
    565
    566	return words << 1;
    567}
    568EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
    569
    570/**
    571 *	ata_sff_data_xfer32 - Transfer data by PIO
    572 *	@qc: queued command
    573 *	@buf: data buffer
    574 *	@buflen: buffer length
    575 *	@rw: read/write
    576 *
    577 *	Transfer data from/to the device data register by PIO using 32bit
    578 *	I/O operations.
    579 *
    580 *	LOCKING:
    581 *	Inherited from caller.
    582 *
    583 *	RETURNS:
    584 *	Bytes consumed.
    585 */
    586
    587unsigned int ata_sff_data_xfer32(struct ata_queued_cmd *qc, unsigned char *buf,
    588			       unsigned int buflen, int rw)
    589{
    590	struct ata_device *dev = qc->dev;
    591	struct ata_port *ap = dev->link->ap;
    592	void __iomem *data_addr = ap->ioaddr.data_addr;
    593	unsigned int words = buflen >> 2;
    594	int slop = buflen & 3;
    595
    596	if (!(ap->pflags & ATA_PFLAG_PIO32))
    597		return ata_sff_data_xfer(qc, buf, buflen, rw);
    598
    599	/* Transfer multiple of 4 bytes */
    600	if (rw == READ)
    601		ioread32_rep(data_addr, buf, words);
    602	else
    603		iowrite32_rep(data_addr, buf, words);
    604
    605	/* Transfer trailing bytes, if any */
    606	if (unlikely(slop)) {
    607		unsigned char pad[4] = { };
    608
    609		/* Point buf to the tail of buffer */
    610		buf += buflen - slop;
    611
    612		/*
    613		 * Use io*_rep() accessors here as well to avoid pointlessly
    614		 * swapping bytes to and from on the big endian machines...
    615		 */
    616		if (rw == READ) {
    617			if (slop < 3)
    618				ioread16_rep(data_addr, pad, 1);
    619			else
    620				ioread32_rep(data_addr, pad, 1);
    621			memcpy(buf, pad, slop);
    622		} else {
    623			memcpy(pad, buf, slop);
    624			if (slop < 3)
    625				iowrite16_rep(data_addr, pad, 1);
    626			else
    627				iowrite32_rep(data_addr, pad, 1);
    628		}
    629	}
    630	return (buflen + 1) & ~1;
    631}
    632EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
    633
    634static void ata_pio_xfer(struct ata_queued_cmd *qc, struct page *page,
    635		unsigned int offset, size_t xfer_size)
    636{
    637	bool do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
    638	unsigned char *buf;
    639
    640	buf = kmap_atomic(page);
    641	qc->ap->ops->sff_data_xfer(qc, buf + offset, xfer_size, do_write);
    642	kunmap_atomic(buf);
    643
    644	if (!do_write && !PageSlab(page))
    645		flush_dcache_page(page);
    646}
    647
    648/**
    649 *	ata_pio_sector - Transfer a sector of data.
    650 *	@qc: Command on going
    651 *
    652 *	Transfer qc->sect_size bytes of data from/to the ATA device.
    653 *
    654 *	LOCKING:
    655 *	Inherited from caller.
    656 */
    657static void ata_pio_sector(struct ata_queued_cmd *qc)
    658{
    659	struct ata_port *ap = qc->ap;
    660	struct page *page;
    661	unsigned int offset;
    662
    663	if (!qc->cursg) {
    664		qc->curbytes = qc->nbytes;
    665		return;
    666	}
    667	if (qc->curbytes == qc->nbytes - qc->sect_size)
    668		ap->hsm_task_state = HSM_ST_LAST;
    669
    670	page = sg_page(qc->cursg);
    671	offset = qc->cursg->offset + qc->cursg_ofs;
    672
    673	/* get the current page and offset */
    674	page = nth_page(page, (offset >> PAGE_SHIFT));
    675	offset %= PAGE_SIZE;
    676
    677	trace_ata_sff_pio_transfer_data(qc, offset, qc->sect_size);
    678
    679	/*
    680	 * Split the transfer when it splits a page boundary.  Note that the
    681	 * split still has to be dword aligned like all ATA data transfers.
    682	 */
    683	WARN_ON_ONCE(offset % 4);
    684	if (offset + qc->sect_size > PAGE_SIZE) {
    685		unsigned int split_len = PAGE_SIZE - offset;
    686
    687		ata_pio_xfer(qc, page, offset, split_len);
    688		ata_pio_xfer(qc, nth_page(page, 1), 0,
    689			     qc->sect_size - split_len);
    690	} else {
    691		ata_pio_xfer(qc, page, offset, qc->sect_size);
    692	}
    693
    694	qc->curbytes += qc->sect_size;
    695	qc->cursg_ofs += qc->sect_size;
    696
    697	if (qc->cursg_ofs == qc->cursg->length) {
    698		qc->cursg = sg_next(qc->cursg);
    699		if (!qc->cursg)
    700			ap->hsm_task_state = HSM_ST_LAST;
    701		qc->cursg_ofs = 0;
    702	}
    703}
    704
    705/**
    706 *	ata_pio_sectors - Transfer one or many sectors.
    707 *	@qc: Command on going
    708 *
    709 *	Transfer one or many sectors of data from/to the
    710 *	ATA device for the DRQ request.
    711 *
    712 *	LOCKING:
    713 *	Inherited from caller.
    714 */
    715static void ata_pio_sectors(struct ata_queued_cmd *qc)
    716{
    717	if (is_multi_taskfile(&qc->tf)) {
    718		/* READ/WRITE MULTIPLE */
    719		unsigned int nsect;
    720
    721		WARN_ON_ONCE(qc->dev->multi_count == 0);
    722
    723		nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
    724			    qc->dev->multi_count);
    725		while (nsect--)
    726			ata_pio_sector(qc);
    727	} else
    728		ata_pio_sector(qc);
    729
    730	ata_sff_sync(qc->ap); /* flush */
    731}
    732
    733/**
    734 *	atapi_send_cdb - Write CDB bytes to hardware
    735 *	@ap: Port to which ATAPI device is attached.
    736 *	@qc: Taskfile currently active
    737 *
    738 *	When device has indicated its readiness to accept
    739 *	a CDB, this function is called.  Send the CDB.
    740 *
    741 *	LOCKING:
    742 *	caller.
    743 */
    744static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
    745{
    746	/* send SCSI cdb */
    747	trace_atapi_send_cdb(qc, 0, qc->dev->cdb_len);
    748	WARN_ON_ONCE(qc->dev->cdb_len < 12);
    749
    750	ap->ops->sff_data_xfer(qc, qc->cdb, qc->dev->cdb_len, 1);
    751	ata_sff_sync(ap);
    752	/* FIXME: If the CDB is for DMA do we need to do the transition delay
    753	   or is bmdma_start guaranteed to do it ? */
    754	switch (qc->tf.protocol) {
    755	case ATAPI_PROT_PIO:
    756		ap->hsm_task_state = HSM_ST;
    757		break;
    758	case ATAPI_PROT_NODATA:
    759		ap->hsm_task_state = HSM_ST_LAST;
    760		break;
    761#ifdef CONFIG_ATA_BMDMA
    762	case ATAPI_PROT_DMA:
    763		ap->hsm_task_state = HSM_ST_LAST;
    764		/* initiate bmdma */
    765		trace_ata_bmdma_start(ap, &qc->tf, qc->tag);
    766		ap->ops->bmdma_start(qc);
    767		break;
    768#endif /* CONFIG_ATA_BMDMA */
    769	default:
    770		BUG();
    771	}
    772}
    773
    774/**
    775 *	__atapi_pio_bytes - Transfer data from/to the ATAPI device.
    776 *	@qc: Command on going
    777 *	@bytes: number of bytes
    778 *
    779 *	Transfer Transfer data from/to the ATAPI device.
    780 *
    781 *	LOCKING:
    782 *	Inherited from caller.
    783 *
    784 */
    785static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
    786{
    787	int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
    788	struct ata_port *ap = qc->ap;
    789	struct ata_device *dev = qc->dev;
    790	struct ata_eh_info *ehi = &dev->link->eh_info;
    791	struct scatterlist *sg;
    792	struct page *page;
    793	unsigned char *buf;
    794	unsigned int offset, count, consumed;
    795
    796next_sg:
    797	sg = qc->cursg;
    798	if (unlikely(!sg)) {
    799		ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
    800				  "buf=%u cur=%u bytes=%u",
    801				  qc->nbytes, qc->curbytes, bytes);
    802		return -1;
    803	}
    804
    805	page = sg_page(sg);
    806	offset = sg->offset + qc->cursg_ofs;
    807
    808	/* get the current page and offset */
    809	page = nth_page(page, (offset >> PAGE_SHIFT));
    810	offset %= PAGE_SIZE;
    811
    812	/* don't overrun current sg */
    813	count = min(sg->length - qc->cursg_ofs, bytes);
    814
    815	/* don't cross page boundaries */
    816	count = min(count, (unsigned int)PAGE_SIZE - offset);
    817
    818	trace_atapi_pio_transfer_data(qc, offset, count);
    819
    820	/* do the actual data transfer */
    821	buf = kmap_atomic(page);
    822	consumed = ap->ops->sff_data_xfer(qc, buf + offset, count, rw);
    823	kunmap_atomic(buf);
    824
    825	bytes -= min(bytes, consumed);
    826	qc->curbytes += count;
    827	qc->cursg_ofs += count;
    828
    829	if (qc->cursg_ofs == sg->length) {
    830		qc->cursg = sg_next(qc->cursg);
    831		qc->cursg_ofs = 0;
    832	}
    833
    834	/*
    835	 * There used to be a  WARN_ON_ONCE(qc->cursg && count != consumed);
    836	 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
    837	 * check correctly as it doesn't know if it is the last request being
    838	 * made. Somebody should implement a proper sanity check.
    839	 */
    840	if (bytes)
    841		goto next_sg;
    842	return 0;
    843}
    844
    845/**
    846 *	atapi_pio_bytes - Transfer data from/to the ATAPI device.
    847 *	@qc: Command on going
    848 *
    849 *	Transfer Transfer data from/to the ATAPI device.
    850 *
    851 *	LOCKING:
    852 *	Inherited from caller.
    853 */
    854static void atapi_pio_bytes(struct ata_queued_cmd *qc)
    855{
    856	struct ata_port *ap = qc->ap;
    857	struct ata_device *dev = qc->dev;
    858	struct ata_eh_info *ehi = &dev->link->eh_info;
    859	unsigned int ireason, bc_lo, bc_hi, bytes;
    860	int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
    861
    862	/* Abuse qc->result_tf for temp storage of intermediate TF
    863	 * here to save some kernel stack usage.
    864	 * For normal completion, qc->result_tf is not relevant. For
    865	 * error, qc->result_tf is later overwritten by ata_qc_complete().
    866	 * So, the correctness of qc->result_tf is not affected.
    867	 */
    868	ap->ops->sff_tf_read(ap, &qc->result_tf);
    869	ireason = qc->result_tf.nsect;
    870	bc_lo = qc->result_tf.lbam;
    871	bc_hi = qc->result_tf.lbah;
    872	bytes = (bc_hi << 8) | bc_lo;
    873
    874	/* shall be cleared to zero, indicating xfer of data */
    875	if (unlikely(ireason & ATAPI_COD))
    876		goto atapi_check;
    877
    878	/* make sure transfer direction matches expected */
    879	i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0;
    880	if (unlikely(do_write != i_write))
    881		goto atapi_check;
    882
    883	if (unlikely(!bytes))
    884		goto atapi_check;
    885
    886	if (unlikely(__atapi_pio_bytes(qc, bytes)))
    887		goto err_out;
    888	ata_sff_sync(ap); /* flush */
    889
    890	return;
    891
    892 atapi_check:
    893	ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
    894			  ireason, bytes);
    895 err_out:
    896	qc->err_mask |= AC_ERR_HSM;
    897	ap->hsm_task_state = HSM_ST_ERR;
    898}
    899
    900/**
    901 *	ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
    902 *	@ap: the target ata_port
    903 *	@qc: qc on going
    904 *
    905 *	RETURNS:
    906 *	1 if ok in workqueue, 0 otherwise.
    907 */
    908static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
    909						struct ata_queued_cmd *qc)
    910{
    911	if (qc->tf.flags & ATA_TFLAG_POLLING)
    912		return 1;
    913
    914	if (ap->hsm_task_state == HSM_ST_FIRST) {
    915		if (qc->tf.protocol == ATA_PROT_PIO &&
    916		   (qc->tf.flags & ATA_TFLAG_WRITE))
    917		    return 1;
    918
    919		if (ata_is_atapi(qc->tf.protocol) &&
    920		   !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
    921			return 1;
    922	}
    923
    924	return 0;
    925}
    926
    927/**
    928 *	ata_hsm_qc_complete - finish a qc running on standard HSM
    929 *	@qc: Command to complete
    930 *	@in_wq: 1 if called from workqueue, 0 otherwise
    931 *
    932 *	Finish @qc which is running on standard HSM.
    933 *
    934 *	LOCKING:
    935 *	If @in_wq is zero, spin_lock_irqsave(host lock).
    936 *	Otherwise, none on entry and grabs host lock.
    937 */
    938static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
    939{
    940	struct ata_port *ap = qc->ap;
    941
    942	if (ap->ops->error_handler) {
    943		if (in_wq) {
    944			/* EH might have kicked in while host lock is
    945			 * released.
    946			 */
    947			qc = ata_qc_from_tag(ap, qc->tag);
    948			if (qc) {
    949				if (likely(!(qc->err_mask & AC_ERR_HSM))) {
    950					ata_sff_irq_on(ap);
    951					ata_qc_complete(qc);
    952				} else
    953					ata_port_freeze(ap);
    954			}
    955		} else {
    956			if (likely(!(qc->err_mask & AC_ERR_HSM)))
    957				ata_qc_complete(qc);
    958			else
    959				ata_port_freeze(ap);
    960		}
    961	} else {
    962		if (in_wq) {
    963			ata_sff_irq_on(ap);
    964			ata_qc_complete(qc);
    965		} else
    966			ata_qc_complete(qc);
    967	}
    968}
    969
    970/**
    971 *	ata_sff_hsm_move - move the HSM to the next state.
    972 *	@ap: the target ata_port
    973 *	@qc: qc on going
    974 *	@status: current device status
    975 *	@in_wq: 1 if called from workqueue, 0 otherwise
    976 *
    977 *	RETURNS:
    978 *	1 when poll next status needed, 0 otherwise.
    979 */
    980int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
    981		     u8 status, int in_wq)
    982{
    983	struct ata_link *link = qc->dev->link;
    984	struct ata_eh_info *ehi = &link->eh_info;
    985	int poll_next;
    986
    987	lockdep_assert_held(ap->lock);
    988
    989	WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
    990
    991	/* Make sure ata_sff_qc_issue() does not throw things
    992	 * like DMA polling into the workqueue. Notice that
    993	 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
    994	 */
    995	WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
    996
    997fsm_start:
    998	trace_ata_sff_hsm_state(qc, status);
    999
   1000	switch (ap->hsm_task_state) {
   1001	case HSM_ST_FIRST:
   1002		/* Send first data block or PACKET CDB */
   1003
   1004		/* If polling, we will stay in the work queue after
   1005		 * sending the data. Otherwise, interrupt handler
   1006		 * takes over after sending the data.
   1007		 */
   1008		poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
   1009
   1010		/* check device status */
   1011		if (unlikely((status & ATA_DRQ) == 0)) {
   1012			/* handle BSY=0, DRQ=0 as error */
   1013			if (likely(status & (ATA_ERR | ATA_DF)))
   1014				/* device stops HSM for abort/error */
   1015				qc->err_mask |= AC_ERR_DEV;
   1016			else {
   1017				/* HSM violation. Let EH handle this */
   1018				ata_ehi_push_desc(ehi,
   1019					"ST_FIRST: !(DRQ|ERR|DF)");
   1020				qc->err_mask |= AC_ERR_HSM;
   1021			}
   1022
   1023			ap->hsm_task_state = HSM_ST_ERR;
   1024			goto fsm_start;
   1025		}
   1026
   1027		/* Device should not ask for data transfer (DRQ=1)
   1028		 * when it finds something wrong.
   1029		 * We ignore DRQ here and stop the HSM by
   1030		 * changing hsm_task_state to HSM_ST_ERR and
   1031		 * let the EH abort the command or reset the device.
   1032		 */
   1033		if (unlikely(status & (ATA_ERR | ATA_DF))) {
   1034			/* Some ATAPI tape drives forget to clear the ERR bit
   1035			 * when doing the next command (mostly request sense).
   1036			 * We ignore ERR here to workaround and proceed sending
   1037			 * the CDB.
   1038			 */
   1039			if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
   1040				ata_ehi_push_desc(ehi, "ST_FIRST: "
   1041					"DRQ=1 with device error, "
   1042					"dev_stat 0x%X", status);
   1043				qc->err_mask |= AC_ERR_HSM;
   1044				ap->hsm_task_state = HSM_ST_ERR;
   1045				goto fsm_start;
   1046			}
   1047		}
   1048
   1049		if (qc->tf.protocol == ATA_PROT_PIO) {
   1050			/* PIO data out protocol.
   1051			 * send first data block.
   1052			 */
   1053
   1054			/* ata_pio_sectors() might change the state
   1055			 * to HSM_ST_LAST. so, the state is changed here
   1056			 * before ata_pio_sectors().
   1057			 */
   1058			ap->hsm_task_state = HSM_ST;
   1059			ata_pio_sectors(qc);
   1060		} else
   1061			/* send CDB */
   1062			atapi_send_cdb(ap, qc);
   1063
   1064		/* if polling, ata_sff_pio_task() handles the rest.
   1065		 * otherwise, interrupt handler takes over from here.
   1066		 */
   1067		break;
   1068
   1069	case HSM_ST:
   1070		/* complete command or read/write the data register */
   1071		if (qc->tf.protocol == ATAPI_PROT_PIO) {
   1072			/* ATAPI PIO protocol */
   1073			if ((status & ATA_DRQ) == 0) {
   1074				/* No more data to transfer or device error.
   1075				 * Device error will be tagged in HSM_ST_LAST.
   1076				 */
   1077				ap->hsm_task_state = HSM_ST_LAST;
   1078				goto fsm_start;
   1079			}
   1080
   1081			/* Device should not ask for data transfer (DRQ=1)
   1082			 * when it finds something wrong.
   1083			 * We ignore DRQ here and stop the HSM by
   1084			 * changing hsm_task_state to HSM_ST_ERR and
   1085			 * let the EH abort the command or reset the device.
   1086			 */
   1087			if (unlikely(status & (ATA_ERR | ATA_DF))) {
   1088				ata_ehi_push_desc(ehi, "ST-ATAPI: "
   1089					"DRQ=1 with device error, "
   1090					"dev_stat 0x%X", status);
   1091				qc->err_mask |= AC_ERR_HSM;
   1092				ap->hsm_task_state = HSM_ST_ERR;
   1093				goto fsm_start;
   1094			}
   1095
   1096			atapi_pio_bytes(qc);
   1097
   1098			if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
   1099				/* bad ireason reported by device */
   1100				goto fsm_start;
   1101
   1102		} else {
   1103			/* ATA PIO protocol */
   1104			if (unlikely((status & ATA_DRQ) == 0)) {
   1105				/* handle BSY=0, DRQ=0 as error */
   1106				if (likely(status & (ATA_ERR | ATA_DF))) {
   1107					/* device stops HSM for abort/error */
   1108					qc->err_mask |= AC_ERR_DEV;
   1109
   1110					/* If diagnostic failed and this is
   1111					 * IDENTIFY, it's likely a phantom
   1112					 * device.  Mark hint.
   1113					 */
   1114					if (qc->dev->horkage &
   1115					    ATA_HORKAGE_DIAGNOSTIC)
   1116						qc->err_mask |=
   1117							AC_ERR_NODEV_HINT;
   1118				} else {
   1119					/* HSM violation. Let EH handle this.
   1120					 * Phantom devices also trigger this
   1121					 * condition.  Mark hint.
   1122					 */
   1123					ata_ehi_push_desc(ehi, "ST-ATA: "
   1124						"DRQ=0 without device error, "
   1125						"dev_stat 0x%X", status);
   1126					qc->err_mask |= AC_ERR_HSM |
   1127							AC_ERR_NODEV_HINT;
   1128				}
   1129
   1130				ap->hsm_task_state = HSM_ST_ERR;
   1131				goto fsm_start;
   1132			}
   1133
   1134			/* For PIO reads, some devices may ask for
   1135			 * data transfer (DRQ=1) alone with ERR=1.
   1136			 * We respect DRQ here and transfer one
   1137			 * block of junk data before changing the
   1138			 * hsm_task_state to HSM_ST_ERR.
   1139			 *
   1140			 * For PIO writes, ERR=1 DRQ=1 doesn't make
   1141			 * sense since the data block has been
   1142			 * transferred to the device.
   1143			 */
   1144			if (unlikely(status & (ATA_ERR | ATA_DF))) {
   1145				/* data might be corrputed */
   1146				qc->err_mask |= AC_ERR_DEV;
   1147
   1148				if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
   1149					ata_pio_sectors(qc);
   1150					status = ata_wait_idle(ap);
   1151				}
   1152
   1153				if (status & (ATA_BUSY | ATA_DRQ)) {
   1154					ata_ehi_push_desc(ehi, "ST-ATA: "
   1155						"BUSY|DRQ persists on ERR|DF, "
   1156						"dev_stat 0x%X", status);
   1157					qc->err_mask |= AC_ERR_HSM;
   1158				}
   1159
   1160				/* There are oddball controllers with
   1161				 * status register stuck at 0x7f and
   1162				 * lbal/m/h at zero which makes it
   1163				 * pass all other presence detection
   1164				 * mechanisms we have.  Set NODEV_HINT
   1165				 * for it.  Kernel bz#7241.
   1166				 */
   1167				if (status == 0x7f)
   1168					qc->err_mask |= AC_ERR_NODEV_HINT;
   1169
   1170				/* ata_pio_sectors() might change the
   1171				 * state to HSM_ST_LAST. so, the state
   1172				 * is changed after ata_pio_sectors().
   1173				 */
   1174				ap->hsm_task_state = HSM_ST_ERR;
   1175				goto fsm_start;
   1176			}
   1177
   1178			ata_pio_sectors(qc);
   1179
   1180			if (ap->hsm_task_state == HSM_ST_LAST &&
   1181			    (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
   1182				/* all data read */
   1183				status = ata_wait_idle(ap);
   1184				goto fsm_start;
   1185			}
   1186		}
   1187
   1188		poll_next = 1;
   1189		break;
   1190
   1191	case HSM_ST_LAST:
   1192		if (unlikely(!ata_ok(status))) {
   1193			qc->err_mask |= __ac_err_mask(status);
   1194			ap->hsm_task_state = HSM_ST_ERR;
   1195			goto fsm_start;
   1196		}
   1197
   1198		/* no more data to transfer */
   1199		trace_ata_sff_hsm_command_complete(qc, status);
   1200
   1201		WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
   1202
   1203		ap->hsm_task_state = HSM_ST_IDLE;
   1204
   1205		/* complete taskfile transaction */
   1206		ata_hsm_qc_complete(qc, in_wq);
   1207
   1208		poll_next = 0;
   1209		break;
   1210
   1211	case HSM_ST_ERR:
   1212		ap->hsm_task_state = HSM_ST_IDLE;
   1213
   1214		/* complete taskfile transaction */
   1215		ata_hsm_qc_complete(qc, in_wq);
   1216
   1217		poll_next = 0;
   1218		break;
   1219	default:
   1220		poll_next = 0;
   1221		WARN(true, "ata%d: SFF host state machine in invalid state %d",
   1222		     ap->print_id, ap->hsm_task_state);
   1223	}
   1224
   1225	return poll_next;
   1226}
   1227EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
   1228
   1229void ata_sff_queue_work(struct work_struct *work)
   1230{
   1231	queue_work(ata_sff_wq, work);
   1232}
   1233EXPORT_SYMBOL_GPL(ata_sff_queue_work);
   1234
   1235void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay)
   1236{
   1237	queue_delayed_work(ata_sff_wq, dwork, delay);
   1238}
   1239EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work);
   1240
   1241void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay)
   1242{
   1243	struct ata_port *ap = link->ap;
   1244
   1245	WARN_ON((ap->sff_pio_task_link != NULL) &&
   1246		(ap->sff_pio_task_link != link));
   1247	ap->sff_pio_task_link = link;
   1248
   1249	/* may fail if ata_sff_flush_pio_task() in progress */
   1250	ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay));
   1251}
   1252EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task);
   1253
   1254void ata_sff_flush_pio_task(struct ata_port *ap)
   1255{
   1256	trace_ata_sff_flush_pio_task(ap);
   1257
   1258	cancel_delayed_work_sync(&ap->sff_pio_task);
   1259
   1260	/*
   1261	 * We wanna reset the HSM state to IDLE.  If we do so without
   1262	 * grabbing the port lock, critical sections protected by it which
   1263	 * expect the HSM state to stay stable may get surprised.  For
   1264	 * example, we may set IDLE in between the time
   1265	 * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls
   1266	 * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG().
   1267	 */
   1268	spin_lock_irq(ap->lock);
   1269	ap->hsm_task_state = HSM_ST_IDLE;
   1270	spin_unlock_irq(ap->lock);
   1271
   1272	ap->sff_pio_task_link = NULL;
   1273}
   1274
   1275static void ata_sff_pio_task(struct work_struct *work)
   1276{
   1277	struct ata_port *ap =
   1278		container_of(work, struct ata_port, sff_pio_task.work);
   1279	struct ata_link *link = ap->sff_pio_task_link;
   1280	struct ata_queued_cmd *qc;
   1281	u8 status;
   1282	int poll_next;
   1283
   1284	spin_lock_irq(ap->lock);
   1285
   1286	BUG_ON(ap->sff_pio_task_link == NULL);
   1287	/* qc can be NULL if timeout occurred */
   1288	qc = ata_qc_from_tag(ap, link->active_tag);
   1289	if (!qc) {
   1290		ap->sff_pio_task_link = NULL;
   1291		goto out_unlock;
   1292	}
   1293
   1294fsm_start:
   1295	WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
   1296
   1297	/*
   1298	 * This is purely heuristic.  This is a fast path.
   1299	 * Sometimes when we enter, BSY will be cleared in
   1300	 * a chk-status or two.  If not, the drive is probably seeking
   1301	 * or something.  Snooze for a couple msecs, then
   1302	 * chk-status again.  If still busy, queue delayed work.
   1303	 */
   1304	status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
   1305	if (status & ATA_BUSY) {
   1306		spin_unlock_irq(ap->lock);
   1307		ata_msleep(ap, 2);
   1308		spin_lock_irq(ap->lock);
   1309
   1310		status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
   1311		if (status & ATA_BUSY) {
   1312			ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE);
   1313			goto out_unlock;
   1314		}
   1315	}
   1316
   1317	/*
   1318	 * hsm_move() may trigger another command to be processed.
   1319	 * clean the link beforehand.
   1320	 */
   1321	ap->sff_pio_task_link = NULL;
   1322	/* move the HSM */
   1323	poll_next = ata_sff_hsm_move(ap, qc, status, 1);
   1324
   1325	/* another command or interrupt handler
   1326	 * may be running at this point.
   1327	 */
   1328	if (poll_next)
   1329		goto fsm_start;
   1330out_unlock:
   1331	spin_unlock_irq(ap->lock);
   1332}
   1333
   1334/**
   1335 *	ata_sff_qc_issue - issue taskfile to a SFF controller
   1336 *	@qc: command to issue to device
   1337 *
   1338 *	This function issues a PIO or NODATA command to a SFF
   1339 *	controller.
   1340 *
   1341 *	LOCKING:
   1342 *	spin_lock_irqsave(host lock)
   1343 *
   1344 *	RETURNS:
   1345 *	Zero on success, AC_ERR_* mask on failure
   1346 */
   1347unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
   1348{
   1349	struct ata_port *ap = qc->ap;
   1350	struct ata_link *link = qc->dev->link;
   1351
   1352	/* Use polling pio if the LLD doesn't handle
   1353	 * interrupt driven pio and atapi CDB interrupt.
   1354	 */
   1355	if (ap->flags & ATA_FLAG_PIO_POLLING)
   1356		qc->tf.flags |= ATA_TFLAG_POLLING;
   1357
   1358	/* select the device */
   1359	ata_dev_select(ap, qc->dev->devno, 1, 0);
   1360
   1361	/* start the command */
   1362	switch (qc->tf.protocol) {
   1363	case ATA_PROT_NODATA:
   1364		if (qc->tf.flags & ATA_TFLAG_POLLING)
   1365			ata_qc_set_polling(qc);
   1366
   1367		ata_tf_to_host(ap, &qc->tf, qc->tag);
   1368		ap->hsm_task_state = HSM_ST_LAST;
   1369
   1370		if (qc->tf.flags & ATA_TFLAG_POLLING)
   1371			ata_sff_queue_pio_task(link, 0);
   1372
   1373		break;
   1374
   1375	case ATA_PROT_PIO:
   1376		if (qc->tf.flags & ATA_TFLAG_POLLING)
   1377			ata_qc_set_polling(qc);
   1378
   1379		ata_tf_to_host(ap, &qc->tf, qc->tag);
   1380
   1381		if (qc->tf.flags & ATA_TFLAG_WRITE) {
   1382			/* PIO data out protocol */
   1383			ap->hsm_task_state = HSM_ST_FIRST;
   1384			ata_sff_queue_pio_task(link, 0);
   1385
   1386			/* always send first data block using the
   1387			 * ata_sff_pio_task() codepath.
   1388			 */
   1389		} else {
   1390			/* PIO data in protocol */
   1391			ap->hsm_task_state = HSM_ST;
   1392
   1393			if (qc->tf.flags & ATA_TFLAG_POLLING)
   1394				ata_sff_queue_pio_task(link, 0);
   1395
   1396			/* if polling, ata_sff_pio_task() handles the
   1397			 * rest.  otherwise, interrupt handler takes
   1398			 * over from here.
   1399			 */
   1400		}
   1401
   1402		break;
   1403
   1404	case ATAPI_PROT_PIO:
   1405	case ATAPI_PROT_NODATA:
   1406		if (qc->tf.flags & ATA_TFLAG_POLLING)
   1407			ata_qc_set_polling(qc);
   1408
   1409		ata_tf_to_host(ap, &qc->tf, qc->tag);
   1410
   1411		ap->hsm_task_state = HSM_ST_FIRST;
   1412
   1413		/* send cdb by polling if no cdb interrupt */
   1414		if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
   1415		    (qc->tf.flags & ATA_TFLAG_POLLING))
   1416			ata_sff_queue_pio_task(link, 0);
   1417		break;
   1418
   1419	default:
   1420		return AC_ERR_SYSTEM;
   1421	}
   1422
   1423	return 0;
   1424}
   1425EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
   1426
   1427/**
   1428 *	ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
   1429 *	@qc: qc to fill result TF for
   1430 *
   1431 *	@qc is finished and result TF needs to be filled.  Fill it
   1432 *	using ->sff_tf_read.
   1433 *
   1434 *	LOCKING:
   1435 *	spin_lock_irqsave(host lock)
   1436 *
   1437 *	RETURNS:
   1438 *	true indicating that result TF is successfully filled.
   1439 */
   1440bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
   1441{
   1442	qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
   1443	return true;
   1444}
   1445EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
   1446
   1447static unsigned int ata_sff_idle_irq(struct ata_port *ap)
   1448{
   1449	ap->stats.idle_irq++;
   1450
   1451#ifdef ATA_IRQ_TRAP
   1452	if ((ap->stats.idle_irq % 1000) == 0) {
   1453		ap->ops->sff_check_status(ap);
   1454		if (ap->ops->sff_irq_clear)
   1455			ap->ops->sff_irq_clear(ap);
   1456		ata_port_warn(ap, "irq trap\n");
   1457		return 1;
   1458	}
   1459#endif
   1460	return 0;	/* irq not handled */
   1461}
   1462
   1463static unsigned int __ata_sff_port_intr(struct ata_port *ap,
   1464					struct ata_queued_cmd *qc,
   1465					bool hsmv_on_idle)
   1466{
   1467	u8 status;
   1468
   1469	trace_ata_sff_port_intr(qc, hsmv_on_idle);
   1470
   1471	/* Check whether we are expecting interrupt in this state */
   1472	switch (ap->hsm_task_state) {
   1473	case HSM_ST_FIRST:
   1474		/* Some pre-ATAPI-4 devices assert INTRQ
   1475		 * at this state when ready to receive CDB.
   1476		 */
   1477
   1478		/* Check the ATA_DFLAG_CDB_INTR flag is enough here.
   1479		 * The flag was turned on only for atapi devices.  No
   1480		 * need to check ata_is_atapi(qc->tf.protocol) again.
   1481		 */
   1482		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
   1483			return ata_sff_idle_irq(ap);
   1484		break;
   1485	case HSM_ST_IDLE:
   1486		return ata_sff_idle_irq(ap);
   1487	default:
   1488		break;
   1489	}
   1490
   1491	/* check main status, clearing INTRQ if needed */
   1492	status = ata_sff_irq_status(ap);
   1493	if (status & ATA_BUSY) {
   1494		if (hsmv_on_idle) {
   1495			/* BMDMA engine is already stopped, we're screwed */
   1496			qc->err_mask |= AC_ERR_HSM;
   1497			ap->hsm_task_state = HSM_ST_ERR;
   1498		} else
   1499			return ata_sff_idle_irq(ap);
   1500	}
   1501
   1502	/* clear irq events */
   1503	if (ap->ops->sff_irq_clear)
   1504		ap->ops->sff_irq_clear(ap);
   1505
   1506	ata_sff_hsm_move(ap, qc, status, 0);
   1507
   1508	return 1;	/* irq handled */
   1509}
   1510
   1511/**
   1512 *	ata_sff_port_intr - Handle SFF port interrupt
   1513 *	@ap: Port on which interrupt arrived (possibly...)
   1514 *	@qc: Taskfile currently active in engine
   1515 *
   1516 *	Handle port interrupt for given queued command.
   1517 *
   1518 *	LOCKING:
   1519 *	spin_lock_irqsave(host lock)
   1520 *
   1521 *	RETURNS:
   1522 *	One if interrupt was handled, zero if not (shared irq).
   1523 */
   1524unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
   1525{
   1526	return __ata_sff_port_intr(ap, qc, false);
   1527}
   1528EXPORT_SYMBOL_GPL(ata_sff_port_intr);
   1529
   1530static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance,
   1531	unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *))
   1532{
   1533	struct ata_host *host = dev_instance;
   1534	bool retried = false;
   1535	unsigned int i;
   1536	unsigned int handled, idle, polling;
   1537	unsigned long flags;
   1538
   1539	/* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
   1540	spin_lock_irqsave(&host->lock, flags);
   1541
   1542retry:
   1543	handled = idle = polling = 0;
   1544	for (i = 0; i < host->n_ports; i++) {
   1545		struct ata_port *ap = host->ports[i];
   1546		struct ata_queued_cmd *qc;
   1547
   1548		qc = ata_qc_from_tag(ap, ap->link.active_tag);
   1549		if (qc) {
   1550			if (!(qc->tf.flags & ATA_TFLAG_POLLING))
   1551				handled |= port_intr(ap, qc);
   1552			else
   1553				polling |= 1 << i;
   1554		} else
   1555			idle |= 1 << i;
   1556	}
   1557
   1558	/*
   1559	 * If no port was expecting IRQ but the controller is actually
   1560	 * asserting IRQ line, nobody cared will ensue.  Check IRQ
   1561	 * pending status if available and clear spurious IRQ.
   1562	 */
   1563	if (!handled && !retried) {
   1564		bool retry = false;
   1565
   1566		for (i = 0; i < host->n_ports; i++) {
   1567			struct ata_port *ap = host->ports[i];
   1568
   1569			if (polling & (1 << i))
   1570				continue;
   1571
   1572			if (!ap->ops->sff_irq_check ||
   1573			    !ap->ops->sff_irq_check(ap))
   1574				continue;
   1575
   1576			if (idle & (1 << i)) {
   1577				ap->ops->sff_check_status(ap);
   1578				if (ap->ops->sff_irq_clear)
   1579					ap->ops->sff_irq_clear(ap);
   1580			} else {
   1581				/* clear INTRQ and check if BUSY cleared */
   1582				if (!(ap->ops->sff_check_status(ap) & ATA_BUSY))
   1583					retry |= true;
   1584				/*
   1585				 * With command in flight, we can't do
   1586				 * sff_irq_clear() w/o racing with completion.
   1587				 */
   1588			}
   1589		}
   1590
   1591		if (retry) {
   1592			retried = true;
   1593			goto retry;
   1594		}
   1595	}
   1596
   1597	spin_unlock_irqrestore(&host->lock, flags);
   1598
   1599	return IRQ_RETVAL(handled);
   1600}
   1601
   1602/**
   1603 *	ata_sff_interrupt - Default SFF ATA host interrupt handler
   1604 *	@irq: irq line (unused)
   1605 *	@dev_instance: pointer to our ata_host information structure
   1606 *
   1607 *	Default interrupt handler for PCI IDE devices.  Calls
   1608 *	ata_sff_port_intr() for each port that is not disabled.
   1609 *
   1610 *	LOCKING:
   1611 *	Obtains host lock during operation.
   1612 *
   1613 *	RETURNS:
   1614 *	IRQ_NONE or IRQ_HANDLED.
   1615 */
   1616irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
   1617{
   1618	return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr);
   1619}
   1620EXPORT_SYMBOL_GPL(ata_sff_interrupt);
   1621
   1622/**
   1623 *	ata_sff_lost_interrupt	-	Check for an apparent lost interrupt
   1624 *	@ap: port that appears to have timed out
   1625 *
   1626 *	Called from the libata error handlers when the core code suspects
   1627 *	an interrupt has been lost. If it has complete anything we can and
   1628 *	then return. Interface must support altstatus for this faster
   1629 *	recovery to occur.
   1630 *
   1631 *	Locking:
   1632 *	Caller holds host lock
   1633 */
   1634
   1635void ata_sff_lost_interrupt(struct ata_port *ap)
   1636{
   1637	u8 status = 0;
   1638	struct ata_queued_cmd *qc;
   1639
   1640	/* Only one outstanding command per SFF channel */
   1641	qc = ata_qc_from_tag(ap, ap->link.active_tag);
   1642	/* We cannot lose an interrupt on a non-existent or polled command */
   1643	if (!qc || qc->tf.flags & ATA_TFLAG_POLLING)
   1644		return;
   1645	/* See if the controller thinks it is still busy - if so the command
   1646	   isn't a lost IRQ but is still in progress */
   1647	if (WARN_ON_ONCE(!ata_sff_altstatus(ap, &status)))
   1648		return;
   1649	if (status & ATA_BUSY)
   1650		return;
   1651
   1652	/* There was a command running, we are no longer busy and we have
   1653	   no interrupt. */
   1654	ata_port_warn(ap, "lost interrupt (Status 0x%x)\n", status);
   1655	/* Run the host interrupt logic as if the interrupt had not been
   1656	   lost */
   1657	ata_sff_port_intr(ap, qc);
   1658}
   1659EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
   1660
   1661/**
   1662 *	ata_sff_freeze - Freeze SFF controller port
   1663 *	@ap: port to freeze
   1664 *
   1665 *	Freeze SFF controller port.
   1666 *
   1667 *	LOCKING:
   1668 *	Inherited from caller.
   1669 */
   1670void ata_sff_freeze(struct ata_port *ap)
   1671{
   1672	ap->ctl |= ATA_NIEN;
   1673	ap->last_ctl = ap->ctl;
   1674
   1675	ata_sff_set_devctl(ap, ap->ctl);
   1676
   1677	/* Under certain circumstances, some controllers raise IRQ on
   1678	 * ATA_NIEN manipulation.  Also, many controllers fail to mask
   1679	 * previously pending IRQ on ATA_NIEN assertion.  Clear it.
   1680	 */
   1681	ap->ops->sff_check_status(ap);
   1682
   1683	if (ap->ops->sff_irq_clear)
   1684		ap->ops->sff_irq_clear(ap);
   1685}
   1686EXPORT_SYMBOL_GPL(ata_sff_freeze);
   1687
   1688/**
   1689 *	ata_sff_thaw - Thaw SFF controller port
   1690 *	@ap: port to thaw
   1691 *
   1692 *	Thaw SFF controller port.
   1693 *
   1694 *	LOCKING:
   1695 *	Inherited from caller.
   1696 */
   1697void ata_sff_thaw(struct ata_port *ap)
   1698{
   1699	/* clear & re-enable interrupts */
   1700	ap->ops->sff_check_status(ap);
   1701	if (ap->ops->sff_irq_clear)
   1702		ap->ops->sff_irq_clear(ap);
   1703	ata_sff_irq_on(ap);
   1704}
   1705EXPORT_SYMBOL_GPL(ata_sff_thaw);
   1706
   1707/**
   1708 *	ata_sff_prereset - prepare SFF link for reset
   1709 *	@link: SFF link to be reset
   1710 *	@deadline: deadline jiffies for the operation
   1711 *
   1712 *	SFF link @link is about to be reset.  Initialize it.  It first
   1713 *	calls ata_std_prereset() and wait for !BSY if the port is
   1714 *	being softreset.
   1715 *
   1716 *	LOCKING:
   1717 *	Kernel thread context (may sleep)
   1718 *
   1719 *	RETURNS:
   1720 *	Always 0.
   1721 */
   1722int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
   1723{
   1724	struct ata_eh_context *ehc = &link->eh_context;
   1725	int rc;
   1726
   1727	/* The standard prereset is best-effort and always returns 0 */
   1728	ata_std_prereset(link, deadline);
   1729
   1730	/* if we're about to do hardreset, nothing more to do */
   1731	if (ehc->i.action & ATA_EH_HARDRESET)
   1732		return 0;
   1733
   1734	/* wait for !BSY if we don't know that no device is attached */
   1735	if (!ata_link_offline(link)) {
   1736		rc = ata_sff_wait_ready(link, deadline);
   1737		if (rc && rc != -ENODEV) {
   1738			ata_link_warn(link,
   1739				      "device not ready (errno=%d), forcing hardreset\n",
   1740				      rc);
   1741			ehc->i.action |= ATA_EH_HARDRESET;
   1742		}
   1743	}
   1744
   1745	return 0;
   1746}
   1747EXPORT_SYMBOL_GPL(ata_sff_prereset);
   1748
   1749/**
   1750 *	ata_devchk - PATA device presence detection
   1751 *	@ap: ATA channel to examine
   1752 *	@device: Device to examine (starting at zero)
   1753 *
   1754 *	This technique was originally described in
   1755 *	Hale Landis's ATADRVR (www.ata-atapi.com), and
   1756 *	later found its way into the ATA/ATAPI spec.
   1757 *
   1758 *	Write a pattern to the ATA shadow registers,
   1759 *	and if a device is present, it will respond by
   1760 *	correctly storing and echoing back the
   1761 *	ATA shadow register contents.
   1762 *
   1763 *	RETURN:
   1764 *	true if device is present, false if not.
   1765 *
   1766 *	LOCKING:
   1767 *	caller.
   1768 */
   1769static bool ata_devchk(struct ata_port *ap, unsigned int device)
   1770{
   1771	struct ata_ioports *ioaddr = &ap->ioaddr;
   1772	u8 nsect, lbal;
   1773
   1774	ap->ops->sff_dev_select(ap, device);
   1775
   1776	iowrite8(0x55, ioaddr->nsect_addr);
   1777	iowrite8(0xaa, ioaddr->lbal_addr);
   1778
   1779	iowrite8(0xaa, ioaddr->nsect_addr);
   1780	iowrite8(0x55, ioaddr->lbal_addr);
   1781
   1782	iowrite8(0x55, ioaddr->nsect_addr);
   1783	iowrite8(0xaa, ioaddr->lbal_addr);
   1784
   1785	nsect = ioread8(ioaddr->nsect_addr);
   1786	lbal = ioread8(ioaddr->lbal_addr);
   1787
   1788	if ((nsect == 0x55) && (lbal == 0xaa))
   1789		return true;	/* we found a device */
   1790
   1791	return false;		/* nothing found */
   1792}
   1793
   1794/**
   1795 *	ata_sff_dev_classify - Parse returned ATA device signature
   1796 *	@dev: ATA device to classify (starting at zero)
   1797 *	@present: device seems present
   1798 *	@r_err: Value of error register on completion
   1799 *
   1800 *	After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
   1801 *	an ATA/ATAPI-defined set of values is placed in the ATA
   1802 *	shadow registers, indicating the results of device detection
   1803 *	and diagnostics.
   1804 *
   1805 *	Select the ATA device, and read the values from the ATA shadow
   1806 *	registers.  Then parse according to the Error register value,
   1807 *	and the spec-defined values examined by ata_dev_classify().
   1808 *
   1809 *	LOCKING:
   1810 *	caller.
   1811 *
   1812 *	RETURNS:
   1813 *	Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
   1814 */
   1815unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
   1816				  u8 *r_err)
   1817{
   1818	struct ata_port *ap = dev->link->ap;
   1819	struct ata_taskfile tf;
   1820	unsigned int class;
   1821	u8 err;
   1822
   1823	ap->ops->sff_dev_select(ap, dev->devno);
   1824
   1825	memset(&tf, 0, sizeof(tf));
   1826
   1827	ap->ops->sff_tf_read(ap, &tf);
   1828	err = tf.error;
   1829	if (r_err)
   1830		*r_err = err;
   1831
   1832	/* see if device passed diags: continue and warn later */
   1833	if (err == 0)
   1834		/* diagnostic fail : do nothing _YET_ */
   1835		dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
   1836	else if (err == 1)
   1837		/* do nothing */ ;
   1838	else if ((dev->devno == 0) && (err == 0x81))
   1839		/* do nothing */ ;
   1840	else
   1841		return ATA_DEV_NONE;
   1842
   1843	/* determine if device is ATA or ATAPI */
   1844	class = ata_port_classify(ap, &tf);
   1845	switch (class) {
   1846	case ATA_DEV_UNKNOWN:
   1847		/*
   1848		 * If the device failed diagnostic, it's likely to
   1849		 * have reported incorrect device signature too.
   1850		 * Assume ATA device if the device seems present but
   1851		 * device signature is invalid with diagnostic
   1852		 * failure.
   1853		 */
   1854		if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
   1855			class = ATA_DEV_ATA;
   1856		else
   1857			class = ATA_DEV_NONE;
   1858		break;
   1859	case ATA_DEV_ATA:
   1860		if (ap->ops->sff_check_status(ap) == 0)
   1861			class = ATA_DEV_NONE;
   1862		break;
   1863	}
   1864	return class;
   1865}
   1866EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
   1867
   1868/**
   1869 *	ata_sff_wait_after_reset - wait for devices to become ready after reset
   1870 *	@link: SFF link which is just reset
   1871 *	@devmask: mask of present devices
   1872 *	@deadline: deadline jiffies for the operation
   1873 *
   1874 *	Wait devices attached to SFF @link to become ready after
   1875 *	reset.  It contains preceding 150ms wait to avoid accessing TF
   1876 *	status register too early.
   1877 *
   1878 *	LOCKING:
   1879 *	Kernel thread context (may sleep).
   1880 *
   1881 *	RETURNS:
   1882 *	0 on success, -ENODEV if some or all of devices in @devmask
   1883 *	don't seem to exist.  -errno on other errors.
   1884 */
   1885int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
   1886			     unsigned long deadline)
   1887{
   1888	struct ata_port *ap = link->ap;
   1889	struct ata_ioports *ioaddr = &ap->ioaddr;
   1890	unsigned int dev0 = devmask & (1 << 0);
   1891	unsigned int dev1 = devmask & (1 << 1);
   1892	int rc, ret = 0;
   1893
   1894	ata_msleep(ap, ATA_WAIT_AFTER_RESET);
   1895
   1896	/* always check readiness of the master device */
   1897	rc = ata_sff_wait_ready(link, deadline);
   1898	/* -ENODEV means the odd clown forgot the D7 pulldown resistor
   1899	 * and TF status is 0xff, bail out on it too.
   1900	 */
   1901	if (rc)
   1902		return rc;
   1903
   1904	/* if device 1 was found in ata_devchk, wait for register
   1905	 * access briefly, then wait for BSY to clear.
   1906	 */
   1907	if (dev1) {
   1908		int i;
   1909
   1910		ap->ops->sff_dev_select(ap, 1);
   1911
   1912		/* Wait for register access.  Some ATAPI devices fail
   1913		 * to set nsect/lbal after reset, so don't waste too
   1914		 * much time on it.  We're gonna wait for !BSY anyway.
   1915		 */
   1916		for (i = 0; i < 2; i++) {
   1917			u8 nsect, lbal;
   1918
   1919			nsect = ioread8(ioaddr->nsect_addr);
   1920			lbal = ioread8(ioaddr->lbal_addr);
   1921			if ((nsect == 1) && (lbal == 1))
   1922				break;
   1923			ata_msleep(ap, 50);	/* give drive a breather */
   1924		}
   1925
   1926		rc = ata_sff_wait_ready(link, deadline);
   1927		if (rc) {
   1928			if (rc != -ENODEV)
   1929				return rc;
   1930			ret = rc;
   1931		}
   1932	}
   1933
   1934	/* is all this really necessary? */
   1935	ap->ops->sff_dev_select(ap, 0);
   1936	if (dev1)
   1937		ap->ops->sff_dev_select(ap, 1);
   1938	if (dev0)
   1939		ap->ops->sff_dev_select(ap, 0);
   1940
   1941	return ret;
   1942}
   1943EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
   1944
   1945static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
   1946			     unsigned long deadline)
   1947{
   1948	struct ata_ioports *ioaddr = &ap->ioaddr;
   1949
   1950	if (ap->ioaddr.ctl_addr) {
   1951		/* software reset.  causes dev0 to be selected */
   1952		iowrite8(ap->ctl, ioaddr->ctl_addr);
   1953		udelay(20);	/* FIXME: flush */
   1954		iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
   1955		udelay(20);	/* FIXME: flush */
   1956		iowrite8(ap->ctl, ioaddr->ctl_addr);
   1957		ap->last_ctl = ap->ctl;
   1958	}
   1959
   1960	/* wait the port to become ready */
   1961	return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
   1962}
   1963
   1964/**
   1965 *	ata_sff_softreset - reset host port via ATA SRST
   1966 *	@link: ATA link to reset
   1967 *	@classes: resulting classes of attached devices
   1968 *	@deadline: deadline jiffies for the operation
   1969 *
   1970 *	Reset host port using ATA SRST.
   1971 *
   1972 *	LOCKING:
   1973 *	Kernel thread context (may sleep)
   1974 *
   1975 *	RETURNS:
   1976 *	0 on success, -errno otherwise.
   1977 */
   1978int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
   1979		      unsigned long deadline)
   1980{
   1981	struct ata_port *ap = link->ap;
   1982	unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
   1983	unsigned int devmask = 0;
   1984	int rc;
   1985	u8 err;
   1986
   1987	/* determine if device 0/1 are present */
   1988	if (ata_devchk(ap, 0))
   1989		devmask |= (1 << 0);
   1990	if (slave_possible && ata_devchk(ap, 1))
   1991		devmask |= (1 << 1);
   1992
   1993	/* select device 0 again */
   1994	ap->ops->sff_dev_select(ap, 0);
   1995
   1996	/* issue bus reset */
   1997	rc = ata_bus_softreset(ap, devmask, deadline);
   1998	/* if link is occupied, -ENODEV too is an error */
   1999	if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
   2000		ata_link_err(link, "SRST failed (errno=%d)\n", rc);
   2001		return rc;
   2002	}
   2003
   2004	/* determine by signature whether we have ATA or ATAPI devices */
   2005	classes[0] = ata_sff_dev_classify(&link->device[0],
   2006					  devmask & (1 << 0), &err);
   2007	if (slave_possible && err != 0x81)
   2008		classes[1] = ata_sff_dev_classify(&link->device[1],
   2009						  devmask & (1 << 1), &err);
   2010
   2011	return 0;
   2012}
   2013EXPORT_SYMBOL_GPL(ata_sff_softreset);
   2014
   2015/**
   2016 *	sata_sff_hardreset - reset host port via SATA phy reset
   2017 *	@link: link to reset
   2018 *	@class: resulting class of attached device
   2019 *	@deadline: deadline jiffies for the operation
   2020 *
   2021 *	SATA phy-reset host port using DET bits of SControl register,
   2022 *	wait for !BSY and classify the attached device.
   2023 *
   2024 *	LOCKING:
   2025 *	Kernel thread context (may sleep)
   2026 *
   2027 *	RETURNS:
   2028 *	0 on success, -errno otherwise.
   2029 */
   2030int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
   2031		       unsigned long deadline)
   2032{
   2033	struct ata_eh_context *ehc = &link->eh_context;
   2034	const unsigned long *timing = sata_ehc_deb_timing(ehc);
   2035	bool online;
   2036	int rc;
   2037
   2038	rc = sata_link_hardreset(link, timing, deadline, &online,
   2039				 ata_sff_check_ready);
   2040	if (online)
   2041		*class = ata_sff_dev_classify(link->device, 1, NULL);
   2042
   2043	return rc;
   2044}
   2045EXPORT_SYMBOL_GPL(sata_sff_hardreset);
   2046
   2047/**
   2048 *	ata_sff_postreset - SFF postreset callback
   2049 *	@link: the target SFF ata_link
   2050 *	@classes: classes of attached devices
   2051 *
   2052 *	This function is invoked after a successful reset.  It first
   2053 *	calls ata_std_postreset() and performs SFF specific postreset
   2054 *	processing.
   2055 *
   2056 *	LOCKING:
   2057 *	Kernel thread context (may sleep)
   2058 */
   2059void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
   2060{
   2061	struct ata_port *ap = link->ap;
   2062
   2063	ata_std_postreset(link, classes);
   2064
   2065	/* is double-select really necessary? */
   2066	if (classes[0] != ATA_DEV_NONE)
   2067		ap->ops->sff_dev_select(ap, 1);
   2068	if (classes[1] != ATA_DEV_NONE)
   2069		ap->ops->sff_dev_select(ap, 0);
   2070
   2071	/* bail out if no device is present */
   2072	if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE)
   2073		return;
   2074
   2075	/* set up device control */
   2076	if (ata_sff_set_devctl(ap, ap->ctl))
   2077		ap->last_ctl = ap->ctl;
   2078}
   2079EXPORT_SYMBOL_GPL(ata_sff_postreset);
   2080
   2081/**
   2082 *	ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
   2083 *	@qc: command
   2084 *
   2085 *	Drain the FIFO and device of any stuck data following a command
   2086 *	failing to complete. In some cases this is necessary before a
   2087 *	reset will recover the device.
   2088 *
   2089 */
   2090
   2091void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
   2092{
   2093	int count;
   2094	struct ata_port *ap;
   2095
   2096	/* We only need to flush incoming data when a command was running */
   2097	if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
   2098		return;
   2099
   2100	ap = qc->ap;
   2101	/* Drain up to 64K of data before we give up this recovery method */
   2102	for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
   2103						&& count < 65536; count += 2)
   2104		ioread16(ap->ioaddr.data_addr);
   2105
   2106	if (count)
   2107		ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count);
   2108
   2109}
   2110EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
   2111
   2112/**
   2113 *	ata_sff_error_handler - Stock error handler for SFF controller
   2114 *	@ap: port to handle error for
   2115 *
   2116 *	Stock error handler for SFF controller.  It can handle both
   2117 *	PATA and SATA controllers.  Many controllers should be able to
   2118 *	use this EH as-is or with some added handling before and
   2119 *	after.
   2120 *
   2121 *	LOCKING:
   2122 *	Kernel thread context (may sleep)
   2123 */
   2124void ata_sff_error_handler(struct ata_port *ap)
   2125{
   2126	ata_reset_fn_t softreset = ap->ops->softreset;
   2127	ata_reset_fn_t hardreset = ap->ops->hardreset;
   2128	struct ata_queued_cmd *qc;
   2129	unsigned long flags;
   2130
   2131	qc = __ata_qc_from_tag(ap, ap->link.active_tag);
   2132	if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
   2133		qc = NULL;
   2134
   2135	spin_lock_irqsave(ap->lock, flags);
   2136
   2137	/*
   2138	 * We *MUST* do FIFO draining before we issue a reset as
   2139	 * several devices helpfully clear their internal state and
   2140	 * will lock solid if we touch the data port post reset. Pass
   2141	 * qc in case anyone wants to do different PIO/DMA recovery or
   2142	 * has per command fixups
   2143	 */
   2144	if (ap->ops->sff_drain_fifo)
   2145		ap->ops->sff_drain_fifo(qc);
   2146
   2147	spin_unlock_irqrestore(ap->lock, flags);
   2148
   2149	/* ignore built-in hardresets if SCR access is not available */
   2150	if ((hardreset == sata_std_hardreset ||
   2151	     hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link))
   2152		hardreset = NULL;
   2153
   2154	ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
   2155		  ap->ops->postreset);
   2156}
   2157EXPORT_SYMBOL_GPL(ata_sff_error_handler);
   2158
   2159/**
   2160 *	ata_sff_std_ports - initialize ioaddr with standard port offsets.
   2161 *	@ioaddr: IO address structure to be initialized
   2162 *
   2163 *	Utility function which initializes data_addr, error_addr,
   2164 *	feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
   2165 *	device_addr, status_addr, and command_addr to standard offsets
   2166 *	relative to cmd_addr.
   2167 *
   2168 *	Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
   2169 */
   2170void ata_sff_std_ports(struct ata_ioports *ioaddr)
   2171{
   2172	ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
   2173	ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
   2174	ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
   2175	ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
   2176	ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
   2177	ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
   2178	ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
   2179	ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
   2180	ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
   2181	ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
   2182}
   2183EXPORT_SYMBOL_GPL(ata_sff_std_ports);
   2184
   2185#ifdef CONFIG_PCI
   2186
   2187static bool ata_resources_present(struct pci_dev *pdev, int port)
   2188{
   2189	int i;
   2190
   2191	/* Check the PCI resources for this channel are enabled */
   2192	port *= 2;
   2193	for (i = 0; i < 2; i++) {
   2194		if (pci_resource_start(pdev, port + i) == 0 ||
   2195		    pci_resource_len(pdev, port + i) == 0)
   2196			return false;
   2197	}
   2198	return true;
   2199}
   2200
   2201/**
   2202 *	ata_pci_sff_init_host - acquire native PCI ATA resources and init host
   2203 *	@host: target ATA host
   2204 *
   2205 *	Acquire native PCI ATA resources for @host and initialize the
   2206 *	first two ports of @host accordingly.  Ports marked dummy are
   2207 *	skipped and allocation failure makes the port dummy.
   2208 *
   2209 *	Note that native PCI resources are valid even for legacy hosts
   2210 *	as we fix up pdev resources array early in boot, so this
   2211 *	function can be used for both native and legacy SFF hosts.
   2212 *
   2213 *	LOCKING:
   2214 *	Inherited from calling layer (may sleep).
   2215 *
   2216 *	RETURNS:
   2217 *	0 if at least one port is initialized, -ENODEV if no port is
   2218 *	available.
   2219 */
   2220int ata_pci_sff_init_host(struct ata_host *host)
   2221{
   2222	struct device *gdev = host->dev;
   2223	struct pci_dev *pdev = to_pci_dev(gdev);
   2224	unsigned int mask = 0;
   2225	int i, rc;
   2226
   2227	/* request, iomap BARs and init port addresses accordingly */
   2228	for (i = 0; i < 2; i++) {
   2229		struct ata_port *ap = host->ports[i];
   2230		int base = i * 2;
   2231		void __iomem * const *iomap;
   2232
   2233		if (ata_port_is_dummy(ap))
   2234			continue;
   2235
   2236		/* Discard disabled ports.  Some controllers show
   2237		 * their unused channels this way.  Disabled ports are
   2238		 * made dummy.
   2239		 */
   2240		if (!ata_resources_present(pdev, i)) {
   2241			ap->ops = &ata_dummy_port_ops;
   2242			continue;
   2243		}
   2244
   2245		rc = pcim_iomap_regions(pdev, 0x3 << base,
   2246					dev_driver_string(gdev));
   2247		if (rc) {
   2248			dev_warn(gdev,
   2249				 "failed to request/iomap BARs for port %d (errno=%d)\n",
   2250				 i, rc);
   2251			if (rc == -EBUSY)
   2252				pcim_pin_device(pdev);
   2253			ap->ops = &ata_dummy_port_ops;
   2254			continue;
   2255		}
   2256		host->iomap = iomap = pcim_iomap_table(pdev);
   2257
   2258		ap->ioaddr.cmd_addr = iomap[base];
   2259		ap->ioaddr.altstatus_addr =
   2260		ap->ioaddr.ctl_addr = (void __iomem *)
   2261			((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
   2262		ata_sff_std_ports(&ap->ioaddr);
   2263
   2264		ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
   2265			(unsigned long long)pci_resource_start(pdev, base),
   2266			(unsigned long long)pci_resource_start(pdev, base + 1));
   2267
   2268		mask |= 1 << i;
   2269	}
   2270
   2271	if (!mask) {
   2272		dev_err(gdev, "no available native port\n");
   2273		return -ENODEV;
   2274	}
   2275
   2276	return 0;
   2277}
   2278EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
   2279
   2280/**
   2281 *	ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host
   2282 *	@pdev: target PCI device
   2283 *	@ppi: array of port_info, must be enough for two ports
   2284 *	@r_host: out argument for the initialized ATA host
   2285 *
   2286 *	Helper to allocate PIO-only SFF ATA host for @pdev, acquire
   2287 *	all PCI resources and initialize it accordingly in one go.
   2288 *
   2289 *	LOCKING:
   2290 *	Inherited from calling layer (may sleep).
   2291 *
   2292 *	RETURNS:
   2293 *	0 on success, -errno otherwise.
   2294 */
   2295int ata_pci_sff_prepare_host(struct pci_dev *pdev,
   2296			     const struct ata_port_info * const *ppi,
   2297			     struct ata_host **r_host)
   2298{
   2299	struct ata_host *host;
   2300	int rc;
   2301
   2302	if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
   2303		return -ENOMEM;
   2304
   2305	host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
   2306	if (!host) {
   2307		dev_err(&pdev->dev, "failed to allocate ATA host\n");
   2308		rc = -ENOMEM;
   2309		goto err_out;
   2310	}
   2311
   2312	rc = ata_pci_sff_init_host(host);
   2313	if (rc)
   2314		goto err_out;
   2315
   2316	devres_remove_group(&pdev->dev, NULL);
   2317	*r_host = host;
   2318	return 0;
   2319
   2320err_out:
   2321	devres_release_group(&pdev->dev, NULL);
   2322	return rc;
   2323}
   2324EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
   2325
   2326/**
   2327 *	ata_pci_sff_activate_host - start SFF host, request IRQ and register it
   2328 *	@host: target SFF ATA host
   2329 *	@irq_handler: irq_handler used when requesting IRQ(s)
   2330 *	@sht: scsi_host_template to use when registering the host
   2331 *
   2332 *	This is the counterpart of ata_host_activate() for SFF ATA
   2333 *	hosts.  This separate helper is necessary because SFF hosts
   2334 *	use two separate interrupts in legacy mode.
   2335 *
   2336 *	LOCKING:
   2337 *	Inherited from calling layer (may sleep).
   2338 *
   2339 *	RETURNS:
   2340 *	0 on success, -errno otherwise.
   2341 */
   2342int ata_pci_sff_activate_host(struct ata_host *host,
   2343			      irq_handler_t irq_handler,
   2344			      struct scsi_host_template *sht)
   2345{
   2346	struct device *dev = host->dev;
   2347	struct pci_dev *pdev = to_pci_dev(dev);
   2348	const char *drv_name = dev_driver_string(host->dev);
   2349	int legacy_mode = 0, rc;
   2350
   2351	rc = ata_host_start(host);
   2352	if (rc)
   2353		return rc;
   2354
   2355	if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
   2356		u8 tmp8, mask = 0;
   2357
   2358		/*
   2359		 * ATA spec says we should use legacy mode when one
   2360		 * port is in legacy mode, but disabled ports on some
   2361		 * PCI hosts appear as fixed legacy ports, e.g SB600/700
   2362		 * on which the secondary port is not wired, so
   2363		 * ignore ports that are marked as 'dummy' during
   2364		 * this check
   2365		 */
   2366		pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
   2367		if (!ata_port_is_dummy(host->ports[0]))
   2368			mask |= (1 << 0);
   2369		if (!ata_port_is_dummy(host->ports[1]))
   2370			mask |= (1 << 2);
   2371		if ((tmp8 & mask) != mask)
   2372			legacy_mode = 1;
   2373	}
   2374
   2375	if (!devres_open_group(dev, NULL, GFP_KERNEL))
   2376		return -ENOMEM;
   2377
   2378	if (!legacy_mode && pdev->irq) {
   2379		int i;
   2380
   2381		rc = devm_request_irq(dev, pdev->irq, irq_handler,
   2382				      IRQF_SHARED, drv_name, host);
   2383		if (rc)
   2384			goto out;
   2385
   2386		for (i = 0; i < 2; i++) {
   2387			if (ata_port_is_dummy(host->ports[i]))
   2388				continue;
   2389			ata_port_desc(host->ports[i], "irq %d", pdev->irq);
   2390		}
   2391	} else if (legacy_mode) {
   2392		if (!ata_port_is_dummy(host->ports[0])) {
   2393			rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
   2394					      irq_handler, IRQF_SHARED,
   2395					      drv_name, host);
   2396			if (rc)
   2397				goto out;
   2398
   2399			ata_port_desc(host->ports[0], "irq %d",
   2400				      ATA_PRIMARY_IRQ(pdev));
   2401		}
   2402
   2403		if (!ata_port_is_dummy(host->ports[1])) {
   2404			rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
   2405					      irq_handler, IRQF_SHARED,
   2406					      drv_name, host);
   2407			if (rc)
   2408				goto out;
   2409
   2410			ata_port_desc(host->ports[1], "irq %d",
   2411				      ATA_SECONDARY_IRQ(pdev));
   2412		}
   2413	}
   2414
   2415	rc = ata_host_register(host, sht);
   2416out:
   2417	if (rc == 0)
   2418		devres_remove_group(dev, NULL);
   2419	else
   2420		devres_release_group(dev, NULL);
   2421
   2422	return rc;
   2423}
   2424EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
   2425
   2426static const struct ata_port_info *ata_sff_find_valid_pi(
   2427					const struct ata_port_info * const *ppi)
   2428{
   2429	int i;
   2430
   2431	/* look up the first valid port_info */
   2432	for (i = 0; i < 2 && ppi[i]; i++)
   2433		if (ppi[i]->port_ops != &ata_dummy_port_ops)
   2434			return ppi[i];
   2435
   2436	return NULL;
   2437}
   2438
   2439static int ata_pci_init_one(struct pci_dev *pdev,
   2440		const struct ata_port_info * const *ppi,
   2441		struct scsi_host_template *sht, void *host_priv,
   2442		int hflags, bool bmdma)
   2443{
   2444	struct device *dev = &pdev->dev;
   2445	const struct ata_port_info *pi;
   2446	struct ata_host *host = NULL;
   2447	int rc;
   2448
   2449	pi = ata_sff_find_valid_pi(ppi);
   2450	if (!pi) {
   2451		dev_err(&pdev->dev, "no valid port_info specified\n");
   2452		return -EINVAL;
   2453	}
   2454
   2455	if (!devres_open_group(dev, NULL, GFP_KERNEL))
   2456		return -ENOMEM;
   2457
   2458	rc = pcim_enable_device(pdev);
   2459	if (rc)
   2460		goto out;
   2461
   2462#ifdef CONFIG_ATA_BMDMA
   2463	if (bmdma)
   2464		/* prepare and activate BMDMA host */
   2465		rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host);
   2466	else
   2467#endif
   2468		/* prepare and activate SFF host */
   2469		rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
   2470	if (rc)
   2471		goto out;
   2472	host->private_data = host_priv;
   2473	host->flags |= hflags;
   2474
   2475#ifdef CONFIG_ATA_BMDMA
   2476	if (bmdma) {
   2477		pci_set_master(pdev);
   2478		rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht);
   2479	} else
   2480#endif
   2481		rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
   2482out:
   2483	if (rc == 0)
   2484		devres_remove_group(&pdev->dev, NULL);
   2485	else
   2486		devres_release_group(&pdev->dev, NULL);
   2487
   2488	return rc;
   2489}
   2490
   2491/**
   2492 *	ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller
   2493 *	@pdev: Controller to be initialized
   2494 *	@ppi: array of port_info, must be enough for two ports
   2495 *	@sht: scsi_host_template to use when registering the host
   2496 *	@host_priv: host private_data
   2497 *	@hflag: host flags
   2498 *
   2499 *	This is a helper function which can be called from a driver's
   2500 *	xxx_init_one() probe function if the hardware uses traditional
   2501 *	IDE taskfile registers and is PIO only.
   2502 *
   2503 *	ASSUMPTION:
   2504 *	Nobody makes a single channel controller that appears solely as
   2505 *	the secondary legacy port on PCI.
   2506 *
   2507 *	LOCKING:
   2508 *	Inherited from PCI layer (may sleep).
   2509 *
   2510 *	RETURNS:
   2511 *	Zero on success, negative on errno-based value on error.
   2512 */
   2513int ata_pci_sff_init_one(struct pci_dev *pdev,
   2514		 const struct ata_port_info * const *ppi,
   2515		 struct scsi_host_template *sht, void *host_priv, int hflag)
   2516{
   2517	return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0);
   2518}
   2519EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
   2520
   2521#endif /* CONFIG_PCI */
   2522
   2523/*
   2524 *	BMDMA support
   2525 */
   2526
   2527#ifdef CONFIG_ATA_BMDMA
   2528
   2529const struct ata_port_operations ata_bmdma_port_ops = {
   2530	.inherits		= &ata_sff_port_ops,
   2531
   2532	.error_handler		= ata_bmdma_error_handler,
   2533	.post_internal_cmd	= ata_bmdma_post_internal_cmd,
   2534
   2535	.qc_prep		= ata_bmdma_qc_prep,
   2536	.qc_issue		= ata_bmdma_qc_issue,
   2537
   2538	.sff_irq_clear		= ata_bmdma_irq_clear,
   2539	.bmdma_setup		= ata_bmdma_setup,
   2540	.bmdma_start		= ata_bmdma_start,
   2541	.bmdma_stop		= ata_bmdma_stop,
   2542	.bmdma_status		= ata_bmdma_status,
   2543
   2544	.port_start		= ata_bmdma_port_start,
   2545};
   2546EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
   2547
   2548const struct ata_port_operations ata_bmdma32_port_ops = {
   2549	.inherits		= &ata_bmdma_port_ops,
   2550
   2551	.sff_data_xfer		= ata_sff_data_xfer32,
   2552	.port_start		= ata_bmdma_port_start32,
   2553};
   2554EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
   2555
   2556/**
   2557 *	ata_bmdma_fill_sg - Fill PCI IDE PRD table
   2558 *	@qc: Metadata associated with taskfile to be transferred
   2559 *
   2560 *	Fill PCI IDE PRD (scatter-gather) table with segments
   2561 *	associated with the current disk command.
   2562 *
   2563 *	LOCKING:
   2564 *	spin_lock_irqsave(host lock)
   2565 *
   2566 */
   2567static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc)
   2568{
   2569	struct ata_port *ap = qc->ap;
   2570	struct ata_bmdma_prd *prd = ap->bmdma_prd;
   2571	struct scatterlist *sg;
   2572	unsigned int si, pi;
   2573
   2574	pi = 0;
   2575	for_each_sg(qc->sg, sg, qc->n_elem, si) {
   2576		u32 addr, offset;
   2577		u32 sg_len, len;
   2578
   2579		/* determine if physical DMA addr spans 64K boundary.
   2580		 * Note h/w doesn't support 64-bit, so we unconditionally
   2581		 * truncate dma_addr_t to u32.
   2582		 */
   2583		addr = (u32) sg_dma_address(sg);
   2584		sg_len = sg_dma_len(sg);
   2585
   2586		while (sg_len) {
   2587			offset = addr & 0xffff;
   2588			len = sg_len;
   2589			if ((offset + sg_len) > 0x10000)
   2590				len = 0x10000 - offset;
   2591
   2592			prd[pi].addr = cpu_to_le32(addr);
   2593			prd[pi].flags_len = cpu_to_le32(len & 0xffff);
   2594
   2595			pi++;
   2596			sg_len -= len;
   2597			addr += len;
   2598		}
   2599	}
   2600
   2601	prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
   2602}
   2603
   2604/**
   2605 *	ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
   2606 *	@qc: Metadata associated with taskfile to be transferred
   2607 *
   2608 *	Fill PCI IDE PRD (scatter-gather) table with segments
   2609 *	associated with the current disk command. Perform the fill
   2610 *	so that we avoid writing any length 64K records for
   2611 *	controllers that don't follow the spec.
   2612 *
   2613 *	LOCKING:
   2614 *	spin_lock_irqsave(host lock)
   2615 *
   2616 */
   2617static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc)
   2618{
   2619	struct ata_port *ap = qc->ap;
   2620	struct ata_bmdma_prd *prd = ap->bmdma_prd;
   2621	struct scatterlist *sg;
   2622	unsigned int si, pi;
   2623
   2624	pi = 0;
   2625	for_each_sg(qc->sg, sg, qc->n_elem, si) {
   2626		u32 addr, offset;
   2627		u32 sg_len, len, blen;
   2628
   2629		/* determine if physical DMA addr spans 64K boundary.
   2630		 * Note h/w doesn't support 64-bit, so we unconditionally
   2631		 * truncate dma_addr_t to u32.
   2632		 */
   2633		addr = (u32) sg_dma_address(sg);
   2634		sg_len = sg_dma_len(sg);
   2635
   2636		while (sg_len) {
   2637			offset = addr & 0xffff;
   2638			len = sg_len;
   2639			if ((offset + sg_len) > 0x10000)
   2640				len = 0x10000 - offset;
   2641
   2642			blen = len & 0xffff;
   2643			prd[pi].addr = cpu_to_le32(addr);
   2644			if (blen == 0) {
   2645				/* Some PATA chipsets like the CS5530 can't
   2646				   cope with 0x0000 meaning 64K as the spec
   2647				   says */
   2648				prd[pi].flags_len = cpu_to_le32(0x8000);
   2649				blen = 0x8000;
   2650				prd[++pi].addr = cpu_to_le32(addr + 0x8000);
   2651			}
   2652			prd[pi].flags_len = cpu_to_le32(blen);
   2653
   2654			pi++;
   2655			sg_len -= len;
   2656			addr += len;
   2657		}
   2658	}
   2659
   2660	prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
   2661}
   2662
   2663/**
   2664 *	ata_bmdma_qc_prep - Prepare taskfile for submission
   2665 *	@qc: Metadata associated with taskfile to be prepared
   2666 *
   2667 *	Prepare ATA taskfile for submission.
   2668 *
   2669 *	LOCKING:
   2670 *	spin_lock_irqsave(host lock)
   2671 */
   2672enum ata_completion_errors ata_bmdma_qc_prep(struct ata_queued_cmd *qc)
   2673{
   2674	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
   2675		return AC_ERR_OK;
   2676
   2677	ata_bmdma_fill_sg(qc);
   2678
   2679	return AC_ERR_OK;
   2680}
   2681EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep);
   2682
   2683/**
   2684 *	ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
   2685 *	@qc: Metadata associated with taskfile to be prepared
   2686 *
   2687 *	Prepare ATA taskfile for submission.
   2688 *
   2689 *	LOCKING:
   2690 *	spin_lock_irqsave(host lock)
   2691 */
   2692enum ata_completion_errors ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc)
   2693{
   2694	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
   2695		return AC_ERR_OK;
   2696
   2697	ata_bmdma_fill_sg_dumb(qc);
   2698
   2699	return AC_ERR_OK;
   2700}
   2701EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep);
   2702
   2703/**
   2704 *	ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
   2705 *	@qc: command to issue to device
   2706 *
   2707 *	This function issues a PIO, NODATA or DMA command to a
   2708 *	SFF/BMDMA controller.  PIO and NODATA are handled by
   2709 *	ata_sff_qc_issue().
   2710 *
   2711 *	LOCKING:
   2712 *	spin_lock_irqsave(host lock)
   2713 *
   2714 *	RETURNS:
   2715 *	Zero on success, AC_ERR_* mask on failure
   2716 */
   2717unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc)
   2718{
   2719	struct ata_port *ap = qc->ap;
   2720	struct ata_link *link = qc->dev->link;
   2721
   2722	/* defer PIO handling to sff_qc_issue */
   2723	if (!ata_is_dma(qc->tf.protocol))
   2724		return ata_sff_qc_issue(qc);
   2725
   2726	/* select the device */
   2727	ata_dev_select(ap, qc->dev->devno, 1, 0);
   2728
   2729	/* start the command */
   2730	switch (qc->tf.protocol) {
   2731	case ATA_PROT_DMA:
   2732		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
   2733
   2734		trace_ata_tf_load(ap, &qc->tf);
   2735		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
   2736		trace_ata_bmdma_setup(ap, &qc->tf, qc->tag);
   2737		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
   2738		trace_ata_bmdma_start(ap, &qc->tf, qc->tag);
   2739		ap->ops->bmdma_start(qc);	    /* initiate bmdma */
   2740		ap->hsm_task_state = HSM_ST_LAST;
   2741		break;
   2742
   2743	case ATAPI_PROT_DMA:
   2744		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
   2745
   2746		trace_ata_tf_load(ap, &qc->tf);
   2747		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
   2748		trace_ata_bmdma_setup(ap, &qc->tf, qc->tag);
   2749		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
   2750		ap->hsm_task_state = HSM_ST_FIRST;
   2751
   2752		/* send cdb by polling if no cdb interrupt */
   2753		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
   2754			ata_sff_queue_pio_task(link, 0);
   2755		break;
   2756
   2757	default:
   2758		WARN_ON(1);
   2759		return AC_ERR_SYSTEM;
   2760	}
   2761
   2762	return 0;
   2763}
   2764EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue);
   2765
   2766/**
   2767 *	ata_bmdma_port_intr - Handle BMDMA port interrupt
   2768 *	@ap: Port on which interrupt arrived (possibly...)
   2769 *	@qc: Taskfile currently active in engine
   2770 *
   2771 *	Handle port interrupt for given queued command.
   2772 *
   2773 *	LOCKING:
   2774 *	spin_lock_irqsave(host lock)
   2775 *
   2776 *	RETURNS:
   2777 *	One if interrupt was handled, zero if not (shared irq).
   2778 */
   2779unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
   2780{
   2781	struct ata_eh_info *ehi = &ap->link.eh_info;
   2782	u8 host_stat = 0;
   2783	bool bmdma_stopped = false;
   2784	unsigned int handled;
   2785
   2786	if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) {
   2787		/* check status of DMA engine */
   2788		host_stat = ap->ops->bmdma_status(ap);
   2789		trace_ata_bmdma_status(ap, host_stat);
   2790
   2791		/* if it's not our irq... */
   2792		if (!(host_stat & ATA_DMA_INTR))
   2793			return ata_sff_idle_irq(ap);
   2794
   2795		/* before we do anything else, clear DMA-Start bit */
   2796		trace_ata_bmdma_stop(ap, &qc->tf, qc->tag);
   2797		ap->ops->bmdma_stop(qc);
   2798		bmdma_stopped = true;
   2799
   2800		if (unlikely(host_stat & ATA_DMA_ERR)) {
   2801			/* error when transferring data to/from memory */
   2802			qc->err_mask |= AC_ERR_HOST_BUS;
   2803			ap->hsm_task_state = HSM_ST_ERR;
   2804		}
   2805	}
   2806
   2807	handled = __ata_sff_port_intr(ap, qc, bmdma_stopped);
   2808
   2809	if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol))
   2810		ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
   2811
   2812	return handled;
   2813}
   2814EXPORT_SYMBOL_GPL(ata_bmdma_port_intr);
   2815
   2816/**
   2817 *	ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
   2818 *	@irq: irq line (unused)
   2819 *	@dev_instance: pointer to our ata_host information structure
   2820 *
   2821 *	Default interrupt handler for PCI IDE devices.  Calls
   2822 *	ata_bmdma_port_intr() for each port that is not disabled.
   2823 *
   2824 *	LOCKING:
   2825 *	Obtains host lock during operation.
   2826 *
   2827 *	RETURNS:
   2828 *	IRQ_NONE or IRQ_HANDLED.
   2829 */
   2830irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance)
   2831{
   2832	return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr);
   2833}
   2834EXPORT_SYMBOL_GPL(ata_bmdma_interrupt);
   2835
   2836/**
   2837 *	ata_bmdma_error_handler - Stock error handler for BMDMA controller
   2838 *	@ap: port to handle error for
   2839 *
   2840 *	Stock error handler for BMDMA controller.  It can handle both
   2841 *	PATA and SATA controllers.  Most BMDMA controllers should be
   2842 *	able to use this EH as-is or with some added handling before
   2843 *	and after.
   2844 *
   2845 *	LOCKING:
   2846 *	Kernel thread context (may sleep)
   2847 */
   2848void ata_bmdma_error_handler(struct ata_port *ap)
   2849{
   2850	struct ata_queued_cmd *qc;
   2851	unsigned long flags;
   2852	bool thaw = false;
   2853
   2854	qc = __ata_qc_from_tag(ap, ap->link.active_tag);
   2855	if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
   2856		qc = NULL;
   2857
   2858	/* reset PIO HSM and stop DMA engine */
   2859	spin_lock_irqsave(ap->lock, flags);
   2860
   2861	if (qc && ata_is_dma(qc->tf.protocol)) {
   2862		u8 host_stat;
   2863
   2864		host_stat = ap->ops->bmdma_status(ap);
   2865		trace_ata_bmdma_status(ap, host_stat);
   2866
   2867		/* BMDMA controllers indicate host bus error by
   2868		 * setting DMA_ERR bit and timing out.  As it wasn't
   2869		 * really a timeout event, adjust error mask and
   2870		 * cancel frozen state.
   2871		 */
   2872		if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
   2873			qc->err_mask = AC_ERR_HOST_BUS;
   2874			thaw = true;
   2875		}
   2876
   2877		trace_ata_bmdma_stop(ap, &qc->tf, qc->tag);
   2878		ap->ops->bmdma_stop(qc);
   2879
   2880		/* if we're gonna thaw, make sure IRQ is clear */
   2881		if (thaw) {
   2882			ap->ops->sff_check_status(ap);
   2883			if (ap->ops->sff_irq_clear)
   2884				ap->ops->sff_irq_clear(ap);
   2885		}
   2886	}
   2887
   2888	spin_unlock_irqrestore(ap->lock, flags);
   2889
   2890	if (thaw)
   2891		ata_eh_thaw_port(ap);
   2892
   2893	ata_sff_error_handler(ap);
   2894}
   2895EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
   2896
   2897/**
   2898 *	ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
   2899 *	@qc: internal command to clean up
   2900 *
   2901 *	LOCKING:
   2902 *	Kernel thread context (may sleep)
   2903 */
   2904void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc)
   2905{
   2906	struct ata_port *ap = qc->ap;
   2907	unsigned long flags;
   2908
   2909	if (ata_is_dma(qc->tf.protocol)) {
   2910		spin_lock_irqsave(ap->lock, flags);
   2911		trace_ata_bmdma_stop(ap, &qc->tf, qc->tag);
   2912		ap->ops->bmdma_stop(qc);
   2913		spin_unlock_irqrestore(ap->lock, flags);
   2914	}
   2915}
   2916EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
   2917
   2918/**
   2919 *	ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
   2920 *	@ap: Port associated with this ATA transaction.
   2921 *
   2922 *	Clear interrupt and error flags in DMA status register.
   2923 *
   2924 *	May be used as the irq_clear() entry in ata_port_operations.
   2925 *
   2926 *	LOCKING:
   2927 *	spin_lock_irqsave(host lock)
   2928 */
   2929void ata_bmdma_irq_clear(struct ata_port *ap)
   2930{
   2931	void __iomem *mmio = ap->ioaddr.bmdma_addr;
   2932
   2933	if (!mmio)
   2934		return;
   2935
   2936	iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
   2937}
   2938EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
   2939
   2940/**
   2941 *	ata_bmdma_setup - Set up PCI IDE BMDMA transaction
   2942 *	@qc: Info associated with this ATA transaction.
   2943 *
   2944 *	LOCKING:
   2945 *	spin_lock_irqsave(host lock)
   2946 */
   2947void ata_bmdma_setup(struct ata_queued_cmd *qc)
   2948{
   2949	struct ata_port *ap = qc->ap;
   2950	unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
   2951	u8 dmactl;
   2952
   2953	/* load PRD table addr. */
   2954	mb();	/* make sure PRD table writes are visible to controller */
   2955	iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
   2956
   2957	/* specify data direction, triple-check start bit is clear */
   2958	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
   2959	dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
   2960	if (!rw)
   2961		dmactl |= ATA_DMA_WR;
   2962	iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
   2963
   2964	/* issue r/w command */
   2965	ap->ops->sff_exec_command(ap, &qc->tf);
   2966}
   2967EXPORT_SYMBOL_GPL(ata_bmdma_setup);
   2968
   2969/**
   2970 *	ata_bmdma_start - Start a PCI IDE BMDMA transaction
   2971 *	@qc: Info associated with this ATA transaction.
   2972 *
   2973 *	LOCKING:
   2974 *	spin_lock_irqsave(host lock)
   2975 */
   2976void ata_bmdma_start(struct ata_queued_cmd *qc)
   2977{
   2978	struct ata_port *ap = qc->ap;
   2979	u8 dmactl;
   2980
   2981	/* start host DMA transaction */
   2982	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
   2983	iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
   2984
   2985	/* Strictly, one may wish to issue an ioread8() here, to
   2986	 * flush the mmio write.  However, control also passes
   2987	 * to the hardware at this point, and it will interrupt
   2988	 * us when we are to resume control.  So, in effect,
   2989	 * we don't care when the mmio write flushes.
   2990	 * Further, a read of the DMA status register _immediately_
   2991	 * following the write may not be what certain flaky hardware
   2992	 * is expected, so I think it is best to not add a readb()
   2993	 * without first all the MMIO ATA cards/mobos.
   2994	 * Or maybe I'm just being paranoid.
   2995	 *
   2996	 * FIXME: The posting of this write means I/O starts are
   2997	 * unnecessarily delayed for MMIO
   2998	 */
   2999}
   3000EXPORT_SYMBOL_GPL(ata_bmdma_start);
   3001
   3002/**
   3003 *	ata_bmdma_stop - Stop PCI IDE BMDMA transfer
   3004 *	@qc: Command we are ending DMA for
   3005 *
   3006 *	Clears the ATA_DMA_START flag in the dma control register
   3007 *
   3008 *	May be used as the bmdma_stop() entry in ata_port_operations.
   3009 *
   3010 *	LOCKING:
   3011 *	spin_lock_irqsave(host lock)
   3012 */
   3013void ata_bmdma_stop(struct ata_queued_cmd *qc)
   3014{
   3015	struct ata_port *ap = qc->ap;
   3016	void __iomem *mmio = ap->ioaddr.bmdma_addr;
   3017
   3018	/* clear start/stop bit */
   3019	iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
   3020		 mmio + ATA_DMA_CMD);
   3021
   3022	/* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
   3023	ata_sff_dma_pause(ap);
   3024}
   3025EXPORT_SYMBOL_GPL(ata_bmdma_stop);
   3026
   3027/**
   3028 *	ata_bmdma_status - Read PCI IDE BMDMA status
   3029 *	@ap: Port associated with this ATA transaction.
   3030 *
   3031 *	Read and return BMDMA status register.
   3032 *
   3033 *	May be used as the bmdma_status() entry in ata_port_operations.
   3034 *
   3035 *	LOCKING:
   3036 *	spin_lock_irqsave(host lock)
   3037 */
   3038u8 ata_bmdma_status(struct ata_port *ap)
   3039{
   3040	return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
   3041}
   3042EXPORT_SYMBOL_GPL(ata_bmdma_status);
   3043
   3044
   3045/**
   3046 *	ata_bmdma_port_start - Set port up for bmdma.
   3047 *	@ap: Port to initialize
   3048 *
   3049 *	Called just after data structures for each port are
   3050 *	initialized.  Allocates space for PRD table.
   3051 *
   3052 *	May be used as the port_start() entry in ata_port_operations.
   3053 *
   3054 *	LOCKING:
   3055 *	Inherited from caller.
   3056 */
   3057int ata_bmdma_port_start(struct ata_port *ap)
   3058{
   3059	if (ap->mwdma_mask || ap->udma_mask) {
   3060		ap->bmdma_prd =
   3061			dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ,
   3062					    &ap->bmdma_prd_dma, GFP_KERNEL);
   3063		if (!ap->bmdma_prd)
   3064			return -ENOMEM;
   3065	}
   3066
   3067	return 0;
   3068}
   3069EXPORT_SYMBOL_GPL(ata_bmdma_port_start);
   3070
   3071/**
   3072 *	ata_bmdma_port_start32 - Set port up for dma.
   3073 *	@ap: Port to initialize
   3074 *
   3075 *	Called just after data structures for each port are
   3076 *	initialized.  Enables 32bit PIO and allocates space for PRD
   3077 *	table.
   3078 *
   3079 *	May be used as the port_start() entry in ata_port_operations for
   3080 *	devices that are capable of 32bit PIO.
   3081 *
   3082 *	LOCKING:
   3083 *	Inherited from caller.
   3084 */
   3085int ata_bmdma_port_start32(struct ata_port *ap)
   3086{
   3087	ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
   3088	return ata_bmdma_port_start(ap);
   3089}
   3090EXPORT_SYMBOL_GPL(ata_bmdma_port_start32);
   3091
   3092#ifdef CONFIG_PCI
   3093
   3094/**
   3095 *	ata_pci_bmdma_clear_simplex -	attempt to kick device out of simplex
   3096 *	@pdev: PCI device
   3097 *
   3098 *	Some PCI ATA devices report simplex mode but in fact can be told to
   3099 *	enter non simplex mode. This implements the necessary logic to
   3100 *	perform the task on such devices. Calling it on other devices will
   3101 *	have -undefined- behaviour.
   3102 */
   3103int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
   3104{
   3105	unsigned long bmdma = pci_resource_start(pdev, 4);
   3106	u8 simplex;
   3107
   3108	if (bmdma == 0)
   3109		return -ENOENT;
   3110
   3111	simplex = inb(bmdma + 0x02);
   3112	outb(simplex & 0x60, bmdma + 0x02);
   3113	simplex = inb(bmdma + 0x02);
   3114	if (simplex & 0x80)
   3115		return -EOPNOTSUPP;
   3116	return 0;
   3117}
   3118EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
   3119
   3120static void ata_bmdma_nodma(struct ata_host *host, const char *reason)
   3121{
   3122	int i;
   3123
   3124	dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason);
   3125
   3126	for (i = 0; i < 2; i++) {
   3127		host->ports[i]->mwdma_mask = 0;
   3128		host->ports[i]->udma_mask = 0;
   3129	}
   3130}
   3131
   3132/**
   3133 *	ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
   3134 *	@host: target ATA host
   3135 *
   3136 *	Acquire PCI BMDMA resources and initialize @host accordingly.
   3137 *
   3138 *	LOCKING:
   3139 *	Inherited from calling layer (may sleep).
   3140 */
   3141void ata_pci_bmdma_init(struct ata_host *host)
   3142{
   3143	struct device *gdev = host->dev;
   3144	struct pci_dev *pdev = to_pci_dev(gdev);
   3145	int i, rc;
   3146
   3147	/* No BAR4 allocation: No DMA */
   3148	if (pci_resource_start(pdev, 4) == 0) {
   3149		ata_bmdma_nodma(host, "BAR4 is zero");
   3150		return;
   3151	}
   3152
   3153	/*
   3154	 * Some controllers require BMDMA region to be initialized
   3155	 * even if DMA is not in use to clear IRQ status via
   3156	 * ->sff_irq_clear method.  Try to initialize bmdma_addr
   3157	 * regardless of dma masks.
   3158	 */
   3159	rc = dma_set_mask_and_coherent(&pdev->dev, ATA_DMA_MASK);
   3160	if (rc)
   3161		ata_bmdma_nodma(host, "failed to set dma mask");
   3162
   3163	/* request and iomap DMA region */
   3164	rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
   3165	if (rc) {
   3166		ata_bmdma_nodma(host, "failed to request/iomap BAR4");
   3167		return;
   3168	}
   3169	host->iomap = pcim_iomap_table(pdev);
   3170
   3171	for (i = 0; i < 2; i++) {
   3172		struct ata_port *ap = host->ports[i];
   3173		void __iomem *bmdma = host->iomap[4] + 8 * i;
   3174
   3175		if (ata_port_is_dummy(ap))
   3176			continue;
   3177
   3178		ap->ioaddr.bmdma_addr = bmdma;
   3179		if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
   3180		    (ioread8(bmdma + 2) & 0x80))
   3181			host->flags |= ATA_HOST_SIMPLEX;
   3182
   3183		ata_port_desc(ap, "bmdma 0x%llx",
   3184		    (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
   3185	}
   3186}
   3187EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
   3188
   3189/**
   3190 *	ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host
   3191 *	@pdev: target PCI device
   3192 *	@ppi: array of port_info, must be enough for two ports
   3193 *	@r_host: out argument for the initialized ATA host
   3194 *
   3195 *	Helper to allocate BMDMA ATA host for @pdev, acquire all PCI
   3196 *	resources and initialize it accordingly in one go.
   3197 *
   3198 *	LOCKING:
   3199 *	Inherited from calling layer (may sleep).
   3200 *
   3201 *	RETURNS:
   3202 *	0 on success, -errno otherwise.
   3203 */
   3204int ata_pci_bmdma_prepare_host(struct pci_dev *pdev,
   3205			       const struct ata_port_info * const * ppi,
   3206			       struct ata_host **r_host)
   3207{
   3208	int rc;
   3209
   3210	rc = ata_pci_sff_prepare_host(pdev, ppi, r_host);
   3211	if (rc)
   3212		return rc;
   3213
   3214	ata_pci_bmdma_init(*r_host);
   3215	return 0;
   3216}
   3217EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host);
   3218
   3219/**
   3220 *	ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller
   3221 *	@pdev: Controller to be initialized
   3222 *	@ppi: array of port_info, must be enough for two ports
   3223 *	@sht: scsi_host_template to use when registering the host
   3224 *	@host_priv: host private_data
   3225 *	@hflags: host flags
   3226 *
   3227 *	This function is similar to ata_pci_sff_init_one() but also
   3228 *	takes care of BMDMA initialization.
   3229 *
   3230 *	LOCKING:
   3231 *	Inherited from PCI layer (may sleep).
   3232 *
   3233 *	RETURNS:
   3234 *	Zero on success, negative on errno-based value on error.
   3235 */
   3236int ata_pci_bmdma_init_one(struct pci_dev *pdev,
   3237			   const struct ata_port_info * const * ppi,
   3238			   struct scsi_host_template *sht, void *host_priv,
   3239			   int hflags)
   3240{
   3241	return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1);
   3242}
   3243EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one);
   3244
   3245#endif /* CONFIG_PCI */
   3246#endif /* CONFIG_ATA_BMDMA */
   3247
   3248/**
   3249 *	ata_sff_port_init - Initialize SFF/BMDMA ATA port
   3250 *	@ap: Port to initialize
   3251 *
   3252 *	Called on port allocation to initialize SFF/BMDMA specific
   3253 *	fields.
   3254 *
   3255 *	LOCKING:
   3256 *	None.
   3257 */
   3258void ata_sff_port_init(struct ata_port *ap)
   3259{
   3260	INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task);
   3261	ap->ctl = ATA_DEVCTL_OBS;
   3262	ap->last_ctl = 0xFF;
   3263}
   3264
   3265int __init ata_sff_init(void)
   3266{
   3267	ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE);
   3268	if (!ata_sff_wq)
   3269		return -ENOMEM;
   3270
   3271	return 0;
   3272}
   3273
   3274void ata_sff_exit(void)
   3275{
   3276	destroy_workqueue(ata_sff_wq);
   3277}