cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

lanai.c (82207B)


      1// SPDX-License-Identifier: GPL-2.0-or-later
      2/* lanai.c -- Copyright 1999-2003 by Mitchell Blank Jr <mitch@sfgoth.com>
      3 *
      4 * This driver supports ATM cards based on the Efficient "Lanai"
      5 * chipset such as the Speedstream 3010 and the ENI-25p.  The
      6 * Speedstream 3060 is currently not supported since we don't
      7 * have the code to drive the on-board Alcatel DSL chipset (yet).
      8 *
      9 * Thanks to Efficient for supporting this project with hardware,
     10 * documentation, and by answering my questions.
     11 *
     12 * Things not working yet:
     13 *
     14 * o  We don't support the Speedstream 3060 yet - this card has
     15 *    an on-board DSL modem chip by Alcatel and the driver will
     16 *    need some extra code added to handle it
     17 *
     18 * o  Note that due to limitations of the Lanai only one VCC can be
     19 *    in CBR at once
     20 *
     21 * o We don't currently parse the EEPROM at all.  The code is all
     22 *   there as per the spec, but it doesn't actually work.  I think
     23 *   there may be some issues with the docs.  Anyway, do NOT
     24 *   enable it yet - bugs in that code may actually damage your
     25 *   hardware!  Because of this you should hardware an ESI before
     26 *   trying to use this in a LANE or MPOA environment.
     27 *
     28 * o  AAL0 is stubbed in but the actual rx/tx path isn't written yet:
     29 *	vcc_tx_aal0() needs to send or queue a SKB
     30 *	vcc_tx_unqueue_aal0() needs to attempt to send queued SKBs
     31 *	vcc_rx_aal0() needs to handle AAL0 interrupts
     32 *    This isn't too much work - I just wanted to get other things
     33 *    done first.
     34 *
     35 * o  lanai_change_qos() isn't written yet
     36 *
     37 * o  There aren't any ioctl's yet -- I'd like to eventually support
     38 *    setting loopback and LED modes that way.
     39 *
     40 * o  If the segmentation engine or DMA gets shut down we should restart
     41 *    card as per section 17.0i.  (see lanai_reset)
     42 *
     43 * o setsockopt(SO_CIRANGE) isn't done (although despite what the
     44 *   API says it isn't exactly commonly implemented)
     45 */
     46
     47/* Version history:
     48 *   v.1.00 -- 26-JUL-2003 -- PCI/DMA updates
     49 *   v.0.02 -- 11-JAN-2000 -- Endian fixes
     50 *   v.0.01 -- 30-NOV-1999 -- Initial release
     51 */
     52
     53#include <linux/module.h>
     54#include <linux/slab.h>
     55#include <linux/mm.h>
     56#include <linux/atmdev.h>
     57#include <asm/io.h>
     58#include <asm/byteorder.h>
     59#include <linux/spinlock.h>
     60#include <linux/pci.h>
     61#include <linux/dma-mapping.h>
     62#include <linux/init.h>
     63#include <linux/delay.h>
     64#include <linux/interrupt.h>
     65
     66/* -------------------- TUNABLE PARAMATERS: */
     67
     68/*
     69 * Maximum number of VCIs per card.  Setting it lower could theoretically
     70 * save some memory, but since we allocate our vcc list with get_free_pages,
     71 * it's not really likely for most architectures
     72 */
     73#define NUM_VCI			(1024)
     74
     75/*
     76 * Enable extra debugging
     77 */
     78#define DEBUG
     79/*
     80 * Debug _all_ register operations with card, except the memory test.
     81 * Also disables the timed poll to prevent extra chattiness.  This
     82 * isn't for normal use
     83 */
     84#undef DEBUG_RW
     85
     86/*
     87 * The programming guide specifies a full test of the on-board SRAM
     88 * at initialization time.  Undefine to remove this
     89 */
     90#define FULL_MEMORY_TEST
     91
     92/*
     93 * This is the number of (4 byte) service entries that we will
     94 * try to allocate at startup.  Note that we will end up with
     95 * one PAGE_SIZE's worth regardless of what this is set to
     96 */
     97#define SERVICE_ENTRIES		(1024)
     98/* TODO: make above a module load-time option */
     99
    100/*
    101 * We normally read the onboard EEPROM in order to discover our MAC
    102 * address.  Undefine to _not_ do this
    103 */
    104/* #define READ_EEPROM */ /* ***DONT ENABLE YET*** */
    105/* TODO: make above a module load-time option (also) */
    106
    107/*
    108 * Depth of TX fifo (in 128 byte units; range 2-31)
    109 * Smaller numbers are better for network latency
    110 * Larger numbers are better for PCI latency
    111 * I'm really sure where the best tradeoff is, but the BSD driver uses
    112 * 7 and it seems to work ok.
    113 */
    114#define TX_FIFO_DEPTH		(7)
    115/* TODO: make above a module load-time option */
    116
    117/*
    118 * How often (in jiffies) we will try to unstick stuck connections -
    119 * shouldn't need to happen much
    120 */
    121#define LANAI_POLL_PERIOD	(10*HZ)
    122/* TODO: make above a module load-time option */
    123
    124/*
    125 * When allocating an AAL5 receiving buffer, try to make it at least
    126 * large enough to hold this many max_sdu sized PDUs
    127 */
    128#define AAL5_RX_MULTIPLIER	(3)
    129/* TODO: make above a module load-time option */
    130
    131/*
    132 * Same for transmitting buffer
    133 */
    134#define AAL5_TX_MULTIPLIER	(3)
    135/* TODO: make above a module load-time option */
    136
    137/*
    138 * When allocating an AAL0 transmiting buffer, how many cells should fit.
    139 * Remember we'll end up with a PAGE_SIZE of them anyway, so this isn't
    140 * really critical
    141 */
    142#define AAL0_TX_MULTIPLIER	(40)
    143/* TODO: make above a module load-time option */
    144
    145/*
    146 * How large should we make the AAL0 receiving buffer.  Remember that this
    147 * is shared between all AAL0 VC's
    148 */
    149#define AAL0_RX_BUFFER_SIZE	(PAGE_SIZE)
    150/* TODO: make above a module load-time option */
    151
    152/*
    153 * Should we use Lanai's "powerdown" feature when no vcc's are bound?
    154 */
    155/* #define USE_POWERDOWN */
    156/* TODO: make above a module load-time option (also) */
    157
    158/* -------------------- DEBUGGING AIDS: */
    159
    160#define DEV_LABEL "lanai"
    161
    162#ifdef DEBUG
    163
    164#define DPRINTK(format, args...) \
    165	printk(KERN_DEBUG DEV_LABEL ": " format, ##args)
    166#define APRINTK(truth, format, args...) \
    167	do { \
    168		if (unlikely(!(truth))) \
    169			printk(KERN_ERR DEV_LABEL ": " format, ##args); \
    170	} while (0)
    171
    172#else /* !DEBUG */
    173
    174#define DPRINTK(format, args...)
    175#define APRINTK(truth, format, args...)
    176
    177#endif /* DEBUG */
    178
    179#ifdef DEBUG_RW
    180#define RWDEBUG(format, args...) \
    181	printk(KERN_DEBUG DEV_LABEL ": " format, ##args)
    182#else /* !DEBUG_RW */
    183#define RWDEBUG(format, args...)
    184#endif
    185
    186/* -------------------- DATA DEFINITIONS: */
    187
    188#define LANAI_MAPPING_SIZE	(0x40000)
    189#define LANAI_EEPROM_SIZE	(128)
    190
    191typedef int vci_t;
    192typedef void __iomem *bus_addr_t;
    193
    194/* DMA buffer in host memory for TX, RX, or service list. */
    195struct lanai_buffer {
    196	u32 *start;	/* From get_free_pages */
    197	u32 *end;	/* One past last byte */
    198	u32 *ptr;	/* Pointer to current host location */
    199	dma_addr_t dmaaddr;
    200};
    201
    202struct lanai_vcc_stats {
    203	unsigned rx_nomem;
    204	union {
    205		struct {
    206			unsigned rx_badlen;
    207			unsigned service_trash;
    208			unsigned service_stream;
    209			unsigned service_rxcrc;
    210		} aal5;
    211		struct {
    212		} aal0;
    213	} x;
    214};
    215
    216struct lanai_dev;			/* Forward declaration */
    217
    218/*
    219 * This is the card-specific per-vcc data.  Note that unlike some other
    220 * drivers there is NOT a 1-to-1 correspondance between these and
    221 * atm_vcc's - each one of these represents an actual 2-way vcc, but
    222 * an atm_vcc can be 1-way and share with a 1-way vcc in the other
    223 * direction.  To make it weirder, there can even be 0-way vccs
    224 * bound to us, waiting to do a change_qos
    225 */
    226struct lanai_vcc {
    227	bus_addr_t vbase;		/* Base of VCC's registers */
    228	struct lanai_vcc_stats stats;
    229	int nref;			/* # of atm_vcc's who reference us */
    230	vci_t vci;
    231	struct {
    232		struct lanai_buffer buf;
    233		struct atm_vcc *atmvcc;	/* atm_vcc who is receiver */
    234	} rx;
    235	struct {
    236		struct lanai_buffer buf;
    237		struct atm_vcc *atmvcc;	/* atm_vcc who is transmitter */
    238		int endptr;		/* last endptr from service entry */
    239		struct sk_buff_head backlog;
    240		void (*unqueue)(struct lanai_dev *, struct lanai_vcc *, int);
    241	} tx;
    242};
    243
    244enum lanai_type {
    245	lanai2	= PCI_DEVICE_ID_EF_ATM_LANAI2,
    246	lanaihb	= PCI_DEVICE_ID_EF_ATM_LANAIHB
    247};
    248
    249struct lanai_dev_stats {
    250	unsigned ovfl_trash;	/* # of cells dropped - buffer overflow */
    251	unsigned vci_trash;	/* # of cells dropped - closed vci */
    252	unsigned hec_err;	/* # of cells dropped - bad HEC */
    253	unsigned atm_ovfl;	/* # of cells dropped - rx fifo overflow */
    254	unsigned pcierr_parity_detect;
    255	unsigned pcierr_serr_set;
    256	unsigned pcierr_master_abort;
    257	unsigned pcierr_m_target_abort;
    258	unsigned pcierr_s_target_abort;
    259	unsigned pcierr_master_parity;
    260	unsigned service_notx;
    261	unsigned service_norx;
    262	unsigned service_rxnotaal5;
    263	unsigned dma_reenable;
    264	unsigned card_reset;
    265};
    266
    267struct lanai_dev {
    268	bus_addr_t base;
    269	struct lanai_dev_stats stats;
    270	struct lanai_buffer service;
    271	struct lanai_vcc **vccs;
    272#ifdef USE_POWERDOWN
    273	int nbound;			/* number of bound vccs */
    274#endif
    275	enum lanai_type type;
    276	vci_t num_vci;			/* Currently just NUM_VCI */
    277	u8 eeprom[LANAI_EEPROM_SIZE];
    278	u32 serialno, magicno;
    279	struct pci_dev *pci;
    280	DECLARE_BITMAP(backlog_vccs, NUM_VCI);   /* VCCs with tx backlog */
    281	DECLARE_BITMAP(transmit_ready, NUM_VCI); /* VCCs with transmit space */
    282	struct timer_list timer;
    283	int naal0;
    284	struct lanai_buffer aal0buf;	/* AAL0 RX buffers */
    285	u32 conf1, conf2;		/* CONFIG[12] registers */
    286	u32 status;			/* STATUS register */
    287	spinlock_t endtxlock;
    288	spinlock_t servicelock;
    289	struct atm_vcc *cbrvcc;
    290	int number;
    291	int board_rev;
    292/* TODO - look at race conditions with maintence of conf1/conf2 */
    293/* TODO - transmit locking: should we use _irq not _irqsave? */
    294/* TODO - organize above in some rational fashion (see <asm/cache.h>) */
    295};
    296
    297/*
    298 * Each device has two bitmaps for each VCC (baclog_vccs and transmit_ready)
    299 * This function iterates one of these, calling a given function for each
    300 * vci with their bit set
    301 */
    302static void vci_bitfield_iterate(struct lanai_dev *lanai,
    303	const unsigned long *lp,
    304	void (*func)(struct lanai_dev *,vci_t vci))
    305{
    306	vci_t vci;
    307
    308	for_each_set_bit(vci, lp, NUM_VCI)
    309		func(lanai, vci);
    310}
    311
    312/* -------------------- BUFFER  UTILITIES: */
    313
    314/*
    315 * Lanai needs DMA buffers aligned to 256 bytes of at least 1024 bytes -
    316 * usually any page allocation will do.  Just to be safe in case
    317 * PAGE_SIZE is insanely tiny, though...
    318 */
    319#define LANAI_PAGE_SIZE   ((PAGE_SIZE >= 1024) ? PAGE_SIZE : 1024)
    320
    321/*
    322 * Allocate a buffer in host RAM for service list, RX, or TX
    323 * Returns buf->start==NULL if no memory
    324 * Note that the size will be rounded up 2^n bytes, and
    325 * if we can't allocate that we'll settle for something smaller
    326 * until minbytes
    327 */
    328static void lanai_buf_allocate(struct lanai_buffer *buf,
    329	size_t bytes, size_t minbytes, struct pci_dev *pci)
    330{
    331	int size;
    332
    333	if (bytes > (128 * 1024))	/* max lanai buffer size */
    334		bytes = 128 * 1024;
    335	for (size = LANAI_PAGE_SIZE; size < bytes; size *= 2)
    336		;
    337	if (minbytes < LANAI_PAGE_SIZE)
    338		minbytes = LANAI_PAGE_SIZE;
    339	do {
    340		/*
    341		 * Technically we could use non-consistent mappings for
    342		 * everything, but the way the lanai uses DMA memory would
    343		 * make that a terrific pain.  This is much simpler.
    344		 */
    345		buf->start = dma_alloc_coherent(&pci->dev,
    346						size, &buf->dmaaddr, GFP_KERNEL);
    347		if (buf->start != NULL) {	/* Success */
    348			/* Lanai requires 256-byte alignment of DMA bufs */
    349			APRINTK((buf->dmaaddr & ~0xFFFFFF00) == 0,
    350			    "bad dmaaddr: 0x%lx\n",
    351			    (unsigned long) buf->dmaaddr);
    352			buf->ptr = buf->start;
    353			buf->end = (u32 *)
    354			    (&((unsigned char *) buf->start)[size]);
    355			memset(buf->start, 0, size);
    356			break;
    357		}
    358		size /= 2;
    359	} while (size >= minbytes);
    360}
    361
    362/* size of buffer in bytes */
    363static inline size_t lanai_buf_size(const struct lanai_buffer *buf)
    364{
    365	return ((unsigned long) buf->end) - ((unsigned long) buf->start);
    366}
    367
    368static void lanai_buf_deallocate(struct lanai_buffer *buf,
    369	struct pci_dev *pci)
    370{
    371	if (buf->start != NULL) {
    372		dma_free_coherent(&pci->dev, lanai_buf_size(buf),
    373				  buf->start, buf->dmaaddr);
    374		buf->start = buf->end = buf->ptr = NULL;
    375	}
    376}
    377
    378/* size of buffer as "card order" (0=1k .. 7=128k) */
    379static int lanai_buf_size_cardorder(const struct lanai_buffer *buf)
    380{
    381	int order = get_order(lanai_buf_size(buf)) + (PAGE_SHIFT - 10);
    382
    383	/* This can only happen if PAGE_SIZE is gigantic, but just in case */
    384	if (order > 7)
    385		order = 7;
    386	return order;
    387}
    388
    389/* -------------------- PORT I/O UTILITIES: */
    390
    391/* Registers (and their bit-fields) */
    392enum lanai_register {
    393	Reset_Reg		= 0x00,	/* Reset; read for chip type; bits: */
    394#define   RESET_GET_BOARD_REV(x)    (((x)>> 0)&0x03)	/* Board revision */
    395#define   RESET_GET_BOARD_ID(x)	    (((x)>> 2)&0x03)	/* Board ID */
    396#define     BOARD_ID_LANAI256		(0)	/* 25.6M adapter card */
    397	Endian_Reg		= 0x04,	/* Endian setting */
    398	IntStatus_Reg		= 0x08,	/* Interrupt status */
    399	IntStatusMasked_Reg	= 0x0C,	/* Interrupt status (masked) */
    400	IntAck_Reg		= 0x10,	/* Interrupt acknowledge */
    401	IntAckMasked_Reg	= 0x14,	/* Interrupt acknowledge (masked) */
    402	IntStatusSet_Reg	= 0x18,	/* Get status + enable/disable */
    403	IntStatusSetMasked_Reg	= 0x1C,	/* Get status + en/di (masked) */
    404	IntControlEna_Reg	= 0x20,	/* Interrupt control enable */
    405	IntControlDis_Reg	= 0x24,	/* Interrupt control disable */
    406	Status_Reg		= 0x28,	/* Status */
    407#define   STATUS_PROMDATA	 (0x00000001)	/* PROM_DATA pin */
    408#define   STATUS_WAITING	 (0x00000002)	/* Interrupt being delayed */
    409#define	  STATUS_SOOL		 (0x00000004)	/* SOOL alarm */
    410#define   STATUS_LOCD		 (0x00000008)	/* LOCD alarm */
    411#define	  STATUS_LED		 (0x00000010)	/* LED (HAPPI) output */
    412#define   STATUS_GPIN		 (0x00000020)	/* GPIN pin */
    413#define   STATUS_BUTTBUSY	 (0x00000040)	/* Butt register is pending */
    414	Config1_Reg		= 0x2C,	/* Config word 1; bits: */
    415#define   CONFIG1_PROMDATA	 (0x00000001)	/* PROM_DATA pin */
    416#define   CONFIG1_PROMCLK	 (0x00000002)	/* PROM_CLK pin */
    417#define   CONFIG1_SET_READMODE(x) ((x)*0x004)	/* PCI BM reads; values: */
    418#define     READMODE_PLAIN	    (0)		/*   Plain memory read */
    419#define     READMODE_LINE	    (2)		/*   Memory read line */
    420#define     READMODE_MULTIPLE	    (3)		/*   Memory read multiple */
    421#define   CONFIG1_DMA_ENABLE	 (0x00000010)	/* Turn on DMA */
    422#define   CONFIG1_POWERDOWN	 (0x00000020)	/* Turn off clocks */
    423#define   CONFIG1_SET_LOOPMODE(x) ((x)*0x080)	/* Clock&loop mode; values: */
    424#define     LOOPMODE_NORMAL	    (0)		/*   Normal - no loop */
    425#define     LOOPMODE_TIME	    (1)
    426#define     LOOPMODE_DIAG	    (2)
    427#define     LOOPMODE_LINE	    (3)
    428#define   CONFIG1_MASK_LOOPMODE  (0x00000180)
    429#define   CONFIG1_SET_LEDMODE(x) ((x)*0x0200)	/* Mode of LED; values: */
    430#define     LEDMODE_NOT_SOOL	    (0)		/*   !SOOL */
    431#define	    LEDMODE_OFF		    (1)		/*   0     */
    432#define	    LEDMODE_ON		    (2)		/*   1     */
    433#define	    LEDMODE_NOT_LOCD	    (3)		/*   !LOCD */
    434#define	    LEDMORE_GPIN	    (4)		/*   GPIN  */
    435#define     LEDMODE_NOT_GPIN	    (7)		/*   !GPIN */
    436#define   CONFIG1_MASK_LEDMODE	 (0x00000E00)
    437#define   CONFIG1_GPOUT1	 (0x00001000)	/* Toggle for reset */
    438#define   CONFIG1_GPOUT2	 (0x00002000)	/* Loopback PHY */
    439#define   CONFIG1_GPOUT3	 (0x00004000)	/* Loopback lanai */
    440	Config2_Reg		= 0x30,	/* Config word 2; bits: */
    441#define   CONFIG2_HOWMANY	 (0x00000001)	/* >512 VCIs? */
    442#define   CONFIG2_PTI7_MODE	 (0x00000002)	/* Make PTI=7 RM, not OAM */
    443#define   CONFIG2_VPI_CHK_DIS	 (0x00000004)	/* Ignore RX VPI value */
    444#define   CONFIG2_HEC_DROP	 (0x00000008)	/* Drop cells w/ HEC errors */
    445#define   CONFIG2_VCI0_NORMAL	 (0x00000010)	/* Treat VCI=0 normally */
    446#define   CONFIG2_CBR_ENABLE	 (0x00000020)	/* Deal with CBR traffic */
    447#define   CONFIG2_TRASH_ALL	 (0x00000040)	/* Trashing incoming cells */
    448#define   CONFIG2_TX_DISABLE	 (0x00000080)	/* Trashing outgoing cells */
    449#define   CONFIG2_SET_TRASH	 (0x00000100)	/* Turn trashing on */
    450	Statistics_Reg		= 0x34,	/* Statistics; bits: */
    451#define   STATS_GET_FIFO_OVFL(x)    (((x)>> 0)&0xFF)	/* FIFO overflowed */
    452#define   STATS_GET_HEC_ERR(x)      (((x)>> 8)&0xFF)	/* HEC was bad */
    453#define   STATS_GET_BAD_VCI(x)      (((x)>>16)&0xFF)	/* VCI not open */
    454#define   STATS_GET_BUF_OVFL(x)     (((x)>>24)&0xFF)	/* VCC buffer full */
    455	ServiceStuff_Reg	= 0x38,	/* Service stuff; bits: */
    456#define   SSTUFF_SET_SIZE(x) ((x)*0x20000000)	/* size of service buffer */
    457#define   SSTUFF_SET_ADDR(x)	    ((x)>>8)	/* set address of buffer */
    458	ServWrite_Reg		= 0x3C,	/* ServWrite Pointer */
    459	ServRead_Reg		= 0x40,	/* ServRead Pointer */
    460	TxDepth_Reg		= 0x44,	/* FIFO Transmit Depth */
    461	Butt_Reg		= 0x48,	/* Butt register */
    462	CBR_ICG_Reg		= 0x50,
    463	CBR_PTR_Reg		= 0x54,
    464	PingCount_Reg		= 0x58,	/* Ping count */
    465	DMA_Addr_Reg		= 0x5C	/* DMA address */
    466};
    467
    468static inline bus_addr_t reg_addr(const struct lanai_dev *lanai,
    469	enum lanai_register reg)
    470{
    471	return lanai->base + reg;
    472}
    473
    474static inline u32 reg_read(const struct lanai_dev *lanai,
    475	enum lanai_register reg)
    476{
    477	u32 t;
    478	t = readl(reg_addr(lanai, reg));
    479	RWDEBUG("R [0x%08X] 0x%02X = 0x%08X\n", (unsigned int) lanai->base,
    480	    (int) reg, t);
    481	return t;
    482}
    483
    484static inline void reg_write(const struct lanai_dev *lanai, u32 val,
    485	enum lanai_register reg)
    486{
    487	RWDEBUG("W [0x%08X] 0x%02X < 0x%08X\n", (unsigned int) lanai->base,
    488	    (int) reg, val);
    489	writel(val, reg_addr(lanai, reg));
    490}
    491
    492static inline void conf1_write(const struct lanai_dev *lanai)
    493{
    494	reg_write(lanai, lanai->conf1, Config1_Reg);
    495}
    496
    497static inline void conf2_write(const struct lanai_dev *lanai)
    498{
    499	reg_write(lanai, lanai->conf2, Config2_Reg);
    500}
    501
    502/* Same as conf2_write(), but defers I/O if we're powered down */
    503static inline void conf2_write_if_powerup(const struct lanai_dev *lanai)
    504{
    505#ifdef USE_POWERDOWN
    506	if (unlikely((lanai->conf1 & CONFIG1_POWERDOWN) != 0))
    507		return;
    508#endif /* USE_POWERDOWN */
    509	conf2_write(lanai);
    510}
    511
    512static inline void reset_board(const struct lanai_dev *lanai)
    513{
    514	DPRINTK("about to reset board\n");
    515	reg_write(lanai, 0, Reset_Reg);
    516	/*
    517	 * If we don't delay a little while here then we can end up
    518	 * leaving the card in a VERY weird state and lock up the
    519	 * PCI bus.  This isn't documented anywhere but I've convinced
    520	 * myself after a lot of painful experimentation
    521	 */
    522	udelay(5);
    523}
    524
    525/* -------------------- CARD SRAM UTILITIES: */
    526
    527/* The SRAM is mapped into normal PCI memory space - the only catch is
    528 * that it is only 16-bits wide but must be accessed as 32-bit.  The
    529 * 16 high bits will be zero.  We don't hide this, since they get
    530 * programmed mostly like discrete registers anyway
    531 */
    532#define SRAM_START (0x20000)
    533#define SRAM_BYTES (0x20000)	/* Again, half don't really exist */
    534
    535static inline bus_addr_t sram_addr(const struct lanai_dev *lanai, int offset)
    536{
    537	return lanai->base + SRAM_START + offset;
    538}
    539
    540static inline u32 sram_read(const struct lanai_dev *lanai, int offset)
    541{
    542	return readl(sram_addr(lanai, offset));
    543}
    544
    545static inline void sram_write(const struct lanai_dev *lanai,
    546	u32 val, int offset)
    547{
    548	writel(val, sram_addr(lanai, offset));
    549}
    550
    551static int sram_test_word(const struct lanai_dev *lanai, int offset,
    552			  u32 pattern)
    553{
    554	u32 readback;
    555	sram_write(lanai, pattern, offset);
    556	readback = sram_read(lanai, offset);
    557	if (likely(readback == pattern))
    558		return 0;
    559	printk(KERN_ERR DEV_LABEL
    560	    "(itf %d): SRAM word at %d bad: wrote 0x%X, read 0x%X\n",
    561	    lanai->number, offset,
    562	    (unsigned int) pattern, (unsigned int) readback);
    563	return -EIO;
    564}
    565
    566static int sram_test_pass(const struct lanai_dev *lanai, u32 pattern)
    567{
    568	int offset, result = 0;
    569	for (offset = 0; offset < SRAM_BYTES && result == 0; offset += 4)
    570		result = sram_test_word(lanai, offset, pattern);
    571	return result;
    572}
    573
    574static int sram_test_and_clear(const struct lanai_dev *lanai)
    575{
    576#ifdef FULL_MEMORY_TEST
    577	int result;
    578	DPRINTK("testing SRAM\n");
    579	if ((result = sram_test_pass(lanai, 0x5555)) != 0)
    580		return result;
    581	if ((result = sram_test_pass(lanai, 0xAAAA)) != 0)
    582		return result;
    583#endif
    584	DPRINTK("clearing SRAM\n");
    585	return sram_test_pass(lanai, 0x0000);
    586}
    587
    588/* -------------------- CARD-BASED VCC TABLE UTILITIES: */
    589
    590/* vcc table */
    591enum lanai_vcc_offset {
    592	vcc_rxaddr1		= 0x00,	/* Location1, plus bits: */
    593#define   RXADDR1_SET_SIZE(x) ((x)*0x0000100)	/* size of RX buffer */
    594#define   RXADDR1_SET_RMMODE(x) ((x)*0x00800)	/* RM cell action; values: */
    595#define     RMMODE_TRASH	  (0)		/*   discard */
    596#define     RMMODE_PRESERVE	  (1)		/*   input as AAL0 */
    597#define     RMMODE_PIPE		  (2)		/*   pipe to coscheduler */
    598#define     RMMODE_PIPEALL	  (3)		/*   pipe non-RM too */
    599#define   RXADDR1_OAM_PRESERVE	 (0x00002000)	/* Input OAM cells as AAL0 */
    600#define   RXADDR1_SET_MODE(x) ((x)*0x0004000)	/* Reassembly mode */
    601#define     RXMODE_TRASH	  (0)		/*   discard */
    602#define     RXMODE_AAL0		  (1)		/*   non-AAL5 mode */
    603#define     RXMODE_AAL5		  (2)		/*   AAL5, intr. each PDU */
    604#define     RXMODE_AAL5_STREAM	  (3)		/*   AAL5 w/o per-PDU intr */
    605	vcc_rxaddr2		= 0x04,	/* Location2 */
    606	vcc_rxcrc1		= 0x08,	/* RX CRC claculation space */
    607	vcc_rxcrc2		= 0x0C,
    608	vcc_rxwriteptr		= 0x10, /* RX writeptr, plus bits: */
    609#define   RXWRITEPTR_LASTEFCI	 (0x00002000)	/* Last PDU had EFCI bit */
    610#define   RXWRITEPTR_DROPPING	 (0x00004000)	/* Had error, dropping */
    611#define   RXWRITEPTR_TRASHING	 (0x00008000)	/* Trashing */
    612	vcc_rxbufstart		= 0x14,	/* RX bufstart, plus bits: */
    613#define   RXBUFSTART_CLP	 (0x00004000)
    614#define   RXBUFSTART_CI		 (0x00008000)
    615	vcc_rxreadptr		= 0x18,	/* RX readptr */
    616	vcc_txicg		= 0x1C, /* TX ICG */
    617	vcc_txaddr1		= 0x20,	/* Location1, plus bits: */
    618#define   TXADDR1_SET_SIZE(x) ((x)*0x0000100)	/* size of TX buffer */
    619#define   TXADDR1_ABR		 (0x00008000)	/* use ABR (doesn't work) */
    620	vcc_txaddr2		= 0x24,	/* Location2 */
    621	vcc_txcrc1		= 0x28,	/* TX CRC claculation space */
    622	vcc_txcrc2		= 0x2C,
    623	vcc_txreadptr		= 0x30, /* TX Readptr, plus bits: */
    624#define   TXREADPTR_GET_PTR(x) ((x)&0x01FFF)
    625#define   TXREADPTR_MASK_DELTA	(0x0000E000)	/* ? */
    626	vcc_txendptr		= 0x34, /* TX Endptr, plus bits: */
    627#define   TXENDPTR_CLP		(0x00002000)
    628#define   TXENDPTR_MASK_PDUMODE	(0x0000C000)	/* PDU mode; values: */
    629#define     PDUMODE_AAL0	 (0*0x04000)
    630#define     PDUMODE_AAL5	 (2*0x04000)
    631#define     PDUMODE_AAL5STREAM	 (3*0x04000)
    632	vcc_txwriteptr		= 0x38,	/* TX Writeptr */
    633#define   TXWRITEPTR_GET_PTR(x) ((x)&0x1FFF)
    634	vcc_txcbr_next		= 0x3C	/* # of next CBR VCI in ring */
    635#define   TXCBR_NEXT_BOZO	(0x00008000)	/* "bozo bit" */
    636};
    637
    638#define CARDVCC_SIZE	(0x40)
    639
    640static inline bus_addr_t cardvcc_addr(const struct lanai_dev *lanai,
    641	vci_t vci)
    642{
    643	return sram_addr(lanai, vci * CARDVCC_SIZE);
    644}
    645
    646static inline u32 cardvcc_read(const struct lanai_vcc *lvcc,
    647	enum lanai_vcc_offset offset)
    648{
    649	u32 val;
    650	APRINTK(lvcc->vbase != NULL, "cardvcc_read: unbound vcc!\n");
    651	val= readl(lvcc->vbase + offset);
    652	RWDEBUG("VR vci=%04d 0x%02X = 0x%08X\n",
    653	    lvcc->vci, (int) offset, val);
    654	return val;
    655}
    656
    657static inline void cardvcc_write(const struct lanai_vcc *lvcc,
    658	u32 val, enum lanai_vcc_offset offset)
    659{
    660	APRINTK(lvcc->vbase != NULL, "cardvcc_write: unbound vcc!\n");
    661	APRINTK((val & ~0xFFFF) == 0,
    662	    "cardvcc_write: bad val 0x%X (vci=%d, addr=0x%02X)\n",
    663	    (unsigned int) val, lvcc->vci, (unsigned int) offset);
    664	RWDEBUG("VW vci=%04d 0x%02X > 0x%08X\n",
    665	    lvcc->vci, (unsigned int) offset, (unsigned int) val);
    666	writel(val, lvcc->vbase + offset);
    667}
    668
    669/* -------------------- COMPUTE SIZE OF AN AAL5 PDU: */
    670
    671/* How many bytes will an AAL5 PDU take to transmit - remember that:
    672 *   o  we need to add 8 bytes for length, CPI, UU, and CRC
    673 *   o  we need to round up to 48 bytes for cells
    674 */
    675static inline int aal5_size(int size)
    676{
    677	int cells = (size + 8 + 47) / 48;
    678	return cells * 48;
    679}
    680
    681/* -------------------- FREE AN ATM SKB: */
    682
    683static inline void lanai_free_skb(struct atm_vcc *atmvcc, struct sk_buff *skb)
    684{
    685	if (atmvcc->pop != NULL)
    686		atmvcc->pop(atmvcc, skb);
    687	else
    688		dev_kfree_skb_any(skb);
    689}
    690
    691/* -------------------- TURN VCCS ON AND OFF: */
    692
    693static void host_vcc_start_rx(const struct lanai_vcc *lvcc)
    694{
    695	u32 addr1;
    696	if (lvcc->rx.atmvcc->qos.aal == ATM_AAL5) {
    697		dma_addr_t dmaaddr = lvcc->rx.buf.dmaaddr;
    698		cardvcc_write(lvcc, 0xFFFF, vcc_rxcrc1);
    699		cardvcc_write(lvcc, 0xFFFF, vcc_rxcrc2);
    700		cardvcc_write(lvcc, 0, vcc_rxwriteptr);
    701		cardvcc_write(lvcc, 0, vcc_rxbufstart);
    702		cardvcc_write(lvcc, 0, vcc_rxreadptr);
    703		cardvcc_write(lvcc, (dmaaddr >> 16) & 0xFFFF, vcc_rxaddr2);
    704		addr1 = ((dmaaddr >> 8) & 0xFF) |
    705		    RXADDR1_SET_SIZE(lanai_buf_size_cardorder(&lvcc->rx.buf))|
    706		    RXADDR1_SET_RMMODE(RMMODE_TRASH) |	/* ??? */
    707		 /* RXADDR1_OAM_PRESERVE |	--- no OAM support yet */
    708		    RXADDR1_SET_MODE(RXMODE_AAL5);
    709	} else
    710		addr1 = RXADDR1_SET_RMMODE(RMMODE_PRESERVE) | /* ??? */
    711		    RXADDR1_OAM_PRESERVE |		      /* ??? */
    712		    RXADDR1_SET_MODE(RXMODE_AAL0);
    713	/* This one must be last! */
    714	cardvcc_write(lvcc, addr1, vcc_rxaddr1);
    715}
    716
    717static void host_vcc_start_tx(const struct lanai_vcc *lvcc)
    718{
    719	dma_addr_t dmaaddr = lvcc->tx.buf.dmaaddr;
    720	cardvcc_write(lvcc, 0, vcc_txicg);
    721	cardvcc_write(lvcc, 0xFFFF, vcc_txcrc1);
    722	cardvcc_write(lvcc, 0xFFFF, vcc_txcrc2);
    723	cardvcc_write(lvcc, 0, vcc_txreadptr);
    724	cardvcc_write(lvcc, 0, vcc_txendptr);
    725	cardvcc_write(lvcc, 0, vcc_txwriteptr);
    726	cardvcc_write(lvcc,
    727		(lvcc->tx.atmvcc->qos.txtp.traffic_class == ATM_CBR) ?
    728		TXCBR_NEXT_BOZO | lvcc->vci : 0, vcc_txcbr_next);
    729	cardvcc_write(lvcc, (dmaaddr >> 16) & 0xFFFF, vcc_txaddr2);
    730	cardvcc_write(lvcc,
    731	    ((dmaaddr >> 8) & 0xFF) |
    732	    TXADDR1_SET_SIZE(lanai_buf_size_cardorder(&lvcc->tx.buf)),
    733	    vcc_txaddr1);
    734}
    735
    736/* Shutdown receiving on card */
    737static void lanai_shutdown_rx_vci(const struct lanai_vcc *lvcc)
    738{
    739	if (lvcc->vbase == NULL)	/* We were never bound to a VCI */
    740		return;
    741	/* 15.1.1 - set to trashing, wait one cell time (15us) */
    742	cardvcc_write(lvcc,
    743	    RXADDR1_SET_RMMODE(RMMODE_TRASH) |
    744	    RXADDR1_SET_MODE(RXMODE_TRASH), vcc_rxaddr1);
    745	udelay(15);
    746	/* 15.1.2 - clear rest of entries */
    747	cardvcc_write(lvcc, 0, vcc_rxaddr2);
    748	cardvcc_write(lvcc, 0, vcc_rxcrc1);
    749	cardvcc_write(lvcc, 0, vcc_rxcrc2);
    750	cardvcc_write(lvcc, 0, vcc_rxwriteptr);
    751	cardvcc_write(lvcc, 0, vcc_rxbufstart);
    752	cardvcc_write(lvcc, 0, vcc_rxreadptr);
    753}
    754
    755/* Shutdown transmitting on card.
    756 * Unfortunately the lanai needs us to wait until all the data
    757 * drains out of the buffer before we can dealloc it, so this
    758 * can take awhile -- up to 370ms for a full 128KB buffer
    759 * assuming everone else is quiet.  In theory the time is
    760 * boundless if there's a CBR VCC holding things up.
    761 */
    762static void lanai_shutdown_tx_vci(struct lanai_dev *lanai,
    763	struct lanai_vcc *lvcc)
    764{
    765	struct sk_buff *skb;
    766	unsigned long flags, timeout;
    767	int read, write, lastread = -1;
    768
    769	if (lvcc->vbase == NULL)	/* We were never bound to a VCI */
    770		return;
    771	/* 15.2.1 - wait for queue to drain */
    772	while ((skb = skb_dequeue(&lvcc->tx.backlog)) != NULL)
    773		lanai_free_skb(lvcc->tx.atmvcc, skb);
    774	read_lock_irqsave(&vcc_sklist_lock, flags);
    775	__clear_bit(lvcc->vci, lanai->backlog_vccs);
    776	read_unlock_irqrestore(&vcc_sklist_lock, flags);
    777	/*
    778	 * We need to wait for the VCC to drain but don't wait forever.  We
    779	 * give each 1K of buffer size 1/128th of a second to clear out.
    780	 * TODO: maybe disable CBR if we're about to timeout?
    781	 */
    782	timeout = jiffies +
    783	    (((lanai_buf_size(&lvcc->tx.buf) / 1024) * HZ) >> 7);
    784	write = TXWRITEPTR_GET_PTR(cardvcc_read(lvcc, vcc_txwriteptr));
    785	for (;;) {
    786		read = TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr));
    787		if (read == write &&	   /* Is TX buffer empty? */
    788		    (lvcc->tx.atmvcc->qos.txtp.traffic_class != ATM_CBR ||
    789		    (cardvcc_read(lvcc, vcc_txcbr_next) &
    790		    TXCBR_NEXT_BOZO) == 0))
    791			break;
    792		if (read != lastread) {	   /* Has there been any progress? */
    793			lastread = read;
    794			timeout += HZ / 10;
    795		}
    796		if (unlikely(time_after(jiffies, timeout))) {
    797			printk(KERN_ERR DEV_LABEL "(itf %d): Timed out on "
    798			    "backlog closing vci %d\n",
    799			    lvcc->tx.atmvcc->dev->number, lvcc->vci);
    800			DPRINTK("read, write = %d, %d\n", read, write);
    801			break;
    802		}
    803		msleep(40);
    804	}
    805	/* 15.2.2 - clear out all tx registers */
    806	cardvcc_write(lvcc, 0, vcc_txreadptr);
    807	cardvcc_write(lvcc, 0, vcc_txwriteptr);
    808	cardvcc_write(lvcc, 0, vcc_txendptr);
    809	cardvcc_write(lvcc, 0, vcc_txcrc1);
    810	cardvcc_write(lvcc, 0, vcc_txcrc2);
    811	cardvcc_write(lvcc, 0, vcc_txaddr2);
    812	cardvcc_write(lvcc, 0, vcc_txaddr1);
    813}
    814
    815/* -------------------- MANAGING AAL0 RX BUFFER: */
    816
    817static inline int aal0_buffer_allocate(struct lanai_dev *lanai)
    818{
    819	DPRINTK("aal0_buffer_allocate: allocating AAL0 RX buffer\n");
    820	lanai_buf_allocate(&lanai->aal0buf, AAL0_RX_BUFFER_SIZE, 80,
    821			   lanai->pci);
    822	return (lanai->aal0buf.start == NULL) ? -ENOMEM : 0;
    823}
    824
    825static inline void aal0_buffer_free(struct lanai_dev *lanai)
    826{
    827	DPRINTK("aal0_buffer_allocate: freeing AAL0 RX buffer\n");
    828	lanai_buf_deallocate(&lanai->aal0buf, lanai->pci);
    829}
    830
    831/* -------------------- EEPROM UTILITIES: */
    832
    833/* Offsets of data in the EEPROM */
    834#define EEPROM_COPYRIGHT	(0)
    835#define EEPROM_COPYRIGHT_LEN	(44)
    836#define EEPROM_CHECKSUM		(62)
    837#define EEPROM_CHECKSUM_REV	(63)
    838#define EEPROM_MAC		(64)
    839#define EEPROM_MAC_REV		(70)
    840#define EEPROM_SERIAL		(112)
    841#define EEPROM_SERIAL_REV	(116)
    842#define EEPROM_MAGIC		(120)
    843#define EEPROM_MAGIC_REV	(124)
    844
    845#define EEPROM_MAGIC_VALUE	(0x5AB478D2)
    846
    847#ifndef READ_EEPROM
    848
    849/* Stub functions to use if EEPROM reading is disabled */
    850static int eeprom_read(struct lanai_dev *lanai)
    851{
    852	printk(KERN_INFO DEV_LABEL "(itf %d): *NOT* reading EEPROM\n",
    853	    lanai->number);
    854	memset(&lanai->eeprom[EEPROM_MAC], 0, 6);
    855	return 0;
    856}
    857
    858static int eeprom_validate(struct lanai_dev *lanai)
    859{
    860	lanai->serialno = 0;
    861	lanai->magicno = EEPROM_MAGIC_VALUE;
    862	return 0;
    863}
    864
    865#else /* READ_EEPROM */
    866
    867static int eeprom_read(struct lanai_dev *lanai)
    868{
    869	int i, address;
    870	u8 data;
    871	u32 tmp;
    872#define set_config1(x)   do { lanai->conf1 = x; conf1_write(lanai); \
    873			    } while (0)
    874#define clock_h()	 set_config1(lanai->conf1 | CONFIG1_PROMCLK)
    875#define clock_l()	 set_config1(lanai->conf1 &~ CONFIG1_PROMCLK)
    876#define data_h()	 set_config1(lanai->conf1 | CONFIG1_PROMDATA)
    877#define data_l()	 set_config1(lanai->conf1 &~ CONFIG1_PROMDATA)
    878#define pre_read()	 do { data_h(); clock_h(); udelay(5); } while (0)
    879#define read_pin()	 (reg_read(lanai, Status_Reg) & STATUS_PROMDATA)
    880#define send_stop()	 do { data_l(); udelay(5); clock_h(); udelay(5); \
    881			      data_h(); udelay(5); } while (0)
    882	/* start with both clock and data high */
    883	data_h(); clock_h(); udelay(5);
    884	for (address = 0; address < LANAI_EEPROM_SIZE; address++) {
    885		data = (address << 1) | 1;	/* Command=read + address */
    886		/* send start bit */
    887		data_l(); udelay(5);
    888		clock_l(); udelay(5);
    889		for (i = 128; i != 0; i >>= 1) {   /* write command out */
    890			tmp = (lanai->conf1 & ~CONFIG1_PROMDATA) |
    891			    ((data & i) ? CONFIG1_PROMDATA : 0);
    892			if (lanai->conf1 != tmp) {
    893				set_config1(tmp);
    894				udelay(5);	/* Let new data settle */
    895			}
    896			clock_h(); udelay(5); clock_l(); udelay(5);
    897		}
    898		/* look for ack */
    899		data_h(); clock_h(); udelay(5);
    900		if (read_pin() != 0)
    901			goto error;	/* No ack seen */
    902		clock_l(); udelay(5);
    903		/* read back result */
    904		for (data = 0, i = 7; i >= 0; i--) {
    905			data_h(); clock_h(); udelay(5);
    906			data = (data << 1) | !!read_pin();
    907			clock_l(); udelay(5);
    908		}
    909		/* look again for ack */
    910		data_h(); clock_h(); udelay(5);
    911		if (read_pin() == 0)
    912			goto error;	/* Spurious ack */
    913		clock_l(); udelay(5);
    914		send_stop();
    915		lanai->eeprom[address] = data;
    916		DPRINTK("EEPROM 0x%04X %02X\n",
    917		    (unsigned int) address, (unsigned int) data);
    918	}
    919	return 0;
    920    error:
    921	clock_l(); udelay(5);		/* finish read */
    922	send_stop();
    923	printk(KERN_ERR DEV_LABEL "(itf %d): error reading EEPROM byte %d\n",
    924	    lanai->number, address);
    925	return -EIO;
    926#undef set_config1
    927#undef clock_h
    928#undef clock_l
    929#undef data_h
    930#undef data_l
    931#undef pre_read
    932#undef read_pin
    933#undef send_stop
    934}
    935
    936/* read a big-endian 4-byte value out of eeprom */
    937static inline u32 eeprom_be4(const struct lanai_dev *lanai, int address)
    938{
    939	return be32_to_cpup((const u32 *) &lanai->eeprom[address]);
    940}
    941
    942/* Checksum/validate EEPROM contents */
    943static int eeprom_validate(struct lanai_dev *lanai)
    944{
    945	int i, s;
    946	u32 v;
    947	const u8 *e = lanai->eeprom;
    948#ifdef DEBUG
    949	/* First, see if we can get an ASCIIZ string out of the copyright */
    950	for (i = EEPROM_COPYRIGHT;
    951	    i < (EEPROM_COPYRIGHT + EEPROM_COPYRIGHT_LEN); i++)
    952		if (e[i] < 0x20 || e[i] > 0x7E)
    953			break;
    954	if ( i != EEPROM_COPYRIGHT &&
    955	    i != EEPROM_COPYRIGHT + EEPROM_COPYRIGHT_LEN && e[i] == '\0')
    956		DPRINTK("eeprom: copyright = \"%s\"\n",
    957		    (char *) &e[EEPROM_COPYRIGHT]);
    958	else
    959		DPRINTK("eeprom: copyright not found\n");
    960#endif
    961	/* Validate checksum */
    962	for (i = s = 0; i < EEPROM_CHECKSUM; i++)
    963		s += e[i];
    964	s &= 0xFF;
    965	if (s != e[EEPROM_CHECKSUM]) {
    966		printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM checksum bad "
    967		    "(wanted 0x%02X, got 0x%02X)\n", lanai->number,
    968		    (unsigned int) s, (unsigned int) e[EEPROM_CHECKSUM]);
    969		return -EIO;
    970	}
    971	s ^= 0xFF;
    972	if (s != e[EEPROM_CHECKSUM_REV]) {
    973		printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM inverse checksum "
    974		    "bad (wanted 0x%02X, got 0x%02X)\n", lanai->number,
    975		    (unsigned int) s, (unsigned int) e[EEPROM_CHECKSUM_REV]);
    976		return -EIO;
    977	}
    978	/* Verify MAC address */
    979	for (i = 0; i < 6; i++)
    980		if ((e[EEPROM_MAC + i] ^ e[EEPROM_MAC_REV + i]) != 0xFF) {
    981			printk(KERN_ERR DEV_LABEL
    982			    "(itf %d) : EEPROM MAC addresses don't match "
    983			    "(0x%02X, inverse 0x%02X)\n", lanai->number,
    984			    (unsigned int) e[EEPROM_MAC + i],
    985			    (unsigned int) e[EEPROM_MAC_REV + i]);
    986			return -EIO;
    987		}
    988	DPRINTK("eeprom: MAC address = %pM\n", &e[EEPROM_MAC]);
    989	/* Verify serial number */
    990	lanai->serialno = eeprom_be4(lanai, EEPROM_SERIAL);
    991	v = eeprom_be4(lanai, EEPROM_SERIAL_REV);
    992	if ((lanai->serialno ^ v) != 0xFFFFFFFF) {
    993		printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM serial numbers "
    994		    "don't match (0x%08X, inverse 0x%08X)\n", lanai->number,
    995		    (unsigned int) lanai->serialno, (unsigned int) v);
    996		return -EIO;
    997	}
    998	DPRINTK("eeprom: Serial number = %d\n", (unsigned int) lanai->serialno);
    999	/* Verify magic number */
   1000	lanai->magicno = eeprom_be4(lanai, EEPROM_MAGIC);
   1001	v = eeprom_be4(lanai, EEPROM_MAGIC_REV);
   1002	if ((lanai->magicno ^ v) != 0xFFFFFFFF) {
   1003		printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM magic numbers "
   1004		    "don't match (0x%08X, inverse 0x%08X)\n", lanai->number,
   1005		    lanai->magicno, v);
   1006		return -EIO;
   1007	}
   1008	DPRINTK("eeprom: Magic number = 0x%08X\n", lanai->magicno);
   1009	if (lanai->magicno != EEPROM_MAGIC_VALUE)
   1010		printk(KERN_WARNING DEV_LABEL "(itf %d): warning - EEPROM "
   1011		    "magic not what expected (got 0x%08X, not 0x%08X)\n",
   1012		    lanai->number, (unsigned int) lanai->magicno,
   1013		    (unsigned int) EEPROM_MAGIC_VALUE);
   1014	return 0;
   1015}
   1016
   1017#endif /* READ_EEPROM */
   1018
   1019static inline const u8 *eeprom_mac(const struct lanai_dev *lanai)
   1020{
   1021	return &lanai->eeprom[EEPROM_MAC];
   1022}
   1023
   1024/* -------------------- INTERRUPT HANDLING UTILITIES: */
   1025
   1026/* Interrupt types */
   1027#define INT_STATS	(0x00000002)	/* Statistics counter overflow */
   1028#define INT_SOOL	(0x00000004)	/* SOOL changed state */
   1029#define INT_LOCD	(0x00000008)	/* LOCD changed state */
   1030#define INT_LED		(0x00000010)	/* LED (HAPPI) changed state */
   1031#define INT_GPIN	(0x00000020)	/* GPIN changed state */
   1032#define INT_PING	(0x00000040)	/* PING_COUNT fulfilled */
   1033#define INT_WAKE	(0x00000080)	/* Lanai wants bus */
   1034#define INT_CBR0	(0x00000100)	/* CBR sched hit VCI 0 */
   1035#define INT_LOCK	(0x00000200)	/* Service list overflow */
   1036#define INT_MISMATCH	(0x00000400)	/* TX magic list mismatch */
   1037#define INT_AAL0_STR	(0x00000800)	/* Non-AAL5 buffer half filled */
   1038#define INT_AAL0	(0x00001000)	/* Non-AAL5 data available */
   1039#define INT_SERVICE	(0x00002000)	/* Service list entries available */
   1040#define INT_TABORTSENT	(0x00004000)	/* Target abort sent by lanai */
   1041#define INT_TABORTBM	(0x00008000)	/* Abort rcv'd as bus master */
   1042#define INT_TIMEOUTBM	(0x00010000)	/* No response to bus master */
   1043#define INT_PCIPARITY	(0x00020000)	/* Parity error on PCI */
   1044
   1045/* Sets of the above */
   1046#define INT_ALL		(0x0003FFFE)	/* All interrupts */
   1047#define INT_STATUS	(0x0000003C)	/* Some status pin changed */
   1048#define INT_DMASHUT	(0x00038000)	/* DMA engine got shut down */
   1049#define INT_SEGSHUT	(0x00000700)	/* Segmentation got shut down */
   1050
   1051static inline u32 intr_pending(const struct lanai_dev *lanai)
   1052{
   1053	return reg_read(lanai, IntStatusMasked_Reg);
   1054}
   1055
   1056static inline void intr_enable(const struct lanai_dev *lanai, u32 i)
   1057{
   1058	reg_write(lanai, i, IntControlEna_Reg);
   1059}
   1060
   1061static inline void intr_disable(const struct lanai_dev *lanai, u32 i)
   1062{
   1063	reg_write(lanai, i, IntControlDis_Reg);
   1064}
   1065
   1066/* -------------------- CARD/PCI STATUS: */
   1067
   1068static void status_message(int itf, const char *name, int status)
   1069{
   1070	static const char *onoff[2] = { "off to on", "on to off" };
   1071	printk(KERN_INFO DEV_LABEL "(itf %d): %s changed from %s\n",
   1072	    itf, name, onoff[!status]);
   1073}
   1074
   1075static void lanai_check_status(struct lanai_dev *lanai)
   1076{
   1077	u32 new = reg_read(lanai, Status_Reg);
   1078	u32 changes = new ^ lanai->status;
   1079	lanai->status = new;
   1080#define e(flag, name) \
   1081		if (changes & flag) \
   1082			status_message(lanai->number, name, new & flag)
   1083	e(STATUS_SOOL, "SOOL");
   1084	e(STATUS_LOCD, "LOCD");
   1085	e(STATUS_LED, "LED");
   1086	e(STATUS_GPIN, "GPIN");
   1087#undef e
   1088}
   1089
   1090static void pcistatus_got(int itf, const char *name)
   1091{
   1092	printk(KERN_INFO DEV_LABEL "(itf %d): PCI got %s error\n", itf, name);
   1093}
   1094
   1095static void pcistatus_check(struct lanai_dev *lanai, int clearonly)
   1096{
   1097	u16 s;
   1098	int result;
   1099	result = pci_read_config_word(lanai->pci, PCI_STATUS, &s);
   1100	if (result != PCIBIOS_SUCCESSFUL) {
   1101		printk(KERN_ERR DEV_LABEL "(itf %d): can't read PCI_STATUS: "
   1102		    "%d\n", lanai->number, result);
   1103		return;
   1104	}
   1105	s &= PCI_STATUS_DETECTED_PARITY | PCI_STATUS_SIG_SYSTEM_ERROR |
   1106	    PCI_STATUS_REC_MASTER_ABORT | PCI_STATUS_REC_TARGET_ABORT |
   1107	    PCI_STATUS_SIG_TARGET_ABORT | PCI_STATUS_PARITY;
   1108	if (s == 0)
   1109		return;
   1110	result = pci_write_config_word(lanai->pci, PCI_STATUS, s);
   1111	if (result != PCIBIOS_SUCCESSFUL)
   1112		printk(KERN_ERR DEV_LABEL "(itf %d): can't write PCI_STATUS: "
   1113		    "%d\n", lanai->number, result);
   1114	if (clearonly)
   1115		return;
   1116#define e(flag, name, stat) \
   1117		if (s & flag) { \
   1118			pcistatus_got(lanai->number, name); \
   1119			++lanai->stats.pcierr_##stat; \
   1120		}
   1121	e(PCI_STATUS_DETECTED_PARITY, "parity", parity_detect);
   1122	e(PCI_STATUS_SIG_SYSTEM_ERROR, "signalled system", serr_set);
   1123	e(PCI_STATUS_REC_MASTER_ABORT, "master", master_abort);
   1124	e(PCI_STATUS_REC_TARGET_ABORT, "master target", m_target_abort);
   1125	e(PCI_STATUS_SIG_TARGET_ABORT, "slave", s_target_abort);
   1126	e(PCI_STATUS_PARITY, "master parity", master_parity);
   1127#undef e
   1128}
   1129
   1130/* -------------------- VCC TX BUFFER UTILITIES: */
   1131
   1132/* space left in tx buffer in bytes */
   1133static inline int vcc_tx_space(const struct lanai_vcc *lvcc, int endptr)
   1134{
   1135	int r;
   1136	r = endptr * 16;
   1137	r -= ((unsigned long) lvcc->tx.buf.ptr) -
   1138	    ((unsigned long) lvcc->tx.buf.start);
   1139	r -= 16;	/* Leave "bubble" - if start==end it looks empty */
   1140	if (r < 0)
   1141		r += lanai_buf_size(&lvcc->tx.buf);
   1142	return r;
   1143}
   1144
   1145/* test if VCC is currently backlogged */
   1146static inline int vcc_is_backlogged(const struct lanai_vcc *lvcc)
   1147{
   1148	return !skb_queue_empty(&lvcc->tx.backlog);
   1149}
   1150
   1151/* Bit fields in the segmentation buffer descriptor */
   1152#define DESCRIPTOR_MAGIC	(0xD0000000)
   1153#define DESCRIPTOR_AAL5		(0x00008000)
   1154#define DESCRIPTOR_AAL5_STREAM	(0x00004000)
   1155#define DESCRIPTOR_CLP		(0x00002000)
   1156
   1157/* Add 32-bit descriptor with its padding */
   1158static inline void vcc_tx_add_aal5_descriptor(struct lanai_vcc *lvcc,
   1159	u32 flags, int len)
   1160{
   1161	int pos;
   1162	APRINTK((((unsigned long) lvcc->tx.buf.ptr) & 15) == 0,
   1163	    "vcc_tx_add_aal5_descriptor: bad ptr=%p\n", lvcc->tx.buf.ptr);
   1164	lvcc->tx.buf.ptr += 4;	/* Hope the values REALLY don't matter */
   1165	pos = ((unsigned char *) lvcc->tx.buf.ptr) -
   1166	    (unsigned char *) lvcc->tx.buf.start;
   1167	APRINTK((pos & ~0x0001FFF0) == 0,
   1168	    "vcc_tx_add_aal5_descriptor: bad pos (%d) before, vci=%d, "
   1169	    "start,ptr,end=%p,%p,%p\n", pos, lvcc->vci,
   1170	    lvcc->tx.buf.start, lvcc->tx.buf.ptr, lvcc->tx.buf.end);
   1171	pos = (pos + len) & (lanai_buf_size(&lvcc->tx.buf) - 1);
   1172	APRINTK((pos & ~0x0001FFF0) == 0,
   1173	    "vcc_tx_add_aal5_descriptor: bad pos (%d) after, vci=%d, "
   1174	    "start,ptr,end=%p,%p,%p\n", pos, lvcc->vci,
   1175	    lvcc->tx.buf.start, lvcc->tx.buf.ptr, lvcc->tx.buf.end);
   1176	lvcc->tx.buf.ptr[-1] =
   1177	    cpu_to_le32(DESCRIPTOR_MAGIC | DESCRIPTOR_AAL5 |
   1178	    ((lvcc->tx.atmvcc->atm_options & ATM_ATMOPT_CLP) ?
   1179	    DESCRIPTOR_CLP : 0) | flags | pos >> 4);
   1180	if (lvcc->tx.buf.ptr >= lvcc->tx.buf.end)
   1181		lvcc->tx.buf.ptr = lvcc->tx.buf.start;
   1182}
   1183
   1184/* Add 32-bit AAL5 trailer and leave room for its CRC */
   1185static inline void vcc_tx_add_aal5_trailer(struct lanai_vcc *lvcc,
   1186	int len, int cpi, int uu)
   1187{
   1188	APRINTK((((unsigned long) lvcc->tx.buf.ptr) & 15) == 8,
   1189	    "vcc_tx_add_aal5_trailer: bad ptr=%p\n", lvcc->tx.buf.ptr);
   1190	lvcc->tx.buf.ptr += 2;
   1191	lvcc->tx.buf.ptr[-2] = cpu_to_be32((uu << 24) | (cpi << 16) | len);
   1192	if (lvcc->tx.buf.ptr >= lvcc->tx.buf.end)
   1193		lvcc->tx.buf.ptr = lvcc->tx.buf.start;
   1194}
   1195
   1196static inline void vcc_tx_memcpy(struct lanai_vcc *lvcc,
   1197	const unsigned char *src, int n)
   1198{
   1199	unsigned char *e;
   1200	int m;
   1201	e = ((unsigned char *) lvcc->tx.buf.ptr) + n;
   1202	m = e - (unsigned char *) lvcc->tx.buf.end;
   1203	if (m < 0)
   1204		m = 0;
   1205	memcpy(lvcc->tx.buf.ptr, src, n - m);
   1206	if (m != 0) {
   1207		memcpy(lvcc->tx.buf.start, src + n - m, m);
   1208		e = ((unsigned char *) lvcc->tx.buf.start) + m;
   1209	}
   1210	lvcc->tx.buf.ptr = (u32 *) e;
   1211}
   1212
   1213static inline void vcc_tx_memzero(struct lanai_vcc *lvcc, int n)
   1214{
   1215	unsigned char *e;
   1216	int m;
   1217	if (n == 0)
   1218		return;
   1219	e = ((unsigned char *) lvcc->tx.buf.ptr) + n;
   1220	m = e - (unsigned char *) lvcc->tx.buf.end;
   1221	if (m < 0)
   1222		m = 0;
   1223	memset(lvcc->tx.buf.ptr, 0, n - m);
   1224	if (m != 0) {
   1225		memset(lvcc->tx.buf.start, 0, m);
   1226		e = ((unsigned char *) lvcc->tx.buf.start) + m;
   1227	}
   1228	lvcc->tx.buf.ptr = (u32 *) e;
   1229}
   1230
   1231/* Update "butt" register to specify new WritePtr */
   1232static inline void lanai_endtx(struct lanai_dev *lanai,
   1233	const struct lanai_vcc *lvcc)
   1234{
   1235	int i, ptr = ((unsigned char *) lvcc->tx.buf.ptr) -
   1236	    (unsigned char *) lvcc->tx.buf.start;
   1237	APRINTK((ptr & ~0x0001FFF0) == 0,
   1238	    "lanai_endtx: bad ptr (%d), vci=%d, start,ptr,end=%p,%p,%p\n",
   1239	    ptr, lvcc->vci, lvcc->tx.buf.start, lvcc->tx.buf.ptr,
   1240	    lvcc->tx.buf.end);
   1241
   1242	/*
   1243	 * Since the "butt register" is a shared resounce on the card we
   1244	 * serialize all accesses to it through this spinlock.  This is
   1245	 * mostly just paranoia since the register is rarely "busy" anyway
   1246	 * but is needed for correctness.
   1247	 */
   1248	spin_lock(&lanai->endtxlock);
   1249	/*
   1250	 * We need to check if the "butt busy" bit is set before
   1251	 * updating the butt register.  In theory this should
   1252	 * never happen because the ATM card is plenty fast at
   1253	 * updating the register.  Still, we should make sure
   1254	 */
   1255	for (i = 0; reg_read(lanai, Status_Reg) & STATUS_BUTTBUSY; i++) {
   1256		if (unlikely(i > 50)) {
   1257			printk(KERN_ERR DEV_LABEL "(itf %d): butt register "
   1258			    "always busy!\n", lanai->number);
   1259			break;
   1260		}
   1261		udelay(5);
   1262	}
   1263	/*
   1264	 * Before we tall the card to start work we need to be sure 100% of
   1265	 * the info in the service buffer has been written before we tell
   1266	 * the card about it
   1267	 */
   1268	wmb();
   1269	reg_write(lanai, (ptr << 12) | lvcc->vci, Butt_Reg);
   1270	spin_unlock(&lanai->endtxlock);
   1271}
   1272
   1273/*
   1274 * Add one AAL5 PDU to lvcc's transmit buffer.  Caller garauntees there's
   1275 * space available.  "pdusize" is the number of bytes the PDU will take
   1276 */
   1277static void lanai_send_one_aal5(struct lanai_dev *lanai,
   1278	struct lanai_vcc *lvcc, struct sk_buff *skb, int pdusize)
   1279{
   1280	int pad;
   1281	APRINTK(pdusize == aal5_size(skb->len),
   1282	    "lanai_send_one_aal5: wrong size packet (%d != %d)\n",
   1283	    pdusize, aal5_size(skb->len));
   1284	vcc_tx_add_aal5_descriptor(lvcc, 0, pdusize);
   1285	pad = pdusize - skb->len - 8;
   1286	APRINTK(pad >= 0, "pad is negative (%d)\n", pad);
   1287	APRINTK(pad < 48, "pad is too big (%d)\n", pad);
   1288	vcc_tx_memcpy(lvcc, skb->data, skb->len);
   1289	vcc_tx_memzero(lvcc, pad);
   1290	vcc_tx_add_aal5_trailer(lvcc, skb->len, 0, 0);
   1291	lanai_endtx(lanai, lvcc);
   1292	lanai_free_skb(lvcc->tx.atmvcc, skb);
   1293	atomic_inc(&lvcc->tx.atmvcc->stats->tx);
   1294}
   1295
   1296/* Try to fill the buffer - don't call unless there is backlog */
   1297static void vcc_tx_unqueue_aal5(struct lanai_dev *lanai,
   1298	struct lanai_vcc *lvcc, int endptr)
   1299{
   1300	int n;
   1301	struct sk_buff *skb;
   1302	int space = vcc_tx_space(lvcc, endptr);
   1303	APRINTK(vcc_is_backlogged(lvcc),
   1304	    "vcc_tx_unqueue() called with empty backlog (vci=%d)\n",
   1305	    lvcc->vci);
   1306	while (space >= 64) {
   1307		skb = skb_dequeue(&lvcc->tx.backlog);
   1308		if (skb == NULL)
   1309			goto no_backlog;
   1310		n = aal5_size(skb->len);
   1311		if (n + 16 > space) {
   1312			/* No room for this packet - put it back on queue */
   1313			skb_queue_head(&lvcc->tx.backlog, skb);
   1314			return;
   1315		}
   1316		lanai_send_one_aal5(lanai, lvcc, skb, n);
   1317		space -= n + 16;
   1318	}
   1319	if (!vcc_is_backlogged(lvcc)) {
   1320	    no_backlog:
   1321		__clear_bit(lvcc->vci, lanai->backlog_vccs);
   1322	}
   1323}
   1324
   1325/* Given an skb that we want to transmit either send it now or queue */
   1326static void vcc_tx_aal5(struct lanai_dev *lanai, struct lanai_vcc *lvcc,
   1327	struct sk_buff *skb)
   1328{
   1329	int space, n;
   1330	if (vcc_is_backlogged(lvcc))		/* Already backlogged */
   1331		goto queue_it;
   1332	space = vcc_tx_space(lvcc,
   1333		    TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr)));
   1334	n = aal5_size(skb->len);
   1335	APRINTK(n + 16 >= 64, "vcc_tx_aal5: n too small (%d)\n", n);
   1336	if (space < n + 16) {			/* No space for this PDU */
   1337		__set_bit(lvcc->vci, lanai->backlog_vccs);
   1338	    queue_it:
   1339		skb_queue_tail(&lvcc->tx.backlog, skb);
   1340		return;
   1341	}
   1342	lanai_send_one_aal5(lanai, lvcc, skb, n);
   1343}
   1344
   1345static void vcc_tx_unqueue_aal0(struct lanai_dev *lanai,
   1346	struct lanai_vcc *lvcc, int endptr)
   1347{
   1348	printk(KERN_INFO DEV_LABEL
   1349	    ": vcc_tx_unqueue_aal0: not implemented\n");
   1350}
   1351
   1352static void vcc_tx_aal0(struct lanai_dev *lanai, struct lanai_vcc *lvcc,
   1353	struct sk_buff *skb)
   1354{
   1355	printk(KERN_INFO DEV_LABEL ": vcc_tx_aal0: not implemented\n");
   1356	/* Remember to increment lvcc->tx.atmvcc->stats->tx */
   1357	lanai_free_skb(lvcc->tx.atmvcc, skb);
   1358}
   1359
   1360/* -------------------- VCC RX BUFFER UTILITIES: */
   1361
   1362/* unlike the _tx_ cousins, this doesn't update ptr */
   1363static inline void vcc_rx_memcpy(unsigned char *dest,
   1364	const struct lanai_vcc *lvcc, int n)
   1365{
   1366	int m = ((const unsigned char *) lvcc->rx.buf.ptr) + n -
   1367	    ((const unsigned char *) (lvcc->rx.buf.end));
   1368	if (m < 0)
   1369		m = 0;
   1370	memcpy(dest, lvcc->rx.buf.ptr, n - m);
   1371	memcpy(dest + n - m, lvcc->rx.buf.start, m);
   1372	/* Make sure that these copies don't get reordered */
   1373	barrier();
   1374}
   1375
   1376/* Receive AAL5 data on a VCC with a particular endptr */
   1377static void vcc_rx_aal5(struct lanai_vcc *lvcc, int endptr)
   1378{
   1379	int size;
   1380	struct sk_buff *skb;
   1381	const u32 *x;
   1382	u32 *end = &lvcc->rx.buf.start[endptr * 4];
   1383	int n = ((unsigned long) end) - ((unsigned long) lvcc->rx.buf.ptr);
   1384	if (n < 0)
   1385		n += lanai_buf_size(&lvcc->rx.buf);
   1386	APRINTK(n >= 0 && n < lanai_buf_size(&lvcc->rx.buf) && !(n & 15),
   1387	    "vcc_rx_aal5: n out of range (%d/%zu)\n",
   1388	    n, lanai_buf_size(&lvcc->rx.buf));
   1389	/* Recover the second-to-last word to get true pdu length */
   1390	if ((x = &end[-2]) < lvcc->rx.buf.start)
   1391		x = &lvcc->rx.buf.end[-2];
   1392	/*
   1393	 * Before we actually read from the buffer, make sure the memory
   1394	 * changes have arrived
   1395	 */
   1396	rmb();
   1397	size = be32_to_cpup(x) & 0xffff;
   1398	if (unlikely(n != aal5_size(size))) {
   1399		/* Make sure size matches padding */
   1400		printk(KERN_INFO DEV_LABEL "(itf %d): Got bad AAL5 length "
   1401		    "on vci=%d - size=%d n=%d\n",
   1402		    lvcc->rx.atmvcc->dev->number, lvcc->vci, size, n);
   1403		lvcc->stats.x.aal5.rx_badlen++;
   1404		goto out;
   1405	}
   1406	skb = atm_alloc_charge(lvcc->rx.atmvcc, size, GFP_ATOMIC);
   1407	if (unlikely(skb == NULL)) {
   1408		lvcc->stats.rx_nomem++;
   1409		goto out;
   1410	}
   1411	skb_put(skb, size);
   1412	vcc_rx_memcpy(skb->data, lvcc, size);
   1413	ATM_SKB(skb)->vcc = lvcc->rx.atmvcc;
   1414	__net_timestamp(skb);
   1415	lvcc->rx.atmvcc->push(lvcc->rx.atmvcc, skb);
   1416	atomic_inc(&lvcc->rx.atmvcc->stats->rx);
   1417    out:
   1418	lvcc->rx.buf.ptr = end;
   1419	cardvcc_write(lvcc, endptr, vcc_rxreadptr);
   1420}
   1421
   1422static void vcc_rx_aal0(struct lanai_dev *lanai)
   1423{
   1424	printk(KERN_INFO DEV_LABEL ": vcc_rx_aal0: not implemented\n");
   1425	/* Remember to get read_lock(&vcc_sklist_lock) while looking up VC */
   1426	/* Remember to increment lvcc->rx.atmvcc->stats->rx */
   1427}
   1428
   1429/* -------------------- MANAGING HOST-BASED VCC TABLE: */
   1430
   1431/* Decide whether to use vmalloc or get_zeroed_page for VCC table */
   1432#if (NUM_VCI * BITS_PER_LONG) <= PAGE_SIZE
   1433#define VCCTABLE_GETFREEPAGE
   1434#else
   1435#include <linux/vmalloc.h>
   1436#endif
   1437
   1438static int vcc_table_allocate(struct lanai_dev *lanai)
   1439{
   1440#ifdef VCCTABLE_GETFREEPAGE
   1441	APRINTK((lanai->num_vci) * sizeof(struct lanai_vcc *) <= PAGE_SIZE,
   1442	    "vcc table > PAGE_SIZE!");
   1443	lanai->vccs = (struct lanai_vcc **) get_zeroed_page(GFP_KERNEL);
   1444	return (lanai->vccs == NULL) ? -ENOMEM : 0;
   1445#else
   1446	int bytes = (lanai->num_vci) * sizeof(struct lanai_vcc *);
   1447	lanai->vccs = vzalloc(bytes);
   1448	if (unlikely(lanai->vccs == NULL))
   1449		return -ENOMEM;
   1450	return 0;
   1451#endif
   1452}
   1453
   1454static inline void vcc_table_deallocate(const struct lanai_dev *lanai)
   1455{
   1456#ifdef VCCTABLE_GETFREEPAGE
   1457	free_page((unsigned long) lanai->vccs);
   1458#else
   1459	vfree(lanai->vccs);
   1460#endif
   1461}
   1462
   1463/* Allocate a fresh lanai_vcc, with the appropriate things cleared */
   1464static inline struct lanai_vcc *new_lanai_vcc(void)
   1465{
   1466	struct lanai_vcc *lvcc;
   1467	lvcc =  kzalloc(sizeof(*lvcc), GFP_KERNEL);
   1468	if (likely(lvcc != NULL)) {
   1469		skb_queue_head_init(&lvcc->tx.backlog);
   1470#ifdef DEBUG
   1471		lvcc->vci = -1;
   1472#endif
   1473	}
   1474	return lvcc;
   1475}
   1476
   1477static int lanai_get_sized_buffer(struct lanai_dev *lanai,
   1478	struct lanai_buffer *buf, int max_sdu, int multiplier,
   1479	const char *name)
   1480{
   1481	int size;
   1482	if (unlikely(max_sdu < 1))
   1483		max_sdu = 1;
   1484	max_sdu = aal5_size(max_sdu);
   1485	size = (max_sdu + 16) * multiplier + 16;
   1486	lanai_buf_allocate(buf, size, max_sdu + 32, lanai->pci);
   1487	if (unlikely(buf->start == NULL))
   1488		return -ENOMEM;
   1489	if (unlikely(lanai_buf_size(buf) < size))
   1490		printk(KERN_WARNING DEV_LABEL "(itf %d): wanted %d bytes "
   1491		    "for %s buffer, got only %zu\n", lanai->number, size,
   1492		    name, lanai_buf_size(buf));
   1493	DPRINTK("Allocated %zu byte %s buffer\n", lanai_buf_size(buf), name);
   1494	return 0;
   1495}
   1496
   1497/* Setup a RX buffer for a currently unbound AAL5 vci */
   1498static inline int lanai_setup_rx_vci_aal5(struct lanai_dev *lanai,
   1499	struct lanai_vcc *lvcc, const struct atm_qos *qos)
   1500{
   1501	return lanai_get_sized_buffer(lanai, &lvcc->rx.buf,
   1502	    qos->rxtp.max_sdu, AAL5_RX_MULTIPLIER, "RX");
   1503}
   1504
   1505/* Setup a TX buffer for a currently unbound AAL5 vci */
   1506static int lanai_setup_tx_vci(struct lanai_dev *lanai, struct lanai_vcc *lvcc,
   1507	const struct atm_qos *qos)
   1508{
   1509	int max_sdu, multiplier;
   1510	if (qos->aal == ATM_AAL0) {
   1511		lvcc->tx.unqueue = vcc_tx_unqueue_aal0;
   1512		max_sdu = ATM_CELL_SIZE - 1;
   1513		multiplier = AAL0_TX_MULTIPLIER;
   1514	} else {
   1515		lvcc->tx.unqueue = vcc_tx_unqueue_aal5;
   1516		max_sdu = qos->txtp.max_sdu;
   1517		multiplier = AAL5_TX_MULTIPLIER;
   1518	}
   1519	return lanai_get_sized_buffer(lanai, &lvcc->tx.buf, max_sdu,
   1520	    multiplier, "TX");
   1521}
   1522
   1523static inline void host_vcc_bind(struct lanai_dev *lanai,
   1524	struct lanai_vcc *lvcc, vci_t vci)
   1525{
   1526	if (lvcc->vbase != NULL)
   1527		return;    /* We already were bound in the other direction */
   1528	DPRINTK("Binding vci %d\n", vci);
   1529#ifdef USE_POWERDOWN
   1530	if (lanai->nbound++ == 0) {
   1531		DPRINTK("Coming out of powerdown\n");
   1532		lanai->conf1 &= ~CONFIG1_POWERDOWN;
   1533		conf1_write(lanai);
   1534		conf2_write(lanai);
   1535	}
   1536#endif
   1537	lvcc->vbase = cardvcc_addr(lanai, vci);
   1538	lanai->vccs[lvcc->vci = vci] = lvcc;
   1539}
   1540
   1541static inline void host_vcc_unbind(struct lanai_dev *lanai,
   1542	struct lanai_vcc *lvcc)
   1543{
   1544	if (lvcc->vbase == NULL)
   1545		return;	/* This vcc was never bound */
   1546	DPRINTK("Unbinding vci %d\n", lvcc->vci);
   1547	lvcc->vbase = NULL;
   1548	lanai->vccs[lvcc->vci] = NULL;
   1549#ifdef USE_POWERDOWN
   1550	if (--lanai->nbound == 0) {
   1551		DPRINTK("Going into powerdown\n");
   1552		lanai->conf1 |= CONFIG1_POWERDOWN;
   1553		conf1_write(lanai);
   1554	}
   1555#endif
   1556}
   1557
   1558/* -------------------- RESET CARD: */
   1559
   1560static void lanai_reset(struct lanai_dev *lanai)
   1561{
   1562	printk(KERN_CRIT DEV_LABEL "(itf %d): *NOT* resetting - not "
   1563	    "implemented\n", lanai->number);
   1564	/* TODO */
   1565	/* The following is just a hack until we write the real
   1566	 * resetter - at least ack whatever interrupt sent us
   1567	 * here
   1568	 */
   1569	reg_write(lanai, INT_ALL, IntAck_Reg);
   1570	lanai->stats.card_reset++;
   1571}
   1572
   1573/* -------------------- SERVICE LIST UTILITIES: */
   1574
   1575/*
   1576 * Allocate service buffer and tell card about it
   1577 */
   1578static int service_buffer_allocate(struct lanai_dev *lanai)
   1579{
   1580	lanai_buf_allocate(&lanai->service, SERVICE_ENTRIES * 4, 8,
   1581	    lanai->pci);
   1582	if (unlikely(lanai->service.start == NULL))
   1583		return -ENOMEM;
   1584	DPRINTK("allocated service buffer at %p, size %zu(%d)\n",
   1585	    lanai->service.start,
   1586	    lanai_buf_size(&lanai->service),
   1587	    lanai_buf_size_cardorder(&lanai->service));
   1588	/* Clear ServWrite register to be safe */
   1589	reg_write(lanai, 0, ServWrite_Reg);
   1590	/* ServiceStuff register contains size and address of buffer */
   1591	reg_write(lanai,
   1592	    SSTUFF_SET_SIZE(lanai_buf_size_cardorder(&lanai->service)) |
   1593	    SSTUFF_SET_ADDR(lanai->service.dmaaddr),
   1594	    ServiceStuff_Reg);
   1595	return 0;
   1596}
   1597
   1598static inline void service_buffer_deallocate(struct lanai_dev *lanai)
   1599{
   1600	lanai_buf_deallocate(&lanai->service, lanai->pci);
   1601}
   1602
   1603/* Bitfields in service list */
   1604#define SERVICE_TX	(0x80000000)	/* Was from transmission */
   1605#define SERVICE_TRASH	(0x40000000)	/* RXed PDU was trashed */
   1606#define SERVICE_CRCERR	(0x20000000)	/* RXed PDU had CRC error */
   1607#define SERVICE_CI	(0x10000000)	/* RXed PDU had CI set */
   1608#define SERVICE_CLP	(0x08000000)	/* RXed PDU had CLP set */
   1609#define SERVICE_STREAM	(0x04000000)	/* RX Stream mode */
   1610#define SERVICE_GET_VCI(x) (((x)>>16)&0x3FF)
   1611#define SERVICE_GET_END(x) ((x)&0x1FFF)
   1612
   1613/* Handle one thing from the service list - returns true if it marked a
   1614 * VCC ready for xmit
   1615 */
   1616static int handle_service(struct lanai_dev *lanai, u32 s)
   1617{
   1618	vci_t vci = SERVICE_GET_VCI(s);
   1619	struct lanai_vcc *lvcc;
   1620	read_lock(&vcc_sklist_lock);
   1621	lvcc = lanai->vccs[vci];
   1622	if (unlikely(lvcc == NULL)) {
   1623		read_unlock(&vcc_sklist_lock);
   1624		DPRINTK("(itf %d) got service entry 0x%X for nonexistent "
   1625		    "vcc %d\n", lanai->number, (unsigned int) s, vci);
   1626		if (s & SERVICE_TX)
   1627			lanai->stats.service_notx++;
   1628		else
   1629			lanai->stats.service_norx++;
   1630		return 0;
   1631	}
   1632	if (s & SERVICE_TX) {			/* segmentation interrupt */
   1633		if (unlikely(lvcc->tx.atmvcc == NULL)) {
   1634			read_unlock(&vcc_sklist_lock);
   1635			DPRINTK("(itf %d) got service entry 0x%X for non-TX "
   1636			    "vcc %d\n", lanai->number, (unsigned int) s, vci);
   1637			lanai->stats.service_notx++;
   1638			return 0;
   1639		}
   1640		__set_bit(vci, lanai->transmit_ready);
   1641		lvcc->tx.endptr = SERVICE_GET_END(s);
   1642		read_unlock(&vcc_sklist_lock);
   1643		return 1;
   1644	}
   1645	if (unlikely(lvcc->rx.atmvcc == NULL)) {
   1646		read_unlock(&vcc_sklist_lock);
   1647		DPRINTK("(itf %d) got service entry 0x%X for non-RX "
   1648		    "vcc %d\n", lanai->number, (unsigned int) s, vci);
   1649		lanai->stats.service_norx++;
   1650		return 0;
   1651	}
   1652	if (unlikely(lvcc->rx.atmvcc->qos.aal != ATM_AAL5)) {
   1653		read_unlock(&vcc_sklist_lock);
   1654		DPRINTK("(itf %d) got RX service entry 0x%X for non-AAL5 "
   1655		    "vcc %d\n", lanai->number, (unsigned int) s, vci);
   1656		lanai->stats.service_rxnotaal5++;
   1657		atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
   1658		return 0;
   1659	}
   1660	if (likely(!(s & (SERVICE_TRASH | SERVICE_STREAM | SERVICE_CRCERR)))) {
   1661		vcc_rx_aal5(lvcc, SERVICE_GET_END(s));
   1662		read_unlock(&vcc_sklist_lock);
   1663		return 0;
   1664	}
   1665	if (s & SERVICE_TRASH) {
   1666		int bytes;
   1667		read_unlock(&vcc_sklist_lock);
   1668		DPRINTK("got trashed rx pdu on vci %d\n", vci);
   1669		atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
   1670		lvcc->stats.x.aal5.service_trash++;
   1671		bytes = (SERVICE_GET_END(s) * 16) -
   1672		    (((unsigned long) lvcc->rx.buf.ptr) -
   1673		    ((unsigned long) lvcc->rx.buf.start)) + 47;
   1674		if (bytes < 0)
   1675			bytes += lanai_buf_size(&lvcc->rx.buf);
   1676		lanai->stats.ovfl_trash += (bytes / 48);
   1677		return 0;
   1678	}
   1679	if (s & SERVICE_STREAM) {
   1680		read_unlock(&vcc_sklist_lock);
   1681		atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
   1682		lvcc->stats.x.aal5.service_stream++;
   1683		printk(KERN_ERR DEV_LABEL "(itf %d): Got AAL5 stream "
   1684		    "PDU on VCI %d!\n", lanai->number, vci);
   1685		lanai_reset(lanai);
   1686		return 0;
   1687	}
   1688	DPRINTK("got rx crc error on vci %d\n", vci);
   1689	atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
   1690	lvcc->stats.x.aal5.service_rxcrc++;
   1691	lvcc->rx.buf.ptr = &lvcc->rx.buf.start[SERVICE_GET_END(s) * 4];
   1692	cardvcc_write(lvcc, SERVICE_GET_END(s), vcc_rxreadptr);
   1693	read_unlock(&vcc_sklist_lock);
   1694	return 0;
   1695}
   1696
   1697/* Try transmitting on all VCIs that we marked ready to serve */
   1698static void iter_transmit(struct lanai_dev *lanai, vci_t vci)
   1699{
   1700	struct lanai_vcc *lvcc = lanai->vccs[vci];
   1701	if (vcc_is_backlogged(lvcc))
   1702		lvcc->tx.unqueue(lanai, lvcc, lvcc->tx.endptr);
   1703}
   1704
   1705/* Run service queue -- called from interrupt context or with
   1706 * interrupts otherwise disabled and with the lanai->servicelock
   1707 * lock held
   1708 */
   1709static void run_service(struct lanai_dev *lanai)
   1710{
   1711	int ntx = 0;
   1712	u32 wreg = reg_read(lanai, ServWrite_Reg);
   1713	const u32 *end = lanai->service.start + wreg;
   1714	while (lanai->service.ptr != end) {
   1715		ntx += handle_service(lanai,
   1716		    le32_to_cpup(lanai->service.ptr++));
   1717		if (lanai->service.ptr >= lanai->service.end)
   1718			lanai->service.ptr = lanai->service.start;
   1719	}
   1720	reg_write(lanai, wreg, ServRead_Reg);
   1721	if (ntx != 0) {
   1722		read_lock(&vcc_sklist_lock);
   1723		vci_bitfield_iterate(lanai, lanai->transmit_ready,
   1724		    iter_transmit);
   1725		bitmap_zero(lanai->transmit_ready, NUM_VCI);
   1726		read_unlock(&vcc_sklist_lock);
   1727	}
   1728}
   1729
   1730/* -------------------- GATHER STATISTICS: */
   1731
   1732static void get_statistics(struct lanai_dev *lanai)
   1733{
   1734	u32 statreg = reg_read(lanai, Statistics_Reg);
   1735	lanai->stats.atm_ovfl += STATS_GET_FIFO_OVFL(statreg);
   1736	lanai->stats.hec_err += STATS_GET_HEC_ERR(statreg);
   1737	lanai->stats.vci_trash += STATS_GET_BAD_VCI(statreg);
   1738	lanai->stats.ovfl_trash += STATS_GET_BUF_OVFL(statreg);
   1739}
   1740
   1741/* -------------------- POLLING TIMER: */
   1742
   1743#ifndef DEBUG_RW
   1744/* Try to undequeue 1 backlogged vcc */
   1745static void iter_dequeue(struct lanai_dev *lanai, vci_t vci)
   1746{
   1747	struct lanai_vcc *lvcc = lanai->vccs[vci];
   1748	int endptr;
   1749	if (lvcc == NULL || lvcc->tx.atmvcc == NULL ||
   1750	    !vcc_is_backlogged(lvcc)) {
   1751		__clear_bit(vci, lanai->backlog_vccs);
   1752		return;
   1753	}
   1754	endptr = TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr));
   1755	lvcc->tx.unqueue(lanai, lvcc, endptr);
   1756}
   1757#endif /* !DEBUG_RW */
   1758
   1759static void lanai_timed_poll(struct timer_list *t)
   1760{
   1761	struct lanai_dev *lanai = from_timer(lanai, t, timer);
   1762#ifndef DEBUG_RW
   1763	unsigned long flags;
   1764#ifdef USE_POWERDOWN
   1765	if (lanai->conf1 & CONFIG1_POWERDOWN)
   1766		return;
   1767#endif /* USE_POWERDOWN */
   1768	local_irq_save(flags);
   1769	/* If we can grab the spinlock, check if any services need to be run */
   1770	if (spin_trylock(&lanai->servicelock)) {
   1771		run_service(lanai);
   1772		spin_unlock(&lanai->servicelock);
   1773	}
   1774	/* ...and see if any backlogged VCs can make progress */
   1775	/* unfortunately linux has no read_trylock() currently */
   1776	read_lock(&vcc_sklist_lock);
   1777	vci_bitfield_iterate(lanai, lanai->backlog_vccs, iter_dequeue);
   1778	read_unlock(&vcc_sklist_lock);
   1779	local_irq_restore(flags);
   1780
   1781	get_statistics(lanai);
   1782#endif /* !DEBUG_RW */
   1783	mod_timer(&lanai->timer, jiffies + LANAI_POLL_PERIOD);
   1784}
   1785
   1786static inline void lanai_timed_poll_start(struct lanai_dev *lanai)
   1787{
   1788	timer_setup(&lanai->timer, lanai_timed_poll, 0);
   1789	lanai->timer.expires = jiffies + LANAI_POLL_PERIOD;
   1790	add_timer(&lanai->timer);
   1791}
   1792
   1793static inline void lanai_timed_poll_stop(struct lanai_dev *lanai)
   1794{
   1795	del_timer_sync(&lanai->timer);
   1796}
   1797
   1798/* -------------------- INTERRUPT SERVICE: */
   1799
   1800static inline void lanai_int_1(struct lanai_dev *lanai, u32 reason)
   1801{
   1802	u32 ack = 0;
   1803	if (reason & INT_SERVICE) {
   1804		ack = INT_SERVICE;
   1805		spin_lock(&lanai->servicelock);
   1806		run_service(lanai);
   1807		spin_unlock(&lanai->servicelock);
   1808	}
   1809	if (reason & (INT_AAL0_STR | INT_AAL0)) {
   1810		ack |= reason & (INT_AAL0_STR | INT_AAL0);
   1811		vcc_rx_aal0(lanai);
   1812	}
   1813	/* The rest of the interrupts are pretty rare */
   1814	if (ack == reason)
   1815		goto done;
   1816	if (reason & INT_STATS) {
   1817		reason &= ~INT_STATS;	/* No need to ack */
   1818		get_statistics(lanai);
   1819	}
   1820	if (reason & INT_STATUS) {
   1821		ack |= reason & INT_STATUS;
   1822		lanai_check_status(lanai);
   1823	}
   1824	if (unlikely(reason & INT_DMASHUT)) {
   1825		printk(KERN_ERR DEV_LABEL "(itf %d): driver error - DMA "
   1826		    "shutdown, reason=0x%08X, address=0x%08X\n",
   1827		    lanai->number, (unsigned int) (reason & INT_DMASHUT),
   1828		    (unsigned int) reg_read(lanai, DMA_Addr_Reg));
   1829		if (reason & INT_TABORTBM) {
   1830			lanai_reset(lanai);
   1831			return;
   1832		}
   1833		ack |= (reason & INT_DMASHUT);
   1834		printk(KERN_ERR DEV_LABEL "(itf %d): re-enabling DMA\n",
   1835		    lanai->number);
   1836		conf1_write(lanai);
   1837		lanai->stats.dma_reenable++;
   1838		pcistatus_check(lanai, 0);
   1839	}
   1840	if (unlikely(reason & INT_TABORTSENT)) {
   1841		ack |= (reason & INT_TABORTSENT);
   1842		printk(KERN_ERR DEV_LABEL "(itf %d): sent PCI target abort\n",
   1843		    lanai->number);
   1844		pcistatus_check(lanai, 0);
   1845	}
   1846	if (unlikely(reason & INT_SEGSHUT)) {
   1847		printk(KERN_ERR DEV_LABEL "(itf %d): driver error - "
   1848		    "segmentation shutdown, reason=0x%08X\n", lanai->number,
   1849		    (unsigned int) (reason & INT_SEGSHUT));
   1850		lanai_reset(lanai);
   1851		return;
   1852	}
   1853	if (unlikely(reason & (INT_PING | INT_WAKE))) {
   1854		printk(KERN_ERR DEV_LABEL "(itf %d): driver error - "
   1855		    "unexpected interrupt 0x%08X, resetting\n",
   1856		    lanai->number,
   1857		    (unsigned int) (reason & (INT_PING | INT_WAKE)));
   1858		lanai_reset(lanai);
   1859		return;
   1860	}
   1861#ifdef DEBUG
   1862	if (unlikely(ack != reason)) {
   1863		DPRINTK("unacked ints: 0x%08X\n",
   1864		    (unsigned int) (reason & ~ack));
   1865		ack = reason;
   1866	}
   1867#endif
   1868   done:
   1869	if (ack != 0)
   1870		reg_write(lanai, ack, IntAck_Reg);
   1871}
   1872
   1873static irqreturn_t lanai_int(int irq, void *devid)
   1874{
   1875	struct lanai_dev *lanai = devid;
   1876	u32 reason;
   1877
   1878#ifdef USE_POWERDOWN
   1879	/*
   1880	 * If we're powered down we shouldn't be generating any interrupts -
   1881	 * so assume that this is a shared interrupt line and it's for someone
   1882	 * else
   1883	 */
   1884	if (unlikely(lanai->conf1 & CONFIG1_POWERDOWN))
   1885		return IRQ_NONE;
   1886#endif
   1887
   1888	reason = intr_pending(lanai);
   1889	if (reason == 0)
   1890		return IRQ_NONE;	/* Must be for someone else */
   1891
   1892	do {
   1893		if (unlikely(reason == 0xFFFFFFFF))
   1894			break;		/* Maybe we've been unplugged? */
   1895		lanai_int_1(lanai, reason);
   1896		reason = intr_pending(lanai);
   1897	} while (reason != 0);
   1898
   1899	return IRQ_HANDLED;
   1900}
   1901
   1902/* TODO - it would be nice if we could use the "delayed interrupt" system
   1903 *   to some advantage
   1904 */
   1905
   1906/* -------------------- CHECK BOARD ID/REV: */
   1907
   1908/*
   1909 * The board id and revision are stored both in the reset register and
   1910 * in the PCI configuration space - the documentation says to check
   1911 * each of them.  If revp!=NULL we store the revision there
   1912 */
   1913static int check_board_id_and_rev(const char *name, u32 val, int *revp)
   1914{
   1915	DPRINTK("%s says board_id=%d, board_rev=%d\n", name,
   1916		(int) RESET_GET_BOARD_ID(val),
   1917		(int) RESET_GET_BOARD_REV(val));
   1918	if (RESET_GET_BOARD_ID(val) != BOARD_ID_LANAI256) {
   1919		printk(KERN_ERR DEV_LABEL ": Found %s board-id %d -- not a "
   1920		    "Lanai 25.6\n", name, (int) RESET_GET_BOARD_ID(val));
   1921		return -ENODEV;
   1922	}
   1923	if (revp != NULL)
   1924		*revp = RESET_GET_BOARD_REV(val);
   1925	return 0;
   1926}
   1927
   1928/* -------------------- PCI INITIALIZATION/SHUTDOWN: */
   1929
   1930static int lanai_pci_start(struct lanai_dev *lanai)
   1931{
   1932	struct pci_dev *pci = lanai->pci;
   1933	int result;
   1934
   1935	if (pci_enable_device(pci) != 0) {
   1936		printk(KERN_ERR DEV_LABEL "(itf %d): can't enable "
   1937		    "PCI device", lanai->number);
   1938		return -ENXIO;
   1939	}
   1940	pci_set_master(pci);
   1941	if (dma_set_mask_and_coherent(&pci->dev, DMA_BIT_MASK(32)) != 0) {
   1942		printk(KERN_WARNING DEV_LABEL
   1943		    "(itf %d): No suitable DMA available.\n", lanai->number);
   1944		return -EBUSY;
   1945	}
   1946	result = check_board_id_and_rev("PCI", pci->subsystem_device, NULL);
   1947	if (result != 0)
   1948		return result;
   1949	/* Set latency timer to zero as per lanai docs */
   1950	result = pci_write_config_byte(pci, PCI_LATENCY_TIMER, 0);
   1951	if (result != PCIBIOS_SUCCESSFUL) {
   1952		printk(KERN_ERR DEV_LABEL "(itf %d): can't write "
   1953		    "PCI_LATENCY_TIMER: %d\n", lanai->number, result);
   1954		return -EINVAL;
   1955	}
   1956	pcistatus_check(lanai, 1);
   1957	pcistatus_check(lanai, 0);
   1958	return 0;
   1959}
   1960
   1961/* -------------------- VPI/VCI ALLOCATION: */
   1962
   1963/*
   1964 * We _can_ use VCI==0 for normal traffic, but only for UBR (or we'll
   1965 * get a CBRZERO interrupt), and we can use it only if no one is receiving
   1966 * AAL0 traffic (since they will use the same queue) - according to the
   1967 * docs we shouldn't even use it for AAL0 traffic
   1968 */
   1969static inline int vci0_is_ok(struct lanai_dev *lanai,
   1970	const struct atm_qos *qos)
   1971{
   1972	if (qos->txtp.traffic_class == ATM_CBR || qos->aal == ATM_AAL0)
   1973		return 0;
   1974	if (qos->rxtp.traffic_class != ATM_NONE) {
   1975		if (lanai->naal0 != 0)
   1976			return 0;
   1977		lanai->conf2 |= CONFIG2_VCI0_NORMAL;
   1978		conf2_write_if_powerup(lanai);
   1979	}
   1980	return 1;
   1981}
   1982
   1983/* return true if vci is currently unused, or if requested qos is
   1984 * compatible
   1985 */
   1986static int vci_is_ok(struct lanai_dev *lanai, vci_t vci,
   1987	const struct atm_vcc *atmvcc)
   1988{
   1989	const struct atm_qos *qos = &atmvcc->qos;
   1990	const struct lanai_vcc *lvcc = lanai->vccs[vci];
   1991	if (vci == 0 && !vci0_is_ok(lanai, qos))
   1992		return 0;
   1993	if (unlikely(lvcc != NULL)) {
   1994		if (qos->rxtp.traffic_class != ATM_NONE &&
   1995		    lvcc->rx.atmvcc != NULL && lvcc->rx.atmvcc != atmvcc)
   1996			return 0;
   1997		if (qos->txtp.traffic_class != ATM_NONE &&
   1998		    lvcc->tx.atmvcc != NULL && lvcc->tx.atmvcc != atmvcc)
   1999			return 0;
   2000		if (qos->txtp.traffic_class == ATM_CBR &&
   2001		    lanai->cbrvcc != NULL && lanai->cbrvcc != atmvcc)
   2002			return 0;
   2003	}
   2004	if (qos->aal == ATM_AAL0 && lanai->naal0 == 0 &&
   2005	    qos->rxtp.traffic_class != ATM_NONE) {
   2006		const struct lanai_vcc *vci0 = lanai->vccs[0];
   2007		if (vci0 != NULL && vci0->rx.atmvcc != NULL)
   2008			return 0;
   2009		lanai->conf2 &= ~CONFIG2_VCI0_NORMAL;
   2010		conf2_write_if_powerup(lanai);
   2011	}
   2012	return 1;
   2013}
   2014
   2015static int lanai_normalize_ci(struct lanai_dev *lanai,
   2016	const struct atm_vcc *atmvcc, short *vpip, vci_t *vcip)
   2017{
   2018	switch (*vpip) {
   2019		case ATM_VPI_ANY:
   2020			*vpip = 0;
   2021			fallthrough;
   2022		case 0:
   2023			break;
   2024		default:
   2025			return -EADDRINUSE;
   2026	}
   2027	switch (*vcip) {
   2028		case ATM_VCI_ANY:
   2029			for (*vcip = ATM_NOT_RSV_VCI; *vcip < lanai->num_vci;
   2030			    (*vcip)++)
   2031				if (vci_is_ok(lanai, *vcip, atmvcc))
   2032					return 0;
   2033			return -EADDRINUSE;
   2034		default:
   2035			if (*vcip >= lanai->num_vci || *vcip < 0 ||
   2036			    !vci_is_ok(lanai, *vcip, atmvcc))
   2037				return -EADDRINUSE;
   2038	}
   2039	return 0;
   2040}
   2041
   2042/* -------------------- MANAGE CBR: */
   2043
   2044/*
   2045 * CBR ICG is stored as a fixed-point number with 4 fractional bits.
   2046 * Note that storing a number greater than 2046.0 will result in
   2047 * incorrect shaping
   2048 */
   2049#define CBRICG_FRAC_BITS	(4)
   2050#define CBRICG_MAX		(2046 << CBRICG_FRAC_BITS)
   2051
   2052/*
   2053 * ICG is related to PCR with the formula PCR = MAXPCR / (ICG + 1)
   2054 * where MAXPCR is (according to the docs) 25600000/(54*8),
   2055 * which is equal to (3125<<9)/27.
   2056 *
   2057 * Solving for ICG, we get:
   2058 *    ICG = MAXPCR/PCR - 1
   2059 *    ICG = (3125<<9)/(27*PCR) - 1
   2060 *    ICG = ((3125<<9) - (27*PCR)) / (27*PCR)
   2061 *
   2062 * The end result is supposed to be a fixed-point number with FRAC_BITS
   2063 * bits of a fractional part, so we keep everything in the numerator
   2064 * shifted by that much as we compute
   2065 *
   2066 */
   2067static int pcr_to_cbricg(const struct atm_qos *qos)
   2068{
   2069	int rounddown = 0;	/* 1 = Round PCR down, i.e. round ICG _up_ */
   2070	int x, icg, pcr = atm_pcr_goal(&qos->txtp);
   2071	if (pcr == 0)		/* Use maximum bandwidth */
   2072		return 0;
   2073	if (pcr < 0) {
   2074		rounddown = 1;
   2075		pcr = -pcr;
   2076	}
   2077	x = pcr * 27;
   2078	icg = (3125 << (9 + CBRICG_FRAC_BITS)) - (x << CBRICG_FRAC_BITS);
   2079	if (rounddown)
   2080		icg += x - 1;
   2081	icg /= x;
   2082	if (icg > CBRICG_MAX)
   2083		icg = CBRICG_MAX;
   2084	DPRINTK("pcr_to_cbricg: pcr=%d rounddown=%c icg=%d\n",
   2085	    pcr, rounddown ? 'Y' : 'N', icg);
   2086	return icg;
   2087}
   2088
   2089static inline void lanai_cbr_setup(struct lanai_dev *lanai)
   2090{
   2091	reg_write(lanai, pcr_to_cbricg(&lanai->cbrvcc->qos), CBR_ICG_Reg);
   2092	reg_write(lanai, lanai->cbrvcc->vci, CBR_PTR_Reg);
   2093	lanai->conf2 |= CONFIG2_CBR_ENABLE;
   2094	conf2_write(lanai);
   2095}
   2096
   2097static inline void lanai_cbr_shutdown(struct lanai_dev *lanai)
   2098{
   2099	lanai->conf2 &= ~CONFIG2_CBR_ENABLE;
   2100	conf2_write(lanai);
   2101}
   2102
   2103/* -------------------- OPERATIONS: */
   2104
   2105/* setup a newly detected device */
   2106static int lanai_dev_open(struct atm_dev *atmdev)
   2107{
   2108	struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data;
   2109	unsigned long raw_base;
   2110	int result;
   2111
   2112	DPRINTK("In lanai_dev_open()\n");
   2113	/* Basic device fields */
   2114	lanai->number = atmdev->number;
   2115	lanai->num_vci = NUM_VCI;
   2116	bitmap_zero(lanai->backlog_vccs, NUM_VCI);
   2117	bitmap_zero(lanai->transmit_ready, NUM_VCI);
   2118	lanai->naal0 = 0;
   2119#ifdef USE_POWERDOWN
   2120	lanai->nbound = 0;
   2121#endif
   2122	lanai->cbrvcc = NULL;
   2123	memset(&lanai->stats, 0, sizeof lanai->stats);
   2124	spin_lock_init(&lanai->endtxlock);
   2125	spin_lock_init(&lanai->servicelock);
   2126	atmdev->ci_range.vpi_bits = 0;
   2127	atmdev->ci_range.vci_bits = 0;
   2128	while (1 << atmdev->ci_range.vci_bits < lanai->num_vci)
   2129		atmdev->ci_range.vci_bits++;
   2130	atmdev->link_rate = ATM_25_PCR;
   2131
   2132	/* 3.2: PCI initialization */
   2133	if ((result = lanai_pci_start(lanai)) != 0)
   2134		goto error;
   2135	raw_base = lanai->pci->resource[0].start;
   2136	lanai->base = (bus_addr_t) ioremap(raw_base, LANAI_MAPPING_SIZE);
   2137	if (lanai->base == NULL) {
   2138		printk(KERN_ERR DEV_LABEL ": couldn't remap I/O space\n");
   2139		result = -ENOMEM;
   2140		goto error_pci;
   2141	}
   2142	/* 3.3: Reset lanai and PHY */
   2143	reset_board(lanai);
   2144	lanai->conf1 = reg_read(lanai, Config1_Reg);
   2145	lanai->conf1 &= ~(CONFIG1_GPOUT1 | CONFIG1_POWERDOWN |
   2146	    CONFIG1_MASK_LEDMODE);
   2147	lanai->conf1 |= CONFIG1_SET_LEDMODE(LEDMODE_NOT_SOOL);
   2148	reg_write(lanai, lanai->conf1 | CONFIG1_GPOUT1, Config1_Reg);
   2149	udelay(1000);
   2150	conf1_write(lanai);
   2151
   2152	/*
   2153	 * 3.4: Turn on endian mode for big-endian hardware
   2154	 *   We don't actually want to do this - the actual bit fields
   2155	 *   in the endian register are not documented anywhere.
   2156	 *   Instead we do the bit-flipping ourselves on big-endian
   2157	 *   hardware.
   2158	 *
   2159	 * 3.5: get the board ID/rev by reading the reset register
   2160	 */
   2161	result = check_board_id_and_rev("register",
   2162	    reg_read(lanai, Reset_Reg), &lanai->board_rev);
   2163	if (result != 0)
   2164		goto error_unmap;
   2165
   2166	/* 3.6: read EEPROM */
   2167	if ((result = eeprom_read(lanai)) != 0)
   2168		goto error_unmap;
   2169	if ((result = eeprom_validate(lanai)) != 0)
   2170		goto error_unmap;
   2171
   2172	/* 3.7: re-reset PHY, do loopback tests, setup PHY */
   2173	reg_write(lanai, lanai->conf1 | CONFIG1_GPOUT1, Config1_Reg);
   2174	udelay(1000);
   2175	conf1_write(lanai);
   2176	/* TODO - loopback tests */
   2177	lanai->conf1 |= (CONFIG1_GPOUT2 | CONFIG1_GPOUT3 | CONFIG1_DMA_ENABLE);
   2178	conf1_write(lanai);
   2179
   2180	/* 3.8/3.9: test and initialize card SRAM */
   2181	if ((result = sram_test_and_clear(lanai)) != 0)
   2182		goto error_unmap;
   2183
   2184	/* 3.10: initialize lanai registers */
   2185	lanai->conf1 |= CONFIG1_DMA_ENABLE;
   2186	conf1_write(lanai);
   2187	if ((result = service_buffer_allocate(lanai)) != 0)
   2188		goto error_unmap;
   2189	if ((result = vcc_table_allocate(lanai)) != 0)
   2190		goto error_service;
   2191	lanai->conf2 = (lanai->num_vci >= 512 ? CONFIG2_HOWMANY : 0) |
   2192	    CONFIG2_HEC_DROP |	/* ??? */ CONFIG2_PTI7_MODE;
   2193	conf2_write(lanai);
   2194	reg_write(lanai, TX_FIFO_DEPTH, TxDepth_Reg);
   2195	reg_write(lanai, 0, CBR_ICG_Reg);	/* CBR defaults to no limit */
   2196	if ((result = request_irq(lanai->pci->irq, lanai_int, IRQF_SHARED,
   2197	    DEV_LABEL, lanai)) != 0) {
   2198		printk(KERN_ERR DEV_LABEL ": can't allocate interrupt\n");
   2199		goto error_vcctable;
   2200	}
   2201	mb();				/* Make sure that all that made it */
   2202	intr_enable(lanai, INT_ALL & ~(INT_PING | INT_WAKE));
   2203	/* 3.11: initialize loop mode (i.e. turn looping off) */
   2204	lanai->conf1 = (lanai->conf1 & ~CONFIG1_MASK_LOOPMODE) |
   2205	    CONFIG1_SET_LOOPMODE(LOOPMODE_NORMAL) |
   2206	    CONFIG1_GPOUT2 | CONFIG1_GPOUT3;
   2207	conf1_write(lanai);
   2208	lanai->status = reg_read(lanai, Status_Reg);
   2209	/* We're now done initializing this card */
   2210#ifdef USE_POWERDOWN
   2211	lanai->conf1 |= CONFIG1_POWERDOWN;
   2212	conf1_write(lanai);
   2213#endif
   2214	memcpy(atmdev->esi, eeprom_mac(lanai), ESI_LEN);
   2215	lanai_timed_poll_start(lanai);
   2216	printk(KERN_NOTICE DEV_LABEL "(itf %d): rev.%d, base=%p, irq=%u "
   2217		"(%pMF)\n", lanai->number, (int) lanai->pci->revision,
   2218		lanai->base, lanai->pci->irq, atmdev->esi);
   2219	printk(KERN_NOTICE DEV_LABEL "(itf %d): LANAI%s, serialno=%u(0x%X), "
   2220	    "board_rev=%d\n", lanai->number,
   2221	    lanai->type==lanai2 ? "2" : "HB", (unsigned int) lanai->serialno,
   2222	    (unsigned int) lanai->serialno, lanai->board_rev);
   2223	return 0;
   2224
   2225    error_vcctable:
   2226	vcc_table_deallocate(lanai);
   2227    error_service:
   2228	service_buffer_deallocate(lanai);
   2229    error_unmap:
   2230	reset_board(lanai);
   2231#ifdef USE_POWERDOWN
   2232	lanai->conf1 = reg_read(lanai, Config1_Reg) | CONFIG1_POWERDOWN;
   2233	conf1_write(lanai);
   2234#endif
   2235	iounmap(lanai->base);
   2236	lanai->base = NULL;
   2237    error_pci:
   2238	pci_disable_device(lanai->pci);
   2239    error:
   2240	return result;
   2241}
   2242
   2243/* called when device is being shutdown, and all vcc's are gone - higher
   2244 * levels will deallocate the atm device for us
   2245 */
   2246static void lanai_dev_close(struct atm_dev *atmdev)
   2247{
   2248	struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data;
   2249	if (lanai->base==NULL)
   2250		return;
   2251	printk(KERN_INFO DEV_LABEL "(itf %d): shutting down interface\n",
   2252	    lanai->number);
   2253	lanai_timed_poll_stop(lanai);
   2254#ifdef USE_POWERDOWN
   2255	lanai->conf1 = reg_read(lanai, Config1_Reg) & ~CONFIG1_POWERDOWN;
   2256	conf1_write(lanai);
   2257#endif
   2258	intr_disable(lanai, INT_ALL);
   2259	free_irq(lanai->pci->irq, lanai);
   2260	reset_board(lanai);
   2261#ifdef USE_POWERDOWN
   2262	lanai->conf1 |= CONFIG1_POWERDOWN;
   2263	conf1_write(lanai);
   2264#endif
   2265	pci_disable_device(lanai->pci);
   2266	vcc_table_deallocate(lanai);
   2267	service_buffer_deallocate(lanai);
   2268	iounmap(lanai->base);
   2269	kfree(lanai);
   2270}
   2271
   2272/* close a vcc */
   2273static void lanai_close(struct atm_vcc *atmvcc)
   2274{
   2275	struct lanai_vcc *lvcc = (struct lanai_vcc *) atmvcc->dev_data;
   2276	struct lanai_dev *lanai = (struct lanai_dev *) atmvcc->dev->dev_data;
   2277	if (lvcc == NULL)
   2278		return;
   2279	clear_bit(ATM_VF_READY, &atmvcc->flags);
   2280	clear_bit(ATM_VF_PARTIAL, &atmvcc->flags);
   2281	if (lvcc->rx.atmvcc == atmvcc) {
   2282		lanai_shutdown_rx_vci(lvcc);
   2283		if (atmvcc->qos.aal == ATM_AAL0) {
   2284			if (--lanai->naal0 <= 0)
   2285				aal0_buffer_free(lanai);
   2286		} else
   2287			lanai_buf_deallocate(&lvcc->rx.buf, lanai->pci);
   2288		lvcc->rx.atmvcc = NULL;
   2289	}
   2290	if (lvcc->tx.atmvcc == atmvcc) {
   2291		if (atmvcc == lanai->cbrvcc) {
   2292			if (lvcc->vbase != NULL)
   2293				lanai_cbr_shutdown(lanai);
   2294			lanai->cbrvcc = NULL;
   2295		}
   2296		lanai_shutdown_tx_vci(lanai, lvcc);
   2297		lanai_buf_deallocate(&lvcc->tx.buf, lanai->pci);
   2298		lvcc->tx.atmvcc = NULL;
   2299	}
   2300	if (--lvcc->nref == 0) {
   2301		host_vcc_unbind(lanai, lvcc);
   2302		kfree(lvcc);
   2303	}
   2304	atmvcc->dev_data = NULL;
   2305	clear_bit(ATM_VF_ADDR, &atmvcc->flags);
   2306}
   2307
   2308/* open a vcc on the card to vpi/vci */
   2309static int lanai_open(struct atm_vcc *atmvcc)
   2310{
   2311	struct lanai_dev *lanai;
   2312	struct lanai_vcc *lvcc;
   2313	int result = 0;
   2314	int vci = atmvcc->vci;
   2315	short vpi = atmvcc->vpi;
   2316	/* we don't support partial open - it's not really useful anyway */
   2317	if ((test_bit(ATM_VF_PARTIAL, &atmvcc->flags)) ||
   2318	    (vpi == ATM_VPI_UNSPEC) || (vci == ATM_VCI_UNSPEC))
   2319		return -EINVAL;
   2320	lanai = (struct lanai_dev *) atmvcc->dev->dev_data;
   2321	result = lanai_normalize_ci(lanai, atmvcc, &vpi, &vci);
   2322	if (unlikely(result != 0))
   2323		goto out;
   2324	set_bit(ATM_VF_ADDR, &atmvcc->flags);
   2325	if (atmvcc->qos.aal != ATM_AAL0 && atmvcc->qos.aal != ATM_AAL5)
   2326		return -EINVAL;
   2327	DPRINTK(DEV_LABEL "(itf %d): open %d.%d\n", lanai->number,
   2328	    (int) vpi, vci);
   2329	lvcc = lanai->vccs[vci];
   2330	if (lvcc == NULL) {
   2331		lvcc = new_lanai_vcc();
   2332		if (unlikely(lvcc == NULL))
   2333			return -ENOMEM;
   2334		atmvcc->dev_data = lvcc;
   2335	}
   2336	lvcc->nref++;
   2337	if (atmvcc->qos.rxtp.traffic_class != ATM_NONE) {
   2338		APRINTK(lvcc->rx.atmvcc == NULL, "rx.atmvcc!=NULL, vci=%d\n",
   2339		    vci);
   2340		if (atmvcc->qos.aal == ATM_AAL0) {
   2341			if (lanai->naal0 == 0)
   2342				result = aal0_buffer_allocate(lanai);
   2343		} else
   2344			result = lanai_setup_rx_vci_aal5(
   2345			    lanai, lvcc, &atmvcc->qos);
   2346		if (unlikely(result != 0))
   2347			goto out_free;
   2348		lvcc->rx.atmvcc = atmvcc;
   2349		lvcc->stats.rx_nomem = 0;
   2350		lvcc->stats.x.aal5.rx_badlen = 0;
   2351		lvcc->stats.x.aal5.service_trash = 0;
   2352		lvcc->stats.x.aal5.service_stream = 0;
   2353		lvcc->stats.x.aal5.service_rxcrc = 0;
   2354		if (atmvcc->qos.aal == ATM_AAL0)
   2355			lanai->naal0++;
   2356	}
   2357	if (atmvcc->qos.txtp.traffic_class != ATM_NONE) {
   2358		APRINTK(lvcc->tx.atmvcc == NULL, "tx.atmvcc!=NULL, vci=%d\n",
   2359		    vci);
   2360		result = lanai_setup_tx_vci(lanai, lvcc, &atmvcc->qos);
   2361		if (unlikely(result != 0))
   2362			goto out_free;
   2363		lvcc->tx.atmvcc = atmvcc;
   2364		if (atmvcc->qos.txtp.traffic_class == ATM_CBR) {
   2365			APRINTK(lanai->cbrvcc == NULL,
   2366			    "cbrvcc!=NULL, vci=%d\n", vci);
   2367			lanai->cbrvcc = atmvcc;
   2368		}
   2369	}
   2370	host_vcc_bind(lanai, lvcc, vci);
   2371	/*
   2372	 * Make sure everything made it to RAM before we tell the card about
   2373	 * the VCC
   2374	 */
   2375	wmb();
   2376	if (atmvcc == lvcc->rx.atmvcc)
   2377		host_vcc_start_rx(lvcc);
   2378	if (atmvcc == lvcc->tx.atmvcc) {
   2379		host_vcc_start_tx(lvcc);
   2380		if (lanai->cbrvcc == atmvcc)
   2381			lanai_cbr_setup(lanai);
   2382	}
   2383	set_bit(ATM_VF_READY, &atmvcc->flags);
   2384	return 0;
   2385    out_free:
   2386	lanai_close(atmvcc);
   2387    out:
   2388	return result;
   2389}
   2390
   2391static int lanai_send(struct atm_vcc *atmvcc, struct sk_buff *skb)
   2392{
   2393	struct lanai_vcc *lvcc = (struct lanai_vcc *) atmvcc->dev_data;
   2394	struct lanai_dev *lanai = (struct lanai_dev *) atmvcc->dev->dev_data;
   2395	unsigned long flags;
   2396	if (unlikely(lvcc == NULL || lvcc->vbase == NULL ||
   2397	      lvcc->tx.atmvcc != atmvcc))
   2398		goto einval;
   2399#ifdef DEBUG
   2400	if (unlikely(skb == NULL)) {
   2401		DPRINTK("lanai_send: skb==NULL for vci=%d\n", atmvcc->vci);
   2402		goto einval;
   2403	}
   2404	if (unlikely(lanai == NULL)) {
   2405		DPRINTK("lanai_send: lanai==NULL for vci=%d\n", atmvcc->vci);
   2406		goto einval;
   2407	}
   2408#endif
   2409	ATM_SKB(skb)->vcc = atmvcc;
   2410	switch (atmvcc->qos.aal) {
   2411		case ATM_AAL5:
   2412			read_lock_irqsave(&vcc_sklist_lock, flags);
   2413			vcc_tx_aal5(lanai, lvcc, skb);
   2414			read_unlock_irqrestore(&vcc_sklist_lock, flags);
   2415			return 0;
   2416		case ATM_AAL0:
   2417			if (unlikely(skb->len != ATM_CELL_SIZE-1))
   2418				goto einval;
   2419  /* NOTE - this next line is technically invalid - we haven't unshared skb */
   2420			cpu_to_be32s((u32 *) skb->data);
   2421			read_lock_irqsave(&vcc_sklist_lock, flags);
   2422			vcc_tx_aal0(lanai, lvcc, skb);
   2423			read_unlock_irqrestore(&vcc_sklist_lock, flags);
   2424			return 0;
   2425	}
   2426	DPRINTK("lanai_send: bad aal=%d on vci=%d\n", (int) atmvcc->qos.aal,
   2427	    atmvcc->vci);
   2428    einval:
   2429	lanai_free_skb(atmvcc, skb);
   2430	return -EINVAL;
   2431}
   2432
   2433static int lanai_change_qos(struct atm_vcc *atmvcc,
   2434	/*const*/ struct atm_qos *qos, int flags)
   2435{
   2436	return -EBUSY;		/* TODO: need to write this */
   2437}
   2438
   2439#ifndef CONFIG_PROC_FS
   2440#define lanai_proc_read NULL
   2441#else
   2442static int lanai_proc_read(struct atm_dev *atmdev, loff_t *pos, char *page)
   2443{
   2444	struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data;
   2445	loff_t left = *pos;
   2446	struct lanai_vcc *lvcc;
   2447	if (left-- == 0)
   2448		return sprintf(page, DEV_LABEL "(itf %d): chip=LANAI%s, "
   2449		    "serial=%u, magic=0x%08X, num_vci=%d\n",
   2450		    atmdev->number, lanai->type==lanai2 ? "2" : "HB",
   2451		    (unsigned int) lanai->serialno,
   2452		    (unsigned int) lanai->magicno, lanai->num_vci);
   2453	if (left-- == 0)
   2454		return sprintf(page, "revision: board=%d, pci_if=%d\n",
   2455		    lanai->board_rev, (int) lanai->pci->revision);
   2456	if (left-- == 0)
   2457		return sprintf(page, "EEPROM ESI: %pM\n",
   2458		    &lanai->eeprom[EEPROM_MAC]);
   2459	if (left-- == 0)
   2460		return sprintf(page, "status: SOOL=%d, LOCD=%d, LED=%d, "
   2461		    "GPIN=%d\n", (lanai->status & STATUS_SOOL) ? 1 : 0,
   2462		    (lanai->status & STATUS_LOCD) ? 1 : 0,
   2463		    (lanai->status & STATUS_LED) ? 1 : 0,
   2464		    (lanai->status & STATUS_GPIN) ? 1 : 0);
   2465	if (left-- == 0)
   2466		return sprintf(page, "global buffer sizes: service=%zu, "
   2467		    "aal0_rx=%zu\n", lanai_buf_size(&lanai->service),
   2468		    lanai->naal0 ? lanai_buf_size(&lanai->aal0buf) : 0);
   2469	if (left-- == 0) {
   2470		get_statistics(lanai);
   2471		return sprintf(page, "cells in error: overflow=%u, "
   2472		    "closed_vci=%u, bad_HEC=%u, rx_fifo=%u\n",
   2473		    lanai->stats.ovfl_trash, lanai->stats.vci_trash,
   2474		    lanai->stats.hec_err, lanai->stats.atm_ovfl);
   2475	}
   2476	if (left-- == 0)
   2477		return sprintf(page, "PCI errors: parity_detect=%u, "
   2478		    "master_abort=%u, master_target_abort=%u,\n",
   2479		    lanai->stats.pcierr_parity_detect,
   2480		    lanai->stats.pcierr_serr_set,
   2481		    lanai->stats.pcierr_m_target_abort);
   2482	if (left-- == 0)
   2483		return sprintf(page, "            slave_target_abort=%u, "
   2484		    "master_parity=%u\n", lanai->stats.pcierr_s_target_abort,
   2485		    lanai->stats.pcierr_master_parity);
   2486	if (left-- == 0)
   2487		return sprintf(page, "                     no_tx=%u, "
   2488		    "no_rx=%u, bad_rx_aal=%u\n", lanai->stats.service_norx,
   2489		    lanai->stats.service_notx,
   2490		    lanai->stats.service_rxnotaal5);
   2491	if (left-- == 0)
   2492		return sprintf(page, "resets: dma=%u, card=%u\n",
   2493		    lanai->stats.dma_reenable, lanai->stats.card_reset);
   2494	/* At this point, "left" should be the VCI we're looking for */
   2495	read_lock(&vcc_sklist_lock);
   2496	for (; ; left++) {
   2497		if (left >= NUM_VCI) {
   2498			left = 0;
   2499			goto out;
   2500		}
   2501		if ((lvcc = lanai->vccs[left]) != NULL)
   2502			break;
   2503		(*pos)++;
   2504	}
   2505	/* Note that we re-use "left" here since we're done with it */
   2506	left = sprintf(page, "VCI %4d: nref=%d, rx_nomem=%u",  (vci_t) left,
   2507	    lvcc->nref, lvcc->stats.rx_nomem);
   2508	if (lvcc->rx.atmvcc != NULL) {
   2509		left += sprintf(&page[left], ",\n          rx_AAL=%d",
   2510		    lvcc->rx.atmvcc->qos.aal == ATM_AAL5 ? 5 : 0);
   2511		if (lvcc->rx.atmvcc->qos.aal == ATM_AAL5)
   2512			left += sprintf(&page[left], ", rx_buf_size=%zu, "
   2513			    "rx_bad_len=%u,\n          rx_service_trash=%u, "
   2514			    "rx_service_stream=%u, rx_bad_crc=%u",
   2515			    lanai_buf_size(&lvcc->rx.buf),
   2516			    lvcc->stats.x.aal5.rx_badlen,
   2517			    lvcc->stats.x.aal5.service_trash,
   2518			    lvcc->stats.x.aal5.service_stream,
   2519			    lvcc->stats.x.aal5.service_rxcrc);
   2520	}
   2521	if (lvcc->tx.atmvcc != NULL)
   2522		left += sprintf(&page[left], ",\n          tx_AAL=%d, "
   2523		    "tx_buf_size=%zu, tx_qos=%cBR, tx_backlogged=%c",
   2524		    lvcc->tx.atmvcc->qos.aal == ATM_AAL5 ? 5 : 0,
   2525		    lanai_buf_size(&lvcc->tx.buf),
   2526		    lvcc->tx.atmvcc == lanai->cbrvcc ? 'C' : 'U',
   2527		    vcc_is_backlogged(lvcc) ? 'Y' : 'N');
   2528	page[left++] = '\n';
   2529	page[left] = '\0';
   2530    out:
   2531	read_unlock(&vcc_sklist_lock);
   2532	return left;
   2533}
   2534#endif /* CONFIG_PROC_FS */
   2535
   2536/* -------------------- HOOKS: */
   2537
   2538static const struct atmdev_ops ops = {
   2539	.dev_close	= lanai_dev_close,
   2540	.open		= lanai_open,
   2541	.close		= lanai_close,
   2542	.send		= lanai_send,
   2543	.phy_put	= NULL,
   2544	.phy_get	= NULL,
   2545	.change_qos	= lanai_change_qos,
   2546	.proc_read	= lanai_proc_read,
   2547	.owner		= THIS_MODULE
   2548};
   2549
   2550/* initialize one probed card */
   2551static int lanai_init_one(struct pci_dev *pci,
   2552			  const struct pci_device_id *ident)
   2553{
   2554	struct lanai_dev *lanai;
   2555	struct atm_dev *atmdev;
   2556	int result;
   2557
   2558	lanai = kzalloc(sizeof(*lanai), GFP_KERNEL);
   2559	if (lanai == NULL) {
   2560		printk(KERN_ERR DEV_LABEL
   2561		       ": couldn't allocate dev_data structure!\n");
   2562		return -ENOMEM;
   2563	}
   2564
   2565	atmdev = atm_dev_register(DEV_LABEL, &pci->dev, &ops, -1, NULL);
   2566	if (atmdev == NULL) {
   2567		printk(KERN_ERR DEV_LABEL
   2568		    ": couldn't register atm device!\n");
   2569		kfree(lanai);
   2570		return -EBUSY;
   2571	}
   2572
   2573	atmdev->dev_data = lanai;
   2574	lanai->pci = pci;
   2575	lanai->type = (enum lanai_type) ident->device;
   2576
   2577	result = lanai_dev_open(atmdev);
   2578	if (result != 0) {
   2579		DPRINTK("lanai_start() failed, err=%d\n", -result);
   2580		atm_dev_deregister(atmdev);
   2581		kfree(lanai);
   2582	}
   2583	return result;
   2584}
   2585
   2586static const struct pci_device_id lanai_pci_tbl[] = {
   2587	{ PCI_VDEVICE(EF, PCI_DEVICE_ID_EF_ATM_LANAI2) },
   2588	{ PCI_VDEVICE(EF, PCI_DEVICE_ID_EF_ATM_LANAIHB) },
   2589	{ 0, }	/* terminal entry */
   2590};
   2591MODULE_DEVICE_TABLE(pci, lanai_pci_tbl);
   2592
   2593static struct pci_driver lanai_driver = {
   2594	.name     = DEV_LABEL,
   2595	.id_table = lanai_pci_tbl,
   2596	.probe    = lanai_init_one,
   2597};
   2598
   2599module_pci_driver(lanai_driver);
   2600
   2601MODULE_AUTHOR("Mitchell Blank Jr <mitch@sfgoth.com>");
   2602MODULE_DESCRIPTION("Efficient Networks Speedstream 3010 driver");
   2603MODULE_LICENSE("GPL");