cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

nicstar.c (74560B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * nicstar.c
      4 *
      5 * Device driver supporting CBR for IDT 77201/77211 "NICStAR" based cards.
      6 *
      7 * IMPORTANT: The included file nicstarmac.c was NOT WRITTEN BY ME.
      8 *            It was taken from the frle-0.22 device driver.
      9 *            As the file doesn't have a copyright notice, in the file
     10 *            nicstarmac.copyright I put the copyright notice from the
     11 *            frle-0.22 device driver.
     12 *            Some code is based on the nicstar driver by M. Welsh.
     13 *
     14 * Author: Rui Prior (rprior@inescn.pt)
     15 * PowerPC support by Jay Talbott (jay_talbott@mcg.mot.com) April 1999
     16 *
     17 *
     18 * (C) INESC 1999
     19 */
     20
     21/*
     22 * IMPORTANT INFORMATION
     23 *
     24 * There are currently three types of spinlocks:
     25 *
     26 * 1 - Per card interrupt spinlock (to protect structures and such)
     27 * 2 - Per SCQ scq spinlock
     28 * 3 - Per card resource spinlock (to access registers, etc.)
     29 *
     30 * These must NEVER be grabbed in reverse order.
     31 *
     32 */
     33
     34/* Header files */
     35
     36#include <linux/module.h>
     37#include <linux/kernel.h>
     38#include <linux/skbuff.h>
     39#include <linux/atmdev.h>
     40#include <linux/atm.h>
     41#include <linux/pci.h>
     42#include <linux/dma-mapping.h>
     43#include <linux/types.h>
     44#include <linux/string.h>
     45#include <linux/delay.h>
     46#include <linux/init.h>
     47#include <linux/sched.h>
     48#include <linux/timer.h>
     49#include <linux/interrupt.h>
     50#include <linux/bitops.h>
     51#include <linux/slab.h>
     52#include <linux/idr.h>
     53#include <asm/io.h>
     54#include <linux/uaccess.h>
     55#include <linux/atomic.h>
     56#include <linux/etherdevice.h>
     57#include "nicstar.h"
     58#ifdef CONFIG_ATM_NICSTAR_USE_SUNI
     59#include "suni.h"
     60#endif /* CONFIG_ATM_NICSTAR_USE_SUNI */
     61#ifdef CONFIG_ATM_NICSTAR_USE_IDT77105
     62#include "idt77105.h"
     63#endif /* CONFIG_ATM_NICSTAR_USE_IDT77105 */
     64
     65/* Additional code */
     66
     67#include "nicstarmac.c"
     68
     69/* Configurable parameters */
     70
     71#undef PHY_LOOPBACK
     72#undef TX_DEBUG
     73#undef RX_DEBUG
     74#undef GENERAL_DEBUG
     75#undef EXTRA_DEBUG
     76
     77/* Do not touch these */
     78
     79#ifdef TX_DEBUG
     80#define TXPRINTK(args...) printk(args)
     81#else
     82#define TXPRINTK(args...)
     83#endif /* TX_DEBUG */
     84
     85#ifdef RX_DEBUG
     86#define RXPRINTK(args...) printk(args)
     87#else
     88#define RXPRINTK(args...)
     89#endif /* RX_DEBUG */
     90
     91#ifdef GENERAL_DEBUG
     92#define PRINTK(args...) printk(args)
     93#else
     94#define PRINTK(args...) do {} while (0)
     95#endif /* GENERAL_DEBUG */
     96
     97#ifdef EXTRA_DEBUG
     98#define XPRINTK(args...) printk(args)
     99#else
    100#define XPRINTK(args...)
    101#endif /* EXTRA_DEBUG */
    102
    103/* Macros */
    104
    105#define CMD_BUSY(card) (readl((card)->membase + STAT) & NS_STAT_CMDBZ)
    106
    107#define NS_DELAY mdelay(1)
    108
    109#define PTR_DIFF(a, b)	((u32)((unsigned long)(a) - (unsigned long)(b)))
    110
    111#ifndef ATM_SKB
    112#define ATM_SKB(s) (&(s)->atm)
    113#endif
    114
    115#define scq_virt_to_bus(scq, p) \
    116		(scq->dma + ((unsigned long)(p) - (unsigned long)(scq)->org))
    117
    118/* Function declarations */
    119
    120static u32 ns_read_sram(ns_dev * card, u32 sram_address);
    121static void ns_write_sram(ns_dev * card, u32 sram_address, u32 * value,
    122			  int count);
    123static int ns_init_card(int i, struct pci_dev *pcidev);
    124static void ns_init_card_error(ns_dev * card, int error);
    125static scq_info *get_scq(ns_dev *card, int size, u32 scd);
    126static void free_scq(ns_dev *card, scq_info * scq, struct atm_vcc *vcc);
    127static void push_rxbufs(ns_dev *, struct sk_buff *);
    128static irqreturn_t ns_irq_handler(int irq, void *dev_id);
    129static int ns_open(struct atm_vcc *vcc);
    130static void ns_close(struct atm_vcc *vcc);
    131static void fill_tst(ns_dev * card, int n, vc_map * vc);
    132static int ns_send(struct atm_vcc *vcc, struct sk_buff *skb);
    133static int ns_send_bh(struct atm_vcc *vcc, struct sk_buff *skb);
    134static int push_scqe(ns_dev * card, vc_map * vc, scq_info * scq, ns_scqe * tbd,
    135		     struct sk_buff *skb, bool may_sleep);
    136static void process_tsq(ns_dev * card);
    137static void drain_scq(ns_dev * card, scq_info * scq, int pos);
    138static void process_rsq(ns_dev * card);
    139static void dequeue_rx(ns_dev * card, ns_rsqe * rsqe);
    140static void recycle_rx_buf(ns_dev * card, struct sk_buff *skb);
    141static void recycle_iovec_rx_bufs(ns_dev * card, struct iovec *iov, int count);
    142static void recycle_iov_buf(ns_dev * card, struct sk_buff *iovb);
    143static void dequeue_sm_buf(ns_dev * card, struct sk_buff *sb);
    144static void dequeue_lg_buf(ns_dev * card, struct sk_buff *lb);
    145static int ns_proc_read(struct atm_dev *dev, loff_t * pos, char *page);
    146static int ns_ioctl(struct atm_dev *dev, unsigned int cmd, void __user * arg);
    147#ifdef EXTRA_DEBUG
    148static void which_list(ns_dev * card, struct sk_buff *skb);
    149#endif
    150static void ns_poll(struct timer_list *unused);
    151static void ns_phy_put(struct atm_dev *dev, unsigned char value,
    152		       unsigned long addr);
    153static unsigned char ns_phy_get(struct atm_dev *dev, unsigned long addr);
    154
    155/* Global variables */
    156
    157static struct ns_dev *cards[NS_MAX_CARDS];
    158static unsigned num_cards;
    159static const struct atmdev_ops atm_ops = {
    160	.open = ns_open,
    161	.close = ns_close,
    162	.ioctl = ns_ioctl,
    163	.send = ns_send,
    164	.send_bh = ns_send_bh,
    165	.phy_put = ns_phy_put,
    166	.phy_get = ns_phy_get,
    167	.proc_read = ns_proc_read,
    168	.owner = THIS_MODULE,
    169};
    170
    171static struct timer_list ns_timer;
    172static char *mac[NS_MAX_CARDS];
    173module_param_array(mac, charp, NULL, 0);
    174MODULE_LICENSE("GPL");
    175
    176/* Functions */
    177
    178static int nicstar_init_one(struct pci_dev *pcidev,
    179			    const struct pci_device_id *ent)
    180{
    181	static int index = -1;
    182	unsigned int error;
    183
    184	index++;
    185	cards[index] = NULL;
    186
    187	error = ns_init_card(index, pcidev);
    188	if (error) {
    189		cards[index--] = NULL;	/* don't increment index */
    190		goto err_out;
    191	}
    192
    193	return 0;
    194err_out:
    195	return -ENODEV;
    196}
    197
    198static void nicstar_remove_one(struct pci_dev *pcidev)
    199{
    200	int i, j;
    201	ns_dev *card = pci_get_drvdata(pcidev);
    202	struct sk_buff *hb;
    203	struct sk_buff *iovb;
    204	struct sk_buff *lb;
    205	struct sk_buff *sb;
    206
    207	i = card->index;
    208
    209	if (cards[i] == NULL)
    210		return;
    211
    212	if (card->atmdev->phy && card->atmdev->phy->stop)
    213		card->atmdev->phy->stop(card->atmdev);
    214
    215	/* Stop everything */
    216	writel(0x00000000, card->membase + CFG);
    217
    218	/* De-register device */
    219	atm_dev_deregister(card->atmdev);
    220
    221	/* Disable PCI device */
    222	pci_disable_device(pcidev);
    223
    224	/* Free up resources */
    225	j = 0;
    226	PRINTK("nicstar%d: freeing %d huge buffers.\n", i, card->hbpool.count);
    227	while ((hb = skb_dequeue(&card->hbpool.queue)) != NULL) {
    228		dev_kfree_skb_any(hb);
    229		j++;
    230	}
    231	PRINTK("nicstar%d: %d huge buffers freed.\n", i, j);
    232	j = 0;
    233	PRINTK("nicstar%d: freeing %d iovec buffers.\n", i,
    234	       card->iovpool.count);
    235	while ((iovb = skb_dequeue(&card->iovpool.queue)) != NULL) {
    236		dev_kfree_skb_any(iovb);
    237		j++;
    238	}
    239	PRINTK("nicstar%d: %d iovec buffers freed.\n", i, j);
    240	while ((lb = skb_dequeue(&card->lbpool.queue)) != NULL)
    241		dev_kfree_skb_any(lb);
    242	while ((sb = skb_dequeue(&card->sbpool.queue)) != NULL)
    243		dev_kfree_skb_any(sb);
    244	free_scq(card, card->scq0, NULL);
    245	for (j = 0; j < NS_FRSCD_NUM; j++) {
    246		if (card->scd2vc[j] != NULL)
    247			free_scq(card, card->scd2vc[j]->scq, card->scd2vc[j]->tx_vcc);
    248	}
    249	idr_destroy(&card->idr);
    250	dma_free_coherent(&card->pcidev->dev, NS_RSQSIZE + NS_RSQ_ALIGNMENT,
    251			  card->rsq.org, card->rsq.dma);
    252	dma_free_coherent(&card->pcidev->dev, NS_TSQSIZE + NS_TSQ_ALIGNMENT,
    253			  card->tsq.org, card->tsq.dma);
    254	free_irq(card->pcidev->irq, card);
    255	iounmap(card->membase);
    256	kfree(card);
    257}
    258
    259static const struct pci_device_id nicstar_pci_tbl[] = {
    260	{ PCI_VDEVICE(IDT, PCI_DEVICE_ID_IDT_IDT77201), 0 },
    261	{0,}			/* terminate list */
    262};
    263
    264MODULE_DEVICE_TABLE(pci, nicstar_pci_tbl);
    265
    266static struct pci_driver nicstar_driver = {
    267	.name = "nicstar",
    268	.id_table = nicstar_pci_tbl,
    269	.probe = nicstar_init_one,
    270	.remove = nicstar_remove_one,
    271};
    272
    273static int __init nicstar_init(void)
    274{
    275	unsigned error = 0;	/* Initialized to remove compile warning */
    276
    277	XPRINTK("nicstar: nicstar_init() called.\n");
    278
    279	error = pci_register_driver(&nicstar_driver);
    280
    281	TXPRINTK("nicstar: TX debug enabled.\n");
    282	RXPRINTK("nicstar: RX debug enabled.\n");
    283	PRINTK("nicstar: General debug enabled.\n");
    284#ifdef PHY_LOOPBACK
    285	printk("nicstar: using PHY loopback.\n");
    286#endif /* PHY_LOOPBACK */
    287	XPRINTK("nicstar: nicstar_init() returned.\n");
    288
    289	if (!error) {
    290		timer_setup(&ns_timer, ns_poll, 0);
    291		ns_timer.expires = jiffies + NS_POLL_PERIOD;
    292		add_timer(&ns_timer);
    293	}
    294
    295	return error;
    296}
    297
    298static void __exit nicstar_cleanup(void)
    299{
    300	XPRINTK("nicstar: nicstar_cleanup() called.\n");
    301
    302	del_timer_sync(&ns_timer);
    303
    304	pci_unregister_driver(&nicstar_driver);
    305
    306	XPRINTK("nicstar: nicstar_cleanup() returned.\n");
    307}
    308
    309static u32 ns_read_sram(ns_dev * card, u32 sram_address)
    310{
    311	unsigned long flags;
    312	u32 data;
    313	sram_address <<= 2;
    314	sram_address &= 0x0007FFFC;	/* address must be dword aligned */
    315	sram_address |= 0x50000000;	/* SRAM read command */
    316	spin_lock_irqsave(&card->res_lock, flags);
    317	while (CMD_BUSY(card)) ;
    318	writel(sram_address, card->membase + CMD);
    319	while (CMD_BUSY(card)) ;
    320	data = readl(card->membase + DR0);
    321	spin_unlock_irqrestore(&card->res_lock, flags);
    322	return data;
    323}
    324
    325static void ns_write_sram(ns_dev * card, u32 sram_address, u32 * value,
    326			  int count)
    327{
    328	unsigned long flags;
    329	int i, c;
    330	count--;		/* count range now is 0..3 instead of 1..4 */
    331	c = count;
    332	c <<= 2;		/* to use increments of 4 */
    333	spin_lock_irqsave(&card->res_lock, flags);
    334	while (CMD_BUSY(card)) ;
    335	for (i = 0; i <= c; i += 4)
    336		writel(*(value++), card->membase + i);
    337	/* Note: DR# registers are the first 4 dwords in nicstar's memspace,
    338	   so card->membase + DR0 == card->membase */
    339	sram_address <<= 2;
    340	sram_address &= 0x0007FFFC;
    341	sram_address |= (0x40000000 | count);
    342	writel(sram_address, card->membase + CMD);
    343	spin_unlock_irqrestore(&card->res_lock, flags);
    344}
    345
    346static int ns_init_card(int i, struct pci_dev *pcidev)
    347{
    348	int j;
    349	struct ns_dev *card = NULL;
    350	unsigned char pci_latency;
    351	unsigned error;
    352	u32 data;
    353	u32 u32d[4];
    354	u32 ns_cfg_rctsize;
    355	int bcount;
    356	unsigned long membase;
    357
    358	error = 0;
    359
    360	if (pci_enable_device(pcidev)) {
    361		printk("nicstar%d: can't enable PCI device\n", i);
    362		error = 2;
    363		ns_init_card_error(card, error);
    364		return error;
    365	}
    366        if (dma_set_mask_and_coherent(&pcidev->dev, DMA_BIT_MASK(32)) != 0) {
    367                printk(KERN_WARNING
    368		       "nicstar%d: No suitable DMA available.\n", i);
    369		error = 2;
    370		ns_init_card_error(card, error);
    371		return error;
    372        }
    373
    374	card = kmalloc(sizeof(*card), GFP_KERNEL);
    375	if (!card) {
    376		printk
    377		    ("nicstar%d: can't allocate memory for device structure.\n",
    378		     i);
    379		error = 2;
    380		ns_init_card_error(card, error);
    381		return error;
    382	}
    383	cards[i] = card;
    384	spin_lock_init(&card->int_lock);
    385	spin_lock_init(&card->res_lock);
    386
    387	pci_set_drvdata(pcidev, card);
    388
    389	card->index = i;
    390	card->atmdev = NULL;
    391	card->pcidev = pcidev;
    392	membase = pci_resource_start(pcidev, 1);
    393	card->membase = ioremap(membase, NS_IOREMAP_SIZE);
    394	if (!card->membase) {
    395		printk("nicstar%d: can't ioremap() membase.\n", i);
    396		error = 3;
    397		ns_init_card_error(card, error);
    398		return error;
    399	}
    400	PRINTK("nicstar%d: membase at 0x%p.\n", i, card->membase);
    401
    402	pci_set_master(pcidev);
    403
    404	if (pci_read_config_byte(pcidev, PCI_LATENCY_TIMER, &pci_latency) != 0) {
    405		printk("nicstar%d: can't read PCI latency timer.\n", i);
    406		error = 6;
    407		ns_init_card_error(card, error);
    408		return error;
    409	}
    410#ifdef NS_PCI_LATENCY
    411	if (pci_latency < NS_PCI_LATENCY) {
    412		PRINTK("nicstar%d: setting PCI latency timer to %d.\n", i,
    413		       NS_PCI_LATENCY);
    414		for (j = 1; j < 4; j++) {
    415			if (pci_write_config_byte
    416			    (pcidev, PCI_LATENCY_TIMER, NS_PCI_LATENCY) != 0)
    417				break;
    418		}
    419		if (j == 4) {
    420			printk
    421			    ("nicstar%d: can't set PCI latency timer to %d.\n",
    422			     i, NS_PCI_LATENCY);
    423			error = 7;
    424			ns_init_card_error(card, error);
    425			return error;
    426		}
    427	}
    428#endif /* NS_PCI_LATENCY */
    429
    430	/* Clear timer overflow */
    431	data = readl(card->membase + STAT);
    432	if (data & NS_STAT_TMROF)
    433		writel(NS_STAT_TMROF, card->membase + STAT);
    434
    435	/* Software reset */
    436	writel(NS_CFG_SWRST, card->membase + CFG);
    437	NS_DELAY;
    438	writel(0x00000000, card->membase + CFG);
    439
    440	/* PHY reset */
    441	writel(0x00000008, card->membase + GP);
    442	NS_DELAY;
    443	writel(0x00000001, card->membase + GP);
    444	NS_DELAY;
    445	while (CMD_BUSY(card)) ;
    446	writel(NS_CMD_WRITE_UTILITY | 0x00000100, card->membase + CMD);	/* Sync UTOPIA with SAR clock */
    447	NS_DELAY;
    448
    449	/* Detect PHY type */
    450	while (CMD_BUSY(card)) ;
    451	writel(NS_CMD_READ_UTILITY | 0x00000200, card->membase + CMD);
    452	while (CMD_BUSY(card)) ;
    453	data = readl(card->membase + DR0);
    454	switch (data) {
    455	case 0x00000009:
    456		printk("nicstar%d: PHY seems to be 25 Mbps.\n", i);
    457		card->max_pcr = ATM_25_PCR;
    458		while (CMD_BUSY(card)) ;
    459		writel(0x00000008, card->membase + DR0);
    460		writel(NS_CMD_WRITE_UTILITY | 0x00000200, card->membase + CMD);
    461		/* Clear an eventual pending interrupt */
    462		writel(NS_STAT_SFBQF, card->membase + STAT);
    463#ifdef PHY_LOOPBACK
    464		while (CMD_BUSY(card)) ;
    465		writel(0x00000022, card->membase + DR0);
    466		writel(NS_CMD_WRITE_UTILITY | 0x00000202, card->membase + CMD);
    467#endif /* PHY_LOOPBACK */
    468		break;
    469	case 0x00000030:
    470	case 0x00000031:
    471		printk("nicstar%d: PHY seems to be 155 Mbps.\n", i);
    472		card->max_pcr = ATM_OC3_PCR;
    473#ifdef PHY_LOOPBACK
    474		while (CMD_BUSY(card)) ;
    475		writel(0x00000002, card->membase + DR0);
    476		writel(NS_CMD_WRITE_UTILITY | 0x00000205, card->membase + CMD);
    477#endif /* PHY_LOOPBACK */
    478		break;
    479	default:
    480		printk("nicstar%d: unknown PHY type (0x%08X).\n", i, data);
    481		error = 8;
    482		ns_init_card_error(card, error);
    483		return error;
    484	}
    485	writel(0x00000000, card->membase + GP);
    486
    487	/* Determine SRAM size */
    488	data = 0x76543210;
    489	ns_write_sram(card, 0x1C003, &data, 1);
    490	data = 0x89ABCDEF;
    491	ns_write_sram(card, 0x14003, &data, 1);
    492	if (ns_read_sram(card, 0x14003) == 0x89ABCDEF &&
    493	    ns_read_sram(card, 0x1C003) == 0x76543210)
    494		card->sram_size = 128;
    495	else
    496		card->sram_size = 32;
    497	PRINTK("nicstar%d: %dK x 32bit SRAM size.\n", i, card->sram_size);
    498
    499	card->rct_size = NS_MAX_RCTSIZE;
    500
    501#if (NS_MAX_RCTSIZE == 4096)
    502	if (card->sram_size == 128)
    503		printk
    504		    ("nicstar%d: limiting maximum VCI. See NS_MAX_RCTSIZE in nicstar.h\n",
    505		     i);
    506#elif (NS_MAX_RCTSIZE == 16384)
    507	if (card->sram_size == 32) {
    508		printk
    509		    ("nicstar%d: wasting memory. See NS_MAX_RCTSIZE in nicstar.h\n",
    510		     i);
    511		card->rct_size = 4096;
    512	}
    513#else
    514#error NS_MAX_RCTSIZE must be either 4096 or 16384 in nicstar.c
    515#endif
    516
    517	card->vpibits = NS_VPIBITS;
    518	if (card->rct_size == 4096)
    519		card->vcibits = 12 - NS_VPIBITS;
    520	else			/* card->rct_size == 16384 */
    521		card->vcibits = 14 - NS_VPIBITS;
    522
    523	/* Initialize the nicstar eeprom/eprom stuff, for the MAC addr */
    524	if (mac[i] == NULL)
    525		nicstar_init_eprom(card->membase);
    526
    527	/* Set the VPI/VCI MSb mask to zero so we can receive OAM cells */
    528	writel(0x00000000, card->membase + VPM);
    529
    530	card->intcnt = 0;
    531	if (request_irq
    532	    (pcidev->irq, &ns_irq_handler, IRQF_SHARED, "nicstar", card) != 0) {
    533		pr_err("nicstar%d: can't allocate IRQ %d.\n", i, pcidev->irq);
    534		error = 9;
    535		ns_init_card_error(card, error);
    536		return error;
    537	}
    538
    539	/* Initialize TSQ */
    540	card->tsq.org = dma_alloc_coherent(&card->pcidev->dev,
    541					   NS_TSQSIZE + NS_TSQ_ALIGNMENT,
    542					   &card->tsq.dma, GFP_KERNEL);
    543	if (card->tsq.org == NULL) {
    544		printk("nicstar%d: can't allocate TSQ.\n", i);
    545		error = 10;
    546		ns_init_card_error(card, error);
    547		return error;
    548	}
    549	card->tsq.base = PTR_ALIGN(card->tsq.org, NS_TSQ_ALIGNMENT);
    550	card->tsq.next = card->tsq.base;
    551	card->tsq.last = card->tsq.base + (NS_TSQ_NUM_ENTRIES - 1);
    552	for (j = 0; j < NS_TSQ_NUM_ENTRIES; j++)
    553		ns_tsi_init(card->tsq.base + j);
    554	writel(0x00000000, card->membase + TSQH);
    555	writel(ALIGN(card->tsq.dma, NS_TSQ_ALIGNMENT), card->membase + TSQB);
    556	PRINTK("nicstar%d: TSQ base at 0x%p.\n", i, card->tsq.base);
    557
    558	/* Initialize RSQ */
    559	card->rsq.org = dma_alloc_coherent(&card->pcidev->dev,
    560					   NS_RSQSIZE + NS_RSQ_ALIGNMENT,
    561					   &card->rsq.dma, GFP_KERNEL);
    562	if (card->rsq.org == NULL) {
    563		printk("nicstar%d: can't allocate RSQ.\n", i);
    564		error = 11;
    565		ns_init_card_error(card, error);
    566		return error;
    567	}
    568	card->rsq.base = PTR_ALIGN(card->rsq.org, NS_RSQ_ALIGNMENT);
    569	card->rsq.next = card->rsq.base;
    570	card->rsq.last = card->rsq.base + (NS_RSQ_NUM_ENTRIES - 1);
    571	for (j = 0; j < NS_RSQ_NUM_ENTRIES; j++)
    572		ns_rsqe_init(card->rsq.base + j);
    573	writel(0x00000000, card->membase + RSQH);
    574	writel(ALIGN(card->rsq.dma, NS_RSQ_ALIGNMENT), card->membase + RSQB);
    575	PRINTK("nicstar%d: RSQ base at 0x%p.\n", i, card->rsq.base);
    576
    577	/* Initialize SCQ0, the only VBR SCQ used */
    578	card->scq1 = NULL;
    579	card->scq2 = NULL;
    580	card->scq0 = get_scq(card, VBR_SCQSIZE, NS_VRSCD0);
    581	if (card->scq0 == NULL) {
    582		printk("nicstar%d: can't get SCQ0.\n", i);
    583		error = 12;
    584		ns_init_card_error(card, error);
    585		return error;
    586	}
    587	u32d[0] = scq_virt_to_bus(card->scq0, card->scq0->base);
    588	u32d[1] = (u32) 0x00000000;
    589	u32d[2] = (u32) 0xffffffff;
    590	u32d[3] = (u32) 0x00000000;
    591	ns_write_sram(card, NS_VRSCD0, u32d, 4);
    592	ns_write_sram(card, NS_VRSCD1, u32d, 4);	/* These last two won't be used */
    593	ns_write_sram(card, NS_VRSCD2, u32d, 4);	/* but are initialized, just in case... */
    594	card->scq0->scd = NS_VRSCD0;
    595	PRINTK("nicstar%d: VBR-SCQ0 base at 0x%p.\n", i, card->scq0->base);
    596
    597	/* Initialize TSTs */
    598	card->tst_addr = NS_TST0;
    599	card->tst_free_entries = NS_TST_NUM_ENTRIES;
    600	data = NS_TST_OPCODE_VARIABLE;
    601	for (j = 0; j < NS_TST_NUM_ENTRIES; j++)
    602		ns_write_sram(card, NS_TST0 + j, &data, 1);
    603	data = ns_tste_make(NS_TST_OPCODE_END, NS_TST0);
    604	ns_write_sram(card, NS_TST0 + NS_TST_NUM_ENTRIES, &data, 1);
    605	for (j = 0; j < NS_TST_NUM_ENTRIES; j++)
    606		ns_write_sram(card, NS_TST1 + j, &data, 1);
    607	data = ns_tste_make(NS_TST_OPCODE_END, NS_TST1);
    608	ns_write_sram(card, NS_TST1 + NS_TST_NUM_ENTRIES, &data, 1);
    609	for (j = 0; j < NS_TST_NUM_ENTRIES; j++)
    610		card->tste2vc[j] = NULL;
    611	writel(NS_TST0 << 2, card->membase + TSTB);
    612
    613	/* Initialize RCT. AAL type is set on opening the VC. */
    614#ifdef RCQ_SUPPORT
    615	u32d[0] = NS_RCTE_RAWCELLINTEN;
    616#else
    617	u32d[0] = 0x00000000;
    618#endif /* RCQ_SUPPORT */
    619	u32d[1] = 0x00000000;
    620	u32d[2] = 0x00000000;
    621	u32d[3] = 0xFFFFFFFF;
    622	for (j = 0; j < card->rct_size; j++)
    623		ns_write_sram(card, j * 4, u32d, 4);
    624
    625	memset(card->vcmap, 0, sizeof(card->vcmap));
    626
    627	for (j = 0; j < NS_FRSCD_NUM; j++)
    628		card->scd2vc[j] = NULL;
    629
    630	/* Initialize buffer levels */
    631	card->sbnr.min = MIN_SB;
    632	card->sbnr.init = NUM_SB;
    633	card->sbnr.max = MAX_SB;
    634	card->lbnr.min = MIN_LB;
    635	card->lbnr.init = NUM_LB;
    636	card->lbnr.max = MAX_LB;
    637	card->iovnr.min = MIN_IOVB;
    638	card->iovnr.init = NUM_IOVB;
    639	card->iovnr.max = MAX_IOVB;
    640	card->hbnr.min = MIN_HB;
    641	card->hbnr.init = NUM_HB;
    642	card->hbnr.max = MAX_HB;
    643
    644	card->sm_handle = NULL;
    645	card->sm_addr = 0x00000000;
    646	card->lg_handle = NULL;
    647	card->lg_addr = 0x00000000;
    648
    649	card->efbie = 1;	/* To prevent push_rxbufs from enabling the interrupt */
    650
    651	idr_init(&card->idr);
    652
    653	/* Pre-allocate some huge buffers */
    654	skb_queue_head_init(&card->hbpool.queue);
    655	card->hbpool.count = 0;
    656	for (j = 0; j < NUM_HB; j++) {
    657		struct sk_buff *hb;
    658		hb = __dev_alloc_skb(NS_HBUFSIZE, GFP_KERNEL);
    659		if (hb == NULL) {
    660			printk
    661			    ("nicstar%d: can't allocate %dth of %d huge buffers.\n",
    662			     i, j, NUM_HB);
    663			error = 13;
    664			ns_init_card_error(card, error);
    665			return error;
    666		}
    667		NS_PRV_BUFTYPE(hb) = BUF_NONE;
    668		skb_queue_tail(&card->hbpool.queue, hb);
    669		card->hbpool.count++;
    670	}
    671
    672	/* Allocate large buffers */
    673	skb_queue_head_init(&card->lbpool.queue);
    674	card->lbpool.count = 0;	/* Not used */
    675	for (j = 0; j < NUM_LB; j++) {
    676		struct sk_buff *lb;
    677		lb = __dev_alloc_skb(NS_LGSKBSIZE, GFP_KERNEL);
    678		if (lb == NULL) {
    679			printk
    680			    ("nicstar%d: can't allocate %dth of %d large buffers.\n",
    681			     i, j, NUM_LB);
    682			error = 14;
    683			ns_init_card_error(card, error);
    684			return error;
    685		}
    686		NS_PRV_BUFTYPE(lb) = BUF_LG;
    687		skb_queue_tail(&card->lbpool.queue, lb);
    688		skb_reserve(lb, NS_SMBUFSIZE);
    689		push_rxbufs(card, lb);
    690		/* Due to the implementation of push_rxbufs() this is 1, not 0 */
    691		if (j == 1) {
    692			card->rcbuf = lb;
    693			card->rawcell = (struct ns_rcqe *) lb->data;
    694			card->rawch = NS_PRV_DMA(lb);
    695		}
    696	}
    697	/* Test for strange behaviour which leads to crashes */
    698	if ((bcount =
    699	     ns_stat_lfbqc_get(readl(card->membase + STAT))) < card->lbnr.min) {
    700		printk
    701		    ("nicstar%d: Strange... Just allocated %d large buffers and lfbqc = %d.\n",
    702		     i, j, bcount);
    703		error = 14;
    704		ns_init_card_error(card, error);
    705		return error;
    706	}
    707
    708	/* Allocate small buffers */
    709	skb_queue_head_init(&card->sbpool.queue);
    710	card->sbpool.count = 0;	/* Not used */
    711	for (j = 0; j < NUM_SB; j++) {
    712		struct sk_buff *sb;
    713		sb = __dev_alloc_skb(NS_SMSKBSIZE, GFP_KERNEL);
    714		if (sb == NULL) {
    715			printk
    716			    ("nicstar%d: can't allocate %dth of %d small buffers.\n",
    717			     i, j, NUM_SB);
    718			error = 15;
    719			ns_init_card_error(card, error);
    720			return error;
    721		}
    722		NS_PRV_BUFTYPE(sb) = BUF_SM;
    723		skb_queue_tail(&card->sbpool.queue, sb);
    724		skb_reserve(sb, NS_AAL0_HEADER);
    725		push_rxbufs(card, sb);
    726	}
    727	/* Test for strange behaviour which leads to crashes */
    728	if ((bcount =
    729	     ns_stat_sfbqc_get(readl(card->membase + STAT))) < card->sbnr.min) {
    730		printk
    731		    ("nicstar%d: Strange... Just allocated %d small buffers and sfbqc = %d.\n",
    732		     i, j, bcount);
    733		error = 15;
    734		ns_init_card_error(card, error);
    735		return error;
    736	}
    737
    738	/* Allocate iovec buffers */
    739	skb_queue_head_init(&card->iovpool.queue);
    740	card->iovpool.count = 0;
    741	for (j = 0; j < NUM_IOVB; j++) {
    742		struct sk_buff *iovb;
    743		iovb = alloc_skb(NS_IOVBUFSIZE, GFP_KERNEL);
    744		if (iovb == NULL) {
    745			printk
    746			    ("nicstar%d: can't allocate %dth of %d iovec buffers.\n",
    747			     i, j, NUM_IOVB);
    748			error = 16;
    749			ns_init_card_error(card, error);
    750			return error;
    751		}
    752		NS_PRV_BUFTYPE(iovb) = BUF_NONE;
    753		skb_queue_tail(&card->iovpool.queue, iovb);
    754		card->iovpool.count++;
    755	}
    756
    757	/* Configure NICStAR */
    758	if (card->rct_size == 4096)
    759		ns_cfg_rctsize = NS_CFG_RCTSIZE_4096_ENTRIES;
    760	else			/* (card->rct_size == 16384) */
    761		ns_cfg_rctsize = NS_CFG_RCTSIZE_16384_ENTRIES;
    762
    763	card->efbie = 1;
    764
    765	/* Register device */
    766	card->atmdev = atm_dev_register("nicstar", &card->pcidev->dev, &atm_ops,
    767					-1, NULL);
    768	if (card->atmdev == NULL) {
    769		printk("nicstar%d: can't register device.\n", i);
    770		error = 17;
    771		ns_init_card_error(card, error);
    772		return error;
    773	}
    774
    775	if (mac[i] == NULL || !mac_pton(mac[i], card->atmdev->esi)) {
    776		nicstar_read_eprom(card->membase, NICSTAR_EPROM_MAC_ADDR_OFFSET,
    777				   card->atmdev->esi, 6);
    778		if (ether_addr_equal(card->atmdev->esi, "\x00\x00\x00\x00\x00\x00")) {
    779			nicstar_read_eprom(card->membase,
    780					   NICSTAR_EPROM_MAC_ADDR_OFFSET_ALT,
    781					   card->atmdev->esi, 6);
    782		}
    783	}
    784
    785	printk("nicstar%d: MAC address %pM\n", i, card->atmdev->esi);
    786
    787	card->atmdev->dev_data = card;
    788	card->atmdev->ci_range.vpi_bits = card->vpibits;
    789	card->atmdev->ci_range.vci_bits = card->vcibits;
    790	card->atmdev->link_rate = card->max_pcr;
    791	card->atmdev->phy = NULL;
    792
    793#ifdef CONFIG_ATM_NICSTAR_USE_SUNI
    794	if (card->max_pcr == ATM_OC3_PCR)
    795		suni_init(card->atmdev);
    796#endif /* CONFIG_ATM_NICSTAR_USE_SUNI */
    797
    798#ifdef CONFIG_ATM_NICSTAR_USE_IDT77105
    799	if (card->max_pcr == ATM_25_PCR)
    800		idt77105_init(card->atmdev);
    801#endif /* CONFIG_ATM_NICSTAR_USE_IDT77105 */
    802
    803	if (card->atmdev->phy && card->atmdev->phy->start)
    804		card->atmdev->phy->start(card->atmdev);
    805
    806	writel(NS_CFG_RXPATH | NS_CFG_SMBUFSIZE | NS_CFG_LGBUFSIZE | NS_CFG_EFBIE | NS_CFG_RSQSIZE | NS_CFG_VPIBITS | ns_cfg_rctsize | NS_CFG_RXINT_NODELAY | NS_CFG_RAWIE |	/* Only enabled if RCQ_SUPPORT */
    807	       NS_CFG_RSQAFIE | NS_CFG_TXEN | NS_CFG_TXIE | NS_CFG_TSQFIE_OPT |	/* Only enabled if ENABLE_TSQFIE */
    808	       NS_CFG_PHYIE, card->membase + CFG);
    809
    810	num_cards++;
    811
    812	return error;
    813}
    814
    815static void ns_init_card_error(ns_dev *card, int error)
    816{
    817	if (error >= 17) {
    818		writel(0x00000000, card->membase + CFG);
    819	}
    820	if (error >= 16) {
    821		struct sk_buff *iovb;
    822		while ((iovb = skb_dequeue(&card->iovpool.queue)) != NULL)
    823			dev_kfree_skb_any(iovb);
    824	}
    825	if (error >= 15) {
    826		struct sk_buff *sb;
    827		while ((sb = skb_dequeue(&card->sbpool.queue)) != NULL)
    828			dev_kfree_skb_any(sb);
    829		free_scq(card, card->scq0, NULL);
    830	}
    831	if (error >= 14) {
    832		struct sk_buff *lb;
    833		while ((lb = skb_dequeue(&card->lbpool.queue)) != NULL)
    834			dev_kfree_skb_any(lb);
    835	}
    836	if (error >= 13) {
    837		struct sk_buff *hb;
    838		while ((hb = skb_dequeue(&card->hbpool.queue)) != NULL)
    839			dev_kfree_skb_any(hb);
    840	}
    841	if (error >= 12) {
    842		dma_free_coherent(&card->pcidev->dev, NS_RSQSIZE + NS_RSQ_ALIGNMENT,
    843				card->rsq.org, card->rsq.dma);
    844	}
    845	if (error >= 11) {
    846		dma_free_coherent(&card->pcidev->dev, NS_TSQSIZE + NS_TSQ_ALIGNMENT,
    847				card->tsq.org, card->tsq.dma);
    848	}
    849	if (error >= 10) {
    850		free_irq(card->pcidev->irq, card);
    851	}
    852	if (error >= 4) {
    853		iounmap(card->membase);
    854	}
    855	if (error >= 3) {
    856		pci_disable_device(card->pcidev);
    857		kfree(card);
    858	}
    859}
    860
    861static scq_info *get_scq(ns_dev *card, int size, u32 scd)
    862{
    863	scq_info *scq;
    864
    865	if (size != VBR_SCQSIZE && size != CBR_SCQSIZE)
    866		return NULL;
    867
    868	scq = kmalloc(sizeof(*scq), GFP_KERNEL);
    869	if (!scq)
    870		return NULL;
    871        scq->org = dma_alloc_coherent(&card->pcidev->dev,
    872				      2 * size,  &scq->dma, GFP_KERNEL);
    873	if (!scq->org) {
    874		kfree(scq);
    875		return NULL;
    876	}
    877	scq->skb = kcalloc(size / NS_SCQE_SIZE, sizeof(*scq->skb),
    878			   GFP_KERNEL);
    879	if (!scq->skb) {
    880		dma_free_coherent(&card->pcidev->dev,
    881				  2 * size, scq->org, scq->dma);
    882		kfree(scq);
    883		return NULL;
    884	}
    885	scq->num_entries = size / NS_SCQE_SIZE;
    886	scq->base = PTR_ALIGN(scq->org, size);
    887	scq->next = scq->base;
    888	scq->last = scq->base + (scq->num_entries - 1);
    889	scq->tail = scq->last;
    890	scq->scd = scd;
    891	scq->tbd_count = 0;
    892	init_waitqueue_head(&scq->scqfull_waitq);
    893	scq->full = 0;
    894	spin_lock_init(&scq->lock);
    895
    896	return scq;
    897}
    898
    899/* For variable rate SCQ vcc must be NULL */
    900static void free_scq(ns_dev *card, scq_info *scq, struct atm_vcc *vcc)
    901{
    902	int i;
    903
    904	if (scq->num_entries == VBR_SCQ_NUM_ENTRIES)
    905		for (i = 0; i < scq->num_entries; i++) {
    906			if (scq->skb[i] != NULL) {
    907				vcc = ATM_SKB(scq->skb[i])->vcc;
    908				if (vcc->pop != NULL)
    909					vcc->pop(vcc, scq->skb[i]);
    910				else
    911					dev_kfree_skb_any(scq->skb[i]);
    912			}
    913	} else {		/* vcc must be != NULL */
    914
    915		if (vcc == NULL) {
    916			printk
    917			    ("nicstar: free_scq() called with vcc == NULL for fixed rate scq.");
    918			for (i = 0; i < scq->num_entries; i++)
    919				dev_kfree_skb_any(scq->skb[i]);
    920		} else
    921			for (i = 0; i < scq->num_entries; i++) {
    922				if (scq->skb[i] != NULL) {
    923					if (vcc->pop != NULL)
    924						vcc->pop(vcc, scq->skb[i]);
    925					else
    926						dev_kfree_skb_any(scq->skb[i]);
    927				}
    928			}
    929	}
    930	kfree(scq->skb);
    931	dma_free_coherent(&card->pcidev->dev,
    932			  2 * (scq->num_entries == VBR_SCQ_NUM_ENTRIES ?
    933			       VBR_SCQSIZE : CBR_SCQSIZE),
    934			  scq->org, scq->dma);
    935	kfree(scq);
    936}
    937
    938/* The handles passed must be pointers to the sk_buff containing the small
    939   or large buffer(s) cast to u32. */
    940static void push_rxbufs(ns_dev * card, struct sk_buff *skb)
    941{
    942	struct sk_buff *handle1, *handle2;
    943	int id1, id2;
    944	u32 addr1, addr2;
    945	u32 stat;
    946	unsigned long flags;
    947
    948	/* *BARF* */
    949	handle2 = NULL;
    950	addr2 = 0;
    951	handle1 = skb;
    952	addr1 = dma_map_single(&card->pcidev->dev,
    953			       skb->data,
    954			       (NS_PRV_BUFTYPE(skb) == BUF_SM
    955				? NS_SMSKBSIZE : NS_LGSKBSIZE),
    956			       DMA_TO_DEVICE);
    957	NS_PRV_DMA(skb) = addr1; /* save so we can unmap later */
    958
    959#ifdef GENERAL_DEBUG
    960	if (!addr1)
    961		printk("nicstar%d: push_rxbufs called with addr1 = 0.\n",
    962		       card->index);
    963#endif /* GENERAL_DEBUG */
    964
    965	stat = readl(card->membase + STAT);
    966	card->sbfqc = ns_stat_sfbqc_get(stat);
    967	card->lbfqc = ns_stat_lfbqc_get(stat);
    968	if (NS_PRV_BUFTYPE(skb) == BUF_SM) {
    969		if (!addr2) {
    970			if (card->sm_addr) {
    971				addr2 = card->sm_addr;
    972				handle2 = card->sm_handle;
    973				card->sm_addr = 0x00000000;
    974				card->sm_handle = NULL;
    975			} else {	/* (!sm_addr) */
    976
    977				card->sm_addr = addr1;
    978				card->sm_handle = handle1;
    979			}
    980		}
    981	} else {		/* buf_type == BUF_LG */
    982
    983		if (!addr2) {
    984			if (card->lg_addr) {
    985				addr2 = card->lg_addr;
    986				handle2 = card->lg_handle;
    987				card->lg_addr = 0x00000000;
    988				card->lg_handle = NULL;
    989			} else {	/* (!lg_addr) */
    990
    991				card->lg_addr = addr1;
    992				card->lg_handle = handle1;
    993			}
    994		}
    995	}
    996
    997	if (addr2) {
    998		if (NS_PRV_BUFTYPE(skb) == BUF_SM) {
    999			if (card->sbfqc >= card->sbnr.max) {
   1000				skb_unlink(handle1, &card->sbpool.queue);
   1001				dev_kfree_skb_any(handle1);
   1002				skb_unlink(handle2, &card->sbpool.queue);
   1003				dev_kfree_skb_any(handle2);
   1004				return;
   1005			} else
   1006				card->sbfqc += 2;
   1007		} else {	/* (buf_type == BUF_LG) */
   1008
   1009			if (card->lbfqc >= card->lbnr.max) {
   1010				skb_unlink(handle1, &card->lbpool.queue);
   1011				dev_kfree_skb_any(handle1);
   1012				skb_unlink(handle2, &card->lbpool.queue);
   1013				dev_kfree_skb_any(handle2);
   1014				return;
   1015			} else
   1016				card->lbfqc += 2;
   1017		}
   1018
   1019		id1 = idr_alloc(&card->idr, handle1, 0, 0, GFP_ATOMIC);
   1020		if (id1 < 0)
   1021			goto out;
   1022
   1023		id2 = idr_alloc(&card->idr, handle2, 0, 0, GFP_ATOMIC);
   1024		if (id2 < 0)
   1025			goto out;
   1026
   1027		spin_lock_irqsave(&card->res_lock, flags);
   1028		while (CMD_BUSY(card)) ;
   1029		writel(addr2, card->membase + DR3);
   1030		writel(id2, card->membase + DR2);
   1031		writel(addr1, card->membase + DR1);
   1032		writel(id1, card->membase + DR0);
   1033		writel(NS_CMD_WRITE_FREEBUFQ | NS_PRV_BUFTYPE(skb),
   1034		       card->membase + CMD);
   1035		spin_unlock_irqrestore(&card->res_lock, flags);
   1036
   1037		XPRINTK("nicstar%d: Pushing %s buffers at 0x%x and 0x%x.\n",
   1038			card->index,
   1039			(NS_PRV_BUFTYPE(skb) == BUF_SM ? "small" : "large"),
   1040			addr1, addr2);
   1041	}
   1042
   1043	if (!card->efbie && card->sbfqc >= card->sbnr.min &&
   1044	    card->lbfqc >= card->lbnr.min) {
   1045		card->efbie = 1;
   1046		writel((readl(card->membase + CFG) | NS_CFG_EFBIE),
   1047		       card->membase + CFG);
   1048	}
   1049
   1050out:
   1051	return;
   1052}
   1053
   1054static irqreturn_t ns_irq_handler(int irq, void *dev_id)
   1055{
   1056	u32 stat_r;
   1057	ns_dev *card;
   1058	struct atm_dev *dev;
   1059	unsigned long flags;
   1060
   1061	card = (ns_dev *) dev_id;
   1062	dev = card->atmdev;
   1063	card->intcnt++;
   1064
   1065	PRINTK("nicstar%d: NICStAR generated an interrupt\n", card->index);
   1066
   1067	spin_lock_irqsave(&card->int_lock, flags);
   1068
   1069	stat_r = readl(card->membase + STAT);
   1070
   1071	/* Transmit Status Indicator has been written to T. S. Queue */
   1072	if (stat_r & NS_STAT_TSIF) {
   1073		TXPRINTK("nicstar%d: TSI interrupt\n", card->index);
   1074		process_tsq(card);
   1075		writel(NS_STAT_TSIF, card->membase + STAT);
   1076	}
   1077
   1078	/* Incomplete CS-PDU has been transmitted */
   1079	if (stat_r & NS_STAT_TXICP) {
   1080		writel(NS_STAT_TXICP, card->membase + STAT);
   1081		TXPRINTK("nicstar%d: Incomplete CS-PDU transmitted.\n",
   1082			 card->index);
   1083	}
   1084
   1085	/* Transmit Status Queue 7/8 full */
   1086	if (stat_r & NS_STAT_TSQF) {
   1087		writel(NS_STAT_TSQF, card->membase + STAT);
   1088		PRINTK("nicstar%d: TSQ full.\n", card->index);
   1089		process_tsq(card);
   1090	}
   1091
   1092	/* Timer overflow */
   1093	if (stat_r & NS_STAT_TMROF) {
   1094		writel(NS_STAT_TMROF, card->membase + STAT);
   1095		PRINTK("nicstar%d: Timer overflow.\n", card->index);
   1096	}
   1097
   1098	/* PHY device interrupt signal active */
   1099	if (stat_r & NS_STAT_PHYI) {
   1100		writel(NS_STAT_PHYI, card->membase + STAT);
   1101		PRINTK("nicstar%d: PHY interrupt.\n", card->index);
   1102		if (dev->phy && dev->phy->interrupt) {
   1103			dev->phy->interrupt(dev);
   1104		}
   1105	}
   1106
   1107	/* Small Buffer Queue is full */
   1108	if (stat_r & NS_STAT_SFBQF) {
   1109		writel(NS_STAT_SFBQF, card->membase + STAT);
   1110		printk("nicstar%d: Small free buffer queue is full.\n",
   1111		       card->index);
   1112	}
   1113
   1114	/* Large Buffer Queue is full */
   1115	if (stat_r & NS_STAT_LFBQF) {
   1116		writel(NS_STAT_LFBQF, card->membase + STAT);
   1117		printk("nicstar%d: Large free buffer queue is full.\n",
   1118		       card->index);
   1119	}
   1120
   1121	/* Receive Status Queue is full */
   1122	if (stat_r & NS_STAT_RSQF) {
   1123		writel(NS_STAT_RSQF, card->membase + STAT);
   1124		printk("nicstar%d: RSQ full.\n", card->index);
   1125		process_rsq(card);
   1126	}
   1127
   1128	/* Complete CS-PDU received */
   1129	if (stat_r & NS_STAT_EOPDU) {
   1130		RXPRINTK("nicstar%d: End of CS-PDU received.\n", card->index);
   1131		process_rsq(card);
   1132		writel(NS_STAT_EOPDU, card->membase + STAT);
   1133	}
   1134
   1135	/* Raw cell received */
   1136	if (stat_r & NS_STAT_RAWCF) {
   1137		writel(NS_STAT_RAWCF, card->membase + STAT);
   1138#ifndef RCQ_SUPPORT
   1139		printk("nicstar%d: Raw cell received and no support yet...\n",
   1140		       card->index);
   1141#endif /* RCQ_SUPPORT */
   1142		/* NOTE: the following procedure may keep a raw cell pending until the
   1143		   next interrupt. As this preliminary support is only meant to
   1144		   avoid buffer leakage, this is not an issue. */
   1145		while (readl(card->membase + RAWCT) != card->rawch) {
   1146
   1147			if (ns_rcqe_islast(card->rawcell)) {
   1148				struct sk_buff *oldbuf;
   1149
   1150				oldbuf = card->rcbuf;
   1151				card->rcbuf = idr_find(&card->idr,
   1152						       ns_rcqe_nextbufhandle(card->rawcell));
   1153				card->rawch = NS_PRV_DMA(card->rcbuf);
   1154				card->rawcell = (struct ns_rcqe *)
   1155						card->rcbuf->data;
   1156				recycle_rx_buf(card, oldbuf);
   1157			} else {
   1158				card->rawch += NS_RCQE_SIZE;
   1159				card->rawcell++;
   1160			}
   1161		}
   1162	}
   1163
   1164	/* Small buffer queue is empty */
   1165	if (stat_r & NS_STAT_SFBQE) {
   1166		int i;
   1167		struct sk_buff *sb;
   1168
   1169		writel(NS_STAT_SFBQE, card->membase + STAT);
   1170		printk("nicstar%d: Small free buffer queue empty.\n",
   1171		       card->index);
   1172		for (i = 0; i < card->sbnr.min; i++) {
   1173			sb = dev_alloc_skb(NS_SMSKBSIZE);
   1174			if (sb == NULL) {
   1175				writel(readl(card->membase + CFG) &
   1176				       ~NS_CFG_EFBIE, card->membase + CFG);
   1177				card->efbie = 0;
   1178				break;
   1179			}
   1180			NS_PRV_BUFTYPE(sb) = BUF_SM;
   1181			skb_queue_tail(&card->sbpool.queue, sb);
   1182			skb_reserve(sb, NS_AAL0_HEADER);
   1183			push_rxbufs(card, sb);
   1184		}
   1185		card->sbfqc = i;
   1186		process_rsq(card);
   1187	}
   1188
   1189	/* Large buffer queue empty */
   1190	if (stat_r & NS_STAT_LFBQE) {
   1191		int i;
   1192		struct sk_buff *lb;
   1193
   1194		writel(NS_STAT_LFBQE, card->membase + STAT);
   1195		printk("nicstar%d: Large free buffer queue empty.\n",
   1196		       card->index);
   1197		for (i = 0; i < card->lbnr.min; i++) {
   1198			lb = dev_alloc_skb(NS_LGSKBSIZE);
   1199			if (lb == NULL) {
   1200				writel(readl(card->membase + CFG) &
   1201				       ~NS_CFG_EFBIE, card->membase + CFG);
   1202				card->efbie = 0;
   1203				break;
   1204			}
   1205			NS_PRV_BUFTYPE(lb) = BUF_LG;
   1206			skb_queue_tail(&card->lbpool.queue, lb);
   1207			skb_reserve(lb, NS_SMBUFSIZE);
   1208			push_rxbufs(card, lb);
   1209		}
   1210		card->lbfqc = i;
   1211		process_rsq(card);
   1212	}
   1213
   1214	/* Receive Status Queue is 7/8 full */
   1215	if (stat_r & NS_STAT_RSQAF) {
   1216		writel(NS_STAT_RSQAF, card->membase + STAT);
   1217		RXPRINTK("nicstar%d: RSQ almost full.\n", card->index);
   1218		process_rsq(card);
   1219	}
   1220
   1221	spin_unlock_irqrestore(&card->int_lock, flags);
   1222	PRINTK("nicstar%d: end of interrupt service\n", card->index);
   1223	return IRQ_HANDLED;
   1224}
   1225
   1226static int ns_open(struct atm_vcc *vcc)
   1227{
   1228	ns_dev *card;
   1229	vc_map *vc;
   1230	unsigned long tmpl, modl;
   1231	int tcr, tcra;		/* target cell rate, and absolute value */
   1232	int n = 0;		/* Number of entries in the TST. Initialized to remove
   1233				   the compiler warning. */
   1234	u32 u32d[4];
   1235	int frscdi = 0;		/* Index of the SCD. Initialized to remove the compiler
   1236				   warning. How I wish compilers were clever enough to
   1237				   tell which variables can truly be used
   1238				   uninitialized... */
   1239	int inuse;		/* tx or rx vc already in use by another vcc */
   1240	short vpi = vcc->vpi;
   1241	int vci = vcc->vci;
   1242
   1243	card = (ns_dev *) vcc->dev->dev_data;
   1244	PRINTK("nicstar%d: opening vpi.vci %d.%d \n", card->index, (int)vpi,
   1245	       vci);
   1246	if (vcc->qos.aal != ATM_AAL5 && vcc->qos.aal != ATM_AAL0) {
   1247		PRINTK("nicstar%d: unsupported AAL.\n", card->index);
   1248		return -EINVAL;
   1249	}
   1250
   1251	vc = &(card->vcmap[vpi << card->vcibits | vci]);
   1252	vcc->dev_data = vc;
   1253
   1254	inuse = 0;
   1255	if (vcc->qos.txtp.traffic_class != ATM_NONE && vc->tx)
   1256		inuse = 1;
   1257	if (vcc->qos.rxtp.traffic_class != ATM_NONE && vc->rx)
   1258		inuse += 2;
   1259	if (inuse) {
   1260		printk("nicstar%d: %s vci already in use.\n", card->index,
   1261		       inuse == 1 ? "tx" : inuse == 2 ? "rx" : "tx and rx");
   1262		return -EINVAL;
   1263	}
   1264
   1265	set_bit(ATM_VF_ADDR, &vcc->flags);
   1266
   1267	/* NOTE: You are not allowed to modify an open connection's QOS. To change
   1268	   that, remove the ATM_VF_PARTIAL flag checking. There may be other changes
   1269	   needed to do that. */
   1270	if (!test_bit(ATM_VF_PARTIAL, &vcc->flags)) {
   1271		scq_info *scq;
   1272
   1273		set_bit(ATM_VF_PARTIAL, &vcc->flags);
   1274		if (vcc->qos.txtp.traffic_class == ATM_CBR) {
   1275			/* Check requested cell rate and availability of SCD */
   1276			if (vcc->qos.txtp.max_pcr == 0 && vcc->qos.txtp.pcr == 0
   1277			    && vcc->qos.txtp.min_pcr == 0) {
   1278				PRINTK
   1279				    ("nicstar%d: trying to open a CBR vc with cell rate = 0 \n",
   1280				     card->index);
   1281				clear_bit(ATM_VF_PARTIAL, &vcc->flags);
   1282				clear_bit(ATM_VF_ADDR, &vcc->flags);
   1283				return -EINVAL;
   1284			}
   1285
   1286			tcr = atm_pcr_goal(&(vcc->qos.txtp));
   1287			tcra = tcr >= 0 ? tcr : -tcr;
   1288
   1289			PRINTK("nicstar%d: target cell rate = %d.\n",
   1290			       card->index, vcc->qos.txtp.max_pcr);
   1291
   1292			tmpl =
   1293			    (unsigned long)tcra *(unsigned long)
   1294			    NS_TST_NUM_ENTRIES;
   1295			modl = tmpl % card->max_pcr;
   1296
   1297			n = (int)(tmpl / card->max_pcr);
   1298			if (tcr > 0) {
   1299				if (modl > 0)
   1300					n++;
   1301			} else if (tcr == 0) {
   1302				if ((n =
   1303				     (card->tst_free_entries -
   1304				      NS_TST_RESERVED)) <= 0) {
   1305					PRINTK
   1306					    ("nicstar%d: no CBR bandwidth free.\n",
   1307					     card->index);
   1308					clear_bit(ATM_VF_PARTIAL, &vcc->flags);
   1309					clear_bit(ATM_VF_ADDR, &vcc->flags);
   1310					return -EINVAL;
   1311				}
   1312			}
   1313
   1314			if (n == 0) {
   1315				printk
   1316				    ("nicstar%d: selected bandwidth < granularity.\n",
   1317				     card->index);
   1318				clear_bit(ATM_VF_PARTIAL, &vcc->flags);
   1319				clear_bit(ATM_VF_ADDR, &vcc->flags);
   1320				return -EINVAL;
   1321			}
   1322
   1323			if (n > (card->tst_free_entries - NS_TST_RESERVED)) {
   1324				PRINTK
   1325				    ("nicstar%d: not enough free CBR bandwidth.\n",
   1326				     card->index);
   1327				clear_bit(ATM_VF_PARTIAL, &vcc->flags);
   1328				clear_bit(ATM_VF_ADDR, &vcc->flags);
   1329				return -EINVAL;
   1330			} else
   1331				card->tst_free_entries -= n;
   1332
   1333			XPRINTK("nicstar%d: writing %d tst entries.\n",
   1334				card->index, n);
   1335			for (frscdi = 0; frscdi < NS_FRSCD_NUM; frscdi++) {
   1336				if (card->scd2vc[frscdi] == NULL) {
   1337					card->scd2vc[frscdi] = vc;
   1338					break;
   1339				}
   1340			}
   1341			if (frscdi == NS_FRSCD_NUM) {
   1342				PRINTK
   1343				    ("nicstar%d: no SCD available for CBR channel.\n",
   1344				     card->index);
   1345				card->tst_free_entries += n;
   1346				clear_bit(ATM_VF_PARTIAL, &vcc->flags);
   1347				clear_bit(ATM_VF_ADDR, &vcc->flags);
   1348				return -EBUSY;
   1349			}
   1350
   1351			vc->cbr_scd = NS_FRSCD + frscdi * NS_FRSCD_SIZE;
   1352
   1353			scq = get_scq(card, CBR_SCQSIZE, vc->cbr_scd);
   1354			if (scq == NULL) {
   1355				PRINTK("nicstar%d: can't get fixed rate SCQ.\n",
   1356				       card->index);
   1357				card->scd2vc[frscdi] = NULL;
   1358				card->tst_free_entries += n;
   1359				clear_bit(ATM_VF_PARTIAL, &vcc->flags);
   1360				clear_bit(ATM_VF_ADDR, &vcc->flags);
   1361				return -ENOMEM;
   1362			}
   1363			vc->scq = scq;
   1364			u32d[0] = scq_virt_to_bus(scq, scq->base);
   1365			u32d[1] = (u32) 0x00000000;
   1366			u32d[2] = (u32) 0xffffffff;
   1367			u32d[3] = (u32) 0x00000000;
   1368			ns_write_sram(card, vc->cbr_scd, u32d, 4);
   1369
   1370			fill_tst(card, n, vc);
   1371		} else if (vcc->qos.txtp.traffic_class == ATM_UBR) {
   1372			vc->cbr_scd = 0x00000000;
   1373			vc->scq = card->scq0;
   1374		}
   1375
   1376		if (vcc->qos.txtp.traffic_class != ATM_NONE) {
   1377			vc->tx = 1;
   1378			vc->tx_vcc = vcc;
   1379			vc->tbd_count = 0;
   1380		}
   1381		if (vcc->qos.rxtp.traffic_class != ATM_NONE) {
   1382			u32 status;
   1383
   1384			vc->rx = 1;
   1385			vc->rx_vcc = vcc;
   1386			vc->rx_iov = NULL;
   1387
   1388			/* Open the connection in hardware */
   1389			if (vcc->qos.aal == ATM_AAL5)
   1390				status = NS_RCTE_AAL5 | NS_RCTE_CONNECTOPEN;
   1391			else	/* vcc->qos.aal == ATM_AAL0 */
   1392				status = NS_RCTE_AAL0 | NS_RCTE_CONNECTOPEN;
   1393#ifdef RCQ_SUPPORT
   1394			status |= NS_RCTE_RAWCELLINTEN;
   1395#endif /* RCQ_SUPPORT */
   1396			ns_write_sram(card,
   1397				      NS_RCT +
   1398				      (vpi << card->vcibits | vci) *
   1399				      NS_RCT_ENTRY_SIZE, &status, 1);
   1400		}
   1401
   1402	}
   1403
   1404	set_bit(ATM_VF_READY, &vcc->flags);
   1405	return 0;
   1406}
   1407
   1408static void ns_close(struct atm_vcc *vcc)
   1409{
   1410	vc_map *vc;
   1411	ns_dev *card;
   1412	u32 data;
   1413	int i;
   1414
   1415	vc = vcc->dev_data;
   1416	card = vcc->dev->dev_data;
   1417	PRINTK("nicstar%d: closing vpi.vci %d.%d \n", card->index,
   1418	       (int)vcc->vpi, vcc->vci);
   1419
   1420	clear_bit(ATM_VF_READY, &vcc->flags);
   1421
   1422	if (vcc->qos.rxtp.traffic_class != ATM_NONE) {
   1423		u32 addr;
   1424		unsigned long flags;
   1425
   1426		addr =
   1427		    NS_RCT +
   1428		    (vcc->vpi << card->vcibits | vcc->vci) * NS_RCT_ENTRY_SIZE;
   1429		spin_lock_irqsave(&card->res_lock, flags);
   1430		while (CMD_BUSY(card)) ;
   1431		writel(NS_CMD_CLOSE_CONNECTION | addr << 2,
   1432		       card->membase + CMD);
   1433		spin_unlock_irqrestore(&card->res_lock, flags);
   1434
   1435		vc->rx = 0;
   1436		if (vc->rx_iov != NULL) {
   1437			struct sk_buff *iovb;
   1438			u32 stat;
   1439
   1440			stat = readl(card->membase + STAT);
   1441			card->sbfqc = ns_stat_sfbqc_get(stat);
   1442			card->lbfqc = ns_stat_lfbqc_get(stat);
   1443
   1444			PRINTK
   1445			    ("nicstar%d: closing a VC with pending rx buffers.\n",
   1446			     card->index);
   1447			iovb = vc->rx_iov;
   1448			recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
   1449					      NS_PRV_IOVCNT(iovb));
   1450			NS_PRV_IOVCNT(iovb) = 0;
   1451			spin_lock_irqsave(&card->int_lock, flags);
   1452			recycle_iov_buf(card, iovb);
   1453			spin_unlock_irqrestore(&card->int_lock, flags);
   1454			vc->rx_iov = NULL;
   1455		}
   1456	}
   1457
   1458	if (vcc->qos.txtp.traffic_class != ATM_NONE) {
   1459		vc->tx = 0;
   1460	}
   1461
   1462	if (vcc->qos.txtp.traffic_class == ATM_CBR) {
   1463		unsigned long flags;
   1464		ns_scqe *scqep;
   1465		scq_info *scq;
   1466
   1467		scq = vc->scq;
   1468
   1469		for (;;) {
   1470			spin_lock_irqsave(&scq->lock, flags);
   1471			scqep = scq->next;
   1472			if (scqep == scq->base)
   1473				scqep = scq->last;
   1474			else
   1475				scqep--;
   1476			if (scqep == scq->tail) {
   1477				spin_unlock_irqrestore(&scq->lock, flags);
   1478				break;
   1479			}
   1480			/* If the last entry is not a TSR, place one in the SCQ in order to
   1481			   be able to completely drain it and then close. */
   1482			if (!ns_scqe_is_tsr(scqep) && scq->tail != scq->next) {
   1483				ns_scqe tsr;
   1484				u32 scdi, scqi;
   1485				u32 data;
   1486				int index;
   1487
   1488				tsr.word_1 = ns_tsr_mkword_1(NS_TSR_INTENABLE);
   1489				scdi = (vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE;
   1490				scqi = scq->next - scq->base;
   1491				tsr.word_2 = ns_tsr_mkword_2(scdi, scqi);
   1492				tsr.word_3 = 0x00000000;
   1493				tsr.word_4 = 0x00000000;
   1494				*scq->next = tsr;
   1495				index = (int)scqi;
   1496				scq->skb[index] = NULL;
   1497				if (scq->next == scq->last)
   1498					scq->next = scq->base;
   1499				else
   1500					scq->next++;
   1501				data = scq_virt_to_bus(scq, scq->next);
   1502				ns_write_sram(card, scq->scd, &data, 1);
   1503			}
   1504			spin_unlock_irqrestore(&scq->lock, flags);
   1505			schedule();
   1506		}
   1507
   1508		/* Free all TST entries */
   1509		data = NS_TST_OPCODE_VARIABLE;
   1510		for (i = 0; i < NS_TST_NUM_ENTRIES; i++) {
   1511			if (card->tste2vc[i] == vc) {
   1512				ns_write_sram(card, card->tst_addr + i, &data,
   1513					      1);
   1514				card->tste2vc[i] = NULL;
   1515				card->tst_free_entries++;
   1516			}
   1517		}
   1518
   1519		card->scd2vc[(vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE] = NULL;
   1520		free_scq(card, vc->scq, vcc);
   1521	}
   1522
   1523	/* remove all references to vcc before deleting it */
   1524	if (vcc->qos.txtp.traffic_class != ATM_NONE) {
   1525		unsigned long flags;
   1526		scq_info *scq = card->scq0;
   1527
   1528		spin_lock_irqsave(&scq->lock, flags);
   1529
   1530		for (i = 0; i < scq->num_entries; i++) {
   1531			if (scq->skb[i] && ATM_SKB(scq->skb[i])->vcc == vcc) {
   1532				ATM_SKB(scq->skb[i])->vcc = NULL;
   1533				atm_return(vcc, scq->skb[i]->truesize);
   1534				PRINTK
   1535				    ("nicstar: deleted pending vcc mapping\n");
   1536			}
   1537		}
   1538
   1539		spin_unlock_irqrestore(&scq->lock, flags);
   1540	}
   1541
   1542	vcc->dev_data = NULL;
   1543	clear_bit(ATM_VF_PARTIAL, &vcc->flags);
   1544	clear_bit(ATM_VF_ADDR, &vcc->flags);
   1545
   1546#ifdef RX_DEBUG
   1547	{
   1548		u32 stat, cfg;
   1549		stat = readl(card->membase + STAT);
   1550		cfg = readl(card->membase + CFG);
   1551		printk("STAT = 0x%08X  CFG = 0x%08X  \n", stat, cfg);
   1552		printk
   1553		    ("TSQ: base = 0x%p  next = 0x%p  last = 0x%p  TSQT = 0x%08X \n",
   1554		     card->tsq.base, card->tsq.next,
   1555		     card->tsq.last, readl(card->membase + TSQT));
   1556		printk
   1557		    ("RSQ: base = 0x%p  next = 0x%p  last = 0x%p  RSQT = 0x%08X \n",
   1558		     card->rsq.base, card->rsq.next,
   1559		     card->rsq.last, readl(card->membase + RSQT));
   1560		printk("Empty free buffer queue interrupt %s \n",
   1561		       card->efbie ? "enabled" : "disabled");
   1562		printk("SBCNT = %d  count = %d   LBCNT = %d count = %d \n",
   1563		       ns_stat_sfbqc_get(stat), card->sbpool.count,
   1564		       ns_stat_lfbqc_get(stat), card->lbpool.count);
   1565		printk("hbpool.count = %d  iovpool.count = %d \n",
   1566		       card->hbpool.count, card->iovpool.count);
   1567	}
   1568#endif /* RX_DEBUG */
   1569}
   1570
   1571static void fill_tst(ns_dev * card, int n, vc_map * vc)
   1572{
   1573	u32 new_tst;
   1574	unsigned long cl;
   1575	int e, r;
   1576	u32 data;
   1577
   1578	/* It would be very complicated to keep the two TSTs synchronized while
   1579	   assuring that writes are only made to the inactive TST. So, for now I
   1580	   will use only one TST. If problems occur, I will change this again */
   1581
   1582	new_tst = card->tst_addr;
   1583
   1584	/* Fill procedure */
   1585
   1586	for (e = 0; e < NS_TST_NUM_ENTRIES; e++) {
   1587		if (card->tste2vc[e] == NULL)
   1588			break;
   1589	}
   1590	if (e == NS_TST_NUM_ENTRIES) {
   1591		printk("nicstar%d: No free TST entries found. \n", card->index);
   1592		return;
   1593	}
   1594
   1595	r = n;
   1596	cl = NS_TST_NUM_ENTRIES;
   1597	data = ns_tste_make(NS_TST_OPCODE_FIXED, vc->cbr_scd);
   1598
   1599	while (r > 0) {
   1600		if (cl >= NS_TST_NUM_ENTRIES && card->tste2vc[e] == NULL) {
   1601			card->tste2vc[e] = vc;
   1602			ns_write_sram(card, new_tst + e, &data, 1);
   1603			cl -= NS_TST_NUM_ENTRIES;
   1604			r--;
   1605		}
   1606
   1607		if (++e == NS_TST_NUM_ENTRIES) {
   1608			e = 0;
   1609		}
   1610		cl += n;
   1611	}
   1612
   1613	/* End of fill procedure */
   1614
   1615	data = ns_tste_make(NS_TST_OPCODE_END, new_tst);
   1616	ns_write_sram(card, new_tst + NS_TST_NUM_ENTRIES, &data, 1);
   1617	ns_write_sram(card, card->tst_addr + NS_TST_NUM_ENTRIES, &data, 1);
   1618	card->tst_addr = new_tst;
   1619}
   1620
   1621static int _ns_send(struct atm_vcc *vcc, struct sk_buff *skb, bool may_sleep)
   1622{
   1623	ns_dev *card;
   1624	vc_map *vc;
   1625	scq_info *scq;
   1626	unsigned long buflen;
   1627	ns_scqe scqe;
   1628	u32 flags;		/* TBD flags, not CPU flags */
   1629
   1630	card = vcc->dev->dev_data;
   1631	TXPRINTK("nicstar%d: ns_send() called.\n", card->index);
   1632	if ((vc = (vc_map *) vcc->dev_data) == NULL) {
   1633		printk("nicstar%d: vcc->dev_data == NULL on ns_send().\n",
   1634		       card->index);
   1635		atomic_inc(&vcc->stats->tx_err);
   1636		dev_kfree_skb_any(skb);
   1637		return -EINVAL;
   1638	}
   1639
   1640	if (!vc->tx) {
   1641		printk("nicstar%d: Trying to transmit on a non-tx VC.\n",
   1642		       card->index);
   1643		atomic_inc(&vcc->stats->tx_err);
   1644		dev_kfree_skb_any(skb);
   1645		return -EINVAL;
   1646	}
   1647
   1648	if (vcc->qos.aal != ATM_AAL5 && vcc->qos.aal != ATM_AAL0) {
   1649		printk("nicstar%d: Only AAL0 and AAL5 are supported.\n",
   1650		       card->index);
   1651		atomic_inc(&vcc->stats->tx_err);
   1652		dev_kfree_skb_any(skb);
   1653		return -EINVAL;
   1654	}
   1655
   1656	if (skb_shinfo(skb)->nr_frags != 0) {
   1657		printk("nicstar%d: No scatter-gather yet.\n", card->index);
   1658		atomic_inc(&vcc->stats->tx_err);
   1659		dev_kfree_skb_any(skb);
   1660		return -EINVAL;
   1661	}
   1662
   1663	ATM_SKB(skb)->vcc = vcc;
   1664
   1665	NS_PRV_DMA(skb) = dma_map_single(&card->pcidev->dev, skb->data,
   1666					 skb->len, DMA_TO_DEVICE);
   1667
   1668	if (vcc->qos.aal == ATM_AAL5) {
   1669		buflen = (skb->len + 47 + 8) / 48 * 48;	/* Multiple of 48 */
   1670		flags = NS_TBD_AAL5;
   1671		scqe.word_2 = cpu_to_le32(NS_PRV_DMA(skb));
   1672		scqe.word_3 = cpu_to_le32(skb->len);
   1673		scqe.word_4 =
   1674		    ns_tbd_mkword_4(0, (u32) vcc->vpi, (u32) vcc->vci, 0,
   1675				    ATM_SKB(skb)->
   1676				    atm_options & ATM_ATMOPT_CLP ? 1 : 0);
   1677		flags |= NS_TBD_EOPDU;
   1678	} else {		/* (vcc->qos.aal == ATM_AAL0) */
   1679
   1680		buflen = ATM_CELL_PAYLOAD;	/* i.e., 48 bytes */
   1681		flags = NS_TBD_AAL0;
   1682		scqe.word_2 = cpu_to_le32(NS_PRV_DMA(skb) + NS_AAL0_HEADER);
   1683		scqe.word_3 = cpu_to_le32(0x00000000);
   1684		if (*skb->data & 0x02)	/* Payload type 1 - end of pdu */
   1685			flags |= NS_TBD_EOPDU;
   1686		scqe.word_4 =
   1687		    cpu_to_le32(*((u32 *) skb->data) & ~NS_TBD_VC_MASK);
   1688		/* Force the VPI/VCI to be the same as in VCC struct */
   1689		scqe.word_4 |=
   1690		    cpu_to_le32((((u32) vcc->
   1691				  vpi) << NS_TBD_VPI_SHIFT | ((u32) vcc->
   1692							      vci) <<
   1693				 NS_TBD_VCI_SHIFT) & NS_TBD_VC_MASK);
   1694	}
   1695
   1696	if (vcc->qos.txtp.traffic_class == ATM_CBR) {
   1697		scqe.word_1 = ns_tbd_mkword_1_novbr(flags, (u32) buflen);
   1698		scq = ((vc_map *) vcc->dev_data)->scq;
   1699	} else {
   1700		scqe.word_1 =
   1701		    ns_tbd_mkword_1(flags, (u32) 1, (u32) 1, (u32) buflen);
   1702		scq = card->scq0;
   1703	}
   1704
   1705	if (push_scqe(card, vc, scq, &scqe, skb, may_sleep) != 0) {
   1706		atomic_inc(&vcc->stats->tx_err);
   1707		dma_unmap_single(&card->pcidev->dev, NS_PRV_DMA(skb), skb->len,
   1708				 DMA_TO_DEVICE);
   1709		dev_kfree_skb_any(skb);
   1710		return -EIO;
   1711	}
   1712	atomic_inc(&vcc->stats->tx);
   1713
   1714	return 0;
   1715}
   1716
   1717static int ns_send(struct atm_vcc *vcc, struct sk_buff *skb)
   1718{
   1719	return _ns_send(vcc, skb, true);
   1720}
   1721
   1722static int ns_send_bh(struct atm_vcc *vcc, struct sk_buff *skb)
   1723{
   1724	return _ns_send(vcc, skb, false);
   1725}
   1726
   1727static int push_scqe(ns_dev * card, vc_map * vc, scq_info * scq, ns_scqe * tbd,
   1728		     struct sk_buff *skb, bool may_sleep)
   1729{
   1730	unsigned long flags;
   1731	ns_scqe tsr;
   1732	u32 scdi, scqi;
   1733	int scq_is_vbr;
   1734	u32 data;
   1735	int index;
   1736
   1737	spin_lock_irqsave(&scq->lock, flags);
   1738	while (scq->tail == scq->next) {
   1739		if (!may_sleep) {
   1740			spin_unlock_irqrestore(&scq->lock, flags);
   1741			printk("nicstar%d: Error pushing TBD.\n", card->index);
   1742			return 1;
   1743		}
   1744
   1745		scq->full = 1;
   1746		wait_event_interruptible_lock_irq_timeout(scq->scqfull_waitq,
   1747							  scq->tail != scq->next,
   1748							  scq->lock,
   1749							  SCQFULL_TIMEOUT);
   1750
   1751		if (scq->full) {
   1752			spin_unlock_irqrestore(&scq->lock, flags);
   1753			printk("nicstar%d: Timeout pushing TBD.\n",
   1754			       card->index);
   1755			return 1;
   1756		}
   1757	}
   1758	*scq->next = *tbd;
   1759	index = (int)(scq->next - scq->base);
   1760	scq->skb[index] = skb;
   1761	XPRINTK("nicstar%d: sending skb at 0x%p (pos %d).\n",
   1762		card->index, skb, index);
   1763	XPRINTK("nicstar%d: TBD written:\n0x%x\n0x%x\n0x%x\n0x%x\n at 0x%p.\n",
   1764		card->index, le32_to_cpu(tbd->word_1), le32_to_cpu(tbd->word_2),
   1765		le32_to_cpu(tbd->word_3), le32_to_cpu(tbd->word_4),
   1766		scq->next);
   1767	if (scq->next == scq->last)
   1768		scq->next = scq->base;
   1769	else
   1770		scq->next++;
   1771
   1772	vc->tbd_count++;
   1773	if (scq->num_entries == VBR_SCQ_NUM_ENTRIES) {
   1774		scq->tbd_count++;
   1775		scq_is_vbr = 1;
   1776	} else
   1777		scq_is_vbr = 0;
   1778
   1779	if (vc->tbd_count >= MAX_TBD_PER_VC
   1780	    || scq->tbd_count >= MAX_TBD_PER_SCQ) {
   1781		int has_run = 0;
   1782
   1783		while (scq->tail == scq->next) {
   1784			if (!may_sleep) {
   1785				data = scq_virt_to_bus(scq, scq->next);
   1786				ns_write_sram(card, scq->scd, &data, 1);
   1787				spin_unlock_irqrestore(&scq->lock, flags);
   1788				printk("nicstar%d: Error pushing TSR.\n",
   1789				       card->index);
   1790				return 0;
   1791			}
   1792
   1793			scq->full = 1;
   1794			if (has_run++)
   1795				break;
   1796			wait_event_interruptible_lock_irq_timeout(scq->scqfull_waitq,
   1797								  scq->tail != scq->next,
   1798								  scq->lock,
   1799								  SCQFULL_TIMEOUT);
   1800		}
   1801
   1802		if (!scq->full) {
   1803			tsr.word_1 = ns_tsr_mkword_1(NS_TSR_INTENABLE);
   1804			if (scq_is_vbr)
   1805				scdi = NS_TSR_SCDISVBR;
   1806			else
   1807				scdi = (vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE;
   1808			scqi = scq->next - scq->base;
   1809			tsr.word_2 = ns_tsr_mkword_2(scdi, scqi);
   1810			tsr.word_3 = 0x00000000;
   1811			tsr.word_4 = 0x00000000;
   1812
   1813			*scq->next = tsr;
   1814			index = (int)scqi;
   1815			scq->skb[index] = NULL;
   1816			XPRINTK
   1817			    ("nicstar%d: TSR written:\n0x%x\n0x%x\n0x%x\n0x%x\n at 0x%p.\n",
   1818			     card->index, le32_to_cpu(tsr.word_1),
   1819			     le32_to_cpu(tsr.word_2), le32_to_cpu(tsr.word_3),
   1820			     le32_to_cpu(tsr.word_4), scq->next);
   1821			if (scq->next == scq->last)
   1822				scq->next = scq->base;
   1823			else
   1824				scq->next++;
   1825			vc->tbd_count = 0;
   1826			scq->tbd_count = 0;
   1827		} else
   1828			PRINTK("nicstar%d: Timeout pushing TSR.\n",
   1829			       card->index);
   1830	}
   1831	data = scq_virt_to_bus(scq, scq->next);
   1832	ns_write_sram(card, scq->scd, &data, 1);
   1833
   1834	spin_unlock_irqrestore(&scq->lock, flags);
   1835
   1836	return 0;
   1837}
   1838
   1839static void process_tsq(ns_dev * card)
   1840{
   1841	u32 scdi;
   1842	scq_info *scq;
   1843	ns_tsi *previous = NULL, *one_ahead, *two_ahead;
   1844	int serviced_entries;	/* flag indicating at least on entry was serviced */
   1845
   1846	serviced_entries = 0;
   1847
   1848	if (card->tsq.next == card->tsq.last)
   1849		one_ahead = card->tsq.base;
   1850	else
   1851		one_ahead = card->tsq.next + 1;
   1852
   1853	if (one_ahead == card->tsq.last)
   1854		two_ahead = card->tsq.base;
   1855	else
   1856		two_ahead = one_ahead + 1;
   1857
   1858	while (!ns_tsi_isempty(card->tsq.next) || !ns_tsi_isempty(one_ahead) ||
   1859	       !ns_tsi_isempty(two_ahead))
   1860		/* At most two empty, as stated in the 77201 errata */
   1861	{
   1862		serviced_entries = 1;
   1863
   1864		/* Skip the one or two possible empty entries */
   1865		while (ns_tsi_isempty(card->tsq.next)) {
   1866			if (card->tsq.next == card->tsq.last)
   1867				card->tsq.next = card->tsq.base;
   1868			else
   1869				card->tsq.next++;
   1870		}
   1871
   1872		if (!ns_tsi_tmrof(card->tsq.next)) {
   1873			scdi = ns_tsi_getscdindex(card->tsq.next);
   1874			if (scdi == NS_TSI_SCDISVBR)
   1875				scq = card->scq0;
   1876			else {
   1877				if (card->scd2vc[scdi] == NULL) {
   1878					printk
   1879					    ("nicstar%d: could not find VC from SCD index.\n",
   1880					     card->index);
   1881					ns_tsi_init(card->tsq.next);
   1882					return;
   1883				}
   1884				scq = card->scd2vc[scdi]->scq;
   1885			}
   1886			drain_scq(card, scq, ns_tsi_getscqpos(card->tsq.next));
   1887			scq->full = 0;
   1888			wake_up_interruptible(&(scq->scqfull_waitq));
   1889		}
   1890
   1891		ns_tsi_init(card->tsq.next);
   1892		previous = card->tsq.next;
   1893		if (card->tsq.next == card->tsq.last)
   1894			card->tsq.next = card->tsq.base;
   1895		else
   1896			card->tsq.next++;
   1897
   1898		if (card->tsq.next == card->tsq.last)
   1899			one_ahead = card->tsq.base;
   1900		else
   1901			one_ahead = card->tsq.next + 1;
   1902
   1903		if (one_ahead == card->tsq.last)
   1904			two_ahead = card->tsq.base;
   1905		else
   1906			two_ahead = one_ahead + 1;
   1907	}
   1908
   1909	if (serviced_entries)
   1910		writel(PTR_DIFF(previous, card->tsq.base),
   1911		       card->membase + TSQH);
   1912}
   1913
   1914static void drain_scq(ns_dev * card, scq_info * scq, int pos)
   1915{
   1916	struct atm_vcc *vcc;
   1917	struct sk_buff *skb;
   1918	int i;
   1919	unsigned long flags;
   1920
   1921	XPRINTK("nicstar%d: drain_scq() called, scq at 0x%p, pos %d.\n",
   1922		card->index, scq, pos);
   1923	if (pos >= scq->num_entries) {
   1924		printk("nicstar%d: Bad index on drain_scq().\n", card->index);
   1925		return;
   1926	}
   1927
   1928	spin_lock_irqsave(&scq->lock, flags);
   1929	i = (int)(scq->tail - scq->base);
   1930	if (++i == scq->num_entries)
   1931		i = 0;
   1932	while (i != pos) {
   1933		skb = scq->skb[i];
   1934		XPRINTK("nicstar%d: freeing skb at 0x%p (index %d).\n",
   1935			card->index, skb, i);
   1936		if (skb != NULL) {
   1937			dma_unmap_single(&card->pcidev->dev,
   1938					 NS_PRV_DMA(skb),
   1939					 skb->len,
   1940					 DMA_TO_DEVICE);
   1941			vcc = ATM_SKB(skb)->vcc;
   1942			if (vcc && vcc->pop != NULL) {
   1943				vcc->pop(vcc, skb);
   1944			} else {
   1945				dev_kfree_skb_irq(skb);
   1946			}
   1947			scq->skb[i] = NULL;
   1948		}
   1949		if (++i == scq->num_entries)
   1950			i = 0;
   1951	}
   1952	scq->tail = scq->base + pos;
   1953	spin_unlock_irqrestore(&scq->lock, flags);
   1954}
   1955
   1956static void process_rsq(ns_dev * card)
   1957{
   1958	ns_rsqe *previous;
   1959
   1960	if (!ns_rsqe_valid(card->rsq.next))
   1961		return;
   1962	do {
   1963		dequeue_rx(card, card->rsq.next);
   1964		ns_rsqe_init(card->rsq.next);
   1965		previous = card->rsq.next;
   1966		if (card->rsq.next == card->rsq.last)
   1967			card->rsq.next = card->rsq.base;
   1968		else
   1969			card->rsq.next++;
   1970	} while (ns_rsqe_valid(card->rsq.next));
   1971	writel(PTR_DIFF(previous, card->rsq.base), card->membase + RSQH);
   1972}
   1973
   1974static void dequeue_rx(ns_dev * card, ns_rsqe * rsqe)
   1975{
   1976	u32 vpi, vci;
   1977	vc_map *vc;
   1978	struct sk_buff *iovb;
   1979	struct iovec *iov;
   1980	struct atm_vcc *vcc;
   1981	struct sk_buff *skb;
   1982	unsigned short aal5_len;
   1983	int len;
   1984	u32 stat;
   1985	u32 id;
   1986
   1987	stat = readl(card->membase + STAT);
   1988	card->sbfqc = ns_stat_sfbqc_get(stat);
   1989	card->lbfqc = ns_stat_lfbqc_get(stat);
   1990
   1991	id = le32_to_cpu(rsqe->buffer_handle);
   1992	skb = idr_remove(&card->idr, id);
   1993	if (!skb) {
   1994		RXPRINTK(KERN_ERR
   1995			 "nicstar%d: skb not found!\n", card->index);
   1996		return;
   1997	}
   1998	dma_sync_single_for_cpu(&card->pcidev->dev,
   1999				NS_PRV_DMA(skb),
   2000				(NS_PRV_BUFTYPE(skb) == BUF_SM
   2001				 ? NS_SMSKBSIZE : NS_LGSKBSIZE),
   2002				DMA_FROM_DEVICE);
   2003	dma_unmap_single(&card->pcidev->dev,
   2004			 NS_PRV_DMA(skb),
   2005			 (NS_PRV_BUFTYPE(skb) == BUF_SM
   2006			  ? NS_SMSKBSIZE : NS_LGSKBSIZE),
   2007			 DMA_FROM_DEVICE);
   2008	vpi = ns_rsqe_vpi(rsqe);
   2009	vci = ns_rsqe_vci(rsqe);
   2010	if (vpi >= 1UL << card->vpibits || vci >= 1UL << card->vcibits) {
   2011		printk("nicstar%d: SDU received for out-of-range vc %d.%d.\n",
   2012		       card->index, vpi, vci);
   2013		recycle_rx_buf(card, skb);
   2014		return;
   2015	}
   2016
   2017	vc = &(card->vcmap[vpi << card->vcibits | vci]);
   2018	if (!vc->rx) {
   2019		RXPRINTK("nicstar%d: SDU received on non-rx vc %d.%d.\n",
   2020			 card->index, vpi, vci);
   2021		recycle_rx_buf(card, skb);
   2022		return;
   2023	}
   2024
   2025	vcc = vc->rx_vcc;
   2026
   2027	if (vcc->qos.aal == ATM_AAL0) {
   2028		struct sk_buff *sb;
   2029		unsigned char *cell;
   2030		int i;
   2031
   2032		cell = skb->data;
   2033		for (i = ns_rsqe_cellcount(rsqe); i; i--) {
   2034			sb = dev_alloc_skb(NS_SMSKBSIZE);
   2035			if (!sb) {
   2036				printk
   2037				    ("nicstar%d: Can't allocate buffers for aal0.\n",
   2038				     card->index);
   2039				atomic_add(i, &vcc->stats->rx_drop);
   2040				break;
   2041			}
   2042			if (!atm_charge(vcc, sb->truesize)) {
   2043				RXPRINTK
   2044				    ("nicstar%d: atm_charge() dropped aal0 packets.\n",
   2045				     card->index);
   2046				atomic_add(i - 1, &vcc->stats->rx_drop);	/* already increased by 1 */
   2047				dev_kfree_skb_any(sb);
   2048				break;
   2049			}
   2050			/* Rebuild the header */
   2051			*((u32 *) sb->data) = le32_to_cpu(rsqe->word_1) << 4 |
   2052			    (ns_rsqe_clp(rsqe) ? 0x00000001 : 0x00000000);
   2053			if (i == 1 && ns_rsqe_eopdu(rsqe))
   2054				*((u32 *) sb->data) |= 0x00000002;
   2055			skb_put(sb, NS_AAL0_HEADER);
   2056			memcpy(skb_tail_pointer(sb), cell, ATM_CELL_PAYLOAD);
   2057			skb_put(sb, ATM_CELL_PAYLOAD);
   2058			ATM_SKB(sb)->vcc = vcc;
   2059			__net_timestamp(sb);
   2060			vcc->push(vcc, sb);
   2061			atomic_inc(&vcc->stats->rx);
   2062			cell += ATM_CELL_PAYLOAD;
   2063		}
   2064
   2065		recycle_rx_buf(card, skb);
   2066		return;
   2067	}
   2068
   2069	/* To reach this point, the AAL layer can only be AAL5 */
   2070
   2071	if ((iovb = vc->rx_iov) == NULL) {
   2072		iovb = skb_dequeue(&(card->iovpool.queue));
   2073		if (iovb == NULL) {	/* No buffers in the queue */
   2074			iovb = alloc_skb(NS_IOVBUFSIZE, GFP_ATOMIC);
   2075			if (iovb == NULL) {
   2076				printk("nicstar%d: Out of iovec buffers.\n",
   2077				       card->index);
   2078				atomic_inc(&vcc->stats->rx_drop);
   2079				recycle_rx_buf(card, skb);
   2080				return;
   2081			}
   2082			NS_PRV_BUFTYPE(iovb) = BUF_NONE;
   2083		} else if (--card->iovpool.count < card->iovnr.min) {
   2084			struct sk_buff *new_iovb;
   2085			if ((new_iovb =
   2086			     alloc_skb(NS_IOVBUFSIZE, GFP_ATOMIC)) != NULL) {
   2087				NS_PRV_BUFTYPE(iovb) = BUF_NONE;
   2088				skb_queue_tail(&card->iovpool.queue, new_iovb);
   2089				card->iovpool.count++;
   2090			}
   2091		}
   2092		vc->rx_iov = iovb;
   2093		NS_PRV_IOVCNT(iovb) = 0;
   2094		iovb->len = 0;
   2095		iovb->data = iovb->head;
   2096		skb_reset_tail_pointer(iovb);
   2097		/* IMPORTANT: a pointer to the sk_buff containing the small or large
   2098		   buffer is stored as iovec base, NOT a pointer to the
   2099		   small or large buffer itself. */
   2100	} else if (NS_PRV_IOVCNT(iovb) >= NS_MAX_IOVECS) {
   2101		printk("nicstar%d: received too big AAL5 SDU.\n", card->index);
   2102		atomic_inc(&vcc->stats->rx_err);
   2103		recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
   2104				      NS_MAX_IOVECS);
   2105		NS_PRV_IOVCNT(iovb) = 0;
   2106		iovb->len = 0;
   2107		iovb->data = iovb->head;
   2108		skb_reset_tail_pointer(iovb);
   2109	}
   2110	iov = &((struct iovec *)iovb->data)[NS_PRV_IOVCNT(iovb)++];
   2111	iov->iov_base = (void *)skb;
   2112	iov->iov_len = ns_rsqe_cellcount(rsqe) * 48;
   2113	iovb->len += iov->iov_len;
   2114
   2115#ifdef EXTRA_DEBUG
   2116	if (NS_PRV_IOVCNT(iovb) == 1) {
   2117		if (NS_PRV_BUFTYPE(skb) != BUF_SM) {
   2118			printk
   2119			    ("nicstar%d: Expected a small buffer, and this is not one.\n",
   2120			     card->index);
   2121			which_list(card, skb);
   2122			atomic_inc(&vcc->stats->rx_err);
   2123			recycle_rx_buf(card, skb);
   2124			vc->rx_iov = NULL;
   2125			recycle_iov_buf(card, iovb);
   2126			return;
   2127		}
   2128	} else {		/* NS_PRV_IOVCNT(iovb) >= 2 */
   2129
   2130		if (NS_PRV_BUFTYPE(skb) != BUF_LG) {
   2131			printk
   2132			    ("nicstar%d: Expected a large buffer, and this is not one.\n",
   2133			     card->index);
   2134			which_list(card, skb);
   2135			atomic_inc(&vcc->stats->rx_err);
   2136			recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
   2137					      NS_PRV_IOVCNT(iovb));
   2138			vc->rx_iov = NULL;
   2139			recycle_iov_buf(card, iovb);
   2140			return;
   2141		}
   2142	}
   2143#endif /* EXTRA_DEBUG */
   2144
   2145	if (ns_rsqe_eopdu(rsqe)) {
   2146		/* This works correctly regardless of the endianness of the host */
   2147		unsigned char *L1L2 = (unsigned char *)
   2148						(skb->data + iov->iov_len - 6);
   2149		aal5_len = L1L2[0] << 8 | L1L2[1];
   2150		len = (aal5_len == 0x0000) ? 0x10000 : aal5_len;
   2151		if (ns_rsqe_crcerr(rsqe) ||
   2152		    len + 8 > iovb->len || len + (47 + 8) < iovb->len) {
   2153			printk("nicstar%d: AAL5 CRC error", card->index);
   2154			if (len + 8 > iovb->len || len + (47 + 8) < iovb->len)
   2155				printk(" - PDU size mismatch.\n");
   2156			else
   2157				printk(".\n");
   2158			atomic_inc(&vcc->stats->rx_err);
   2159			recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
   2160					      NS_PRV_IOVCNT(iovb));
   2161			vc->rx_iov = NULL;
   2162			recycle_iov_buf(card, iovb);
   2163			return;
   2164		}
   2165
   2166		/* By this point we (hopefully) have a complete SDU without errors. */
   2167
   2168		if (NS_PRV_IOVCNT(iovb) == 1) {	/* Just a small buffer */
   2169			/* skb points to a small buffer */
   2170			if (!atm_charge(vcc, skb->truesize)) {
   2171				push_rxbufs(card, skb);
   2172				atomic_inc(&vcc->stats->rx_drop);
   2173			} else {
   2174				skb_put(skb, len);
   2175				dequeue_sm_buf(card, skb);
   2176				ATM_SKB(skb)->vcc = vcc;
   2177				__net_timestamp(skb);
   2178				vcc->push(vcc, skb);
   2179				atomic_inc(&vcc->stats->rx);
   2180			}
   2181		} else if (NS_PRV_IOVCNT(iovb) == 2) {	/* One small plus one large buffer */
   2182			struct sk_buff *sb;
   2183
   2184			sb = (struct sk_buff *)(iov - 1)->iov_base;
   2185			/* skb points to a large buffer */
   2186
   2187			if (len <= NS_SMBUFSIZE) {
   2188				if (!atm_charge(vcc, sb->truesize)) {
   2189					push_rxbufs(card, sb);
   2190					atomic_inc(&vcc->stats->rx_drop);
   2191				} else {
   2192					skb_put(sb, len);
   2193					dequeue_sm_buf(card, sb);
   2194					ATM_SKB(sb)->vcc = vcc;
   2195					__net_timestamp(sb);
   2196					vcc->push(vcc, sb);
   2197					atomic_inc(&vcc->stats->rx);
   2198				}
   2199
   2200				push_rxbufs(card, skb);
   2201
   2202			} else {	/* len > NS_SMBUFSIZE, the usual case */
   2203
   2204				if (!atm_charge(vcc, skb->truesize)) {
   2205					push_rxbufs(card, skb);
   2206					atomic_inc(&vcc->stats->rx_drop);
   2207				} else {
   2208					dequeue_lg_buf(card, skb);
   2209					skb_push(skb, NS_SMBUFSIZE);
   2210					skb_copy_from_linear_data(sb, skb->data,
   2211								  NS_SMBUFSIZE);
   2212					skb_put(skb, len - NS_SMBUFSIZE);
   2213					ATM_SKB(skb)->vcc = vcc;
   2214					__net_timestamp(skb);
   2215					vcc->push(vcc, skb);
   2216					atomic_inc(&vcc->stats->rx);
   2217				}
   2218
   2219				push_rxbufs(card, sb);
   2220
   2221			}
   2222
   2223		} else {	/* Must push a huge buffer */
   2224
   2225			struct sk_buff *hb, *sb, *lb;
   2226			int remaining, tocopy;
   2227			int j;
   2228
   2229			hb = skb_dequeue(&(card->hbpool.queue));
   2230			if (hb == NULL) {	/* No buffers in the queue */
   2231
   2232				hb = dev_alloc_skb(NS_HBUFSIZE);
   2233				if (hb == NULL) {
   2234					printk
   2235					    ("nicstar%d: Out of huge buffers.\n",
   2236					     card->index);
   2237					atomic_inc(&vcc->stats->rx_drop);
   2238					recycle_iovec_rx_bufs(card,
   2239							      (struct iovec *)
   2240							      iovb->data,
   2241							      NS_PRV_IOVCNT(iovb));
   2242					vc->rx_iov = NULL;
   2243					recycle_iov_buf(card, iovb);
   2244					return;
   2245				} else if (card->hbpool.count < card->hbnr.min) {
   2246					struct sk_buff *new_hb;
   2247					if ((new_hb =
   2248					     dev_alloc_skb(NS_HBUFSIZE)) !=
   2249					    NULL) {
   2250						skb_queue_tail(&card->hbpool.
   2251							       queue, new_hb);
   2252						card->hbpool.count++;
   2253					}
   2254				}
   2255				NS_PRV_BUFTYPE(hb) = BUF_NONE;
   2256			} else if (--card->hbpool.count < card->hbnr.min) {
   2257				struct sk_buff *new_hb;
   2258				if ((new_hb =
   2259				     dev_alloc_skb(NS_HBUFSIZE)) != NULL) {
   2260					NS_PRV_BUFTYPE(new_hb) = BUF_NONE;
   2261					skb_queue_tail(&card->hbpool.queue,
   2262						       new_hb);
   2263					card->hbpool.count++;
   2264				}
   2265				if (card->hbpool.count < card->hbnr.min) {
   2266					if ((new_hb =
   2267					     dev_alloc_skb(NS_HBUFSIZE)) !=
   2268					    NULL) {
   2269						NS_PRV_BUFTYPE(new_hb) =
   2270						    BUF_NONE;
   2271						skb_queue_tail(&card->hbpool.
   2272							       queue, new_hb);
   2273						card->hbpool.count++;
   2274					}
   2275				}
   2276			}
   2277
   2278			iov = (struct iovec *)iovb->data;
   2279
   2280			if (!atm_charge(vcc, hb->truesize)) {
   2281				recycle_iovec_rx_bufs(card, iov,
   2282						      NS_PRV_IOVCNT(iovb));
   2283				if (card->hbpool.count < card->hbnr.max) {
   2284					skb_queue_tail(&card->hbpool.queue, hb);
   2285					card->hbpool.count++;
   2286				} else
   2287					dev_kfree_skb_any(hb);
   2288				atomic_inc(&vcc->stats->rx_drop);
   2289			} else {
   2290				/* Copy the small buffer to the huge buffer */
   2291				sb = (struct sk_buff *)iov->iov_base;
   2292				skb_copy_from_linear_data(sb, hb->data,
   2293							  iov->iov_len);
   2294				skb_put(hb, iov->iov_len);
   2295				remaining = len - iov->iov_len;
   2296				iov++;
   2297				/* Free the small buffer */
   2298				push_rxbufs(card, sb);
   2299
   2300				/* Copy all large buffers to the huge buffer and free them */
   2301				for (j = 1; j < NS_PRV_IOVCNT(iovb); j++) {
   2302					lb = (struct sk_buff *)iov->iov_base;
   2303					tocopy =
   2304					    min_t(int, remaining, iov->iov_len);
   2305					skb_copy_from_linear_data(lb,
   2306								  skb_tail_pointer
   2307								  (hb), tocopy);
   2308					skb_put(hb, tocopy);
   2309					iov++;
   2310					remaining -= tocopy;
   2311					push_rxbufs(card, lb);
   2312				}
   2313#ifdef EXTRA_DEBUG
   2314				if (remaining != 0 || hb->len != len)
   2315					printk
   2316					    ("nicstar%d: Huge buffer len mismatch.\n",
   2317					     card->index);
   2318#endif /* EXTRA_DEBUG */
   2319				ATM_SKB(hb)->vcc = vcc;
   2320				__net_timestamp(hb);
   2321				vcc->push(vcc, hb);
   2322				atomic_inc(&vcc->stats->rx);
   2323			}
   2324		}
   2325
   2326		vc->rx_iov = NULL;
   2327		recycle_iov_buf(card, iovb);
   2328	}
   2329
   2330}
   2331
   2332static void recycle_rx_buf(ns_dev * card, struct sk_buff *skb)
   2333{
   2334	if (unlikely(NS_PRV_BUFTYPE(skb) == BUF_NONE)) {
   2335		printk("nicstar%d: What kind of rx buffer is this?\n",
   2336		       card->index);
   2337		dev_kfree_skb_any(skb);
   2338	} else
   2339		push_rxbufs(card, skb);
   2340}
   2341
   2342static void recycle_iovec_rx_bufs(ns_dev * card, struct iovec *iov, int count)
   2343{
   2344	while (count-- > 0)
   2345		recycle_rx_buf(card, (struct sk_buff *)(iov++)->iov_base);
   2346}
   2347
   2348static void recycle_iov_buf(ns_dev * card, struct sk_buff *iovb)
   2349{
   2350	if (card->iovpool.count < card->iovnr.max) {
   2351		skb_queue_tail(&card->iovpool.queue, iovb);
   2352		card->iovpool.count++;
   2353	} else
   2354		dev_kfree_skb_any(iovb);
   2355}
   2356
   2357static void dequeue_sm_buf(ns_dev * card, struct sk_buff *sb)
   2358{
   2359	skb_unlink(sb, &card->sbpool.queue);
   2360	if (card->sbfqc < card->sbnr.init) {
   2361		struct sk_buff *new_sb;
   2362		if ((new_sb = dev_alloc_skb(NS_SMSKBSIZE)) != NULL) {
   2363			NS_PRV_BUFTYPE(new_sb) = BUF_SM;
   2364			skb_queue_tail(&card->sbpool.queue, new_sb);
   2365			skb_reserve(new_sb, NS_AAL0_HEADER);
   2366			push_rxbufs(card, new_sb);
   2367		}
   2368	}
   2369	if (card->sbfqc < card->sbnr.init)
   2370	{
   2371		struct sk_buff *new_sb;
   2372		if ((new_sb = dev_alloc_skb(NS_SMSKBSIZE)) != NULL) {
   2373			NS_PRV_BUFTYPE(new_sb) = BUF_SM;
   2374			skb_queue_tail(&card->sbpool.queue, new_sb);
   2375			skb_reserve(new_sb, NS_AAL0_HEADER);
   2376			push_rxbufs(card, new_sb);
   2377		}
   2378	}
   2379}
   2380
   2381static void dequeue_lg_buf(ns_dev * card, struct sk_buff *lb)
   2382{
   2383	skb_unlink(lb, &card->lbpool.queue);
   2384	if (card->lbfqc < card->lbnr.init) {
   2385		struct sk_buff *new_lb;
   2386		if ((new_lb = dev_alloc_skb(NS_LGSKBSIZE)) != NULL) {
   2387			NS_PRV_BUFTYPE(new_lb) = BUF_LG;
   2388			skb_queue_tail(&card->lbpool.queue, new_lb);
   2389			skb_reserve(new_lb, NS_SMBUFSIZE);
   2390			push_rxbufs(card, new_lb);
   2391		}
   2392	}
   2393	if (card->lbfqc < card->lbnr.init)
   2394	{
   2395		struct sk_buff *new_lb;
   2396		if ((new_lb = dev_alloc_skb(NS_LGSKBSIZE)) != NULL) {
   2397			NS_PRV_BUFTYPE(new_lb) = BUF_LG;
   2398			skb_queue_tail(&card->lbpool.queue, new_lb);
   2399			skb_reserve(new_lb, NS_SMBUFSIZE);
   2400			push_rxbufs(card, new_lb);
   2401		}
   2402	}
   2403}
   2404
   2405static int ns_proc_read(struct atm_dev *dev, loff_t * pos, char *page)
   2406{
   2407	u32 stat;
   2408	ns_dev *card;
   2409	int left;
   2410
   2411	left = (int)*pos;
   2412	card = (ns_dev *) dev->dev_data;
   2413	stat = readl(card->membase + STAT);
   2414	if (!left--)
   2415		return sprintf(page, "Pool   count    min   init    max \n");
   2416	if (!left--)
   2417		return sprintf(page, "Small  %5d  %5d  %5d  %5d \n",
   2418			       ns_stat_sfbqc_get(stat), card->sbnr.min,
   2419			       card->sbnr.init, card->sbnr.max);
   2420	if (!left--)
   2421		return sprintf(page, "Large  %5d  %5d  %5d  %5d \n",
   2422			       ns_stat_lfbqc_get(stat), card->lbnr.min,
   2423			       card->lbnr.init, card->lbnr.max);
   2424	if (!left--)
   2425		return sprintf(page, "Huge   %5d  %5d  %5d  %5d \n",
   2426			       card->hbpool.count, card->hbnr.min,
   2427			       card->hbnr.init, card->hbnr.max);
   2428	if (!left--)
   2429		return sprintf(page, "Iovec  %5d  %5d  %5d  %5d \n",
   2430			       card->iovpool.count, card->iovnr.min,
   2431			       card->iovnr.init, card->iovnr.max);
   2432	if (!left--) {
   2433		int retval;
   2434		retval =
   2435		    sprintf(page, "Interrupt counter: %u \n", card->intcnt);
   2436		card->intcnt = 0;
   2437		return retval;
   2438	}
   2439#if 0
   2440	/* Dump 25.6 Mbps PHY registers */
   2441	/* Now there's a 25.6 Mbps PHY driver this code isn't needed. I left it
   2442	   here just in case it's needed for debugging. */
   2443	if (card->max_pcr == ATM_25_PCR && !left--) {
   2444		u32 phy_regs[4];
   2445		u32 i;
   2446
   2447		for (i = 0; i < 4; i++) {
   2448			while (CMD_BUSY(card)) ;
   2449			writel(NS_CMD_READ_UTILITY | 0x00000200 | i,
   2450			       card->membase + CMD);
   2451			while (CMD_BUSY(card)) ;
   2452			phy_regs[i] = readl(card->membase + DR0) & 0x000000FF;
   2453		}
   2454
   2455		return sprintf(page, "PHY regs: 0x%02X 0x%02X 0x%02X 0x%02X \n",
   2456			       phy_regs[0], phy_regs[1], phy_regs[2],
   2457			       phy_regs[3]);
   2458	}
   2459#endif /* 0 - Dump 25.6 Mbps PHY registers */
   2460#if 0
   2461	/* Dump TST */
   2462	if (left-- < NS_TST_NUM_ENTRIES) {
   2463		if (card->tste2vc[left + 1] == NULL)
   2464			return sprintf(page, "%5d - VBR/UBR \n", left + 1);
   2465		else
   2466			return sprintf(page, "%5d - %d %d \n", left + 1,
   2467				       card->tste2vc[left + 1]->tx_vcc->vpi,
   2468				       card->tste2vc[left + 1]->tx_vcc->vci);
   2469	}
   2470#endif /* 0 */
   2471	return 0;
   2472}
   2473
   2474static int ns_ioctl(struct atm_dev *dev, unsigned int cmd, void __user * arg)
   2475{
   2476	ns_dev *card;
   2477	pool_levels pl;
   2478	long btype;
   2479	unsigned long flags;
   2480
   2481	card = dev->dev_data;
   2482	switch (cmd) {
   2483	case NS_GETPSTAT:
   2484		if (get_user
   2485		    (pl.buftype, &((pool_levels __user *) arg)->buftype))
   2486			return -EFAULT;
   2487		switch (pl.buftype) {
   2488		case NS_BUFTYPE_SMALL:
   2489			pl.count =
   2490			    ns_stat_sfbqc_get(readl(card->membase + STAT));
   2491			pl.level.min = card->sbnr.min;
   2492			pl.level.init = card->sbnr.init;
   2493			pl.level.max = card->sbnr.max;
   2494			break;
   2495
   2496		case NS_BUFTYPE_LARGE:
   2497			pl.count =
   2498			    ns_stat_lfbqc_get(readl(card->membase + STAT));
   2499			pl.level.min = card->lbnr.min;
   2500			pl.level.init = card->lbnr.init;
   2501			pl.level.max = card->lbnr.max;
   2502			break;
   2503
   2504		case NS_BUFTYPE_HUGE:
   2505			pl.count = card->hbpool.count;
   2506			pl.level.min = card->hbnr.min;
   2507			pl.level.init = card->hbnr.init;
   2508			pl.level.max = card->hbnr.max;
   2509			break;
   2510
   2511		case NS_BUFTYPE_IOVEC:
   2512			pl.count = card->iovpool.count;
   2513			pl.level.min = card->iovnr.min;
   2514			pl.level.init = card->iovnr.init;
   2515			pl.level.max = card->iovnr.max;
   2516			break;
   2517
   2518		default:
   2519			return -ENOIOCTLCMD;
   2520
   2521		}
   2522		if (!copy_to_user((pool_levels __user *) arg, &pl, sizeof(pl)))
   2523			return (sizeof(pl));
   2524		else
   2525			return -EFAULT;
   2526
   2527	case NS_SETBUFLEV:
   2528		if (!capable(CAP_NET_ADMIN))
   2529			return -EPERM;
   2530		if (copy_from_user(&pl, (pool_levels __user *) arg, sizeof(pl)))
   2531			return -EFAULT;
   2532		if (pl.level.min >= pl.level.init
   2533		    || pl.level.init >= pl.level.max)
   2534			return -EINVAL;
   2535		if (pl.level.min == 0)
   2536			return -EINVAL;
   2537		switch (pl.buftype) {
   2538		case NS_BUFTYPE_SMALL:
   2539			if (pl.level.max > TOP_SB)
   2540				return -EINVAL;
   2541			card->sbnr.min = pl.level.min;
   2542			card->sbnr.init = pl.level.init;
   2543			card->sbnr.max = pl.level.max;
   2544			break;
   2545
   2546		case NS_BUFTYPE_LARGE:
   2547			if (pl.level.max > TOP_LB)
   2548				return -EINVAL;
   2549			card->lbnr.min = pl.level.min;
   2550			card->lbnr.init = pl.level.init;
   2551			card->lbnr.max = pl.level.max;
   2552			break;
   2553
   2554		case NS_BUFTYPE_HUGE:
   2555			if (pl.level.max > TOP_HB)
   2556				return -EINVAL;
   2557			card->hbnr.min = pl.level.min;
   2558			card->hbnr.init = pl.level.init;
   2559			card->hbnr.max = pl.level.max;
   2560			break;
   2561
   2562		case NS_BUFTYPE_IOVEC:
   2563			if (pl.level.max > TOP_IOVB)
   2564				return -EINVAL;
   2565			card->iovnr.min = pl.level.min;
   2566			card->iovnr.init = pl.level.init;
   2567			card->iovnr.max = pl.level.max;
   2568			break;
   2569
   2570		default:
   2571			return -EINVAL;
   2572
   2573		}
   2574		return 0;
   2575
   2576	case NS_ADJBUFLEV:
   2577		if (!capable(CAP_NET_ADMIN))
   2578			return -EPERM;
   2579		btype = (long)arg;	/* a long is the same size as a pointer or bigger */
   2580		switch (btype) {
   2581		case NS_BUFTYPE_SMALL:
   2582			while (card->sbfqc < card->sbnr.init) {
   2583				struct sk_buff *sb;
   2584
   2585				sb = __dev_alloc_skb(NS_SMSKBSIZE, GFP_KERNEL);
   2586				if (sb == NULL)
   2587					return -ENOMEM;
   2588				NS_PRV_BUFTYPE(sb) = BUF_SM;
   2589				skb_queue_tail(&card->sbpool.queue, sb);
   2590				skb_reserve(sb, NS_AAL0_HEADER);
   2591				push_rxbufs(card, sb);
   2592			}
   2593			break;
   2594
   2595		case NS_BUFTYPE_LARGE:
   2596			while (card->lbfqc < card->lbnr.init) {
   2597				struct sk_buff *lb;
   2598
   2599				lb = __dev_alloc_skb(NS_LGSKBSIZE, GFP_KERNEL);
   2600				if (lb == NULL)
   2601					return -ENOMEM;
   2602				NS_PRV_BUFTYPE(lb) = BUF_LG;
   2603				skb_queue_tail(&card->lbpool.queue, lb);
   2604				skb_reserve(lb, NS_SMBUFSIZE);
   2605				push_rxbufs(card, lb);
   2606			}
   2607			break;
   2608
   2609		case NS_BUFTYPE_HUGE:
   2610			while (card->hbpool.count > card->hbnr.init) {
   2611				struct sk_buff *hb;
   2612
   2613				spin_lock_irqsave(&card->int_lock, flags);
   2614				hb = skb_dequeue(&card->hbpool.queue);
   2615				card->hbpool.count--;
   2616				spin_unlock_irqrestore(&card->int_lock, flags);
   2617				if (hb == NULL)
   2618					printk
   2619					    ("nicstar%d: huge buffer count inconsistent.\n",
   2620					     card->index);
   2621				else
   2622					dev_kfree_skb_any(hb);
   2623
   2624			}
   2625			while (card->hbpool.count < card->hbnr.init) {
   2626				struct sk_buff *hb;
   2627
   2628				hb = __dev_alloc_skb(NS_HBUFSIZE, GFP_KERNEL);
   2629				if (hb == NULL)
   2630					return -ENOMEM;
   2631				NS_PRV_BUFTYPE(hb) = BUF_NONE;
   2632				spin_lock_irqsave(&card->int_lock, flags);
   2633				skb_queue_tail(&card->hbpool.queue, hb);
   2634				card->hbpool.count++;
   2635				spin_unlock_irqrestore(&card->int_lock, flags);
   2636			}
   2637			break;
   2638
   2639		case NS_BUFTYPE_IOVEC:
   2640			while (card->iovpool.count > card->iovnr.init) {
   2641				struct sk_buff *iovb;
   2642
   2643				spin_lock_irqsave(&card->int_lock, flags);
   2644				iovb = skb_dequeue(&card->iovpool.queue);
   2645				card->iovpool.count--;
   2646				spin_unlock_irqrestore(&card->int_lock, flags);
   2647				if (iovb == NULL)
   2648					printk
   2649					    ("nicstar%d: iovec buffer count inconsistent.\n",
   2650					     card->index);
   2651				else
   2652					dev_kfree_skb_any(iovb);
   2653
   2654			}
   2655			while (card->iovpool.count < card->iovnr.init) {
   2656				struct sk_buff *iovb;
   2657
   2658				iovb = alloc_skb(NS_IOVBUFSIZE, GFP_KERNEL);
   2659				if (iovb == NULL)
   2660					return -ENOMEM;
   2661				NS_PRV_BUFTYPE(iovb) = BUF_NONE;
   2662				spin_lock_irqsave(&card->int_lock, flags);
   2663				skb_queue_tail(&card->iovpool.queue, iovb);
   2664				card->iovpool.count++;
   2665				spin_unlock_irqrestore(&card->int_lock, flags);
   2666			}
   2667			break;
   2668
   2669		default:
   2670			return -EINVAL;
   2671
   2672		}
   2673		return 0;
   2674
   2675	default:
   2676		if (dev->phy && dev->phy->ioctl) {
   2677			return dev->phy->ioctl(dev, cmd, arg);
   2678		} else {
   2679			printk("nicstar%d: %s == NULL \n", card->index,
   2680			       dev->phy ? "dev->phy->ioctl" : "dev->phy");
   2681			return -ENOIOCTLCMD;
   2682		}
   2683	}
   2684}
   2685
   2686#ifdef EXTRA_DEBUG
   2687static void which_list(ns_dev * card, struct sk_buff *skb)
   2688{
   2689	printk("skb buf_type: 0x%08x\n", NS_PRV_BUFTYPE(skb));
   2690}
   2691#endif /* EXTRA_DEBUG */
   2692
   2693static void ns_poll(struct timer_list *unused)
   2694{
   2695	int i;
   2696	ns_dev *card;
   2697	unsigned long flags;
   2698	u32 stat_r, stat_w;
   2699
   2700	PRINTK("nicstar: Entering ns_poll().\n");
   2701	for (i = 0; i < num_cards; i++) {
   2702		card = cards[i];
   2703		if (!spin_trylock_irqsave(&card->int_lock, flags)) {
   2704			/* Probably it isn't worth spinning */
   2705			continue;
   2706		}
   2707
   2708		stat_w = 0;
   2709		stat_r = readl(card->membase + STAT);
   2710		if (stat_r & NS_STAT_TSIF)
   2711			stat_w |= NS_STAT_TSIF;
   2712		if (stat_r & NS_STAT_EOPDU)
   2713			stat_w |= NS_STAT_EOPDU;
   2714
   2715		process_tsq(card);
   2716		process_rsq(card);
   2717
   2718		writel(stat_w, card->membase + STAT);
   2719		spin_unlock_irqrestore(&card->int_lock, flags);
   2720	}
   2721	mod_timer(&ns_timer, jiffies + NS_POLL_PERIOD);
   2722	PRINTK("nicstar: Leaving ns_poll().\n");
   2723}
   2724
   2725static void ns_phy_put(struct atm_dev *dev, unsigned char value,
   2726		       unsigned long addr)
   2727{
   2728	ns_dev *card;
   2729	unsigned long flags;
   2730
   2731	card = dev->dev_data;
   2732	spin_lock_irqsave(&card->res_lock, flags);
   2733	while (CMD_BUSY(card)) ;
   2734	writel((u32) value, card->membase + DR0);
   2735	writel(NS_CMD_WRITE_UTILITY | 0x00000200 | (addr & 0x000000FF),
   2736	       card->membase + CMD);
   2737	spin_unlock_irqrestore(&card->res_lock, flags);
   2738}
   2739
   2740static unsigned char ns_phy_get(struct atm_dev *dev, unsigned long addr)
   2741{
   2742	ns_dev *card;
   2743	unsigned long flags;
   2744	u32 data;
   2745
   2746	card = dev->dev_data;
   2747	spin_lock_irqsave(&card->res_lock, flags);
   2748	while (CMD_BUSY(card)) ;
   2749	writel(NS_CMD_READ_UTILITY | 0x00000200 | (addr & 0x000000FF),
   2750	       card->membase + CMD);
   2751	while (CMD_BUSY(card)) ;
   2752	data = readl(card->membase + DR0) & 0x000000FF;
   2753	spin_unlock_irqrestore(&card->res_lock, flags);
   2754	return (unsigned char)data;
   2755}
   2756
   2757module_init(nicstar_init);
   2758module_exit(nicstar_cleanup);