cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

panel.c (46495B)


      1// SPDX-License-Identifier: GPL-2.0+
      2/*
      3 * Front panel driver for Linux
      4 * Copyright (C) 2000-2008, Willy Tarreau <w@1wt.eu>
      5 * Copyright (C) 2016-2017 Glider bvba
      6 *
      7 * This code drives an LCD module (/dev/lcd), and a keypad (/dev/keypad)
      8 * connected to a parallel printer port.
      9 *
     10 * The LCD module may either be an HD44780-like 8-bit parallel LCD, or a 1-bit
     11 * serial module compatible with Samsung's KS0074. The pins may be connected in
     12 * any combination, everything is programmable.
     13 *
     14 * The keypad consists in a matrix of push buttons connecting input pins to
     15 * data output pins or to the ground. The combinations have to be hard-coded
     16 * in the driver, though several profiles exist and adding new ones is easy.
     17 *
     18 * Several profiles are provided for commonly found LCD+keypad modules on the
     19 * market, such as those found in Nexcom's appliances.
     20 *
     21 * FIXME:
     22 *      - the initialization/deinitialization process is very dirty and should
     23 *        be rewritten. It may even be buggy.
     24 *
     25 * TODO:
     26 *	- document 24 keys keyboard (3 rows of 8 cols, 32 diodes + 2 inputs)
     27 *      - make the LCD a part of a virtual screen of Vx*Vy
     28 *	- make the inputs list smp-safe
     29 *      - change the keyboard to a double mapping : signals -> key_id -> values
     30 *        so that applications can change values without knowing signals
     31 *
     32 */
     33
     34#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
     35
     36#include <linux/module.h>
     37
     38#include <linux/types.h>
     39#include <linux/errno.h>
     40#include <linux/signal.h>
     41#include <linux/sched.h>
     42#include <linux/spinlock.h>
     43#include <linux/interrupt.h>
     44#include <linux/miscdevice.h>
     45#include <linux/slab.h>
     46#include <linux/ioport.h>
     47#include <linux/fcntl.h>
     48#include <linux/init.h>
     49#include <linux/delay.h>
     50#include <linux/kernel.h>
     51#include <linux/ctype.h>
     52#include <linux/parport.h>
     53#include <linux/list.h>
     54
     55#include <linux/io.h>
     56#include <linux/uaccess.h>
     57
     58#include "charlcd.h"
     59#include "hd44780_common.h"
     60
     61#define LCD_MAXBYTES		256	/* max burst write */
     62
     63#define KEYPAD_BUFFER		64
     64
     65/* poll the keyboard this every second */
     66#define INPUT_POLL_TIME		(HZ / 50)
     67/* a key starts to repeat after this times INPUT_POLL_TIME */
     68#define KEYPAD_REP_START	(10)
     69/* a key repeats this times INPUT_POLL_TIME */
     70#define KEYPAD_REP_DELAY	(2)
     71
     72/* converts an r_str() input to an active high, bits string : 000BAOSE */
     73#define PNL_PINPUT(a)		((((unsigned char)(a)) ^ 0x7F) >> 3)
     74
     75#define PNL_PBUSY		0x80	/* inverted input, active low */
     76#define PNL_PACK		0x40	/* direct input, active low */
     77#define PNL_POUTPA		0x20	/* direct input, active high */
     78#define PNL_PSELECD		0x10	/* direct input, active high */
     79#define PNL_PERRORP		0x08	/* direct input, active low */
     80
     81#define PNL_PBIDIR		0x20	/* bi-directional ports */
     82/* high to read data in or-ed with data out */
     83#define PNL_PINTEN		0x10
     84#define PNL_PSELECP		0x08	/* inverted output, active low */
     85#define PNL_PINITP		0x04	/* direct output, active low */
     86#define PNL_PAUTOLF		0x02	/* inverted output, active low */
     87#define PNL_PSTROBE		0x01	/* inverted output */
     88
     89#define PNL_PD0			0x01
     90#define PNL_PD1			0x02
     91#define PNL_PD2			0x04
     92#define PNL_PD3			0x08
     93#define PNL_PD4			0x10
     94#define PNL_PD5			0x20
     95#define PNL_PD6			0x40
     96#define PNL_PD7			0x80
     97
     98#define PIN_NONE		0
     99#define PIN_STROBE		1
    100#define PIN_D0			2
    101#define PIN_D1			3
    102#define PIN_D2			4
    103#define PIN_D3			5
    104#define PIN_D4			6
    105#define PIN_D5			7
    106#define PIN_D6			8
    107#define PIN_D7			9
    108#define PIN_AUTOLF		14
    109#define PIN_INITP		16
    110#define PIN_SELECP		17
    111#define PIN_NOT_SET		127
    112
    113#define NOT_SET			-1
    114
    115/* macros to simplify use of the parallel port */
    116#define r_ctr(x)        (parport_read_control((x)->port))
    117#define r_dtr(x)        (parport_read_data((x)->port))
    118#define r_str(x)        (parport_read_status((x)->port))
    119#define w_ctr(x, y)     (parport_write_control((x)->port, (y)))
    120#define w_dtr(x, y)     (parport_write_data((x)->port, (y)))
    121
    122/* this defines which bits are to be used and which ones to be ignored */
    123/* logical or of the output bits involved in the scan matrix */
    124static __u8 scan_mask_o;
    125/* logical or of the input bits involved in the scan matrix */
    126static __u8 scan_mask_i;
    127
    128enum input_type {
    129	INPUT_TYPE_STD,
    130	INPUT_TYPE_KBD,
    131};
    132
    133enum input_state {
    134	INPUT_ST_LOW,
    135	INPUT_ST_RISING,
    136	INPUT_ST_HIGH,
    137	INPUT_ST_FALLING,
    138};
    139
    140struct logical_input {
    141	struct list_head list;
    142	__u64 mask;
    143	__u64 value;
    144	enum input_type type;
    145	enum input_state state;
    146	__u8 rise_time, fall_time;
    147	__u8 rise_timer, fall_timer, high_timer;
    148
    149	union {
    150		struct {	/* valid when type == INPUT_TYPE_STD */
    151			void (*press_fct)(int);
    152			void (*release_fct)(int);
    153			int press_data;
    154			int release_data;
    155		} std;
    156		struct {	/* valid when type == INPUT_TYPE_KBD */
    157			char press_str[sizeof(void *) + sizeof(int)] __nonstring;
    158			char repeat_str[sizeof(void *) + sizeof(int)] __nonstring;
    159			char release_str[sizeof(void *) + sizeof(int)] __nonstring;
    160		} kbd;
    161	} u;
    162};
    163
    164static LIST_HEAD(logical_inputs);	/* list of all defined logical inputs */
    165
    166/* physical contacts history
    167 * Physical contacts are a 45 bits string of 9 groups of 5 bits each.
    168 * The 8 lower groups correspond to output bits 0 to 7, and the 9th group
    169 * corresponds to the ground.
    170 * Within each group, bits are stored in the same order as read on the port :
    171 * BAPSE (busy=4, ack=3, paper empty=2, select=1, error=0).
    172 * So, each __u64 is represented like this :
    173 * 0000000000000000000BAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSE
    174 * <-----unused------><gnd><d07><d06><d05><d04><d03><d02><d01><d00>
    175 */
    176
    177/* what has just been read from the I/O ports */
    178static __u64 phys_read;
    179/* previous phys_read */
    180static __u64 phys_read_prev;
    181/* stabilized phys_read (phys_read|phys_read_prev) */
    182static __u64 phys_curr;
    183/* previous phys_curr */
    184static __u64 phys_prev;
    185/* 0 means that at least one logical signal needs be computed */
    186static char inputs_stable;
    187
    188/* these variables are specific to the keypad */
    189static struct {
    190	bool enabled;
    191} keypad;
    192
    193static char keypad_buffer[KEYPAD_BUFFER];
    194static int keypad_buflen;
    195static int keypad_start;
    196static char keypressed;
    197static wait_queue_head_t keypad_read_wait;
    198
    199/* lcd-specific variables */
    200static struct {
    201	bool enabled;
    202	bool initialized;
    203
    204	int charset;
    205	int proto;
    206
    207	/* TODO: use union here? */
    208	struct {
    209		int e;
    210		int rs;
    211		int rw;
    212		int cl;
    213		int da;
    214		int bl;
    215	} pins;
    216
    217	struct charlcd *charlcd;
    218} lcd;
    219
    220/* Needed only for init */
    221static int selected_lcd_type = NOT_SET;
    222
    223/*
    224 * Bit masks to convert LCD signals to parallel port outputs.
    225 * _d_ are values for data port, _c_ are for control port.
    226 * [0] = signal OFF, [1] = signal ON, [2] = mask
    227 */
    228#define BIT_CLR		0
    229#define BIT_SET		1
    230#define BIT_MSK		2
    231#define BIT_STATES	3
    232/*
    233 * one entry for each bit on the LCD
    234 */
    235#define LCD_BIT_E	0
    236#define LCD_BIT_RS	1
    237#define LCD_BIT_RW	2
    238#define LCD_BIT_BL	3
    239#define LCD_BIT_CL	4
    240#define LCD_BIT_DA	5
    241#define LCD_BITS	6
    242
    243/*
    244 * each bit can be either connected to a DATA or CTRL port
    245 */
    246#define LCD_PORT_C	0
    247#define LCD_PORT_D	1
    248#define LCD_PORTS	2
    249
    250static unsigned char lcd_bits[LCD_PORTS][LCD_BITS][BIT_STATES];
    251
    252/*
    253 * LCD protocols
    254 */
    255#define LCD_PROTO_PARALLEL      0
    256#define LCD_PROTO_SERIAL        1
    257#define LCD_PROTO_TI_DA8XX_LCD	2
    258
    259/*
    260 * LCD character sets
    261 */
    262#define LCD_CHARSET_NORMAL      0
    263#define LCD_CHARSET_KS0074      1
    264
    265/*
    266 * LCD types
    267 */
    268#define LCD_TYPE_NONE		0
    269#define LCD_TYPE_CUSTOM		1
    270#define LCD_TYPE_OLD		2
    271#define LCD_TYPE_KS0074		3
    272#define LCD_TYPE_HANTRONIX	4
    273#define LCD_TYPE_NEXCOM		5
    274
    275/*
    276 * keypad types
    277 */
    278#define KEYPAD_TYPE_NONE	0
    279#define KEYPAD_TYPE_OLD		1
    280#define KEYPAD_TYPE_NEW		2
    281#define KEYPAD_TYPE_NEXCOM	3
    282
    283/*
    284 * panel profiles
    285 */
    286#define PANEL_PROFILE_CUSTOM	0
    287#define PANEL_PROFILE_OLD	1
    288#define PANEL_PROFILE_NEW	2
    289#define PANEL_PROFILE_HANTRONIX	3
    290#define PANEL_PROFILE_NEXCOM	4
    291#define PANEL_PROFILE_LARGE	5
    292
    293/*
    294 * Construct custom config from the kernel's configuration
    295 */
    296#define DEFAULT_PARPORT         0
    297#define DEFAULT_PROFILE         PANEL_PROFILE_LARGE
    298#define DEFAULT_KEYPAD_TYPE     KEYPAD_TYPE_OLD
    299#define DEFAULT_LCD_TYPE        LCD_TYPE_OLD
    300#define DEFAULT_LCD_HEIGHT      2
    301#define DEFAULT_LCD_WIDTH       40
    302#define DEFAULT_LCD_CHARSET     LCD_CHARSET_NORMAL
    303#define DEFAULT_LCD_PROTO       LCD_PROTO_PARALLEL
    304
    305#define DEFAULT_LCD_PIN_E       PIN_AUTOLF
    306#define DEFAULT_LCD_PIN_RS      PIN_SELECP
    307#define DEFAULT_LCD_PIN_RW      PIN_INITP
    308#define DEFAULT_LCD_PIN_SCL     PIN_STROBE
    309#define DEFAULT_LCD_PIN_SDA     PIN_D0
    310#define DEFAULT_LCD_PIN_BL      PIN_NOT_SET
    311
    312#ifdef CONFIG_PANEL_PARPORT
    313#undef DEFAULT_PARPORT
    314#define DEFAULT_PARPORT CONFIG_PANEL_PARPORT
    315#endif
    316
    317#ifdef CONFIG_PANEL_PROFILE
    318#undef DEFAULT_PROFILE
    319#define DEFAULT_PROFILE CONFIG_PANEL_PROFILE
    320#endif
    321
    322#if DEFAULT_PROFILE == 0	/* custom */
    323#ifdef CONFIG_PANEL_KEYPAD
    324#undef DEFAULT_KEYPAD_TYPE
    325#define DEFAULT_KEYPAD_TYPE CONFIG_PANEL_KEYPAD
    326#endif
    327
    328#ifdef CONFIG_PANEL_LCD
    329#undef DEFAULT_LCD_TYPE
    330#define DEFAULT_LCD_TYPE CONFIG_PANEL_LCD
    331#endif
    332
    333#ifdef CONFIG_PANEL_LCD_HEIGHT
    334#undef DEFAULT_LCD_HEIGHT
    335#define DEFAULT_LCD_HEIGHT CONFIG_PANEL_LCD_HEIGHT
    336#endif
    337
    338#ifdef CONFIG_PANEL_LCD_WIDTH
    339#undef DEFAULT_LCD_WIDTH
    340#define DEFAULT_LCD_WIDTH CONFIG_PANEL_LCD_WIDTH
    341#endif
    342
    343#ifdef CONFIG_PANEL_LCD_BWIDTH
    344#undef DEFAULT_LCD_BWIDTH
    345#define DEFAULT_LCD_BWIDTH CONFIG_PANEL_LCD_BWIDTH
    346#endif
    347
    348#ifdef CONFIG_PANEL_LCD_HWIDTH
    349#undef DEFAULT_LCD_HWIDTH
    350#define DEFAULT_LCD_HWIDTH CONFIG_PANEL_LCD_HWIDTH
    351#endif
    352
    353#ifdef CONFIG_PANEL_LCD_CHARSET
    354#undef DEFAULT_LCD_CHARSET
    355#define DEFAULT_LCD_CHARSET CONFIG_PANEL_LCD_CHARSET
    356#endif
    357
    358#ifdef CONFIG_PANEL_LCD_PROTO
    359#undef DEFAULT_LCD_PROTO
    360#define DEFAULT_LCD_PROTO CONFIG_PANEL_LCD_PROTO
    361#endif
    362
    363#ifdef CONFIG_PANEL_LCD_PIN_E
    364#undef DEFAULT_LCD_PIN_E
    365#define DEFAULT_LCD_PIN_E CONFIG_PANEL_LCD_PIN_E
    366#endif
    367
    368#ifdef CONFIG_PANEL_LCD_PIN_RS
    369#undef DEFAULT_LCD_PIN_RS
    370#define DEFAULT_LCD_PIN_RS CONFIG_PANEL_LCD_PIN_RS
    371#endif
    372
    373#ifdef CONFIG_PANEL_LCD_PIN_RW
    374#undef DEFAULT_LCD_PIN_RW
    375#define DEFAULT_LCD_PIN_RW CONFIG_PANEL_LCD_PIN_RW
    376#endif
    377
    378#ifdef CONFIG_PANEL_LCD_PIN_SCL
    379#undef DEFAULT_LCD_PIN_SCL
    380#define DEFAULT_LCD_PIN_SCL CONFIG_PANEL_LCD_PIN_SCL
    381#endif
    382
    383#ifdef CONFIG_PANEL_LCD_PIN_SDA
    384#undef DEFAULT_LCD_PIN_SDA
    385#define DEFAULT_LCD_PIN_SDA CONFIG_PANEL_LCD_PIN_SDA
    386#endif
    387
    388#ifdef CONFIG_PANEL_LCD_PIN_BL
    389#undef DEFAULT_LCD_PIN_BL
    390#define DEFAULT_LCD_PIN_BL CONFIG_PANEL_LCD_PIN_BL
    391#endif
    392
    393#endif /* DEFAULT_PROFILE == 0 */
    394
    395/* global variables */
    396
    397/* Device single-open policy control */
    398static atomic_t keypad_available = ATOMIC_INIT(1);
    399
    400static struct pardevice *pprt;
    401
    402static int keypad_initialized;
    403
    404static DEFINE_SPINLOCK(pprt_lock);
    405static struct timer_list scan_timer;
    406
    407MODULE_DESCRIPTION("Generic parallel port LCD/Keypad driver");
    408
    409static int parport = DEFAULT_PARPORT;
    410module_param(parport, int, 0000);
    411MODULE_PARM_DESC(parport, "Parallel port index (0=lpt1, 1=lpt2, ...)");
    412
    413static int profile = DEFAULT_PROFILE;
    414module_param(profile, int, 0000);
    415MODULE_PARM_DESC(profile,
    416		 "1=16x2 old kp; 2=serial 16x2, new kp; 3=16x2 hantronix; "
    417		 "4=16x2 nexcom; default=40x2, old kp");
    418
    419static int keypad_type = NOT_SET;
    420module_param(keypad_type, int, 0000);
    421MODULE_PARM_DESC(keypad_type,
    422		 "Keypad type: 0=none, 1=old 6 keys, 2=new 6+1 keys, 3=nexcom 4 keys");
    423
    424static int lcd_type = NOT_SET;
    425module_param(lcd_type, int, 0000);
    426MODULE_PARM_DESC(lcd_type,
    427		 "LCD type: 0=none, 1=compiled-in, 2=old, 3=serial ks0074, 4=hantronix, 5=nexcom");
    428
    429static int lcd_height = NOT_SET;
    430module_param(lcd_height, int, 0000);
    431MODULE_PARM_DESC(lcd_height, "Number of lines on the LCD");
    432
    433static int lcd_width = NOT_SET;
    434module_param(lcd_width, int, 0000);
    435MODULE_PARM_DESC(lcd_width, "Number of columns on the LCD");
    436
    437static int lcd_bwidth = NOT_SET;	/* internal buffer width (usually 40) */
    438module_param(lcd_bwidth, int, 0000);
    439MODULE_PARM_DESC(lcd_bwidth, "Internal LCD line width (40)");
    440
    441static int lcd_hwidth = NOT_SET;	/* hardware buffer width (usually 64) */
    442module_param(lcd_hwidth, int, 0000);
    443MODULE_PARM_DESC(lcd_hwidth, "LCD line hardware address (64)");
    444
    445static int lcd_charset = NOT_SET;
    446module_param(lcd_charset, int, 0000);
    447MODULE_PARM_DESC(lcd_charset, "LCD character set: 0=standard, 1=KS0074");
    448
    449static int lcd_proto = NOT_SET;
    450module_param(lcd_proto, int, 0000);
    451MODULE_PARM_DESC(lcd_proto,
    452		 "LCD communication: 0=parallel (//), 1=serial, 2=TI LCD Interface");
    453
    454/*
    455 * These are the parallel port pins the LCD control signals are connected to.
    456 * Set this to 0 if the signal is not used. Set it to its opposite value
    457 * (negative) if the signal is negated. -MAXINT is used to indicate that the
    458 * pin has not been explicitly specified.
    459 *
    460 * WARNING! no check will be performed about collisions with keypad !
    461 */
    462
    463static int lcd_e_pin  = PIN_NOT_SET;
    464module_param(lcd_e_pin, int, 0000);
    465MODULE_PARM_DESC(lcd_e_pin,
    466		 "# of the // port pin connected to LCD 'E' signal, with polarity (-17..17)");
    467
    468static int lcd_rs_pin = PIN_NOT_SET;
    469module_param(lcd_rs_pin, int, 0000);
    470MODULE_PARM_DESC(lcd_rs_pin,
    471		 "# of the // port pin connected to LCD 'RS' signal, with polarity (-17..17)");
    472
    473static int lcd_rw_pin = PIN_NOT_SET;
    474module_param(lcd_rw_pin, int, 0000);
    475MODULE_PARM_DESC(lcd_rw_pin,
    476		 "# of the // port pin connected to LCD 'RW' signal, with polarity (-17..17)");
    477
    478static int lcd_cl_pin = PIN_NOT_SET;
    479module_param(lcd_cl_pin, int, 0000);
    480MODULE_PARM_DESC(lcd_cl_pin,
    481		 "# of the // port pin connected to serial LCD 'SCL' signal, with polarity (-17..17)");
    482
    483static int lcd_da_pin = PIN_NOT_SET;
    484module_param(lcd_da_pin, int, 0000);
    485MODULE_PARM_DESC(lcd_da_pin,
    486		 "# of the // port pin connected to serial LCD 'SDA' signal, with polarity (-17..17)");
    487
    488static int lcd_bl_pin = PIN_NOT_SET;
    489module_param(lcd_bl_pin, int, 0000);
    490MODULE_PARM_DESC(lcd_bl_pin,
    491		 "# of the // port pin connected to LCD backlight, with polarity (-17..17)");
    492
    493/* Deprecated module parameters - consider not using them anymore */
    494
    495static int lcd_enabled = NOT_SET;
    496module_param(lcd_enabled, int, 0000);
    497MODULE_PARM_DESC(lcd_enabled, "Deprecated option, use lcd_type instead");
    498
    499static int keypad_enabled = NOT_SET;
    500module_param(keypad_enabled, int, 0000);
    501MODULE_PARM_DESC(keypad_enabled, "Deprecated option, use keypad_type instead");
    502
    503/* for some LCD drivers (ks0074) we need a charset conversion table. */
    504static const unsigned char lcd_char_conv_ks0074[256] = {
    505	/*          0|8   1|9   2|A   3|B   4|C   5|D   6|E   7|F */
    506	/* 0x00 */ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
    507	/* 0x08 */ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
    508	/* 0x10 */ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
    509	/* 0x18 */ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
    510	/* 0x20 */ 0x20, 0x21, 0x22, 0x23, 0xa2, 0x25, 0x26, 0x27,
    511	/* 0x28 */ 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
    512	/* 0x30 */ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
    513	/* 0x38 */ 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
    514	/* 0x40 */ 0xa0, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
    515	/* 0x48 */ 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
    516	/* 0x50 */ 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
    517	/* 0x58 */ 0x58, 0x59, 0x5a, 0xfa, 0xfb, 0xfc, 0x1d, 0xc4,
    518	/* 0x60 */ 0x96, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
    519	/* 0x68 */ 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
    520	/* 0x70 */ 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
    521	/* 0x78 */ 0x78, 0x79, 0x7a, 0xfd, 0xfe, 0xff, 0xce, 0x20,
    522	/* 0x80 */ 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
    523	/* 0x88 */ 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
    524	/* 0x90 */ 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
    525	/* 0x98 */ 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
    526	/* 0xA0 */ 0x20, 0x40, 0xb1, 0xa1, 0x24, 0xa3, 0xfe, 0x5f,
    527	/* 0xA8 */ 0x22, 0xc8, 0x61, 0x14, 0x97, 0x2d, 0xad, 0x96,
    528	/* 0xB0 */ 0x80, 0x8c, 0x82, 0x83, 0x27, 0x8f, 0x86, 0xdd,
    529	/* 0xB8 */ 0x2c, 0x81, 0x6f, 0x15, 0x8b, 0x8a, 0x84, 0x60,
    530	/* 0xC0 */ 0xe2, 0xe2, 0xe2, 0x5b, 0x5b, 0xae, 0xbc, 0xa9,
    531	/* 0xC8 */ 0xc5, 0xbf, 0xc6, 0xf1, 0xe3, 0xe3, 0xe3, 0xe3,
    532	/* 0xD0 */ 0x44, 0x5d, 0xa8, 0xe4, 0xec, 0xec, 0x5c, 0x78,
    533	/* 0xD8 */ 0xab, 0xa6, 0xe5, 0x5e, 0x5e, 0xe6, 0xaa, 0xbe,
    534	/* 0xE0 */ 0x7f, 0xe7, 0xaf, 0x7b, 0x7b, 0xaf, 0xbd, 0xc8,
    535	/* 0xE8 */ 0xa4, 0xa5, 0xc7, 0xf6, 0xa7, 0xe8, 0x69, 0x69,
    536	/* 0xF0 */ 0xed, 0x7d, 0xa8, 0xe4, 0xec, 0x5c, 0x5c, 0x25,
    537	/* 0xF8 */ 0xac, 0xa6, 0xea, 0xef, 0x7e, 0xeb, 0xb2, 0x79,
    538};
    539
    540static const char old_keypad_profile[][4][9] = {
    541	{"S0", "Left\n", "Left\n", ""},
    542	{"S1", "Down\n", "Down\n", ""},
    543	{"S2", "Up\n", "Up\n", ""},
    544	{"S3", "Right\n", "Right\n", ""},
    545	{"S4", "Esc\n", "Esc\n", ""},
    546	{"S5", "Ret\n", "Ret\n", ""},
    547	{"", "", "", ""}
    548};
    549
    550/* signals, press, repeat, release */
    551static const char new_keypad_profile[][4][9] = {
    552	{"S0", "Left\n", "Left\n", ""},
    553	{"S1", "Down\n", "Down\n", ""},
    554	{"S2", "Up\n", "Up\n", ""},
    555	{"S3", "Right\n", "Right\n", ""},
    556	{"S4s5", "", "Esc\n", "Esc\n"},
    557	{"s4S5", "", "Ret\n", "Ret\n"},
    558	{"S4S5", "Help\n", "", ""},
    559	/* add new signals above this line */
    560	{"", "", "", ""}
    561};
    562
    563/* signals, press, repeat, release */
    564static const char nexcom_keypad_profile[][4][9] = {
    565	{"a-p-e-", "Down\n", "Down\n", ""},
    566	{"a-p-E-", "Ret\n", "Ret\n", ""},
    567	{"a-P-E-", "Esc\n", "Esc\n", ""},
    568	{"a-P-e-", "Up\n", "Up\n", ""},
    569	/* add new signals above this line */
    570	{"", "", "", ""}
    571};
    572
    573static const char (*keypad_profile)[4][9] = old_keypad_profile;
    574
    575static DECLARE_BITMAP(bits, LCD_BITS);
    576
    577static void lcd_get_bits(unsigned int port, int *val)
    578{
    579	unsigned int bit, state;
    580
    581	for (bit = 0; bit < LCD_BITS; bit++) {
    582		state = test_bit(bit, bits) ? BIT_SET : BIT_CLR;
    583		*val &= lcd_bits[port][bit][BIT_MSK];
    584		*val |= lcd_bits[port][bit][state];
    585	}
    586}
    587
    588/* sets data port bits according to current signals values */
    589static int set_data_bits(void)
    590{
    591	int val;
    592
    593	val = r_dtr(pprt);
    594	lcd_get_bits(LCD_PORT_D, &val);
    595	w_dtr(pprt, val);
    596	return val;
    597}
    598
    599/* sets ctrl port bits according to current signals values */
    600static int set_ctrl_bits(void)
    601{
    602	int val;
    603
    604	val = r_ctr(pprt);
    605	lcd_get_bits(LCD_PORT_C, &val);
    606	w_ctr(pprt, val);
    607	return val;
    608}
    609
    610/* sets ctrl & data port bits according to current signals values */
    611static void panel_set_bits(void)
    612{
    613	set_data_bits();
    614	set_ctrl_bits();
    615}
    616
    617/*
    618 * Converts a parallel port pin (from -25 to 25) to data and control ports
    619 * masks, and data and control port bits. The signal will be considered
    620 * unconnected if it's on pin 0 or an invalid pin (<-25 or >25).
    621 *
    622 * Result will be used this way :
    623 *   out(dport, in(dport) & d_val[2] | d_val[signal_state])
    624 *   out(cport, in(cport) & c_val[2] | c_val[signal_state])
    625 */
    626static void pin_to_bits(int pin, unsigned char *d_val, unsigned char *c_val)
    627{
    628	int d_bit, c_bit, inv;
    629
    630	d_val[0] = 0;
    631	c_val[0] = 0;
    632	d_val[1] = 0;
    633	c_val[1] = 0;
    634	d_val[2] = 0xFF;
    635	c_val[2] = 0xFF;
    636
    637	if (pin == 0)
    638		return;
    639
    640	inv = (pin < 0);
    641	if (inv)
    642		pin = -pin;
    643
    644	d_bit = 0;
    645	c_bit = 0;
    646
    647	switch (pin) {
    648	case PIN_STROBE:	/* strobe, inverted */
    649		c_bit = PNL_PSTROBE;
    650		inv = !inv;
    651		break;
    652	case PIN_D0...PIN_D7:	/* D0 - D7 = 2 - 9 */
    653		d_bit = 1 << (pin - 2);
    654		break;
    655	case PIN_AUTOLF:	/* autofeed, inverted */
    656		c_bit = PNL_PAUTOLF;
    657		inv = !inv;
    658		break;
    659	case PIN_INITP:		/* init, direct */
    660		c_bit = PNL_PINITP;
    661		break;
    662	case PIN_SELECP:	/* select_in, inverted */
    663		c_bit = PNL_PSELECP;
    664		inv = !inv;
    665		break;
    666	default:		/* unknown pin, ignore */
    667		break;
    668	}
    669
    670	if (c_bit) {
    671		c_val[2] &= ~c_bit;
    672		c_val[!inv] = c_bit;
    673	} else if (d_bit) {
    674		d_val[2] &= ~d_bit;
    675		d_val[!inv] = d_bit;
    676	}
    677}
    678
    679/*
    680 * send a serial byte to the LCD panel. The caller is responsible for locking
    681 * if needed.
    682 */
    683static void lcd_send_serial(int byte)
    684{
    685	int bit;
    686
    687	/*
    688	 * the data bit is set on D0, and the clock on STROBE.
    689	 * LCD reads D0 on STROBE's rising edge.
    690	 */
    691	for (bit = 0; bit < 8; bit++) {
    692		clear_bit(LCD_BIT_CL, bits);	/* CLK low */
    693		panel_set_bits();
    694		if (byte & 1) {
    695			set_bit(LCD_BIT_DA, bits);
    696		} else {
    697			clear_bit(LCD_BIT_DA, bits);
    698		}
    699
    700		panel_set_bits();
    701		udelay(2);  /* maintain the data during 2 us before CLK up */
    702		set_bit(LCD_BIT_CL, bits);	/* CLK high */
    703		panel_set_bits();
    704		udelay(1);  /* maintain the strobe during 1 us */
    705		byte >>= 1;
    706	}
    707}
    708
    709/* turn the backlight on or off */
    710static void lcd_backlight(struct charlcd *charlcd, enum charlcd_onoff on)
    711{
    712	if (lcd.pins.bl == PIN_NONE)
    713		return;
    714
    715	/* The backlight is activated by setting the AUTOFEED line to +5V  */
    716	spin_lock_irq(&pprt_lock);
    717	if (on)
    718		set_bit(LCD_BIT_BL, bits);
    719	else
    720		clear_bit(LCD_BIT_BL, bits);
    721	panel_set_bits();
    722	spin_unlock_irq(&pprt_lock);
    723}
    724
    725/* send a command to the LCD panel in serial mode */
    726static void lcd_write_cmd_s(struct hd44780_common *hdc, int cmd)
    727{
    728	spin_lock_irq(&pprt_lock);
    729	lcd_send_serial(0x1F);	/* R/W=W, RS=0 */
    730	lcd_send_serial(cmd & 0x0F);
    731	lcd_send_serial((cmd >> 4) & 0x0F);
    732	udelay(40);		/* the shortest command takes at least 40 us */
    733	spin_unlock_irq(&pprt_lock);
    734}
    735
    736/* send data to the LCD panel in serial mode */
    737static void lcd_write_data_s(struct hd44780_common *hdc, int data)
    738{
    739	spin_lock_irq(&pprt_lock);
    740	lcd_send_serial(0x5F);	/* R/W=W, RS=1 */
    741	lcd_send_serial(data & 0x0F);
    742	lcd_send_serial((data >> 4) & 0x0F);
    743	udelay(40);		/* the shortest data takes at least 40 us */
    744	spin_unlock_irq(&pprt_lock);
    745}
    746
    747/* send a command to the LCD panel in 8 bits parallel mode */
    748static void lcd_write_cmd_p8(struct hd44780_common *hdc, int cmd)
    749{
    750	spin_lock_irq(&pprt_lock);
    751	/* present the data to the data port */
    752	w_dtr(pprt, cmd);
    753	udelay(20);	/* maintain the data during 20 us before the strobe */
    754
    755	set_bit(LCD_BIT_E, bits);
    756	clear_bit(LCD_BIT_RS, bits);
    757	clear_bit(LCD_BIT_RW, bits);
    758	set_ctrl_bits();
    759
    760	udelay(40);	/* maintain the strobe during 40 us */
    761
    762	clear_bit(LCD_BIT_E, bits);
    763	set_ctrl_bits();
    764
    765	udelay(120);	/* the shortest command takes at least 120 us */
    766	spin_unlock_irq(&pprt_lock);
    767}
    768
    769/* send data to the LCD panel in 8 bits parallel mode */
    770static void lcd_write_data_p8(struct hd44780_common *hdc, int data)
    771{
    772	spin_lock_irq(&pprt_lock);
    773	/* present the data to the data port */
    774	w_dtr(pprt, data);
    775	udelay(20);	/* maintain the data during 20 us before the strobe */
    776
    777	set_bit(LCD_BIT_E, bits);
    778	set_bit(LCD_BIT_RS, bits);
    779	clear_bit(LCD_BIT_RW, bits);
    780	set_ctrl_bits();
    781
    782	udelay(40);	/* maintain the strobe during 40 us */
    783
    784	clear_bit(LCD_BIT_E, bits);
    785	set_ctrl_bits();
    786
    787	udelay(45);	/* the shortest data takes at least 45 us */
    788	spin_unlock_irq(&pprt_lock);
    789}
    790
    791/* send a command to the TI LCD panel */
    792static void lcd_write_cmd_tilcd(struct hd44780_common *hdc, int cmd)
    793{
    794	spin_lock_irq(&pprt_lock);
    795	/* present the data to the control port */
    796	w_ctr(pprt, cmd);
    797	udelay(60);
    798	spin_unlock_irq(&pprt_lock);
    799}
    800
    801/* send data to the TI LCD panel */
    802static void lcd_write_data_tilcd(struct hd44780_common *hdc, int data)
    803{
    804	spin_lock_irq(&pprt_lock);
    805	/* present the data to the data port */
    806	w_dtr(pprt, data);
    807	udelay(60);
    808	spin_unlock_irq(&pprt_lock);
    809}
    810
    811static const struct charlcd_ops charlcd_ops = {
    812	.backlight	= lcd_backlight,
    813	.print		= hd44780_common_print,
    814	.gotoxy		= hd44780_common_gotoxy,
    815	.home		= hd44780_common_home,
    816	.clear_display	= hd44780_common_clear_display,
    817	.init_display	= hd44780_common_init_display,
    818	.shift_cursor	= hd44780_common_shift_cursor,
    819	.shift_display	= hd44780_common_shift_display,
    820	.display	= hd44780_common_display,
    821	.cursor		= hd44780_common_cursor,
    822	.blink		= hd44780_common_blink,
    823	.fontsize	= hd44780_common_fontsize,
    824	.lines		= hd44780_common_lines,
    825	.redefine_char	= hd44780_common_redefine_char,
    826};
    827
    828/* initialize the LCD driver */
    829static void lcd_init(void)
    830{
    831	struct charlcd *charlcd;
    832	struct hd44780_common *hdc;
    833
    834	hdc = hd44780_common_alloc();
    835	if (!hdc)
    836		return;
    837
    838	charlcd = charlcd_alloc();
    839	if (!charlcd) {
    840		kfree(hdc);
    841		return;
    842	}
    843
    844	hdc->hd44780 = &lcd;
    845	charlcd->drvdata = hdc;
    846
    847	/*
    848	 * Init lcd struct with load-time values to preserve exact
    849	 * current functionality (at least for now).
    850	 */
    851	charlcd->height = lcd_height;
    852	charlcd->width = lcd_width;
    853	hdc->bwidth = lcd_bwidth;
    854	hdc->hwidth = lcd_hwidth;
    855
    856	switch (selected_lcd_type) {
    857	case LCD_TYPE_OLD:
    858		/* parallel mode, 8 bits */
    859		lcd.proto = LCD_PROTO_PARALLEL;
    860		lcd.charset = LCD_CHARSET_NORMAL;
    861		lcd.pins.e = PIN_STROBE;
    862		lcd.pins.rs = PIN_AUTOLF;
    863
    864		charlcd->width = 40;
    865		hdc->bwidth = 40;
    866		hdc->hwidth = 64;
    867		charlcd->height = 2;
    868		break;
    869	case LCD_TYPE_KS0074:
    870		/* serial mode, ks0074 */
    871		lcd.proto = LCD_PROTO_SERIAL;
    872		lcd.charset = LCD_CHARSET_KS0074;
    873		lcd.pins.bl = PIN_AUTOLF;
    874		lcd.pins.cl = PIN_STROBE;
    875		lcd.pins.da = PIN_D0;
    876
    877		charlcd->width = 16;
    878		hdc->bwidth = 40;
    879		hdc->hwidth = 16;
    880		charlcd->height = 2;
    881		break;
    882	case LCD_TYPE_NEXCOM:
    883		/* parallel mode, 8 bits, generic */
    884		lcd.proto = LCD_PROTO_PARALLEL;
    885		lcd.charset = LCD_CHARSET_NORMAL;
    886		lcd.pins.e = PIN_AUTOLF;
    887		lcd.pins.rs = PIN_SELECP;
    888		lcd.pins.rw = PIN_INITP;
    889
    890		charlcd->width = 16;
    891		hdc->bwidth = 40;
    892		hdc->hwidth = 64;
    893		charlcd->height = 2;
    894		break;
    895	case LCD_TYPE_CUSTOM:
    896		/* customer-defined */
    897		lcd.proto = DEFAULT_LCD_PROTO;
    898		lcd.charset = DEFAULT_LCD_CHARSET;
    899		/* default geometry will be set later */
    900		break;
    901	case LCD_TYPE_HANTRONIX:
    902		/* parallel mode, 8 bits, hantronix-like */
    903	default:
    904		lcd.proto = LCD_PROTO_PARALLEL;
    905		lcd.charset = LCD_CHARSET_NORMAL;
    906		lcd.pins.e = PIN_STROBE;
    907		lcd.pins.rs = PIN_SELECP;
    908
    909		charlcd->width = 16;
    910		hdc->bwidth = 40;
    911		hdc->hwidth = 64;
    912		charlcd->height = 2;
    913		break;
    914	}
    915
    916	/* Overwrite with module params set on loading */
    917	if (lcd_height != NOT_SET)
    918		charlcd->height = lcd_height;
    919	if (lcd_width != NOT_SET)
    920		charlcd->width = lcd_width;
    921	if (lcd_bwidth != NOT_SET)
    922		hdc->bwidth = lcd_bwidth;
    923	if (lcd_hwidth != NOT_SET)
    924		hdc->hwidth = lcd_hwidth;
    925	if (lcd_charset != NOT_SET)
    926		lcd.charset = lcd_charset;
    927	if (lcd_proto != NOT_SET)
    928		lcd.proto = lcd_proto;
    929	if (lcd_e_pin != PIN_NOT_SET)
    930		lcd.pins.e = lcd_e_pin;
    931	if (lcd_rs_pin != PIN_NOT_SET)
    932		lcd.pins.rs = lcd_rs_pin;
    933	if (lcd_rw_pin != PIN_NOT_SET)
    934		lcd.pins.rw = lcd_rw_pin;
    935	if (lcd_cl_pin != PIN_NOT_SET)
    936		lcd.pins.cl = lcd_cl_pin;
    937	if (lcd_da_pin != PIN_NOT_SET)
    938		lcd.pins.da = lcd_da_pin;
    939	if (lcd_bl_pin != PIN_NOT_SET)
    940		lcd.pins.bl = lcd_bl_pin;
    941
    942	/* this is used to catch wrong and default values */
    943	if (charlcd->width <= 0)
    944		charlcd->width = DEFAULT_LCD_WIDTH;
    945	if (hdc->bwidth <= 0)
    946		hdc->bwidth = DEFAULT_LCD_BWIDTH;
    947	if (hdc->hwidth <= 0)
    948		hdc->hwidth = DEFAULT_LCD_HWIDTH;
    949	if (charlcd->height <= 0)
    950		charlcd->height = DEFAULT_LCD_HEIGHT;
    951
    952	if (lcd.proto == LCD_PROTO_SERIAL) {	/* SERIAL */
    953		charlcd->ops = &charlcd_ops;
    954		hdc->write_data = lcd_write_data_s;
    955		hdc->write_cmd = lcd_write_cmd_s;
    956
    957		if (lcd.pins.cl == PIN_NOT_SET)
    958			lcd.pins.cl = DEFAULT_LCD_PIN_SCL;
    959		if (lcd.pins.da == PIN_NOT_SET)
    960			lcd.pins.da = DEFAULT_LCD_PIN_SDA;
    961
    962	} else if (lcd.proto == LCD_PROTO_PARALLEL) {	/* PARALLEL */
    963		charlcd->ops = &charlcd_ops;
    964		hdc->write_data = lcd_write_data_p8;
    965		hdc->write_cmd = lcd_write_cmd_p8;
    966
    967		if (lcd.pins.e == PIN_NOT_SET)
    968			lcd.pins.e = DEFAULT_LCD_PIN_E;
    969		if (lcd.pins.rs == PIN_NOT_SET)
    970			lcd.pins.rs = DEFAULT_LCD_PIN_RS;
    971		if (lcd.pins.rw == PIN_NOT_SET)
    972			lcd.pins.rw = DEFAULT_LCD_PIN_RW;
    973	} else {
    974		charlcd->ops = &charlcd_ops;
    975		hdc->write_data = lcd_write_data_tilcd;
    976		hdc->write_cmd = lcd_write_cmd_tilcd;
    977	}
    978
    979	if (lcd.pins.bl == PIN_NOT_SET)
    980		lcd.pins.bl = DEFAULT_LCD_PIN_BL;
    981
    982	if (lcd.pins.e == PIN_NOT_SET)
    983		lcd.pins.e = PIN_NONE;
    984	if (lcd.pins.rs == PIN_NOT_SET)
    985		lcd.pins.rs = PIN_NONE;
    986	if (lcd.pins.rw == PIN_NOT_SET)
    987		lcd.pins.rw = PIN_NONE;
    988	if (lcd.pins.bl == PIN_NOT_SET)
    989		lcd.pins.bl = PIN_NONE;
    990	if (lcd.pins.cl == PIN_NOT_SET)
    991		lcd.pins.cl = PIN_NONE;
    992	if (lcd.pins.da == PIN_NOT_SET)
    993		lcd.pins.da = PIN_NONE;
    994
    995	if (lcd.charset == NOT_SET)
    996		lcd.charset = DEFAULT_LCD_CHARSET;
    997
    998	if (lcd.charset == LCD_CHARSET_KS0074)
    999		charlcd->char_conv = lcd_char_conv_ks0074;
   1000	else
   1001		charlcd->char_conv = NULL;
   1002
   1003	pin_to_bits(lcd.pins.e, lcd_bits[LCD_PORT_D][LCD_BIT_E],
   1004		    lcd_bits[LCD_PORT_C][LCD_BIT_E]);
   1005	pin_to_bits(lcd.pins.rs, lcd_bits[LCD_PORT_D][LCD_BIT_RS],
   1006		    lcd_bits[LCD_PORT_C][LCD_BIT_RS]);
   1007	pin_to_bits(lcd.pins.rw, lcd_bits[LCD_PORT_D][LCD_BIT_RW],
   1008		    lcd_bits[LCD_PORT_C][LCD_BIT_RW]);
   1009	pin_to_bits(lcd.pins.bl, lcd_bits[LCD_PORT_D][LCD_BIT_BL],
   1010		    lcd_bits[LCD_PORT_C][LCD_BIT_BL]);
   1011	pin_to_bits(lcd.pins.cl, lcd_bits[LCD_PORT_D][LCD_BIT_CL],
   1012		    lcd_bits[LCD_PORT_C][LCD_BIT_CL]);
   1013	pin_to_bits(lcd.pins.da, lcd_bits[LCD_PORT_D][LCD_BIT_DA],
   1014		    lcd_bits[LCD_PORT_C][LCD_BIT_DA]);
   1015
   1016	lcd.charlcd = charlcd;
   1017	lcd.initialized = true;
   1018}
   1019
   1020/*
   1021 * These are the file operation function for user access to /dev/keypad
   1022 */
   1023
   1024static ssize_t keypad_read(struct file *file,
   1025			   char __user *buf, size_t count, loff_t *ppos)
   1026{
   1027	unsigned i = *ppos;
   1028	char __user *tmp = buf;
   1029
   1030	if (keypad_buflen == 0) {
   1031		if (file->f_flags & O_NONBLOCK)
   1032			return -EAGAIN;
   1033
   1034		if (wait_event_interruptible(keypad_read_wait,
   1035					     keypad_buflen != 0))
   1036			return -EINTR;
   1037	}
   1038
   1039	for (; count-- > 0 && (keypad_buflen > 0);
   1040	     ++i, ++tmp, --keypad_buflen) {
   1041		put_user(keypad_buffer[keypad_start], tmp);
   1042		keypad_start = (keypad_start + 1) % KEYPAD_BUFFER;
   1043	}
   1044	*ppos = i;
   1045
   1046	return tmp - buf;
   1047}
   1048
   1049static int keypad_open(struct inode *inode, struct file *file)
   1050{
   1051	int ret;
   1052
   1053	ret = -EBUSY;
   1054	if (!atomic_dec_and_test(&keypad_available))
   1055		goto fail;	/* open only once at a time */
   1056
   1057	ret = -EPERM;
   1058	if (file->f_mode & FMODE_WRITE)	/* device is read-only */
   1059		goto fail;
   1060
   1061	keypad_buflen = 0;	/* flush the buffer on opening */
   1062	return 0;
   1063 fail:
   1064	atomic_inc(&keypad_available);
   1065	return ret;
   1066}
   1067
   1068static int keypad_release(struct inode *inode, struct file *file)
   1069{
   1070	atomic_inc(&keypad_available);
   1071	return 0;
   1072}
   1073
   1074static const struct file_operations keypad_fops = {
   1075	.read    = keypad_read,		/* read */
   1076	.open    = keypad_open,		/* open */
   1077	.release = keypad_release,	/* close */
   1078	.llseek  = default_llseek,
   1079};
   1080
   1081static struct miscdevice keypad_dev = {
   1082	.minor	= KEYPAD_MINOR,
   1083	.name	= "keypad",
   1084	.fops	= &keypad_fops,
   1085};
   1086
   1087static void keypad_send_key(const char *string, int max_len)
   1088{
   1089	/* send the key to the device only if a process is attached to it. */
   1090	if (!atomic_read(&keypad_available)) {
   1091		while (max_len-- && keypad_buflen < KEYPAD_BUFFER && *string) {
   1092			keypad_buffer[(keypad_start + keypad_buflen++) %
   1093				      KEYPAD_BUFFER] = *string++;
   1094		}
   1095		wake_up_interruptible(&keypad_read_wait);
   1096	}
   1097}
   1098
   1099/* this function scans all the bits involving at least one logical signal,
   1100 * and puts the results in the bitfield "phys_read" (one bit per established
   1101 * contact), and sets "phys_read_prev" to "phys_read".
   1102 *
   1103 * Note: to debounce input signals, we will only consider as switched a signal
   1104 * which is stable across 2 measures. Signals which are different between two
   1105 * reads will be kept as they previously were in their logical form (phys_prev).
   1106 * A signal which has just switched will have a 1 in
   1107 * (phys_read ^ phys_read_prev).
   1108 */
   1109static void phys_scan_contacts(void)
   1110{
   1111	int bit, bitval;
   1112	char oldval;
   1113	char bitmask;
   1114	char gndmask;
   1115
   1116	phys_prev = phys_curr;
   1117	phys_read_prev = phys_read;
   1118	phys_read = 0;		/* flush all signals */
   1119
   1120	/* keep track of old value, with all outputs disabled */
   1121	oldval = r_dtr(pprt) | scan_mask_o;
   1122	/* activate all keyboard outputs (active low) */
   1123	w_dtr(pprt, oldval & ~scan_mask_o);
   1124
   1125	/* will have a 1 for each bit set to gnd */
   1126	bitmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
   1127	/* disable all matrix signals */
   1128	w_dtr(pprt, oldval);
   1129
   1130	/* now that all outputs are cleared, the only active input bits are
   1131	 * directly connected to the ground
   1132	 */
   1133
   1134	/* 1 for each grounded input */
   1135	gndmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
   1136
   1137	/* grounded inputs are signals 40-44 */
   1138	phys_read |= (__u64)gndmask << 40;
   1139
   1140	if (bitmask != gndmask) {
   1141		/*
   1142		 * since clearing the outputs changed some inputs, we know
   1143		 * that some input signals are currently tied to some outputs.
   1144		 * So we'll scan them.
   1145		 */
   1146		for (bit = 0; bit < 8; bit++) {
   1147			bitval = BIT(bit);
   1148
   1149			if (!(scan_mask_o & bitval))	/* skip unused bits */
   1150				continue;
   1151
   1152			w_dtr(pprt, oldval & ~bitval);	/* enable this output */
   1153			bitmask = PNL_PINPUT(r_str(pprt)) & ~gndmask;
   1154			phys_read |= (__u64)bitmask << (5 * bit);
   1155		}
   1156		w_dtr(pprt, oldval);	/* disable all outputs */
   1157	}
   1158	/*
   1159	 * this is easy: use old bits when they are flapping,
   1160	 * use new ones when stable
   1161	 */
   1162	phys_curr = (phys_prev & (phys_read ^ phys_read_prev)) |
   1163		    (phys_read & ~(phys_read ^ phys_read_prev));
   1164}
   1165
   1166static inline int input_state_high(struct logical_input *input)
   1167{
   1168#if 0
   1169	/* FIXME:
   1170	 * this is an invalid test. It tries to catch
   1171	 * transitions from single-key to multiple-key, but
   1172	 * doesn't take into account the contacts polarity.
   1173	 * The only solution to the problem is to parse keys
   1174	 * from the most complex to the simplest combinations,
   1175	 * and mark them as 'caught' once a combination
   1176	 * matches, then unmatch it for all other ones.
   1177	 */
   1178
   1179	/* try to catch dangerous transitions cases :
   1180	 * someone adds a bit, so this signal was a false
   1181	 * positive resulting from a transition. We should
   1182	 * invalidate the signal immediately and not call the
   1183	 * release function.
   1184	 * eg: 0 -(press A)-> A -(press B)-> AB : don't match A's release.
   1185	 */
   1186	if (((phys_prev & input->mask) == input->value) &&
   1187	    ((phys_curr & input->mask) >  input->value)) {
   1188		input->state = INPUT_ST_LOW; /* invalidate */
   1189		return 1;
   1190	}
   1191#endif
   1192
   1193	if ((phys_curr & input->mask) == input->value) {
   1194		if ((input->type == INPUT_TYPE_STD) &&
   1195		    (input->high_timer == 0)) {
   1196			input->high_timer++;
   1197			if (input->u.std.press_fct)
   1198				input->u.std.press_fct(input->u.std.press_data);
   1199		} else if (input->type == INPUT_TYPE_KBD) {
   1200			/* will turn on the light */
   1201			keypressed = 1;
   1202
   1203			if (input->high_timer == 0) {
   1204				char *press_str = input->u.kbd.press_str;
   1205
   1206				if (press_str[0]) {
   1207					int s = sizeof(input->u.kbd.press_str);
   1208
   1209					keypad_send_key(press_str, s);
   1210				}
   1211			}
   1212
   1213			if (input->u.kbd.repeat_str[0]) {
   1214				char *repeat_str = input->u.kbd.repeat_str;
   1215
   1216				if (input->high_timer >= KEYPAD_REP_START) {
   1217					int s = sizeof(input->u.kbd.repeat_str);
   1218
   1219					input->high_timer -= KEYPAD_REP_DELAY;
   1220					keypad_send_key(repeat_str, s);
   1221				}
   1222				/* we will need to come back here soon */
   1223				inputs_stable = 0;
   1224			}
   1225
   1226			if (input->high_timer < 255)
   1227				input->high_timer++;
   1228		}
   1229		return 1;
   1230	}
   1231
   1232	/* else signal falling down. Let's fall through. */
   1233	input->state = INPUT_ST_FALLING;
   1234	input->fall_timer = 0;
   1235
   1236	return 0;
   1237}
   1238
   1239static inline void input_state_falling(struct logical_input *input)
   1240{
   1241#if 0
   1242	/* FIXME !!! same comment as in input_state_high */
   1243	if (((phys_prev & input->mask) == input->value) &&
   1244	    ((phys_curr & input->mask) >  input->value)) {
   1245		input->state = INPUT_ST_LOW;	/* invalidate */
   1246		return;
   1247	}
   1248#endif
   1249
   1250	if ((phys_curr & input->mask) == input->value) {
   1251		if (input->type == INPUT_TYPE_KBD) {
   1252			/* will turn on the light */
   1253			keypressed = 1;
   1254
   1255			if (input->u.kbd.repeat_str[0]) {
   1256				char *repeat_str = input->u.kbd.repeat_str;
   1257
   1258				if (input->high_timer >= KEYPAD_REP_START) {
   1259					int s = sizeof(input->u.kbd.repeat_str);
   1260
   1261					input->high_timer -= KEYPAD_REP_DELAY;
   1262					keypad_send_key(repeat_str, s);
   1263				}
   1264				/* we will need to come back here soon */
   1265				inputs_stable = 0;
   1266			}
   1267
   1268			if (input->high_timer < 255)
   1269				input->high_timer++;
   1270		}
   1271		input->state = INPUT_ST_HIGH;
   1272	} else if (input->fall_timer >= input->fall_time) {
   1273		/* call release event */
   1274		if (input->type == INPUT_TYPE_STD) {
   1275			void (*release_fct)(int) = input->u.std.release_fct;
   1276
   1277			if (release_fct)
   1278				release_fct(input->u.std.release_data);
   1279		} else if (input->type == INPUT_TYPE_KBD) {
   1280			char *release_str = input->u.kbd.release_str;
   1281
   1282			if (release_str[0]) {
   1283				int s = sizeof(input->u.kbd.release_str);
   1284
   1285				keypad_send_key(release_str, s);
   1286			}
   1287		}
   1288
   1289		input->state = INPUT_ST_LOW;
   1290	} else {
   1291		input->fall_timer++;
   1292		inputs_stable = 0;
   1293	}
   1294}
   1295
   1296static void panel_process_inputs(void)
   1297{
   1298	struct logical_input *input;
   1299
   1300	keypressed = 0;
   1301	inputs_stable = 1;
   1302	list_for_each_entry(input, &logical_inputs, list) {
   1303		switch (input->state) {
   1304		case INPUT_ST_LOW:
   1305			if ((phys_curr & input->mask) != input->value)
   1306				break;
   1307			/* if all needed ones were already set previously,
   1308			 * this means that this logical signal has been
   1309			 * activated by the releasing of another combined
   1310			 * signal, so we don't want to match.
   1311			 * eg: AB -(release B)-> A -(release A)-> 0 :
   1312			 *     don't match A.
   1313			 */
   1314			if ((phys_prev & input->mask) == input->value)
   1315				break;
   1316			input->rise_timer = 0;
   1317			input->state = INPUT_ST_RISING;
   1318			fallthrough;
   1319		case INPUT_ST_RISING:
   1320			if ((phys_curr & input->mask) != input->value) {
   1321				input->state = INPUT_ST_LOW;
   1322				break;
   1323			}
   1324			if (input->rise_timer < input->rise_time) {
   1325				inputs_stable = 0;
   1326				input->rise_timer++;
   1327				break;
   1328			}
   1329			input->high_timer = 0;
   1330			input->state = INPUT_ST_HIGH;
   1331			fallthrough;
   1332		case INPUT_ST_HIGH:
   1333			if (input_state_high(input))
   1334				break;
   1335			fallthrough;
   1336		case INPUT_ST_FALLING:
   1337			input_state_falling(input);
   1338		}
   1339	}
   1340}
   1341
   1342static void panel_scan_timer(struct timer_list *unused)
   1343{
   1344	if (keypad.enabled && keypad_initialized) {
   1345		if (spin_trylock_irq(&pprt_lock)) {
   1346			phys_scan_contacts();
   1347
   1348			/* no need for the parport anymore */
   1349			spin_unlock_irq(&pprt_lock);
   1350		}
   1351
   1352		if (!inputs_stable || phys_curr != phys_prev)
   1353			panel_process_inputs();
   1354	}
   1355
   1356	if (keypressed && lcd.enabled && lcd.initialized)
   1357		charlcd_poke(lcd.charlcd);
   1358
   1359	mod_timer(&scan_timer, jiffies + INPUT_POLL_TIME);
   1360}
   1361
   1362static void init_scan_timer(void)
   1363{
   1364	if (scan_timer.function)
   1365		return;		/* already started */
   1366
   1367	timer_setup(&scan_timer, panel_scan_timer, 0);
   1368	scan_timer.expires = jiffies + INPUT_POLL_TIME;
   1369	add_timer(&scan_timer);
   1370}
   1371
   1372/* converts a name of the form "({BbAaPpSsEe}{01234567-})*" to a series of bits.
   1373 * if <omask> or <imask> are non-null, they will be or'ed with the bits
   1374 * corresponding to out and in bits respectively.
   1375 * returns 1 if ok, 0 if error (in which case, nothing is written).
   1376 */
   1377static u8 input_name2mask(const char *name, __u64 *mask, __u64 *value,
   1378			  u8 *imask, u8 *omask)
   1379{
   1380	const char sigtab[] = "EeSsPpAaBb";
   1381	u8 im, om;
   1382	__u64 m, v;
   1383
   1384	om = 0;
   1385	im = 0;
   1386	m = 0ULL;
   1387	v = 0ULL;
   1388	while (*name) {
   1389		int in, out, bit, neg;
   1390		const char *idx;
   1391
   1392		idx = strchr(sigtab, *name);
   1393		if (!idx)
   1394			return 0;	/* input name not found */
   1395
   1396		in = idx - sigtab;
   1397		neg = (in & 1);	/* odd (lower) names are negated */
   1398		in >>= 1;
   1399		im |= BIT(in);
   1400
   1401		name++;
   1402		if (*name >= '0' && *name <= '7') {
   1403			out = *name - '0';
   1404			om |= BIT(out);
   1405		} else if (*name == '-') {
   1406			out = 8;
   1407		} else {
   1408			return 0;	/* unknown bit name */
   1409		}
   1410
   1411		bit = (out * 5) + in;
   1412
   1413		m |= 1ULL << bit;
   1414		if (!neg)
   1415			v |= 1ULL << bit;
   1416		name++;
   1417	}
   1418	*mask = m;
   1419	*value = v;
   1420	if (imask)
   1421		*imask |= im;
   1422	if (omask)
   1423		*omask |= om;
   1424	return 1;
   1425}
   1426
   1427/* tries to bind a key to the signal name <name>. The key will send the
   1428 * strings <press>, <repeat>, <release> for these respective events.
   1429 * Returns the pointer to the new key if ok, NULL if the key could not be bound.
   1430 */
   1431static struct logical_input *panel_bind_key(const char *name, const char *press,
   1432					    const char *repeat,
   1433					    const char *release)
   1434{
   1435	struct logical_input *key;
   1436
   1437	key = kzalloc(sizeof(*key), GFP_KERNEL);
   1438	if (!key)
   1439		return NULL;
   1440
   1441	if (!input_name2mask(name, &key->mask, &key->value, &scan_mask_i,
   1442			     &scan_mask_o)) {
   1443		kfree(key);
   1444		return NULL;
   1445	}
   1446
   1447	key->type = INPUT_TYPE_KBD;
   1448	key->state = INPUT_ST_LOW;
   1449	key->rise_time = 1;
   1450	key->fall_time = 1;
   1451
   1452	strncpy(key->u.kbd.press_str, press, sizeof(key->u.kbd.press_str));
   1453	strncpy(key->u.kbd.repeat_str, repeat, sizeof(key->u.kbd.repeat_str));
   1454	strncpy(key->u.kbd.release_str, release,
   1455		sizeof(key->u.kbd.release_str));
   1456	list_add(&key->list, &logical_inputs);
   1457	return key;
   1458}
   1459
   1460#if 0
   1461/* tries to bind a callback function to the signal name <name>. The function
   1462 * <press_fct> will be called with the <press_data> arg when the signal is
   1463 * activated, and so on for <release_fct>/<release_data>
   1464 * Returns the pointer to the new signal if ok, NULL if the signal could not
   1465 * be bound.
   1466 */
   1467static struct logical_input *panel_bind_callback(char *name,
   1468						 void (*press_fct)(int),
   1469						 int press_data,
   1470						 void (*release_fct)(int),
   1471						 int release_data)
   1472{
   1473	struct logical_input *callback;
   1474
   1475	callback = kmalloc(sizeof(*callback), GFP_KERNEL);
   1476	if (!callback)
   1477		return NULL;
   1478
   1479	memset(callback, 0, sizeof(struct logical_input));
   1480	if (!input_name2mask(name, &callback->mask, &callback->value,
   1481			     &scan_mask_i, &scan_mask_o))
   1482		return NULL;
   1483
   1484	callback->type = INPUT_TYPE_STD;
   1485	callback->state = INPUT_ST_LOW;
   1486	callback->rise_time = 1;
   1487	callback->fall_time = 1;
   1488	callback->u.std.press_fct = press_fct;
   1489	callback->u.std.press_data = press_data;
   1490	callback->u.std.release_fct = release_fct;
   1491	callback->u.std.release_data = release_data;
   1492	list_add(&callback->list, &logical_inputs);
   1493	return callback;
   1494}
   1495#endif
   1496
   1497static void keypad_init(void)
   1498{
   1499	int keynum;
   1500
   1501	init_waitqueue_head(&keypad_read_wait);
   1502	keypad_buflen = 0;	/* flushes any eventual noisy keystroke */
   1503
   1504	/* Let's create all known keys */
   1505
   1506	for (keynum = 0; keypad_profile[keynum][0][0]; keynum++) {
   1507		panel_bind_key(keypad_profile[keynum][0],
   1508			       keypad_profile[keynum][1],
   1509			       keypad_profile[keynum][2],
   1510			       keypad_profile[keynum][3]);
   1511	}
   1512
   1513	init_scan_timer();
   1514	keypad_initialized = 1;
   1515}
   1516
   1517/**************************************************/
   1518/* device initialization                          */
   1519/**************************************************/
   1520
   1521static void panel_attach(struct parport *port)
   1522{
   1523	struct pardev_cb panel_cb;
   1524
   1525	if (port->number != parport)
   1526		return;
   1527
   1528	if (pprt) {
   1529		pr_err("%s: port->number=%d parport=%d, already registered!\n",
   1530		       __func__, port->number, parport);
   1531		return;
   1532	}
   1533
   1534	memset(&panel_cb, 0, sizeof(panel_cb));
   1535	panel_cb.private = &pprt;
   1536	/* panel_cb.flags = 0 should be PARPORT_DEV_EXCL? */
   1537
   1538	pprt = parport_register_dev_model(port, "panel", &panel_cb, 0);
   1539	if (!pprt) {
   1540		pr_err("%s: port->number=%d parport=%d, parport_register_device() failed\n",
   1541		       __func__, port->number, parport);
   1542		return;
   1543	}
   1544
   1545	if (parport_claim(pprt)) {
   1546		pr_err("could not claim access to parport%d. Aborting.\n",
   1547		       parport);
   1548		goto err_unreg_device;
   1549	}
   1550
   1551	/* must init LCD first, just in case an IRQ from the keypad is
   1552	 * generated at keypad init
   1553	 */
   1554	if (lcd.enabled) {
   1555		lcd_init();
   1556		if (!lcd.charlcd || charlcd_register(lcd.charlcd))
   1557			goto err_unreg_device;
   1558	}
   1559
   1560	if (keypad.enabled) {
   1561		keypad_init();
   1562		if (misc_register(&keypad_dev))
   1563			goto err_lcd_unreg;
   1564	}
   1565	return;
   1566
   1567err_lcd_unreg:
   1568	if (scan_timer.function)
   1569		del_timer_sync(&scan_timer);
   1570	if (lcd.enabled)
   1571		charlcd_unregister(lcd.charlcd);
   1572err_unreg_device:
   1573	kfree(lcd.charlcd);
   1574	lcd.charlcd = NULL;
   1575	parport_unregister_device(pprt);
   1576	pprt = NULL;
   1577}
   1578
   1579static void panel_detach(struct parport *port)
   1580{
   1581	if (port->number != parport)
   1582		return;
   1583
   1584	if (!pprt) {
   1585		pr_err("%s: port->number=%d parport=%d, nothing to unregister.\n",
   1586		       __func__, port->number, parport);
   1587		return;
   1588	}
   1589	if (scan_timer.function)
   1590		del_timer_sync(&scan_timer);
   1591
   1592	if (keypad.enabled) {
   1593		misc_deregister(&keypad_dev);
   1594		keypad_initialized = 0;
   1595	}
   1596
   1597	if (lcd.enabled) {
   1598		charlcd_unregister(lcd.charlcd);
   1599		lcd.initialized = false;
   1600		kfree(lcd.charlcd->drvdata);
   1601		kfree(lcd.charlcd);
   1602		lcd.charlcd = NULL;
   1603	}
   1604
   1605	/* TODO: free all input signals */
   1606	parport_release(pprt);
   1607	parport_unregister_device(pprt);
   1608	pprt = NULL;
   1609}
   1610
   1611static struct parport_driver panel_driver = {
   1612	.name = "panel",
   1613	.match_port = panel_attach,
   1614	.detach = panel_detach,
   1615	.devmodel = true,
   1616};
   1617
   1618/* init function */
   1619static int __init panel_init_module(void)
   1620{
   1621	int selected_keypad_type = NOT_SET, err;
   1622
   1623	/* take care of an eventual profile */
   1624	switch (profile) {
   1625	case PANEL_PROFILE_CUSTOM:
   1626		/* custom profile */
   1627		selected_keypad_type = DEFAULT_KEYPAD_TYPE;
   1628		selected_lcd_type = DEFAULT_LCD_TYPE;
   1629		break;
   1630	case PANEL_PROFILE_OLD:
   1631		/* 8 bits, 2*16, old keypad */
   1632		selected_keypad_type = KEYPAD_TYPE_OLD;
   1633		selected_lcd_type = LCD_TYPE_OLD;
   1634
   1635		/* TODO: This two are a little hacky, sort it out later */
   1636		if (lcd_width == NOT_SET)
   1637			lcd_width = 16;
   1638		if (lcd_hwidth == NOT_SET)
   1639			lcd_hwidth = 16;
   1640		break;
   1641	case PANEL_PROFILE_NEW:
   1642		/* serial, 2*16, new keypad */
   1643		selected_keypad_type = KEYPAD_TYPE_NEW;
   1644		selected_lcd_type = LCD_TYPE_KS0074;
   1645		break;
   1646	case PANEL_PROFILE_HANTRONIX:
   1647		/* 8 bits, 2*16 hantronix-like, no keypad */
   1648		selected_keypad_type = KEYPAD_TYPE_NONE;
   1649		selected_lcd_type = LCD_TYPE_HANTRONIX;
   1650		break;
   1651	case PANEL_PROFILE_NEXCOM:
   1652		/* generic 8 bits, 2*16, nexcom keypad, eg. Nexcom. */
   1653		selected_keypad_type = KEYPAD_TYPE_NEXCOM;
   1654		selected_lcd_type = LCD_TYPE_NEXCOM;
   1655		break;
   1656	case PANEL_PROFILE_LARGE:
   1657		/* 8 bits, 2*40, old keypad */
   1658		selected_keypad_type = KEYPAD_TYPE_OLD;
   1659		selected_lcd_type = LCD_TYPE_OLD;
   1660		break;
   1661	}
   1662
   1663	/*
   1664	 * Overwrite selection with module param values (both keypad and lcd),
   1665	 * where the deprecated params have lower prio.
   1666	 */
   1667	if (keypad_enabled != NOT_SET)
   1668		selected_keypad_type = keypad_enabled;
   1669	if (keypad_type != NOT_SET)
   1670		selected_keypad_type = keypad_type;
   1671
   1672	keypad.enabled = (selected_keypad_type > 0);
   1673
   1674	if (lcd_enabled != NOT_SET)
   1675		selected_lcd_type = lcd_enabled;
   1676	if (lcd_type != NOT_SET)
   1677		selected_lcd_type = lcd_type;
   1678
   1679	lcd.enabled = (selected_lcd_type > 0);
   1680
   1681	if (lcd.enabled) {
   1682		/*
   1683		 * Init lcd struct with load-time values to preserve exact
   1684		 * current functionality (at least for now).
   1685		 */
   1686		lcd.charset = lcd_charset;
   1687		lcd.proto = lcd_proto;
   1688		lcd.pins.e = lcd_e_pin;
   1689		lcd.pins.rs = lcd_rs_pin;
   1690		lcd.pins.rw = lcd_rw_pin;
   1691		lcd.pins.cl = lcd_cl_pin;
   1692		lcd.pins.da = lcd_da_pin;
   1693		lcd.pins.bl = lcd_bl_pin;
   1694	}
   1695
   1696	switch (selected_keypad_type) {
   1697	case KEYPAD_TYPE_OLD:
   1698		keypad_profile = old_keypad_profile;
   1699		break;
   1700	case KEYPAD_TYPE_NEW:
   1701		keypad_profile = new_keypad_profile;
   1702		break;
   1703	case KEYPAD_TYPE_NEXCOM:
   1704		keypad_profile = nexcom_keypad_profile;
   1705		break;
   1706	default:
   1707		keypad_profile = NULL;
   1708		break;
   1709	}
   1710
   1711	if (!lcd.enabled && !keypad.enabled) {
   1712		/* no device enabled, let's exit */
   1713		pr_err("panel driver disabled.\n");
   1714		return -ENODEV;
   1715	}
   1716
   1717	err = parport_register_driver(&panel_driver);
   1718	if (err) {
   1719		pr_err("could not register with parport. Aborting.\n");
   1720		return err;
   1721	}
   1722
   1723	if (pprt)
   1724		pr_info("panel driver registered on parport%d (io=0x%lx).\n",
   1725			parport, pprt->port->base);
   1726	else
   1727		pr_info("panel driver not yet registered\n");
   1728	return 0;
   1729}
   1730
   1731static void __exit panel_cleanup_module(void)
   1732{
   1733	parport_unregister_driver(&panel_driver);
   1734}
   1735
   1736module_init(panel_init_module);
   1737module_exit(panel_cleanup_module);
   1738MODULE_AUTHOR("Willy Tarreau");
   1739MODULE_LICENSE("GPL");