cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

arch_topology.c (19930B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * Arch specific cpu topology information
      4 *
      5 * Copyright (C) 2016, ARM Ltd.
      6 * Written by: Juri Lelli, ARM Ltd.
      7 */
      8
      9#include <linux/acpi.h>
     10#include <linux/cpu.h>
     11#include <linux/cpufreq.h>
     12#include <linux/device.h>
     13#include <linux/of.h>
     14#include <linux/slab.h>
     15#include <linux/sched/topology.h>
     16#include <linux/cpuset.h>
     17#include <linux/cpumask.h>
     18#include <linux/init.h>
     19#include <linux/rcupdate.h>
     20#include <linux/sched.h>
     21
     22#define CREATE_TRACE_POINTS
     23#include <trace/events/thermal_pressure.h>
     24
     25static DEFINE_PER_CPU(struct scale_freq_data __rcu *, sft_data);
     26static struct cpumask scale_freq_counters_mask;
     27static bool scale_freq_invariant;
     28static DEFINE_PER_CPU(u32, freq_factor) = 1;
     29
     30static bool supports_scale_freq_counters(const struct cpumask *cpus)
     31{
     32	return cpumask_subset(cpus, &scale_freq_counters_mask);
     33}
     34
     35bool topology_scale_freq_invariant(void)
     36{
     37	return cpufreq_supports_freq_invariance() ||
     38	       supports_scale_freq_counters(cpu_online_mask);
     39}
     40
     41static void update_scale_freq_invariant(bool status)
     42{
     43	if (scale_freq_invariant == status)
     44		return;
     45
     46	/*
     47	 * Task scheduler behavior depends on frequency invariance support,
     48	 * either cpufreq or counter driven. If the support status changes as
     49	 * a result of counter initialisation and use, retrigger the build of
     50	 * scheduling domains to ensure the information is propagated properly.
     51	 */
     52	if (topology_scale_freq_invariant() == status) {
     53		scale_freq_invariant = status;
     54		rebuild_sched_domains_energy();
     55	}
     56}
     57
     58void topology_set_scale_freq_source(struct scale_freq_data *data,
     59				    const struct cpumask *cpus)
     60{
     61	struct scale_freq_data *sfd;
     62	int cpu;
     63
     64	/*
     65	 * Avoid calling rebuild_sched_domains() unnecessarily if FIE is
     66	 * supported by cpufreq.
     67	 */
     68	if (cpumask_empty(&scale_freq_counters_mask))
     69		scale_freq_invariant = topology_scale_freq_invariant();
     70
     71	rcu_read_lock();
     72
     73	for_each_cpu(cpu, cpus) {
     74		sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu));
     75
     76		/* Use ARCH provided counters whenever possible */
     77		if (!sfd || sfd->source != SCALE_FREQ_SOURCE_ARCH) {
     78			rcu_assign_pointer(per_cpu(sft_data, cpu), data);
     79			cpumask_set_cpu(cpu, &scale_freq_counters_mask);
     80		}
     81	}
     82
     83	rcu_read_unlock();
     84
     85	update_scale_freq_invariant(true);
     86}
     87EXPORT_SYMBOL_GPL(topology_set_scale_freq_source);
     88
     89void topology_clear_scale_freq_source(enum scale_freq_source source,
     90				      const struct cpumask *cpus)
     91{
     92	struct scale_freq_data *sfd;
     93	int cpu;
     94
     95	rcu_read_lock();
     96
     97	for_each_cpu(cpu, cpus) {
     98		sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu));
     99
    100		if (sfd && sfd->source == source) {
    101			rcu_assign_pointer(per_cpu(sft_data, cpu), NULL);
    102			cpumask_clear_cpu(cpu, &scale_freq_counters_mask);
    103		}
    104	}
    105
    106	rcu_read_unlock();
    107
    108	/*
    109	 * Make sure all references to previous sft_data are dropped to avoid
    110	 * use-after-free races.
    111	 */
    112	synchronize_rcu();
    113
    114	update_scale_freq_invariant(false);
    115}
    116EXPORT_SYMBOL_GPL(topology_clear_scale_freq_source);
    117
    118void topology_scale_freq_tick(void)
    119{
    120	struct scale_freq_data *sfd = rcu_dereference_sched(*this_cpu_ptr(&sft_data));
    121
    122	if (sfd)
    123		sfd->set_freq_scale();
    124}
    125
    126DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE;
    127EXPORT_PER_CPU_SYMBOL_GPL(arch_freq_scale);
    128
    129void topology_set_freq_scale(const struct cpumask *cpus, unsigned long cur_freq,
    130			     unsigned long max_freq)
    131{
    132	unsigned long scale;
    133	int i;
    134
    135	if (WARN_ON_ONCE(!cur_freq || !max_freq))
    136		return;
    137
    138	/*
    139	 * If the use of counters for FIE is enabled, just return as we don't
    140	 * want to update the scale factor with information from CPUFREQ.
    141	 * Instead the scale factor will be updated from arch_scale_freq_tick.
    142	 */
    143	if (supports_scale_freq_counters(cpus))
    144		return;
    145
    146	scale = (cur_freq << SCHED_CAPACITY_SHIFT) / max_freq;
    147
    148	for_each_cpu(i, cpus)
    149		per_cpu(arch_freq_scale, i) = scale;
    150}
    151
    152DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
    153EXPORT_PER_CPU_SYMBOL_GPL(cpu_scale);
    154
    155void topology_set_cpu_scale(unsigned int cpu, unsigned long capacity)
    156{
    157	per_cpu(cpu_scale, cpu) = capacity;
    158}
    159
    160DEFINE_PER_CPU(unsigned long, thermal_pressure);
    161
    162/**
    163 * topology_update_thermal_pressure() - Update thermal pressure for CPUs
    164 * @cpus        : The related CPUs for which capacity has been reduced
    165 * @capped_freq : The maximum allowed frequency that CPUs can run at
    166 *
    167 * Update the value of thermal pressure for all @cpus in the mask. The
    168 * cpumask should include all (online+offline) affected CPUs, to avoid
    169 * operating on stale data when hot-plug is used for some CPUs. The
    170 * @capped_freq reflects the currently allowed max CPUs frequency due to
    171 * thermal capping. It might be also a boost frequency value, which is bigger
    172 * than the internal 'freq_factor' max frequency. In such case the pressure
    173 * value should simply be removed, since this is an indication that there is
    174 * no thermal throttling. The @capped_freq must be provided in kHz.
    175 */
    176void topology_update_thermal_pressure(const struct cpumask *cpus,
    177				      unsigned long capped_freq)
    178{
    179	unsigned long max_capacity, capacity, th_pressure;
    180	u32 max_freq;
    181	int cpu;
    182
    183	cpu = cpumask_first(cpus);
    184	max_capacity = arch_scale_cpu_capacity(cpu);
    185	max_freq = per_cpu(freq_factor, cpu);
    186
    187	/* Convert to MHz scale which is used in 'freq_factor' */
    188	capped_freq /= 1000;
    189
    190	/*
    191	 * Handle properly the boost frequencies, which should simply clean
    192	 * the thermal pressure value.
    193	 */
    194	if (max_freq <= capped_freq)
    195		capacity = max_capacity;
    196	else
    197		capacity = mult_frac(max_capacity, capped_freq, max_freq);
    198
    199	th_pressure = max_capacity - capacity;
    200
    201	trace_thermal_pressure_update(cpu, th_pressure);
    202
    203	for_each_cpu(cpu, cpus)
    204		WRITE_ONCE(per_cpu(thermal_pressure, cpu), th_pressure);
    205}
    206EXPORT_SYMBOL_GPL(topology_update_thermal_pressure);
    207
    208static ssize_t cpu_capacity_show(struct device *dev,
    209				 struct device_attribute *attr,
    210				 char *buf)
    211{
    212	struct cpu *cpu = container_of(dev, struct cpu, dev);
    213
    214	return sysfs_emit(buf, "%lu\n", topology_get_cpu_scale(cpu->dev.id));
    215}
    216
    217static void update_topology_flags_workfn(struct work_struct *work);
    218static DECLARE_WORK(update_topology_flags_work, update_topology_flags_workfn);
    219
    220static DEVICE_ATTR_RO(cpu_capacity);
    221
    222static int register_cpu_capacity_sysctl(void)
    223{
    224	int i;
    225	struct device *cpu;
    226
    227	for_each_possible_cpu(i) {
    228		cpu = get_cpu_device(i);
    229		if (!cpu) {
    230			pr_err("%s: too early to get CPU%d device!\n",
    231			       __func__, i);
    232			continue;
    233		}
    234		device_create_file(cpu, &dev_attr_cpu_capacity);
    235	}
    236
    237	return 0;
    238}
    239subsys_initcall(register_cpu_capacity_sysctl);
    240
    241static int update_topology;
    242
    243int topology_update_cpu_topology(void)
    244{
    245	return update_topology;
    246}
    247
    248/*
    249 * Updating the sched_domains can't be done directly from cpufreq callbacks
    250 * due to locking, so queue the work for later.
    251 */
    252static void update_topology_flags_workfn(struct work_struct *work)
    253{
    254	update_topology = 1;
    255	rebuild_sched_domains();
    256	pr_debug("sched_domain hierarchy rebuilt, flags updated\n");
    257	update_topology = 0;
    258}
    259
    260static u32 *raw_capacity;
    261
    262static int free_raw_capacity(void)
    263{
    264	kfree(raw_capacity);
    265	raw_capacity = NULL;
    266
    267	return 0;
    268}
    269
    270void topology_normalize_cpu_scale(void)
    271{
    272	u64 capacity;
    273	u64 capacity_scale;
    274	int cpu;
    275
    276	if (!raw_capacity)
    277		return;
    278
    279	capacity_scale = 1;
    280	for_each_possible_cpu(cpu) {
    281		capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu);
    282		capacity_scale = max(capacity, capacity_scale);
    283	}
    284
    285	pr_debug("cpu_capacity: capacity_scale=%llu\n", capacity_scale);
    286	for_each_possible_cpu(cpu) {
    287		capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu);
    288		capacity = div64_u64(capacity << SCHED_CAPACITY_SHIFT,
    289			capacity_scale);
    290		topology_set_cpu_scale(cpu, capacity);
    291		pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
    292			cpu, topology_get_cpu_scale(cpu));
    293	}
    294}
    295
    296bool __init topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu)
    297{
    298	struct clk *cpu_clk;
    299	static bool cap_parsing_failed;
    300	int ret;
    301	u32 cpu_capacity;
    302
    303	if (cap_parsing_failed)
    304		return false;
    305
    306	ret = of_property_read_u32(cpu_node, "capacity-dmips-mhz",
    307				   &cpu_capacity);
    308	if (!ret) {
    309		if (!raw_capacity) {
    310			raw_capacity = kcalloc(num_possible_cpus(),
    311					       sizeof(*raw_capacity),
    312					       GFP_KERNEL);
    313			if (!raw_capacity) {
    314				cap_parsing_failed = true;
    315				return false;
    316			}
    317		}
    318		raw_capacity[cpu] = cpu_capacity;
    319		pr_debug("cpu_capacity: %pOF cpu_capacity=%u (raw)\n",
    320			cpu_node, raw_capacity[cpu]);
    321
    322		/*
    323		 * Update freq_factor for calculating early boot cpu capacities.
    324		 * For non-clk CPU DVFS mechanism, there's no way to get the
    325		 * frequency value now, assuming they are running at the same
    326		 * frequency (by keeping the initial freq_factor value).
    327		 */
    328		cpu_clk = of_clk_get(cpu_node, 0);
    329		if (!PTR_ERR_OR_ZERO(cpu_clk)) {
    330			per_cpu(freq_factor, cpu) =
    331				clk_get_rate(cpu_clk) / 1000;
    332			clk_put(cpu_clk);
    333		}
    334	} else {
    335		if (raw_capacity) {
    336			pr_err("cpu_capacity: missing %pOF raw capacity\n",
    337				cpu_node);
    338			pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
    339		}
    340		cap_parsing_failed = true;
    341		free_raw_capacity();
    342	}
    343
    344	return !ret;
    345}
    346
    347#ifdef CONFIG_ACPI_CPPC_LIB
    348#include <acpi/cppc_acpi.h>
    349
    350void topology_init_cpu_capacity_cppc(void)
    351{
    352	struct cppc_perf_caps perf_caps;
    353	int cpu;
    354
    355	if (likely(acpi_disabled || !acpi_cpc_valid()))
    356		return;
    357
    358	raw_capacity = kcalloc(num_possible_cpus(), sizeof(*raw_capacity),
    359			       GFP_KERNEL);
    360	if (!raw_capacity)
    361		return;
    362
    363	for_each_possible_cpu(cpu) {
    364		if (!cppc_get_perf_caps(cpu, &perf_caps) &&
    365		    (perf_caps.highest_perf >= perf_caps.nominal_perf) &&
    366		    (perf_caps.highest_perf >= perf_caps.lowest_perf)) {
    367			raw_capacity[cpu] = perf_caps.highest_perf;
    368			pr_debug("cpu_capacity: CPU%d cpu_capacity=%u (raw).\n",
    369				 cpu, raw_capacity[cpu]);
    370			continue;
    371		}
    372
    373		pr_err("cpu_capacity: CPU%d missing/invalid highest performance.\n", cpu);
    374		pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
    375		goto exit;
    376	}
    377
    378	topology_normalize_cpu_scale();
    379	schedule_work(&update_topology_flags_work);
    380	pr_debug("cpu_capacity: cpu_capacity initialization done\n");
    381
    382exit:
    383	free_raw_capacity();
    384}
    385#endif
    386
    387#ifdef CONFIG_CPU_FREQ
    388static cpumask_var_t cpus_to_visit;
    389static void parsing_done_workfn(struct work_struct *work);
    390static DECLARE_WORK(parsing_done_work, parsing_done_workfn);
    391
    392static int
    393init_cpu_capacity_callback(struct notifier_block *nb,
    394			   unsigned long val,
    395			   void *data)
    396{
    397	struct cpufreq_policy *policy = data;
    398	int cpu;
    399
    400	if (!raw_capacity)
    401		return 0;
    402
    403	if (val != CPUFREQ_CREATE_POLICY)
    404		return 0;
    405
    406	pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n",
    407		 cpumask_pr_args(policy->related_cpus),
    408		 cpumask_pr_args(cpus_to_visit));
    409
    410	cpumask_andnot(cpus_to_visit, cpus_to_visit, policy->related_cpus);
    411
    412	for_each_cpu(cpu, policy->related_cpus)
    413		per_cpu(freq_factor, cpu) = policy->cpuinfo.max_freq / 1000;
    414
    415	if (cpumask_empty(cpus_to_visit)) {
    416		topology_normalize_cpu_scale();
    417		schedule_work(&update_topology_flags_work);
    418		free_raw_capacity();
    419		pr_debug("cpu_capacity: parsing done\n");
    420		schedule_work(&parsing_done_work);
    421	}
    422
    423	return 0;
    424}
    425
    426static struct notifier_block init_cpu_capacity_notifier = {
    427	.notifier_call = init_cpu_capacity_callback,
    428};
    429
    430static int __init register_cpufreq_notifier(void)
    431{
    432	int ret;
    433
    434	/*
    435	 * On ACPI-based systems skip registering cpufreq notifier as cpufreq
    436	 * information is not needed for cpu capacity initialization.
    437	 */
    438	if (!acpi_disabled || !raw_capacity)
    439		return -EINVAL;
    440
    441	if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL))
    442		return -ENOMEM;
    443
    444	cpumask_copy(cpus_to_visit, cpu_possible_mask);
    445
    446	ret = cpufreq_register_notifier(&init_cpu_capacity_notifier,
    447					CPUFREQ_POLICY_NOTIFIER);
    448
    449	if (ret)
    450		free_cpumask_var(cpus_to_visit);
    451
    452	return ret;
    453}
    454core_initcall(register_cpufreq_notifier);
    455
    456static void parsing_done_workfn(struct work_struct *work)
    457{
    458	cpufreq_unregister_notifier(&init_cpu_capacity_notifier,
    459					 CPUFREQ_POLICY_NOTIFIER);
    460	free_cpumask_var(cpus_to_visit);
    461}
    462
    463#else
    464core_initcall(free_raw_capacity);
    465#endif
    466
    467#if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
    468/*
    469 * This function returns the logic cpu number of the node.
    470 * There are basically three kinds of return values:
    471 * (1) logic cpu number which is > 0.
    472 * (2) -ENODEV when the device tree(DT) node is valid and found in the DT but
    473 * there is no possible logical CPU in the kernel to match. This happens
    474 * when CONFIG_NR_CPUS is configure to be smaller than the number of
    475 * CPU nodes in DT. We need to just ignore this case.
    476 * (3) -1 if the node does not exist in the device tree
    477 */
    478static int __init get_cpu_for_node(struct device_node *node)
    479{
    480	struct device_node *cpu_node;
    481	int cpu;
    482
    483	cpu_node = of_parse_phandle(node, "cpu", 0);
    484	if (!cpu_node)
    485		return -1;
    486
    487	cpu = of_cpu_node_to_id(cpu_node);
    488	if (cpu >= 0)
    489		topology_parse_cpu_capacity(cpu_node, cpu);
    490	else
    491		pr_info("CPU node for %pOF exist but the possible cpu range is :%*pbl\n",
    492			cpu_node, cpumask_pr_args(cpu_possible_mask));
    493
    494	of_node_put(cpu_node);
    495	return cpu;
    496}
    497
    498static int __init parse_core(struct device_node *core, int package_id,
    499			     int core_id)
    500{
    501	char name[20];
    502	bool leaf = true;
    503	int i = 0;
    504	int cpu;
    505	struct device_node *t;
    506
    507	do {
    508		snprintf(name, sizeof(name), "thread%d", i);
    509		t = of_get_child_by_name(core, name);
    510		if (t) {
    511			leaf = false;
    512			cpu = get_cpu_for_node(t);
    513			if (cpu >= 0) {
    514				cpu_topology[cpu].package_id = package_id;
    515				cpu_topology[cpu].core_id = core_id;
    516				cpu_topology[cpu].thread_id = i;
    517			} else if (cpu != -ENODEV) {
    518				pr_err("%pOF: Can't get CPU for thread\n", t);
    519				of_node_put(t);
    520				return -EINVAL;
    521			}
    522			of_node_put(t);
    523		}
    524		i++;
    525	} while (t);
    526
    527	cpu = get_cpu_for_node(core);
    528	if (cpu >= 0) {
    529		if (!leaf) {
    530			pr_err("%pOF: Core has both threads and CPU\n",
    531			       core);
    532			return -EINVAL;
    533		}
    534
    535		cpu_topology[cpu].package_id = package_id;
    536		cpu_topology[cpu].core_id = core_id;
    537	} else if (leaf && cpu != -ENODEV) {
    538		pr_err("%pOF: Can't get CPU for leaf core\n", core);
    539		return -EINVAL;
    540	}
    541
    542	return 0;
    543}
    544
    545static int __init parse_cluster(struct device_node *cluster, int depth)
    546{
    547	char name[20];
    548	bool leaf = true;
    549	bool has_cores = false;
    550	struct device_node *c;
    551	static int package_id __initdata;
    552	int core_id = 0;
    553	int i, ret;
    554
    555	/*
    556	 * First check for child clusters; we currently ignore any
    557	 * information about the nesting of clusters and present the
    558	 * scheduler with a flat list of them.
    559	 */
    560	i = 0;
    561	do {
    562		snprintf(name, sizeof(name), "cluster%d", i);
    563		c = of_get_child_by_name(cluster, name);
    564		if (c) {
    565			leaf = false;
    566			ret = parse_cluster(c, depth + 1);
    567			of_node_put(c);
    568			if (ret != 0)
    569				return ret;
    570		}
    571		i++;
    572	} while (c);
    573
    574	/* Now check for cores */
    575	i = 0;
    576	do {
    577		snprintf(name, sizeof(name), "core%d", i);
    578		c = of_get_child_by_name(cluster, name);
    579		if (c) {
    580			has_cores = true;
    581
    582			if (depth == 0) {
    583				pr_err("%pOF: cpu-map children should be clusters\n",
    584				       c);
    585				of_node_put(c);
    586				return -EINVAL;
    587			}
    588
    589			if (leaf) {
    590				ret = parse_core(c, package_id, core_id++);
    591			} else {
    592				pr_err("%pOF: Non-leaf cluster with core %s\n",
    593				       cluster, name);
    594				ret = -EINVAL;
    595			}
    596
    597			of_node_put(c);
    598			if (ret != 0)
    599				return ret;
    600		}
    601		i++;
    602	} while (c);
    603
    604	if (leaf && !has_cores)
    605		pr_warn("%pOF: empty cluster\n", cluster);
    606
    607	if (leaf)
    608		package_id++;
    609
    610	return 0;
    611}
    612
    613static int __init parse_dt_topology(void)
    614{
    615	struct device_node *cn, *map;
    616	int ret = 0;
    617	int cpu;
    618
    619	cn = of_find_node_by_path("/cpus");
    620	if (!cn) {
    621		pr_err("No CPU information found in DT\n");
    622		return 0;
    623	}
    624
    625	/*
    626	 * When topology is provided cpu-map is essentially a root
    627	 * cluster with restricted subnodes.
    628	 */
    629	map = of_get_child_by_name(cn, "cpu-map");
    630	if (!map)
    631		goto out;
    632
    633	ret = parse_cluster(map, 0);
    634	if (ret != 0)
    635		goto out_map;
    636
    637	topology_normalize_cpu_scale();
    638
    639	/*
    640	 * Check that all cores are in the topology; the SMP code will
    641	 * only mark cores described in the DT as possible.
    642	 */
    643	for_each_possible_cpu(cpu)
    644		if (cpu_topology[cpu].package_id == -1)
    645			ret = -EINVAL;
    646
    647out_map:
    648	of_node_put(map);
    649out:
    650	of_node_put(cn);
    651	return ret;
    652}
    653#endif
    654
    655/*
    656 * cpu topology table
    657 */
    658struct cpu_topology cpu_topology[NR_CPUS];
    659EXPORT_SYMBOL_GPL(cpu_topology);
    660
    661const struct cpumask *cpu_coregroup_mask(int cpu)
    662{
    663	const cpumask_t *core_mask = cpumask_of_node(cpu_to_node(cpu));
    664
    665	/* Find the smaller of NUMA, core or LLC siblings */
    666	if (cpumask_subset(&cpu_topology[cpu].core_sibling, core_mask)) {
    667		/* not numa in package, lets use the package siblings */
    668		core_mask = &cpu_topology[cpu].core_sibling;
    669	}
    670	if (cpu_topology[cpu].llc_id != -1) {
    671		if (cpumask_subset(&cpu_topology[cpu].llc_sibling, core_mask))
    672			core_mask = &cpu_topology[cpu].llc_sibling;
    673	}
    674
    675	/*
    676	 * For systems with no shared cpu-side LLC but with clusters defined,
    677	 * extend core_mask to cluster_siblings. The sched domain builder will
    678	 * then remove MC as redundant with CLS if SCHED_CLUSTER is enabled.
    679	 */
    680	if (IS_ENABLED(CONFIG_SCHED_CLUSTER) &&
    681	    cpumask_subset(core_mask, &cpu_topology[cpu].cluster_sibling))
    682		core_mask = &cpu_topology[cpu].cluster_sibling;
    683
    684	return core_mask;
    685}
    686
    687const struct cpumask *cpu_clustergroup_mask(int cpu)
    688{
    689	return &cpu_topology[cpu].cluster_sibling;
    690}
    691
    692void update_siblings_masks(unsigned int cpuid)
    693{
    694	struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
    695	int cpu;
    696
    697	/* update core and thread sibling masks */
    698	for_each_online_cpu(cpu) {
    699		cpu_topo = &cpu_topology[cpu];
    700
    701		if (cpu_topo->llc_id != -1 && cpuid_topo->llc_id == cpu_topo->llc_id) {
    702			cpumask_set_cpu(cpu, &cpuid_topo->llc_sibling);
    703			cpumask_set_cpu(cpuid, &cpu_topo->llc_sibling);
    704		}
    705
    706		if (cpuid_topo->package_id != cpu_topo->package_id)
    707			continue;
    708
    709		if (cpuid_topo->cluster_id == cpu_topo->cluster_id &&
    710		    cpuid_topo->cluster_id != -1) {
    711			cpumask_set_cpu(cpu, &cpuid_topo->cluster_sibling);
    712			cpumask_set_cpu(cpuid, &cpu_topo->cluster_sibling);
    713		}
    714
    715		cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
    716		cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
    717
    718		if (cpuid_topo->core_id != cpu_topo->core_id)
    719			continue;
    720
    721		cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
    722		cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
    723	}
    724}
    725
    726static void clear_cpu_topology(int cpu)
    727{
    728	struct cpu_topology *cpu_topo = &cpu_topology[cpu];
    729
    730	cpumask_clear(&cpu_topo->llc_sibling);
    731	cpumask_set_cpu(cpu, &cpu_topo->llc_sibling);
    732
    733	cpumask_clear(&cpu_topo->cluster_sibling);
    734	cpumask_set_cpu(cpu, &cpu_topo->cluster_sibling);
    735
    736	cpumask_clear(&cpu_topo->core_sibling);
    737	cpumask_set_cpu(cpu, &cpu_topo->core_sibling);
    738	cpumask_clear(&cpu_topo->thread_sibling);
    739	cpumask_set_cpu(cpu, &cpu_topo->thread_sibling);
    740}
    741
    742void __init reset_cpu_topology(void)
    743{
    744	unsigned int cpu;
    745
    746	for_each_possible_cpu(cpu) {
    747		struct cpu_topology *cpu_topo = &cpu_topology[cpu];
    748
    749		cpu_topo->thread_id = -1;
    750		cpu_topo->core_id = -1;
    751		cpu_topo->cluster_id = -1;
    752		cpu_topo->package_id = -1;
    753		cpu_topo->llc_id = -1;
    754
    755		clear_cpu_topology(cpu);
    756	}
    757}
    758
    759void remove_cpu_topology(unsigned int cpu)
    760{
    761	int sibling;
    762
    763	for_each_cpu(sibling, topology_core_cpumask(cpu))
    764		cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
    765	for_each_cpu(sibling, topology_sibling_cpumask(cpu))
    766		cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
    767	for_each_cpu(sibling, topology_cluster_cpumask(cpu))
    768		cpumask_clear_cpu(cpu, topology_cluster_cpumask(sibling));
    769	for_each_cpu(sibling, topology_llc_cpumask(cpu))
    770		cpumask_clear_cpu(cpu, topology_llc_cpumask(sibling));
    771
    772	clear_cpu_topology(cpu);
    773}
    774
    775__weak int __init parse_acpi_topology(void)
    776{
    777	return 0;
    778}
    779
    780#if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
    781void __init init_cpu_topology(void)
    782{
    783	reset_cpu_topology();
    784
    785	/*
    786	 * Discard anything that was parsed if we hit an error so we
    787	 * don't use partial information.
    788	 */
    789	if (parse_acpi_topology())
    790		reset_cpu_topology();
    791	else if (of_have_populated_dt() && parse_dt_topology())
    792		reset_cpu_topology();
    793}
    794#endif