cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

core.c (134928B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * drivers/base/core.c - core driver model code (device registration, etc)
      4 *
      5 * Copyright (c) 2002-3 Patrick Mochel
      6 * Copyright (c) 2002-3 Open Source Development Labs
      7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
      8 * Copyright (c) 2006 Novell, Inc.
      9 */
     10
     11#include <linux/acpi.h>
     12#include <linux/cpufreq.h>
     13#include <linux/device.h>
     14#include <linux/err.h>
     15#include <linux/fwnode.h>
     16#include <linux/init.h>
     17#include <linux/module.h>
     18#include <linux/slab.h>
     19#include <linux/string.h>
     20#include <linux/kdev_t.h>
     21#include <linux/notifier.h>
     22#include <linux/of.h>
     23#include <linux/of_device.h>
     24#include <linux/blkdev.h>
     25#include <linux/mutex.h>
     26#include <linux/pm_runtime.h>
     27#include <linux/netdevice.h>
     28#include <linux/sched/signal.h>
     29#include <linux/sched/mm.h>
     30#include <linux/swiotlb.h>
     31#include <linux/sysfs.h>
     32#include <linux/dma-map-ops.h> /* for dma_default_coherent */
     33
     34#include "base.h"
     35#include "physical_location.h"
     36#include "power/power.h"
     37
     38#ifdef CONFIG_SYSFS_DEPRECATED
     39#ifdef CONFIG_SYSFS_DEPRECATED_V2
     40long sysfs_deprecated = 1;
     41#else
     42long sysfs_deprecated = 0;
     43#endif
     44static int __init sysfs_deprecated_setup(char *arg)
     45{
     46	return kstrtol(arg, 10, &sysfs_deprecated);
     47}
     48early_param("sysfs.deprecated", sysfs_deprecated_setup);
     49#endif
     50
     51/* Device links support. */
     52static LIST_HEAD(deferred_sync);
     53static unsigned int defer_sync_state_count = 1;
     54static DEFINE_MUTEX(fwnode_link_lock);
     55static bool fw_devlink_is_permissive(void);
     56static bool fw_devlink_drv_reg_done;
     57
     58/**
     59 * fwnode_link_add - Create a link between two fwnode_handles.
     60 * @con: Consumer end of the link.
     61 * @sup: Supplier end of the link.
     62 *
     63 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
     64 * represents the detail that the firmware lists @sup fwnode as supplying a
     65 * resource to @con.
     66 *
     67 * The driver core will use the fwnode link to create a device link between the
     68 * two device objects corresponding to @con and @sup when they are created. The
     69 * driver core will automatically delete the fwnode link between @con and @sup
     70 * after doing that.
     71 *
     72 * Attempts to create duplicate links between the same pair of fwnode handles
     73 * are ignored and there is no reference counting.
     74 */
     75int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup)
     76{
     77	struct fwnode_link *link;
     78	int ret = 0;
     79
     80	mutex_lock(&fwnode_link_lock);
     81
     82	list_for_each_entry(link, &sup->consumers, s_hook)
     83		if (link->consumer == con)
     84			goto out;
     85
     86	link = kzalloc(sizeof(*link), GFP_KERNEL);
     87	if (!link) {
     88		ret = -ENOMEM;
     89		goto out;
     90	}
     91
     92	link->supplier = sup;
     93	INIT_LIST_HEAD(&link->s_hook);
     94	link->consumer = con;
     95	INIT_LIST_HEAD(&link->c_hook);
     96
     97	list_add(&link->s_hook, &sup->consumers);
     98	list_add(&link->c_hook, &con->suppliers);
     99	pr_debug("%pfwP Linked as a fwnode consumer to %pfwP\n",
    100		 con, sup);
    101out:
    102	mutex_unlock(&fwnode_link_lock);
    103
    104	return ret;
    105}
    106
    107/**
    108 * __fwnode_link_del - Delete a link between two fwnode_handles.
    109 * @link: the fwnode_link to be deleted
    110 *
    111 * The fwnode_link_lock needs to be held when this function is called.
    112 */
    113static void __fwnode_link_del(struct fwnode_link *link)
    114{
    115	pr_debug("%pfwP Dropping the fwnode link to %pfwP\n",
    116		 link->consumer, link->supplier);
    117	list_del(&link->s_hook);
    118	list_del(&link->c_hook);
    119	kfree(link);
    120}
    121
    122/**
    123 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
    124 * @fwnode: fwnode whose supplier links need to be deleted
    125 *
    126 * Deletes all supplier links connecting directly to @fwnode.
    127 */
    128static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
    129{
    130	struct fwnode_link *link, *tmp;
    131
    132	mutex_lock(&fwnode_link_lock);
    133	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook)
    134		__fwnode_link_del(link);
    135	mutex_unlock(&fwnode_link_lock);
    136}
    137
    138/**
    139 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
    140 * @fwnode: fwnode whose consumer links need to be deleted
    141 *
    142 * Deletes all consumer links connecting directly to @fwnode.
    143 */
    144static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
    145{
    146	struct fwnode_link *link, *tmp;
    147
    148	mutex_lock(&fwnode_link_lock);
    149	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook)
    150		__fwnode_link_del(link);
    151	mutex_unlock(&fwnode_link_lock);
    152}
    153
    154/**
    155 * fwnode_links_purge - Delete all links connected to a fwnode_handle.
    156 * @fwnode: fwnode whose links needs to be deleted
    157 *
    158 * Deletes all links connecting directly to a fwnode.
    159 */
    160void fwnode_links_purge(struct fwnode_handle *fwnode)
    161{
    162	fwnode_links_purge_suppliers(fwnode);
    163	fwnode_links_purge_consumers(fwnode);
    164}
    165
    166void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode)
    167{
    168	struct fwnode_handle *child;
    169
    170	/* Don't purge consumer links of an added child */
    171	if (fwnode->dev)
    172		return;
    173
    174	fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
    175	fwnode_links_purge_consumers(fwnode);
    176
    177	fwnode_for_each_available_child_node(fwnode, child)
    178		fw_devlink_purge_absent_suppliers(child);
    179}
    180EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers);
    181
    182#ifdef CONFIG_SRCU
    183static DEFINE_MUTEX(device_links_lock);
    184DEFINE_STATIC_SRCU(device_links_srcu);
    185
    186static inline void device_links_write_lock(void)
    187{
    188	mutex_lock(&device_links_lock);
    189}
    190
    191static inline void device_links_write_unlock(void)
    192{
    193	mutex_unlock(&device_links_lock);
    194}
    195
    196int device_links_read_lock(void) __acquires(&device_links_srcu)
    197{
    198	return srcu_read_lock(&device_links_srcu);
    199}
    200
    201void device_links_read_unlock(int idx) __releases(&device_links_srcu)
    202{
    203	srcu_read_unlock(&device_links_srcu, idx);
    204}
    205
    206int device_links_read_lock_held(void)
    207{
    208	return srcu_read_lock_held(&device_links_srcu);
    209}
    210
    211static void device_link_synchronize_removal(void)
    212{
    213	synchronize_srcu(&device_links_srcu);
    214}
    215
    216static void device_link_remove_from_lists(struct device_link *link)
    217{
    218	list_del_rcu(&link->s_node);
    219	list_del_rcu(&link->c_node);
    220}
    221#else /* !CONFIG_SRCU */
    222static DECLARE_RWSEM(device_links_lock);
    223
    224static inline void device_links_write_lock(void)
    225{
    226	down_write(&device_links_lock);
    227}
    228
    229static inline void device_links_write_unlock(void)
    230{
    231	up_write(&device_links_lock);
    232}
    233
    234int device_links_read_lock(void)
    235{
    236	down_read(&device_links_lock);
    237	return 0;
    238}
    239
    240void device_links_read_unlock(int not_used)
    241{
    242	up_read(&device_links_lock);
    243}
    244
    245#ifdef CONFIG_DEBUG_LOCK_ALLOC
    246int device_links_read_lock_held(void)
    247{
    248	return lockdep_is_held(&device_links_lock);
    249}
    250#endif
    251
    252static inline void device_link_synchronize_removal(void)
    253{
    254}
    255
    256static void device_link_remove_from_lists(struct device_link *link)
    257{
    258	list_del(&link->s_node);
    259	list_del(&link->c_node);
    260}
    261#endif /* !CONFIG_SRCU */
    262
    263static bool device_is_ancestor(struct device *dev, struct device *target)
    264{
    265	while (target->parent) {
    266		target = target->parent;
    267		if (dev == target)
    268			return true;
    269	}
    270	return false;
    271}
    272
    273/**
    274 * device_is_dependent - Check if one device depends on another one
    275 * @dev: Device to check dependencies for.
    276 * @target: Device to check against.
    277 *
    278 * Check if @target depends on @dev or any device dependent on it (its child or
    279 * its consumer etc).  Return 1 if that is the case or 0 otherwise.
    280 */
    281int device_is_dependent(struct device *dev, void *target)
    282{
    283	struct device_link *link;
    284	int ret;
    285
    286	/*
    287	 * The "ancestors" check is needed to catch the case when the target
    288	 * device has not been completely initialized yet and it is still
    289	 * missing from the list of children of its parent device.
    290	 */
    291	if (dev == target || device_is_ancestor(dev, target))
    292		return 1;
    293
    294	ret = device_for_each_child(dev, target, device_is_dependent);
    295	if (ret)
    296		return ret;
    297
    298	list_for_each_entry(link, &dev->links.consumers, s_node) {
    299		if ((link->flags & ~DL_FLAG_INFERRED) ==
    300		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
    301			continue;
    302
    303		if (link->consumer == target)
    304			return 1;
    305
    306		ret = device_is_dependent(link->consumer, target);
    307		if (ret)
    308			break;
    309	}
    310	return ret;
    311}
    312
    313static void device_link_init_status(struct device_link *link,
    314				    struct device *consumer,
    315				    struct device *supplier)
    316{
    317	switch (supplier->links.status) {
    318	case DL_DEV_PROBING:
    319		switch (consumer->links.status) {
    320		case DL_DEV_PROBING:
    321			/*
    322			 * A consumer driver can create a link to a supplier
    323			 * that has not completed its probing yet as long as it
    324			 * knows that the supplier is already functional (for
    325			 * example, it has just acquired some resources from the
    326			 * supplier).
    327			 */
    328			link->status = DL_STATE_CONSUMER_PROBE;
    329			break;
    330		default:
    331			link->status = DL_STATE_DORMANT;
    332			break;
    333		}
    334		break;
    335	case DL_DEV_DRIVER_BOUND:
    336		switch (consumer->links.status) {
    337		case DL_DEV_PROBING:
    338			link->status = DL_STATE_CONSUMER_PROBE;
    339			break;
    340		case DL_DEV_DRIVER_BOUND:
    341			link->status = DL_STATE_ACTIVE;
    342			break;
    343		default:
    344			link->status = DL_STATE_AVAILABLE;
    345			break;
    346		}
    347		break;
    348	case DL_DEV_UNBINDING:
    349		link->status = DL_STATE_SUPPLIER_UNBIND;
    350		break;
    351	default:
    352		link->status = DL_STATE_DORMANT;
    353		break;
    354	}
    355}
    356
    357static int device_reorder_to_tail(struct device *dev, void *not_used)
    358{
    359	struct device_link *link;
    360
    361	/*
    362	 * Devices that have not been registered yet will be put to the ends
    363	 * of the lists during the registration, so skip them here.
    364	 */
    365	if (device_is_registered(dev))
    366		devices_kset_move_last(dev);
    367
    368	if (device_pm_initialized(dev))
    369		device_pm_move_last(dev);
    370
    371	device_for_each_child(dev, NULL, device_reorder_to_tail);
    372	list_for_each_entry(link, &dev->links.consumers, s_node) {
    373		if ((link->flags & ~DL_FLAG_INFERRED) ==
    374		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
    375			continue;
    376		device_reorder_to_tail(link->consumer, NULL);
    377	}
    378
    379	return 0;
    380}
    381
    382/**
    383 * device_pm_move_to_tail - Move set of devices to the end of device lists
    384 * @dev: Device to move
    385 *
    386 * This is a device_reorder_to_tail() wrapper taking the requisite locks.
    387 *
    388 * It moves the @dev along with all of its children and all of its consumers
    389 * to the ends of the device_kset and dpm_list, recursively.
    390 */
    391void device_pm_move_to_tail(struct device *dev)
    392{
    393	int idx;
    394
    395	idx = device_links_read_lock();
    396	device_pm_lock();
    397	device_reorder_to_tail(dev, NULL);
    398	device_pm_unlock();
    399	device_links_read_unlock(idx);
    400}
    401
    402#define to_devlink(dev)	container_of((dev), struct device_link, link_dev)
    403
    404static ssize_t status_show(struct device *dev,
    405			   struct device_attribute *attr, char *buf)
    406{
    407	const char *output;
    408
    409	switch (to_devlink(dev)->status) {
    410	case DL_STATE_NONE:
    411		output = "not tracked";
    412		break;
    413	case DL_STATE_DORMANT:
    414		output = "dormant";
    415		break;
    416	case DL_STATE_AVAILABLE:
    417		output = "available";
    418		break;
    419	case DL_STATE_CONSUMER_PROBE:
    420		output = "consumer probing";
    421		break;
    422	case DL_STATE_ACTIVE:
    423		output = "active";
    424		break;
    425	case DL_STATE_SUPPLIER_UNBIND:
    426		output = "supplier unbinding";
    427		break;
    428	default:
    429		output = "unknown";
    430		break;
    431	}
    432
    433	return sysfs_emit(buf, "%s\n", output);
    434}
    435static DEVICE_ATTR_RO(status);
    436
    437static ssize_t auto_remove_on_show(struct device *dev,
    438				   struct device_attribute *attr, char *buf)
    439{
    440	struct device_link *link = to_devlink(dev);
    441	const char *output;
    442
    443	if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
    444		output = "supplier unbind";
    445	else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
    446		output = "consumer unbind";
    447	else
    448		output = "never";
    449
    450	return sysfs_emit(buf, "%s\n", output);
    451}
    452static DEVICE_ATTR_RO(auto_remove_on);
    453
    454static ssize_t runtime_pm_show(struct device *dev,
    455			       struct device_attribute *attr, char *buf)
    456{
    457	struct device_link *link = to_devlink(dev);
    458
    459	return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
    460}
    461static DEVICE_ATTR_RO(runtime_pm);
    462
    463static ssize_t sync_state_only_show(struct device *dev,
    464				    struct device_attribute *attr, char *buf)
    465{
    466	struct device_link *link = to_devlink(dev);
    467
    468	return sysfs_emit(buf, "%d\n",
    469			  !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
    470}
    471static DEVICE_ATTR_RO(sync_state_only);
    472
    473static struct attribute *devlink_attrs[] = {
    474	&dev_attr_status.attr,
    475	&dev_attr_auto_remove_on.attr,
    476	&dev_attr_runtime_pm.attr,
    477	&dev_attr_sync_state_only.attr,
    478	NULL,
    479};
    480ATTRIBUTE_GROUPS(devlink);
    481
    482static void device_link_release_fn(struct work_struct *work)
    483{
    484	struct device_link *link = container_of(work, struct device_link, rm_work);
    485
    486	/* Ensure that all references to the link object have been dropped. */
    487	device_link_synchronize_removal();
    488
    489	pm_runtime_release_supplier(link);
    490	/*
    491	 * If supplier_preactivated is set, the link has been dropped between
    492	 * the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls
    493	 * in __driver_probe_device().  In that case, drop the supplier's
    494	 * PM-runtime usage counter to remove the reference taken by
    495	 * pm_runtime_get_suppliers().
    496	 */
    497	if (link->supplier_preactivated)
    498		pm_runtime_put_noidle(link->supplier);
    499
    500	pm_request_idle(link->supplier);
    501
    502	put_device(link->consumer);
    503	put_device(link->supplier);
    504	kfree(link);
    505}
    506
    507static void devlink_dev_release(struct device *dev)
    508{
    509	struct device_link *link = to_devlink(dev);
    510
    511	INIT_WORK(&link->rm_work, device_link_release_fn);
    512	/*
    513	 * It may take a while to complete this work because of the SRCU
    514	 * synchronization in device_link_release_fn() and if the consumer or
    515	 * supplier devices get deleted when it runs, so put it into the "long"
    516	 * workqueue.
    517	 */
    518	queue_work(system_long_wq, &link->rm_work);
    519}
    520
    521static struct class devlink_class = {
    522	.name = "devlink",
    523	.owner = THIS_MODULE,
    524	.dev_groups = devlink_groups,
    525	.dev_release = devlink_dev_release,
    526};
    527
    528static int devlink_add_symlinks(struct device *dev,
    529				struct class_interface *class_intf)
    530{
    531	int ret;
    532	size_t len;
    533	struct device_link *link = to_devlink(dev);
    534	struct device *sup = link->supplier;
    535	struct device *con = link->consumer;
    536	char *buf;
    537
    538	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
    539		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
    540	len += strlen(":");
    541	len += strlen("supplier:") + 1;
    542	buf = kzalloc(len, GFP_KERNEL);
    543	if (!buf)
    544		return -ENOMEM;
    545
    546	ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
    547	if (ret)
    548		goto out;
    549
    550	ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
    551	if (ret)
    552		goto err_con;
    553
    554	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
    555	ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
    556	if (ret)
    557		goto err_con_dev;
    558
    559	snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
    560	ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
    561	if (ret)
    562		goto err_sup_dev;
    563
    564	goto out;
    565
    566err_sup_dev:
    567	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
    568	sysfs_remove_link(&sup->kobj, buf);
    569err_con_dev:
    570	sysfs_remove_link(&link->link_dev.kobj, "consumer");
    571err_con:
    572	sysfs_remove_link(&link->link_dev.kobj, "supplier");
    573out:
    574	kfree(buf);
    575	return ret;
    576}
    577
    578static void devlink_remove_symlinks(struct device *dev,
    579				   struct class_interface *class_intf)
    580{
    581	struct device_link *link = to_devlink(dev);
    582	size_t len;
    583	struct device *sup = link->supplier;
    584	struct device *con = link->consumer;
    585	char *buf;
    586
    587	sysfs_remove_link(&link->link_dev.kobj, "consumer");
    588	sysfs_remove_link(&link->link_dev.kobj, "supplier");
    589
    590	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
    591		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
    592	len += strlen(":");
    593	len += strlen("supplier:") + 1;
    594	buf = kzalloc(len, GFP_KERNEL);
    595	if (!buf) {
    596		WARN(1, "Unable to properly free device link symlinks!\n");
    597		return;
    598	}
    599
    600	if (device_is_registered(con)) {
    601		snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
    602		sysfs_remove_link(&con->kobj, buf);
    603	}
    604	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
    605	sysfs_remove_link(&sup->kobj, buf);
    606	kfree(buf);
    607}
    608
    609static struct class_interface devlink_class_intf = {
    610	.class = &devlink_class,
    611	.add_dev = devlink_add_symlinks,
    612	.remove_dev = devlink_remove_symlinks,
    613};
    614
    615static int __init devlink_class_init(void)
    616{
    617	int ret;
    618
    619	ret = class_register(&devlink_class);
    620	if (ret)
    621		return ret;
    622
    623	ret = class_interface_register(&devlink_class_intf);
    624	if (ret)
    625		class_unregister(&devlink_class);
    626
    627	return ret;
    628}
    629postcore_initcall(devlink_class_init);
    630
    631#define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
    632			       DL_FLAG_AUTOREMOVE_SUPPLIER | \
    633			       DL_FLAG_AUTOPROBE_CONSUMER  | \
    634			       DL_FLAG_SYNC_STATE_ONLY | \
    635			       DL_FLAG_INFERRED)
    636
    637#define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
    638			    DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
    639
    640/**
    641 * device_link_add - Create a link between two devices.
    642 * @consumer: Consumer end of the link.
    643 * @supplier: Supplier end of the link.
    644 * @flags: Link flags.
    645 *
    646 * The caller is responsible for the proper synchronization of the link creation
    647 * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
    648 * runtime PM framework to take the link into account.  Second, if the
    649 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
    650 * be forced into the active meta state and reference-counted upon the creation
    651 * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
    652 * ignored.
    653 *
    654 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
    655 * expected to release the link returned by it directly with the help of either
    656 * device_link_del() or device_link_remove().
    657 *
    658 * If that flag is not set, however, the caller of this function is handing the
    659 * management of the link over to the driver core entirely and its return value
    660 * can only be used to check whether or not the link is present.  In that case,
    661 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
    662 * flags can be used to indicate to the driver core when the link can be safely
    663 * deleted.  Namely, setting one of them in @flags indicates to the driver core
    664 * that the link is not going to be used (by the given caller of this function)
    665 * after unbinding the consumer or supplier driver, respectively, from its
    666 * device, so the link can be deleted at that point.  If none of them is set,
    667 * the link will be maintained until one of the devices pointed to by it (either
    668 * the consumer or the supplier) is unregistered.
    669 *
    670 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
    671 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
    672 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
    673 * be used to request the driver core to automatically probe for a consumer
    674 * driver after successfully binding a driver to the supplier device.
    675 *
    676 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
    677 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
    678 * the same time is invalid and will cause NULL to be returned upfront.
    679 * However, if a device link between the given @consumer and @supplier pair
    680 * exists already when this function is called for them, the existing link will
    681 * be returned regardless of its current type and status (the link's flags may
    682 * be modified then).  The caller of this function is then expected to treat
    683 * the link as though it has just been created, so (in particular) if
    684 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
    685 * explicitly when not needed any more (as stated above).
    686 *
    687 * A side effect of the link creation is re-ordering of dpm_list and the
    688 * devices_kset list by moving the consumer device and all devices depending
    689 * on it to the ends of these lists (that does not happen to devices that have
    690 * not been registered when this function is called).
    691 *
    692 * The supplier device is required to be registered when this function is called
    693 * and NULL will be returned if that is not the case.  The consumer device need
    694 * not be registered, however.
    695 */
    696struct device_link *device_link_add(struct device *consumer,
    697				    struct device *supplier, u32 flags)
    698{
    699	struct device_link *link;
    700
    701	if (!consumer || !supplier || consumer == supplier ||
    702	    flags & ~DL_ADD_VALID_FLAGS ||
    703	    (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
    704	    (flags & DL_FLAG_SYNC_STATE_ONLY &&
    705	     (flags & ~DL_FLAG_INFERRED) != DL_FLAG_SYNC_STATE_ONLY) ||
    706	    (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
    707	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
    708		      DL_FLAG_AUTOREMOVE_SUPPLIER)))
    709		return NULL;
    710
    711	if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
    712		if (pm_runtime_get_sync(supplier) < 0) {
    713			pm_runtime_put_noidle(supplier);
    714			return NULL;
    715		}
    716	}
    717
    718	if (!(flags & DL_FLAG_STATELESS))
    719		flags |= DL_FLAG_MANAGED;
    720
    721	device_links_write_lock();
    722	device_pm_lock();
    723
    724	/*
    725	 * If the supplier has not been fully registered yet or there is a
    726	 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
    727	 * the supplier already in the graph, return NULL. If the link is a
    728	 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
    729	 * because it only affects sync_state() callbacks.
    730	 */
    731	if (!device_pm_initialized(supplier)
    732	    || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
    733		  device_is_dependent(consumer, supplier))) {
    734		link = NULL;
    735		goto out;
    736	}
    737
    738	/*
    739	 * SYNC_STATE_ONLY links are useless once a consumer device has probed.
    740	 * So, only create it if the consumer hasn't probed yet.
    741	 */
    742	if (flags & DL_FLAG_SYNC_STATE_ONLY &&
    743	    consumer->links.status != DL_DEV_NO_DRIVER &&
    744	    consumer->links.status != DL_DEV_PROBING) {
    745		link = NULL;
    746		goto out;
    747	}
    748
    749	/*
    750	 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
    751	 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
    752	 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
    753	 */
    754	if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
    755		flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
    756
    757	list_for_each_entry(link, &supplier->links.consumers, s_node) {
    758		if (link->consumer != consumer)
    759			continue;
    760
    761		if (link->flags & DL_FLAG_INFERRED &&
    762		    !(flags & DL_FLAG_INFERRED))
    763			link->flags &= ~DL_FLAG_INFERRED;
    764
    765		if (flags & DL_FLAG_PM_RUNTIME) {
    766			if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
    767				pm_runtime_new_link(consumer);
    768				link->flags |= DL_FLAG_PM_RUNTIME;
    769			}
    770			if (flags & DL_FLAG_RPM_ACTIVE)
    771				refcount_inc(&link->rpm_active);
    772		}
    773
    774		if (flags & DL_FLAG_STATELESS) {
    775			kref_get(&link->kref);
    776			if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
    777			    !(link->flags & DL_FLAG_STATELESS)) {
    778				link->flags |= DL_FLAG_STATELESS;
    779				goto reorder;
    780			} else {
    781				link->flags |= DL_FLAG_STATELESS;
    782				goto out;
    783			}
    784		}
    785
    786		/*
    787		 * If the life time of the link following from the new flags is
    788		 * longer than indicated by the flags of the existing link,
    789		 * update the existing link to stay around longer.
    790		 */
    791		if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
    792			if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
    793				link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
    794				link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
    795			}
    796		} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
    797			link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
    798					 DL_FLAG_AUTOREMOVE_SUPPLIER);
    799		}
    800		if (!(link->flags & DL_FLAG_MANAGED)) {
    801			kref_get(&link->kref);
    802			link->flags |= DL_FLAG_MANAGED;
    803			device_link_init_status(link, consumer, supplier);
    804		}
    805		if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
    806		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
    807			link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
    808			goto reorder;
    809		}
    810
    811		goto out;
    812	}
    813
    814	link = kzalloc(sizeof(*link), GFP_KERNEL);
    815	if (!link)
    816		goto out;
    817
    818	refcount_set(&link->rpm_active, 1);
    819
    820	get_device(supplier);
    821	link->supplier = supplier;
    822	INIT_LIST_HEAD(&link->s_node);
    823	get_device(consumer);
    824	link->consumer = consumer;
    825	INIT_LIST_HEAD(&link->c_node);
    826	link->flags = flags;
    827	kref_init(&link->kref);
    828
    829	link->link_dev.class = &devlink_class;
    830	device_set_pm_not_required(&link->link_dev);
    831	dev_set_name(&link->link_dev, "%s:%s--%s:%s",
    832		     dev_bus_name(supplier), dev_name(supplier),
    833		     dev_bus_name(consumer), dev_name(consumer));
    834	if (device_register(&link->link_dev)) {
    835		put_device(&link->link_dev);
    836		link = NULL;
    837		goto out;
    838	}
    839
    840	if (flags & DL_FLAG_PM_RUNTIME) {
    841		if (flags & DL_FLAG_RPM_ACTIVE)
    842			refcount_inc(&link->rpm_active);
    843
    844		pm_runtime_new_link(consumer);
    845	}
    846
    847	/* Determine the initial link state. */
    848	if (flags & DL_FLAG_STATELESS)
    849		link->status = DL_STATE_NONE;
    850	else
    851		device_link_init_status(link, consumer, supplier);
    852
    853	/*
    854	 * Some callers expect the link creation during consumer driver probe to
    855	 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
    856	 */
    857	if (link->status == DL_STATE_CONSUMER_PROBE &&
    858	    flags & DL_FLAG_PM_RUNTIME)
    859		pm_runtime_resume(supplier);
    860
    861	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
    862	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
    863
    864	if (flags & DL_FLAG_SYNC_STATE_ONLY) {
    865		dev_dbg(consumer,
    866			"Linked as a sync state only consumer to %s\n",
    867			dev_name(supplier));
    868		goto out;
    869	}
    870
    871reorder:
    872	/*
    873	 * Move the consumer and all of the devices depending on it to the end
    874	 * of dpm_list and the devices_kset list.
    875	 *
    876	 * It is necessary to hold dpm_list locked throughout all that or else
    877	 * we may end up suspending with a wrong ordering of it.
    878	 */
    879	device_reorder_to_tail(consumer, NULL);
    880
    881	dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
    882
    883out:
    884	device_pm_unlock();
    885	device_links_write_unlock();
    886
    887	if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
    888		pm_runtime_put(supplier);
    889
    890	return link;
    891}
    892EXPORT_SYMBOL_GPL(device_link_add);
    893
    894static void __device_link_del(struct kref *kref)
    895{
    896	struct device_link *link = container_of(kref, struct device_link, kref);
    897
    898	dev_dbg(link->consumer, "Dropping the link to %s\n",
    899		dev_name(link->supplier));
    900
    901	pm_runtime_drop_link(link);
    902
    903	device_link_remove_from_lists(link);
    904	device_unregister(&link->link_dev);
    905}
    906
    907static void device_link_put_kref(struct device_link *link)
    908{
    909	if (link->flags & DL_FLAG_STATELESS)
    910		kref_put(&link->kref, __device_link_del);
    911	else if (!device_is_registered(link->consumer))
    912		__device_link_del(&link->kref);
    913	else
    914		WARN(1, "Unable to drop a managed device link reference\n");
    915}
    916
    917/**
    918 * device_link_del - Delete a stateless link between two devices.
    919 * @link: Device link to delete.
    920 *
    921 * The caller must ensure proper synchronization of this function with runtime
    922 * PM.  If the link was added multiple times, it needs to be deleted as often.
    923 * Care is required for hotplugged devices:  Their links are purged on removal
    924 * and calling device_link_del() is then no longer allowed.
    925 */
    926void device_link_del(struct device_link *link)
    927{
    928	device_links_write_lock();
    929	device_link_put_kref(link);
    930	device_links_write_unlock();
    931}
    932EXPORT_SYMBOL_GPL(device_link_del);
    933
    934/**
    935 * device_link_remove - Delete a stateless link between two devices.
    936 * @consumer: Consumer end of the link.
    937 * @supplier: Supplier end of the link.
    938 *
    939 * The caller must ensure proper synchronization of this function with runtime
    940 * PM.
    941 */
    942void device_link_remove(void *consumer, struct device *supplier)
    943{
    944	struct device_link *link;
    945
    946	if (WARN_ON(consumer == supplier))
    947		return;
    948
    949	device_links_write_lock();
    950
    951	list_for_each_entry(link, &supplier->links.consumers, s_node) {
    952		if (link->consumer == consumer) {
    953			device_link_put_kref(link);
    954			break;
    955		}
    956	}
    957
    958	device_links_write_unlock();
    959}
    960EXPORT_SYMBOL_GPL(device_link_remove);
    961
    962static void device_links_missing_supplier(struct device *dev)
    963{
    964	struct device_link *link;
    965
    966	list_for_each_entry(link, &dev->links.suppliers, c_node) {
    967		if (link->status != DL_STATE_CONSUMER_PROBE)
    968			continue;
    969
    970		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
    971			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
    972		} else {
    973			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
    974			WRITE_ONCE(link->status, DL_STATE_DORMANT);
    975		}
    976	}
    977}
    978
    979/**
    980 * device_links_check_suppliers - Check presence of supplier drivers.
    981 * @dev: Consumer device.
    982 *
    983 * Check links from this device to any suppliers.  Walk the list of the device's
    984 * links to suppliers and see if all of them are available.  If not, simply
    985 * return -EPROBE_DEFER.
    986 *
    987 * We need to guarantee that the supplier will not go away after the check has
    988 * been positive here.  It only can go away in __device_release_driver() and
    989 * that function  checks the device's links to consumers.  This means we need to
    990 * mark the link as "consumer probe in progress" to make the supplier removal
    991 * wait for us to complete (or bad things may happen).
    992 *
    993 * Links without the DL_FLAG_MANAGED flag set are ignored.
    994 */
    995int device_links_check_suppliers(struct device *dev)
    996{
    997	struct device_link *link;
    998	int ret = 0;
    999	struct fwnode_handle *sup_fw;
   1000
   1001	/*
   1002	 * Device waiting for supplier to become available is not allowed to
   1003	 * probe.
   1004	 */
   1005	mutex_lock(&fwnode_link_lock);
   1006	if (dev->fwnode && !list_empty(&dev->fwnode->suppliers) &&
   1007	    !fw_devlink_is_permissive()) {
   1008		sup_fw = list_first_entry(&dev->fwnode->suppliers,
   1009					  struct fwnode_link,
   1010					  c_hook)->supplier;
   1011		dev_err_probe(dev, -EPROBE_DEFER, "wait for supplier %pfwP\n",
   1012			      sup_fw);
   1013		mutex_unlock(&fwnode_link_lock);
   1014		return -EPROBE_DEFER;
   1015	}
   1016	mutex_unlock(&fwnode_link_lock);
   1017
   1018	device_links_write_lock();
   1019
   1020	list_for_each_entry(link, &dev->links.suppliers, c_node) {
   1021		if (!(link->flags & DL_FLAG_MANAGED))
   1022			continue;
   1023
   1024		if (link->status != DL_STATE_AVAILABLE &&
   1025		    !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
   1026			device_links_missing_supplier(dev);
   1027			dev_err_probe(dev, -EPROBE_DEFER,
   1028				      "supplier %s not ready\n",
   1029				      dev_name(link->supplier));
   1030			ret = -EPROBE_DEFER;
   1031			break;
   1032		}
   1033		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
   1034	}
   1035	dev->links.status = DL_DEV_PROBING;
   1036
   1037	device_links_write_unlock();
   1038	return ret;
   1039}
   1040
   1041/**
   1042 * __device_links_queue_sync_state - Queue a device for sync_state() callback
   1043 * @dev: Device to call sync_state() on
   1044 * @list: List head to queue the @dev on
   1045 *
   1046 * Queues a device for a sync_state() callback when the device links write lock
   1047 * isn't held. This allows the sync_state() execution flow to use device links
   1048 * APIs.  The caller must ensure this function is called with
   1049 * device_links_write_lock() held.
   1050 *
   1051 * This function does a get_device() to make sure the device is not freed while
   1052 * on this list.
   1053 *
   1054 * So the caller must also ensure that device_links_flush_sync_list() is called
   1055 * as soon as the caller releases device_links_write_lock().  This is necessary
   1056 * to make sure the sync_state() is called in a timely fashion and the
   1057 * put_device() is called on this device.
   1058 */
   1059static void __device_links_queue_sync_state(struct device *dev,
   1060					    struct list_head *list)
   1061{
   1062	struct device_link *link;
   1063
   1064	if (!dev_has_sync_state(dev))
   1065		return;
   1066	if (dev->state_synced)
   1067		return;
   1068
   1069	list_for_each_entry(link, &dev->links.consumers, s_node) {
   1070		if (!(link->flags & DL_FLAG_MANAGED))
   1071			continue;
   1072		if (link->status != DL_STATE_ACTIVE)
   1073			return;
   1074	}
   1075
   1076	/*
   1077	 * Set the flag here to avoid adding the same device to a list more
   1078	 * than once. This can happen if new consumers get added to the device
   1079	 * and probed before the list is flushed.
   1080	 */
   1081	dev->state_synced = true;
   1082
   1083	if (WARN_ON(!list_empty(&dev->links.defer_sync)))
   1084		return;
   1085
   1086	get_device(dev);
   1087	list_add_tail(&dev->links.defer_sync, list);
   1088}
   1089
   1090/**
   1091 * device_links_flush_sync_list - Call sync_state() on a list of devices
   1092 * @list: List of devices to call sync_state() on
   1093 * @dont_lock_dev: Device for which lock is already held by the caller
   1094 *
   1095 * Calls sync_state() on all the devices that have been queued for it. This
   1096 * function is used in conjunction with __device_links_queue_sync_state(). The
   1097 * @dont_lock_dev parameter is useful when this function is called from a
   1098 * context where a device lock is already held.
   1099 */
   1100static void device_links_flush_sync_list(struct list_head *list,
   1101					 struct device *dont_lock_dev)
   1102{
   1103	struct device *dev, *tmp;
   1104
   1105	list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
   1106		list_del_init(&dev->links.defer_sync);
   1107
   1108		if (dev != dont_lock_dev)
   1109			device_lock(dev);
   1110
   1111		if (dev->bus->sync_state)
   1112			dev->bus->sync_state(dev);
   1113		else if (dev->driver && dev->driver->sync_state)
   1114			dev->driver->sync_state(dev);
   1115
   1116		if (dev != dont_lock_dev)
   1117			device_unlock(dev);
   1118
   1119		put_device(dev);
   1120	}
   1121}
   1122
   1123void device_links_supplier_sync_state_pause(void)
   1124{
   1125	device_links_write_lock();
   1126	defer_sync_state_count++;
   1127	device_links_write_unlock();
   1128}
   1129
   1130void device_links_supplier_sync_state_resume(void)
   1131{
   1132	struct device *dev, *tmp;
   1133	LIST_HEAD(sync_list);
   1134
   1135	device_links_write_lock();
   1136	if (!defer_sync_state_count) {
   1137		WARN(true, "Unmatched sync_state pause/resume!");
   1138		goto out;
   1139	}
   1140	defer_sync_state_count--;
   1141	if (defer_sync_state_count)
   1142		goto out;
   1143
   1144	list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
   1145		/*
   1146		 * Delete from deferred_sync list before queuing it to
   1147		 * sync_list because defer_sync is used for both lists.
   1148		 */
   1149		list_del_init(&dev->links.defer_sync);
   1150		__device_links_queue_sync_state(dev, &sync_list);
   1151	}
   1152out:
   1153	device_links_write_unlock();
   1154
   1155	device_links_flush_sync_list(&sync_list, NULL);
   1156}
   1157
   1158static int sync_state_resume_initcall(void)
   1159{
   1160	device_links_supplier_sync_state_resume();
   1161	return 0;
   1162}
   1163late_initcall(sync_state_resume_initcall);
   1164
   1165static void __device_links_supplier_defer_sync(struct device *sup)
   1166{
   1167	if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
   1168		list_add_tail(&sup->links.defer_sync, &deferred_sync);
   1169}
   1170
   1171static void device_link_drop_managed(struct device_link *link)
   1172{
   1173	link->flags &= ~DL_FLAG_MANAGED;
   1174	WRITE_ONCE(link->status, DL_STATE_NONE);
   1175	kref_put(&link->kref, __device_link_del);
   1176}
   1177
   1178static ssize_t waiting_for_supplier_show(struct device *dev,
   1179					 struct device_attribute *attr,
   1180					 char *buf)
   1181{
   1182	bool val;
   1183
   1184	device_lock(dev);
   1185	val = !list_empty(&dev->fwnode->suppliers);
   1186	device_unlock(dev);
   1187	return sysfs_emit(buf, "%u\n", val);
   1188}
   1189static DEVICE_ATTR_RO(waiting_for_supplier);
   1190
   1191/**
   1192 * device_links_force_bind - Prepares device to be force bound
   1193 * @dev: Consumer device.
   1194 *
   1195 * device_bind_driver() force binds a device to a driver without calling any
   1196 * driver probe functions. So the consumer really isn't going to wait for any
   1197 * supplier before it's bound to the driver. We still want the device link
   1198 * states to be sensible when this happens.
   1199 *
   1200 * In preparation for device_bind_driver(), this function goes through each
   1201 * supplier device links and checks if the supplier is bound. If it is, then
   1202 * the device link status is set to CONSUMER_PROBE. Otherwise, the device link
   1203 * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored.
   1204 */
   1205void device_links_force_bind(struct device *dev)
   1206{
   1207	struct device_link *link, *ln;
   1208
   1209	device_links_write_lock();
   1210
   1211	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
   1212		if (!(link->flags & DL_FLAG_MANAGED))
   1213			continue;
   1214
   1215		if (link->status != DL_STATE_AVAILABLE) {
   1216			device_link_drop_managed(link);
   1217			continue;
   1218		}
   1219		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
   1220	}
   1221	dev->links.status = DL_DEV_PROBING;
   1222
   1223	device_links_write_unlock();
   1224}
   1225
   1226/**
   1227 * device_links_driver_bound - Update device links after probing its driver.
   1228 * @dev: Device to update the links for.
   1229 *
   1230 * The probe has been successful, so update links from this device to any
   1231 * consumers by changing their status to "available".
   1232 *
   1233 * Also change the status of @dev's links to suppliers to "active".
   1234 *
   1235 * Links without the DL_FLAG_MANAGED flag set are ignored.
   1236 */
   1237void device_links_driver_bound(struct device *dev)
   1238{
   1239	struct device_link *link, *ln;
   1240	LIST_HEAD(sync_list);
   1241
   1242	/*
   1243	 * If a device binds successfully, it's expected to have created all
   1244	 * the device links it needs to or make new device links as it needs
   1245	 * them. So, fw_devlink no longer needs to create device links to any
   1246	 * of the device's suppliers.
   1247	 *
   1248	 * Also, if a child firmware node of this bound device is not added as
   1249	 * a device by now, assume it is never going to be added and make sure
   1250	 * other devices don't defer probe indefinitely by waiting for such a
   1251	 * child device.
   1252	 */
   1253	if (dev->fwnode && dev->fwnode->dev == dev) {
   1254		struct fwnode_handle *child;
   1255		fwnode_links_purge_suppliers(dev->fwnode);
   1256		fwnode_for_each_available_child_node(dev->fwnode, child)
   1257			fw_devlink_purge_absent_suppliers(child);
   1258	}
   1259	device_remove_file(dev, &dev_attr_waiting_for_supplier);
   1260
   1261	device_links_write_lock();
   1262
   1263	list_for_each_entry(link, &dev->links.consumers, s_node) {
   1264		if (!(link->flags & DL_FLAG_MANAGED))
   1265			continue;
   1266
   1267		/*
   1268		 * Links created during consumer probe may be in the "consumer
   1269		 * probe" state to start with if the supplier is still probing
   1270		 * when they are created and they may become "active" if the
   1271		 * consumer probe returns first.  Skip them here.
   1272		 */
   1273		if (link->status == DL_STATE_CONSUMER_PROBE ||
   1274		    link->status == DL_STATE_ACTIVE)
   1275			continue;
   1276
   1277		WARN_ON(link->status != DL_STATE_DORMANT);
   1278		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
   1279
   1280		if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
   1281			driver_deferred_probe_add(link->consumer);
   1282	}
   1283
   1284	if (defer_sync_state_count)
   1285		__device_links_supplier_defer_sync(dev);
   1286	else
   1287		__device_links_queue_sync_state(dev, &sync_list);
   1288
   1289	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
   1290		struct device *supplier;
   1291
   1292		if (!(link->flags & DL_FLAG_MANAGED))
   1293			continue;
   1294
   1295		supplier = link->supplier;
   1296		if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
   1297			/*
   1298			 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
   1299			 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
   1300			 * save to drop the managed link completely.
   1301			 */
   1302			device_link_drop_managed(link);
   1303		} else {
   1304			WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
   1305			WRITE_ONCE(link->status, DL_STATE_ACTIVE);
   1306		}
   1307
   1308		/*
   1309		 * This needs to be done even for the deleted
   1310		 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
   1311		 * device link that was preventing the supplier from getting a
   1312		 * sync_state() call.
   1313		 */
   1314		if (defer_sync_state_count)
   1315			__device_links_supplier_defer_sync(supplier);
   1316		else
   1317			__device_links_queue_sync_state(supplier, &sync_list);
   1318	}
   1319
   1320	dev->links.status = DL_DEV_DRIVER_BOUND;
   1321
   1322	device_links_write_unlock();
   1323
   1324	device_links_flush_sync_list(&sync_list, dev);
   1325}
   1326
   1327/**
   1328 * __device_links_no_driver - Update links of a device without a driver.
   1329 * @dev: Device without a drvier.
   1330 *
   1331 * Delete all non-persistent links from this device to any suppliers.
   1332 *
   1333 * Persistent links stay around, but their status is changed to "available",
   1334 * unless they already are in the "supplier unbind in progress" state in which
   1335 * case they need not be updated.
   1336 *
   1337 * Links without the DL_FLAG_MANAGED flag set are ignored.
   1338 */
   1339static void __device_links_no_driver(struct device *dev)
   1340{
   1341	struct device_link *link, *ln;
   1342
   1343	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
   1344		if (!(link->flags & DL_FLAG_MANAGED))
   1345			continue;
   1346
   1347		if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
   1348			device_link_drop_managed(link);
   1349			continue;
   1350		}
   1351
   1352		if (link->status != DL_STATE_CONSUMER_PROBE &&
   1353		    link->status != DL_STATE_ACTIVE)
   1354			continue;
   1355
   1356		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
   1357			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
   1358		} else {
   1359			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
   1360			WRITE_ONCE(link->status, DL_STATE_DORMANT);
   1361		}
   1362	}
   1363
   1364	dev->links.status = DL_DEV_NO_DRIVER;
   1365}
   1366
   1367/**
   1368 * device_links_no_driver - Update links after failing driver probe.
   1369 * @dev: Device whose driver has just failed to probe.
   1370 *
   1371 * Clean up leftover links to consumers for @dev and invoke
   1372 * %__device_links_no_driver() to update links to suppliers for it as
   1373 * appropriate.
   1374 *
   1375 * Links without the DL_FLAG_MANAGED flag set are ignored.
   1376 */
   1377void device_links_no_driver(struct device *dev)
   1378{
   1379	struct device_link *link;
   1380
   1381	device_links_write_lock();
   1382
   1383	list_for_each_entry(link, &dev->links.consumers, s_node) {
   1384		if (!(link->flags & DL_FLAG_MANAGED))
   1385			continue;
   1386
   1387		/*
   1388		 * The probe has failed, so if the status of the link is
   1389		 * "consumer probe" or "active", it must have been added by
   1390		 * a probing consumer while this device was still probing.
   1391		 * Change its state to "dormant", as it represents a valid
   1392		 * relationship, but it is not functionally meaningful.
   1393		 */
   1394		if (link->status == DL_STATE_CONSUMER_PROBE ||
   1395		    link->status == DL_STATE_ACTIVE)
   1396			WRITE_ONCE(link->status, DL_STATE_DORMANT);
   1397	}
   1398
   1399	__device_links_no_driver(dev);
   1400
   1401	device_links_write_unlock();
   1402}
   1403
   1404/**
   1405 * device_links_driver_cleanup - Update links after driver removal.
   1406 * @dev: Device whose driver has just gone away.
   1407 *
   1408 * Update links to consumers for @dev by changing their status to "dormant" and
   1409 * invoke %__device_links_no_driver() to update links to suppliers for it as
   1410 * appropriate.
   1411 *
   1412 * Links without the DL_FLAG_MANAGED flag set are ignored.
   1413 */
   1414void device_links_driver_cleanup(struct device *dev)
   1415{
   1416	struct device_link *link, *ln;
   1417
   1418	device_links_write_lock();
   1419
   1420	list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
   1421		if (!(link->flags & DL_FLAG_MANAGED))
   1422			continue;
   1423
   1424		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
   1425		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
   1426
   1427		/*
   1428		 * autoremove the links between this @dev and its consumer
   1429		 * devices that are not active, i.e. where the link state
   1430		 * has moved to DL_STATE_SUPPLIER_UNBIND.
   1431		 */
   1432		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
   1433		    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
   1434			device_link_drop_managed(link);
   1435
   1436		WRITE_ONCE(link->status, DL_STATE_DORMANT);
   1437	}
   1438
   1439	list_del_init(&dev->links.defer_sync);
   1440	__device_links_no_driver(dev);
   1441
   1442	device_links_write_unlock();
   1443}
   1444
   1445/**
   1446 * device_links_busy - Check if there are any busy links to consumers.
   1447 * @dev: Device to check.
   1448 *
   1449 * Check each consumer of the device and return 'true' if its link's status
   1450 * is one of "consumer probe" or "active" (meaning that the given consumer is
   1451 * probing right now or its driver is present).  Otherwise, change the link
   1452 * state to "supplier unbind" to prevent the consumer from being probed
   1453 * successfully going forward.
   1454 *
   1455 * Return 'false' if there are no probing or active consumers.
   1456 *
   1457 * Links without the DL_FLAG_MANAGED flag set are ignored.
   1458 */
   1459bool device_links_busy(struct device *dev)
   1460{
   1461	struct device_link *link;
   1462	bool ret = false;
   1463
   1464	device_links_write_lock();
   1465
   1466	list_for_each_entry(link, &dev->links.consumers, s_node) {
   1467		if (!(link->flags & DL_FLAG_MANAGED))
   1468			continue;
   1469
   1470		if (link->status == DL_STATE_CONSUMER_PROBE
   1471		    || link->status == DL_STATE_ACTIVE) {
   1472			ret = true;
   1473			break;
   1474		}
   1475		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
   1476	}
   1477
   1478	dev->links.status = DL_DEV_UNBINDING;
   1479
   1480	device_links_write_unlock();
   1481	return ret;
   1482}
   1483
   1484/**
   1485 * device_links_unbind_consumers - Force unbind consumers of the given device.
   1486 * @dev: Device to unbind the consumers of.
   1487 *
   1488 * Walk the list of links to consumers for @dev and if any of them is in the
   1489 * "consumer probe" state, wait for all device probes in progress to complete
   1490 * and start over.
   1491 *
   1492 * If that's not the case, change the status of the link to "supplier unbind"
   1493 * and check if the link was in the "active" state.  If so, force the consumer
   1494 * driver to unbind and start over (the consumer will not re-probe as we have
   1495 * changed the state of the link already).
   1496 *
   1497 * Links without the DL_FLAG_MANAGED flag set are ignored.
   1498 */
   1499void device_links_unbind_consumers(struct device *dev)
   1500{
   1501	struct device_link *link;
   1502
   1503 start:
   1504	device_links_write_lock();
   1505
   1506	list_for_each_entry(link, &dev->links.consumers, s_node) {
   1507		enum device_link_state status;
   1508
   1509		if (!(link->flags & DL_FLAG_MANAGED) ||
   1510		    link->flags & DL_FLAG_SYNC_STATE_ONLY)
   1511			continue;
   1512
   1513		status = link->status;
   1514		if (status == DL_STATE_CONSUMER_PROBE) {
   1515			device_links_write_unlock();
   1516
   1517			wait_for_device_probe();
   1518			goto start;
   1519		}
   1520		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
   1521		if (status == DL_STATE_ACTIVE) {
   1522			struct device *consumer = link->consumer;
   1523
   1524			get_device(consumer);
   1525
   1526			device_links_write_unlock();
   1527
   1528			device_release_driver_internal(consumer, NULL,
   1529						       consumer->parent);
   1530			put_device(consumer);
   1531			goto start;
   1532		}
   1533	}
   1534
   1535	device_links_write_unlock();
   1536}
   1537
   1538/**
   1539 * device_links_purge - Delete existing links to other devices.
   1540 * @dev: Target device.
   1541 */
   1542static void device_links_purge(struct device *dev)
   1543{
   1544	struct device_link *link, *ln;
   1545
   1546	if (dev->class == &devlink_class)
   1547		return;
   1548
   1549	/*
   1550	 * Delete all of the remaining links from this device to any other
   1551	 * devices (either consumers or suppliers).
   1552	 */
   1553	device_links_write_lock();
   1554
   1555	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
   1556		WARN_ON(link->status == DL_STATE_ACTIVE);
   1557		__device_link_del(&link->kref);
   1558	}
   1559
   1560	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
   1561		WARN_ON(link->status != DL_STATE_DORMANT &&
   1562			link->status != DL_STATE_NONE);
   1563		__device_link_del(&link->kref);
   1564	}
   1565
   1566	device_links_write_unlock();
   1567}
   1568
   1569#define FW_DEVLINK_FLAGS_PERMISSIVE	(DL_FLAG_INFERRED | \
   1570					 DL_FLAG_SYNC_STATE_ONLY)
   1571#define FW_DEVLINK_FLAGS_ON		(DL_FLAG_INFERRED | \
   1572					 DL_FLAG_AUTOPROBE_CONSUMER)
   1573#define FW_DEVLINK_FLAGS_RPM		(FW_DEVLINK_FLAGS_ON | \
   1574					 DL_FLAG_PM_RUNTIME)
   1575
   1576static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
   1577static int __init fw_devlink_setup(char *arg)
   1578{
   1579	if (!arg)
   1580		return -EINVAL;
   1581
   1582	if (strcmp(arg, "off") == 0) {
   1583		fw_devlink_flags = 0;
   1584	} else if (strcmp(arg, "permissive") == 0) {
   1585		fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
   1586	} else if (strcmp(arg, "on") == 0) {
   1587		fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
   1588	} else if (strcmp(arg, "rpm") == 0) {
   1589		fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
   1590	}
   1591	return 0;
   1592}
   1593early_param("fw_devlink", fw_devlink_setup);
   1594
   1595static bool fw_devlink_strict;
   1596static int __init fw_devlink_strict_setup(char *arg)
   1597{
   1598	return strtobool(arg, &fw_devlink_strict);
   1599}
   1600early_param("fw_devlink.strict", fw_devlink_strict_setup);
   1601
   1602u32 fw_devlink_get_flags(void)
   1603{
   1604	return fw_devlink_flags;
   1605}
   1606
   1607static bool fw_devlink_is_permissive(void)
   1608{
   1609	return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE;
   1610}
   1611
   1612bool fw_devlink_is_strict(void)
   1613{
   1614	return fw_devlink_strict && !fw_devlink_is_permissive();
   1615}
   1616
   1617static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
   1618{
   1619	if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
   1620		return;
   1621
   1622	fwnode_call_int_op(fwnode, add_links);
   1623	fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
   1624}
   1625
   1626static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
   1627{
   1628	struct fwnode_handle *child = NULL;
   1629
   1630	fw_devlink_parse_fwnode(fwnode);
   1631
   1632	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
   1633		fw_devlink_parse_fwtree(child);
   1634}
   1635
   1636static void fw_devlink_relax_link(struct device_link *link)
   1637{
   1638	if (!(link->flags & DL_FLAG_INFERRED))
   1639		return;
   1640
   1641	if (link->flags == (DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE))
   1642		return;
   1643
   1644	pm_runtime_drop_link(link);
   1645	link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE;
   1646	dev_dbg(link->consumer, "Relaxing link with %s\n",
   1647		dev_name(link->supplier));
   1648}
   1649
   1650static int fw_devlink_no_driver(struct device *dev, void *data)
   1651{
   1652	struct device_link *link = to_devlink(dev);
   1653
   1654	if (!link->supplier->can_match)
   1655		fw_devlink_relax_link(link);
   1656
   1657	return 0;
   1658}
   1659
   1660void fw_devlink_drivers_done(void)
   1661{
   1662	fw_devlink_drv_reg_done = true;
   1663	device_links_write_lock();
   1664	class_for_each_device(&devlink_class, NULL, NULL,
   1665			      fw_devlink_no_driver);
   1666	device_links_write_unlock();
   1667}
   1668
   1669static void fw_devlink_unblock_consumers(struct device *dev)
   1670{
   1671	struct device_link *link;
   1672
   1673	if (!fw_devlink_flags || fw_devlink_is_permissive())
   1674		return;
   1675
   1676	device_links_write_lock();
   1677	list_for_each_entry(link, &dev->links.consumers, s_node)
   1678		fw_devlink_relax_link(link);
   1679	device_links_write_unlock();
   1680}
   1681
   1682/**
   1683 * fw_devlink_relax_cycle - Convert cyclic links to SYNC_STATE_ONLY links
   1684 * @con: Device to check dependencies for.
   1685 * @sup: Device to check against.
   1686 *
   1687 * Check if @sup depends on @con or any device dependent on it (its child or
   1688 * its consumer etc).  When such a cyclic dependency is found, convert all
   1689 * device links created solely by fw_devlink into SYNC_STATE_ONLY device links.
   1690 * This is the equivalent of doing fw_devlink=permissive just between the
   1691 * devices in the cycle. We need to do this because, at this point, fw_devlink
   1692 * can't tell which of these dependencies is not a real dependency.
   1693 *
   1694 * Return 1 if a cycle is found. Otherwise, return 0.
   1695 */
   1696static int fw_devlink_relax_cycle(struct device *con, void *sup)
   1697{
   1698	struct device_link *link;
   1699	int ret;
   1700
   1701	if (con == sup)
   1702		return 1;
   1703
   1704	ret = device_for_each_child(con, sup, fw_devlink_relax_cycle);
   1705	if (ret)
   1706		return ret;
   1707
   1708	list_for_each_entry(link, &con->links.consumers, s_node) {
   1709		if ((link->flags & ~DL_FLAG_INFERRED) ==
   1710		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
   1711			continue;
   1712
   1713		if (!fw_devlink_relax_cycle(link->consumer, sup))
   1714			continue;
   1715
   1716		ret = 1;
   1717
   1718		fw_devlink_relax_link(link);
   1719	}
   1720	return ret;
   1721}
   1722
   1723/**
   1724 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
   1725 * @con: consumer device for the device link
   1726 * @sup_handle: fwnode handle of supplier
   1727 * @flags: devlink flags
   1728 *
   1729 * This function will try to create a device link between the consumer device
   1730 * @con and the supplier device represented by @sup_handle.
   1731 *
   1732 * The supplier has to be provided as a fwnode because incorrect cycles in
   1733 * fwnode links can sometimes cause the supplier device to never be created.
   1734 * This function detects such cases and returns an error if it cannot create a
   1735 * device link from the consumer to a missing supplier.
   1736 *
   1737 * Returns,
   1738 * 0 on successfully creating a device link
   1739 * -EINVAL if the device link cannot be created as expected
   1740 * -EAGAIN if the device link cannot be created right now, but it may be
   1741 *  possible to do that in the future
   1742 */
   1743static int fw_devlink_create_devlink(struct device *con,
   1744				     struct fwnode_handle *sup_handle, u32 flags)
   1745{
   1746	struct device *sup_dev;
   1747	int ret = 0;
   1748
   1749	/*
   1750	 * In some cases, a device P might also be a supplier to its child node
   1751	 * C. However, this would defer the probe of C until the probe of P
   1752	 * completes successfully. This is perfectly fine in the device driver
   1753	 * model. device_add() doesn't guarantee probe completion of the device
   1754	 * by the time it returns.
   1755	 *
   1756	 * However, there are a few drivers that assume C will finish probing
   1757	 * as soon as it's added and before P finishes probing. So, we provide
   1758	 * a flag to let fw_devlink know not to delay the probe of C until the
   1759	 * probe of P completes successfully.
   1760	 *
   1761	 * When such a flag is set, we can't create device links where P is the
   1762	 * supplier of C as that would delay the probe of C.
   1763	 */
   1764	if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD &&
   1765	    fwnode_is_ancestor_of(sup_handle, con->fwnode))
   1766		return -EINVAL;
   1767
   1768	sup_dev = get_dev_from_fwnode(sup_handle);
   1769	if (sup_dev) {
   1770		/*
   1771		 * If it's one of those drivers that don't actually bind to
   1772		 * their device using driver core, then don't wait on this
   1773		 * supplier device indefinitely.
   1774		 */
   1775		if (sup_dev->links.status == DL_DEV_NO_DRIVER &&
   1776		    sup_handle->flags & FWNODE_FLAG_INITIALIZED) {
   1777			ret = -EINVAL;
   1778			goto out;
   1779		}
   1780
   1781		/*
   1782		 * If this fails, it is due to cycles in device links.  Just
   1783		 * give up on this link and treat it as invalid.
   1784		 */
   1785		if (!device_link_add(con, sup_dev, flags) &&
   1786		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
   1787			dev_info(con, "Fixing up cyclic dependency with %s\n",
   1788				 dev_name(sup_dev));
   1789			device_links_write_lock();
   1790			fw_devlink_relax_cycle(con, sup_dev);
   1791			device_links_write_unlock();
   1792			device_link_add(con, sup_dev,
   1793					FW_DEVLINK_FLAGS_PERMISSIVE);
   1794			ret = -EINVAL;
   1795		}
   1796
   1797		goto out;
   1798	}
   1799
   1800	/* Supplier that's already initialized without a struct device. */
   1801	if (sup_handle->flags & FWNODE_FLAG_INITIALIZED)
   1802		return -EINVAL;
   1803
   1804	/*
   1805	 * DL_FLAG_SYNC_STATE_ONLY doesn't block probing and supports
   1806	 * cycles. So cycle detection isn't necessary and shouldn't be
   1807	 * done.
   1808	 */
   1809	if (flags & DL_FLAG_SYNC_STATE_ONLY)
   1810		return -EAGAIN;
   1811
   1812	/*
   1813	 * If we can't find the supplier device from its fwnode, it might be
   1814	 * due to a cyclic dependency between fwnodes. Some of these cycles can
   1815	 * be broken by applying logic. Check for these types of cycles and
   1816	 * break them so that devices in the cycle probe properly.
   1817	 *
   1818	 * If the supplier's parent is dependent on the consumer, then the
   1819	 * consumer and supplier have a cyclic dependency. Since fw_devlink
   1820	 * can't tell which of the inferred dependencies are incorrect, don't
   1821	 * enforce probe ordering between any of the devices in this cyclic
   1822	 * dependency. Do this by relaxing all the fw_devlink device links in
   1823	 * this cycle and by treating the fwnode link between the consumer and
   1824	 * the supplier as an invalid dependency.
   1825	 */
   1826	sup_dev = fwnode_get_next_parent_dev(sup_handle);
   1827	if (sup_dev && device_is_dependent(con, sup_dev)) {
   1828		dev_info(con, "Fixing up cyclic dependency with %pfwP (%s)\n",
   1829			 sup_handle, dev_name(sup_dev));
   1830		device_links_write_lock();
   1831		fw_devlink_relax_cycle(con, sup_dev);
   1832		device_links_write_unlock();
   1833		ret = -EINVAL;
   1834	} else {
   1835		/*
   1836		 * Can't check for cycles or no cycles. So let's try
   1837		 * again later.
   1838		 */
   1839		ret = -EAGAIN;
   1840	}
   1841
   1842out:
   1843	put_device(sup_dev);
   1844	return ret;
   1845}
   1846
   1847/**
   1848 * __fw_devlink_link_to_consumers - Create device links to consumers of a device
   1849 * @dev: Device that needs to be linked to its consumers
   1850 *
   1851 * This function looks at all the consumer fwnodes of @dev and creates device
   1852 * links between the consumer device and @dev (supplier).
   1853 *
   1854 * If the consumer device has not been added yet, then this function creates a
   1855 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
   1856 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
   1857 * sync_state() callback before the real consumer device gets to be added and
   1858 * then probed.
   1859 *
   1860 * Once device links are created from the real consumer to @dev (supplier), the
   1861 * fwnode links are deleted.
   1862 */
   1863static void __fw_devlink_link_to_consumers(struct device *dev)
   1864{
   1865	struct fwnode_handle *fwnode = dev->fwnode;
   1866	struct fwnode_link *link, *tmp;
   1867
   1868	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
   1869		u32 dl_flags = fw_devlink_get_flags();
   1870		struct device *con_dev;
   1871		bool own_link = true;
   1872		int ret;
   1873
   1874		con_dev = get_dev_from_fwnode(link->consumer);
   1875		/*
   1876		 * If consumer device is not available yet, make a "proxy"
   1877		 * SYNC_STATE_ONLY link from the consumer's parent device to
   1878		 * the supplier device. This is necessary to make sure the
   1879		 * supplier doesn't get a sync_state() callback before the real
   1880		 * consumer can create a device link to the supplier.
   1881		 *
   1882		 * This proxy link step is needed to handle the case where the
   1883		 * consumer's parent device is added before the supplier.
   1884		 */
   1885		if (!con_dev) {
   1886			con_dev = fwnode_get_next_parent_dev(link->consumer);
   1887			/*
   1888			 * However, if the consumer's parent device is also the
   1889			 * parent of the supplier, don't create a
   1890			 * consumer-supplier link from the parent to its child
   1891			 * device. Such a dependency is impossible.
   1892			 */
   1893			if (con_dev &&
   1894			    fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
   1895				put_device(con_dev);
   1896				con_dev = NULL;
   1897			} else {
   1898				own_link = false;
   1899				dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
   1900			}
   1901		}
   1902
   1903		if (!con_dev)
   1904			continue;
   1905
   1906		ret = fw_devlink_create_devlink(con_dev, fwnode, dl_flags);
   1907		put_device(con_dev);
   1908		if (!own_link || ret == -EAGAIN)
   1909			continue;
   1910
   1911		__fwnode_link_del(link);
   1912	}
   1913}
   1914
   1915/**
   1916 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
   1917 * @dev: The consumer device that needs to be linked to its suppliers
   1918 * @fwnode: Root of the fwnode tree that is used to create device links
   1919 *
   1920 * This function looks at all the supplier fwnodes of fwnode tree rooted at
   1921 * @fwnode and creates device links between @dev (consumer) and all the
   1922 * supplier devices of the entire fwnode tree at @fwnode.
   1923 *
   1924 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
   1925 * and the real suppliers of @dev. Once these device links are created, the
   1926 * fwnode links are deleted. When such device links are successfully created,
   1927 * this function is called recursively on those supplier devices. This is
   1928 * needed to detect and break some invalid cycles in fwnode links.  See
   1929 * fw_devlink_create_devlink() for more details.
   1930 *
   1931 * In addition, it also looks at all the suppliers of the entire fwnode tree
   1932 * because some of the child devices of @dev that have not been added yet
   1933 * (because @dev hasn't probed) might already have their suppliers added to
   1934 * driver core. So, this function creates SYNC_STATE_ONLY device links between
   1935 * @dev (consumer) and these suppliers to make sure they don't execute their
   1936 * sync_state() callbacks before these child devices have a chance to create
   1937 * their device links. The fwnode links that correspond to the child devices
   1938 * aren't delete because they are needed later to create the device links
   1939 * between the real consumer and supplier devices.
   1940 */
   1941static void __fw_devlink_link_to_suppliers(struct device *dev,
   1942					   struct fwnode_handle *fwnode)
   1943{
   1944	bool own_link = (dev->fwnode == fwnode);
   1945	struct fwnode_link *link, *tmp;
   1946	struct fwnode_handle *child = NULL;
   1947	u32 dl_flags;
   1948
   1949	if (own_link)
   1950		dl_flags = fw_devlink_get_flags();
   1951	else
   1952		dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
   1953
   1954	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
   1955		int ret;
   1956		struct device *sup_dev;
   1957		struct fwnode_handle *sup = link->supplier;
   1958
   1959		ret = fw_devlink_create_devlink(dev, sup, dl_flags);
   1960		if (!own_link || ret == -EAGAIN)
   1961			continue;
   1962
   1963		__fwnode_link_del(link);
   1964
   1965		/* If no device link was created, nothing more to do. */
   1966		if (ret)
   1967			continue;
   1968
   1969		/*
   1970		 * If a device link was successfully created to a supplier, we
   1971		 * now need to try and link the supplier to all its suppliers.
   1972		 *
   1973		 * This is needed to detect and delete false dependencies in
   1974		 * fwnode links that haven't been converted to a device link
   1975		 * yet. See comments in fw_devlink_create_devlink() for more
   1976		 * details on the false dependency.
   1977		 *
   1978		 * Without deleting these false dependencies, some devices will
   1979		 * never probe because they'll keep waiting for their false
   1980		 * dependency fwnode links to be converted to device links.
   1981		 */
   1982		sup_dev = get_dev_from_fwnode(sup);
   1983		__fw_devlink_link_to_suppliers(sup_dev, sup_dev->fwnode);
   1984		put_device(sup_dev);
   1985	}
   1986
   1987	/*
   1988	 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
   1989	 * all the descendants. This proxy link step is needed to handle the
   1990	 * case where the supplier is added before the consumer's parent device
   1991	 * (@dev).
   1992	 */
   1993	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
   1994		__fw_devlink_link_to_suppliers(dev, child);
   1995}
   1996
   1997static void fw_devlink_link_device(struct device *dev)
   1998{
   1999	struct fwnode_handle *fwnode = dev->fwnode;
   2000
   2001	if (!fw_devlink_flags)
   2002		return;
   2003
   2004	fw_devlink_parse_fwtree(fwnode);
   2005
   2006	mutex_lock(&fwnode_link_lock);
   2007	__fw_devlink_link_to_consumers(dev);
   2008	__fw_devlink_link_to_suppliers(dev, fwnode);
   2009	mutex_unlock(&fwnode_link_lock);
   2010}
   2011
   2012/* Device links support end. */
   2013
   2014int (*platform_notify)(struct device *dev) = NULL;
   2015int (*platform_notify_remove)(struct device *dev) = NULL;
   2016static struct kobject *dev_kobj;
   2017struct kobject *sysfs_dev_char_kobj;
   2018struct kobject *sysfs_dev_block_kobj;
   2019
   2020static DEFINE_MUTEX(device_hotplug_lock);
   2021
   2022void lock_device_hotplug(void)
   2023{
   2024	mutex_lock(&device_hotplug_lock);
   2025}
   2026
   2027void unlock_device_hotplug(void)
   2028{
   2029	mutex_unlock(&device_hotplug_lock);
   2030}
   2031
   2032int lock_device_hotplug_sysfs(void)
   2033{
   2034	if (mutex_trylock(&device_hotplug_lock))
   2035		return 0;
   2036
   2037	/* Avoid busy looping (5 ms of sleep should do). */
   2038	msleep(5);
   2039	return restart_syscall();
   2040}
   2041
   2042#ifdef CONFIG_BLOCK
   2043static inline int device_is_not_partition(struct device *dev)
   2044{
   2045	return !(dev->type == &part_type);
   2046}
   2047#else
   2048static inline int device_is_not_partition(struct device *dev)
   2049{
   2050	return 1;
   2051}
   2052#endif
   2053
   2054static void device_platform_notify(struct device *dev)
   2055{
   2056	acpi_device_notify(dev);
   2057
   2058	software_node_notify(dev);
   2059
   2060	if (platform_notify)
   2061		platform_notify(dev);
   2062}
   2063
   2064static void device_platform_notify_remove(struct device *dev)
   2065{
   2066	acpi_device_notify_remove(dev);
   2067
   2068	software_node_notify_remove(dev);
   2069
   2070	if (platform_notify_remove)
   2071		platform_notify_remove(dev);
   2072}
   2073
   2074/**
   2075 * dev_driver_string - Return a device's driver name, if at all possible
   2076 * @dev: struct device to get the name of
   2077 *
   2078 * Will return the device's driver's name if it is bound to a device.  If
   2079 * the device is not bound to a driver, it will return the name of the bus
   2080 * it is attached to.  If it is not attached to a bus either, an empty
   2081 * string will be returned.
   2082 */
   2083const char *dev_driver_string(const struct device *dev)
   2084{
   2085	struct device_driver *drv;
   2086
   2087	/* dev->driver can change to NULL underneath us because of unbinding,
   2088	 * so be careful about accessing it.  dev->bus and dev->class should
   2089	 * never change once they are set, so they don't need special care.
   2090	 */
   2091	drv = READ_ONCE(dev->driver);
   2092	return drv ? drv->name : dev_bus_name(dev);
   2093}
   2094EXPORT_SYMBOL(dev_driver_string);
   2095
   2096#define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
   2097
   2098static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
   2099			     char *buf)
   2100{
   2101	struct device_attribute *dev_attr = to_dev_attr(attr);
   2102	struct device *dev = kobj_to_dev(kobj);
   2103	ssize_t ret = -EIO;
   2104
   2105	if (dev_attr->show)
   2106		ret = dev_attr->show(dev, dev_attr, buf);
   2107	if (ret >= (ssize_t)PAGE_SIZE) {
   2108		printk("dev_attr_show: %pS returned bad count\n",
   2109				dev_attr->show);
   2110	}
   2111	return ret;
   2112}
   2113
   2114static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
   2115			      const char *buf, size_t count)
   2116{
   2117	struct device_attribute *dev_attr = to_dev_attr(attr);
   2118	struct device *dev = kobj_to_dev(kobj);
   2119	ssize_t ret = -EIO;
   2120
   2121	if (dev_attr->store)
   2122		ret = dev_attr->store(dev, dev_attr, buf, count);
   2123	return ret;
   2124}
   2125
   2126static const struct sysfs_ops dev_sysfs_ops = {
   2127	.show	= dev_attr_show,
   2128	.store	= dev_attr_store,
   2129};
   2130
   2131#define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
   2132
   2133ssize_t device_store_ulong(struct device *dev,
   2134			   struct device_attribute *attr,
   2135			   const char *buf, size_t size)
   2136{
   2137	struct dev_ext_attribute *ea = to_ext_attr(attr);
   2138	int ret;
   2139	unsigned long new;
   2140
   2141	ret = kstrtoul(buf, 0, &new);
   2142	if (ret)
   2143		return ret;
   2144	*(unsigned long *)(ea->var) = new;
   2145	/* Always return full write size even if we didn't consume all */
   2146	return size;
   2147}
   2148EXPORT_SYMBOL_GPL(device_store_ulong);
   2149
   2150ssize_t device_show_ulong(struct device *dev,
   2151			  struct device_attribute *attr,
   2152			  char *buf)
   2153{
   2154	struct dev_ext_attribute *ea = to_ext_attr(attr);
   2155	return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
   2156}
   2157EXPORT_SYMBOL_GPL(device_show_ulong);
   2158
   2159ssize_t device_store_int(struct device *dev,
   2160			 struct device_attribute *attr,
   2161			 const char *buf, size_t size)
   2162{
   2163	struct dev_ext_attribute *ea = to_ext_attr(attr);
   2164	int ret;
   2165	long new;
   2166
   2167	ret = kstrtol(buf, 0, &new);
   2168	if (ret)
   2169		return ret;
   2170
   2171	if (new > INT_MAX || new < INT_MIN)
   2172		return -EINVAL;
   2173	*(int *)(ea->var) = new;
   2174	/* Always return full write size even if we didn't consume all */
   2175	return size;
   2176}
   2177EXPORT_SYMBOL_GPL(device_store_int);
   2178
   2179ssize_t device_show_int(struct device *dev,
   2180			struct device_attribute *attr,
   2181			char *buf)
   2182{
   2183	struct dev_ext_attribute *ea = to_ext_attr(attr);
   2184
   2185	return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
   2186}
   2187EXPORT_SYMBOL_GPL(device_show_int);
   2188
   2189ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
   2190			  const char *buf, size_t size)
   2191{
   2192	struct dev_ext_attribute *ea = to_ext_attr(attr);
   2193
   2194	if (strtobool(buf, ea->var) < 0)
   2195		return -EINVAL;
   2196
   2197	return size;
   2198}
   2199EXPORT_SYMBOL_GPL(device_store_bool);
   2200
   2201ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
   2202			 char *buf)
   2203{
   2204	struct dev_ext_attribute *ea = to_ext_attr(attr);
   2205
   2206	return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
   2207}
   2208EXPORT_SYMBOL_GPL(device_show_bool);
   2209
   2210/**
   2211 * device_release - free device structure.
   2212 * @kobj: device's kobject.
   2213 *
   2214 * This is called once the reference count for the object
   2215 * reaches 0. We forward the call to the device's release
   2216 * method, which should handle actually freeing the structure.
   2217 */
   2218static void device_release(struct kobject *kobj)
   2219{
   2220	struct device *dev = kobj_to_dev(kobj);
   2221	struct device_private *p = dev->p;
   2222
   2223	/*
   2224	 * Some platform devices are driven without driver attached
   2225	 * and managed resources may have been acquired.  Make sure
   2226	 * all resources are released.
   2227	 *
   2228	 * Drivers still can add resources into device after device
   2229	 * is deleted but alive, so release devres here to avoid
   2230	 * possible memory leak.
   2231	 */
   2232	devres_release_all(dev);
   2233
   2234	kfree(dev->dma_range_map);
   2235
   2236	if (dev->release)
   2237		dev->release(dev);
   2238	else if (dev->type && dev->type->release)
   2239		dev->type->release(dev);
   2240	else if (dev->class && dev->class->dev_release)
   2241		dev->class->dev_release(dev);
   2242	else
   2243		WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
   2244			dev_name(dev));
   2245	kfree(p);
   2246}
   2247
   2248static const void *device_namespace(struct kobject *kobj)
   2249{
   2250	struct device *dev = kobj_to_dev(kobj);
   2251	const void *ns = NULL;
   2252
   2253	if (dev->class && dev->class->ns_type)
   2254		ns = dev->class->namespace(dev);
   2255
   2256	return ns;
   2257}
   2258
   2259static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
   2260{
   2261	struct device *dev = kobj_to_dev(kobj);
   2262
   2263	if (dev->class && dev->class->get_ownership)
   2264		dev->class->get_ownership(dev, uid, gid);
   2265}
   2266
   2267static struct kobj_type device_ktype = {
   2268	.release	= device_release,
   2269	.sysfs_ops	= &dev_sysfs_ops,
   2270	.namespace	= device_namespace,
   2271	.get_ownership	= device_get_ownership,
   2272};
   2273
   2274
   2275static int dev_uevent_filter(struct kobject *kobj)
   2276{
   2277	const struct kobj_type *ktype = get_ktype(kobj);
   2278
   2279	if (ktype == &device_ktype) {
   2280		struct device *dev = kobj_to_dev(kobj);
   2281		if (dev->bus)
   2282			return 1;
   2283		if (dev->class)
   2284			return 1;
   2285	}
   2286	return 0;
   2287}
   2288
   2289static const char *dev_uevent_name(struct kobject *kobj)
   2290{
   2291	struct device *dev = kobj_to_dev(kobj);
   2292
   2293	if (dev->bus)
   2294		return dev->bus->name;
   2295	if (dev->class)
   2296		return dev->class->name;
   2297	return NULL;
   2298}
   2299
   2300static int dev_uevent(struct kobject *kobj, struct kobj_uevent_env *env)
   2301{
   2302	struct device *dev = kobj_to_dev(kobj);
   2303	int retval = 0;
   2304
   2305	/* add device node properties if present */
   2306	if (MAJOR(dev->devt)) {
   2307		const char *tmp;
   2308		const char *name;
   2309		umode_t mode = 0;
   2310		kuid_t uid = GLOBAL_ROOT_UID;
   2311		kgid_t gid = GLOBAL_ROOT_GID;
   2312
   2313		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
   2314		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
   2315		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
   2316		if (name) {
   2317			add_uevent_var(env, "DEVNAME=%s", name);
   2318			if (mode)
   2319				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
   2320			if (!uid_eq(uid, GLOBAL_ROOT_UID))
   2321				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
   2322			if (!gid_eq(gid, GLOBAL_ROOT_GID))
   2323				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
   2324			kfree(tmp);
   2325		}
   2326	}
   2327
   2328	if (dev->type && dev->type->name)
   2329		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
   2330
   2331	if (dev->driver)
   2332		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
   2333
   2334	/* Add common DT information about the device */
   2335	of_device_uevent(dev, env);
   2336
   2337	/* have the bus specific function add its stuff */
   2338	if (dev->bus && dev->bus->uevent) {
   2339		retval = dev->bus->uevent(dev, env);
   2340		if (retval)
   2341			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
   2342				 dev_name(dev), __func__, retval);
   2343	}
   2344
   2345	/* have the class specific function add its stuff */
   2346	if (dev->class && dev->class->dev_uevent) {
   2347		retval = dev->class->dev_uevent(dev, env);
   2348		if (retval)
   2349			pr_debug("device: '%s': %s: class uevent() "
   2350				 "returned %d\n", dev_name(dev),
   2351				 __func__, retval);
   2352	}
   2353
   2354	/* have the device type specific function add its stuff */
   2355	if (dev->type && dev->type->uevent) {
   2356		retval = dev->type->uevent(dev, env);
   2357		if (retval)
   2358			pr_debug("device: '%s': %s: dev_type uevent() "
   2359				 "returned %d\n", dev_name(dev),
   2360				 __func__, retval);
   2361	}
   2362
   2363	return retval;
   2364}
   2365
   2366static const struct kset_uevent_ops device_uevent_ops = {
   2367	.filter =	dev_uevent_filter,
   2368	.name =		dev_uevent_name,
   2369	.uevent =	dev_uevent,
   2370};
   2371
   2372static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
   2373			   char *buf)
   2374{
   2375	struct kobject *top_kobj;
   2376	struct kset *kset;
   2377	struct kobj_uevent_env *env = NULL;
   2378	int i;
   2379	int len = 0;
   2380	int retval;
   2381
   2382	/* search the kset, the device belongs to */
   2383	top_kobj = &dev->kobj;
   2384	while (!top_kobj->kset && top_kobj->parent)
   2385		top_kobj = top_kobj->parent;
   2386	if (!top_kobj->kset)
   2387		goto out;
   2388
   2389	kset = top_kobj->kset;
   2390	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
   2391		goto out;
   2392
   2393	/* respect filter */
   2394	if (kset->uevent_ops && kset->uevent_ops->filter)
   2395		if (!kset->uevent_ops->filter(&dev->kobj))
   2396			goto out;
   2397
   2398	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
   2399	if (!env)
   2400		return -ENOMEM;
   2401
   2402	/* let the kset specific function add its keys */
   2403	retval = kset->uevent_ops->uevent(&dev->kobj, env);
   2404	if (retval)
   2405		goto out;
   2406
   2407	/* copy keys to file */
   2408	for (i = 0; i < env->envp_idx; i++)
   2409		len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
   2410out:
   2411	kfree(env);
   2412	return len;
   2413}
   2414
   2415static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
   2416			    const char *buf, size_t count)
   2417{
   2418	int rc;
   2419
   2420	rc = kobject_synth_uevent(&dev->kobj, buf, count);
   2421
   2422	if (rc) {
   2423		dev_err(dev, "uevent: failed to send synthetic uevent\n");
   2424		return rc;
   2425	}
   2426
   2427	return count;
   2428}
   2429static DEVICE_ATTR_RW(uevent);
   2430
   2431static ssize_t online_show(struct device *dev, struct device_attribute *attr,
   2432			   char *buf)
   2433{
   2434	bool val;
   2435
   2436	device_lock(dev);
   2437	val = !dev->offline;
   2438	device_unlock(dev);
   2439	return sysfs_emit(buf, "%u\n", val);
   2440}
   2441
   2442static ssize_t online_store(struct device *dev, struct device_attribute *attr,
   2443			    const char *buf, size_t count)
   2444{
   2445	bool val;
   2446	int ret;
   2447
   2448	ret = strtobool(buf, &val);
   2449	if (ret < 0)
   2450		return ret;
   2451
   2452	ret = lock_device_hotplug_sysfs();
   2453	if (ret)
   2454		return ret;
   2455
   2456	ret = val ? device_online(dev) : device_offline(dev);
   2457	unlock_device_hotplug();
   2458	return ret < 0 ? ret : count;
   2459}
   2460static DEVICE_ATTR_RW(online);
   2461
   2462static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
   2463			      char *buf)
   2464{
   2465	const char *loc;
   2466
   2467	switch (dev->removable) {
   2468	case DEVICE_REMOVABLE:
   2469		loc = "removable";
   2470		break;
   2471	case DEVICE_FIXED:
   2472		loc = "fixed";
   2473		break;
   2474	default:
   2475		loc = "unknown";
   2476	}
   2477	return sysfs_emit(buf, "%s\n", loc);
   2478}
   2479static DEVICE_ATTR_RO(removable);
   2480
   2481int device_add_groups(struct device *dev, const struct attribute_group **groups)
   2482{
   2483	return sysfs_create_groups(&dev->kobj, groups);
   2484}
   2485EXPORT_SYMBOL_GPL(device_add_groups);
   2486
   2487void device_remove_groups(struct device *dev,
   2488			  const struct attribute_group **groups)
   2489{
   2490	sysfs_remove_groups(&dev->kobj, groups);
   2491}
   2492EXPORT_SYMBOL_GPL(device_remove_groups);
   2493
   2494union device_attr_group_devres {
   2495	const struct attribute_group *group;
   2496	const struct attribute_group **groups;
   2497};
   2498
   2499static int devm_attr_group_match(struct device *dev, void *res, void *data)
   2500{
   2501	return ((union device_attr_group_devres *)res)->group == data;
   2502}
   2503
   2504static void devm_attr_group_remove(struct device *dev, void *res)
   2505{
   2506	union device_attr_group_devres *devres = res;
   2507	const struct attribute_group *group = devres->group;
   2508
   2509	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
   2510	sysfs_remove_group(&dev->kobj, group);
   2511}
   2512
   2513static void devm_attr_groups_remove(struct device *dev, void *res)
   2514{
   2515	union device_attr_group_devres *devres = res;
   2516	const struct attribute_group **groups = devres->groups;
   2517
   2518	dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
   2519	sysfs_remove_groups(&dev->kobj, groups);
   2520}
   2521
   2522/**
   2523 * devm_device_add_group - given a device, create a managed attribute group
   2524 * @dev:	The device to create the group for
   2525 * @grp:	The attribute group to create
   2526 *
   2527 * This function creates a group for the first time.  It will explicitly
   2528 * warn and error if any of the attribute files being created already exist.
   2529 *
   2530 * Returns 0 on success or error code on failure.
   2531 */
   2532int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
   2533{
   2534	union device_attr_group_devres *devres;
   2535	int error;
   2536
   2537	devres = devres_alloc(devm_attr_group_remove,
   2538			      sizeof(*devres), GFP_KERNEL);
   2539	if (!devres)
   2540		return -ENOMEM;
   2541
   2542	error = sysfs_create_group(&dev->kobj, grp);
   2543	if (error) {
   2544		devres_free(devres);
   2545		return error;
   2546	}
   2547
   2548	devres->group = grp;
   2549	devres_add(dev, devres);
   2550	return 0;
   2551}
   2552EXPORT_SYMBOL_GPL(devm_device_add_group);
   2553
   2554/**
   2555 * devm_device_remove_group: remove a managed group from a device
   2556 * @dev:	device to remove the group from
   2557 * @grp:	group to remove
   2558 *
   2559 * This function removes a group of attributes from a device. The attributes
   2560 * previously have to have been created for this group, otherwise it will fail.
   2561 */
   2562void devm_device_remove_group(struct device *dev,
   2563			      const struct attribute_group *grp)
   2564{
   2565	WARN_ON(devres_release(dev, devm_attr_group_remove,
   2566			       devm_attr_group_match,
   2567			       /* cast away const */ (void *)grp));
   2568}
   2569EXPORT_SYMBOL_GPL(devm_device_remove_group);
   2570
   2571/**
   2572 * devm_device_add_groups - create a bunch of managed attribute groups
   2573 * @dev:	The device to create the group for
   2574 * @groups:	The attribute groups to create, NULL terminated
   2575 *
   2576 * This function creates a bunch of managed attribute groups.  If an error
   2577 * occurs when creating a group, all previously created groups will be
   2578 * removed, unwinding everything back to the original state when this
   2579 * function was called.  It will explicitly warn and error if any of the
   2580 * attribute files being created already exist.
   2581 *
   2582 * Returns 0 on success or error code from sysfs_create_group on failure.
   2583 */
   2584int devm_device_add_groups(struct device *dev,
   2585			   const struct attribute_group **groups)
   2586{
   2587	union device_attr_group_devres *devres;
   2588	int error;
   2589
   2590	devres = devres_alloc(devm_attr_groups_remove,
   2591			      sizeof(*devres), GFP_KERNEL);
   2592	if (!devres)
   2593		return -ENOMEM;
   2594
   2595	error = sysfs_create_groups(&dev->kobj, groups);
   2596	if (error) {
   2597		devres_free(devres);
   2598		return error;
   2599	}
   2600
   2601	devres->groups = groups;
   2602	devres_add(dev, devres);
   2603	return 0;
   2604}
   2605EXPORT_SYMBOL_GPL(devm_device_add_groups);
   2606
   2607/**
   2608 * devm_device_remove_groups - remove a list of managed groups
   2609 *
   2610 * @dev:	The device for the groups to be removed from
   2611 * @groups:	NULL terminated list of groups to be removed
   2612 *
   2613 * If groups is not NULL, remove the specified groups from the device.
   2614 */
   2615void devm_device_remove_groups(struct device *dev,
   2616			       const struct attribute_group **groups)
   2617{
   2618	WARN_ON(devres_release(dev, devm_attr_groups_remove,
   2619			       devm_attr_group_match,
   2620			       /* cast away const */ (void *)groups));
   2621}
   2622EXPORT_SYMBOL_GPL(devm_device_remove_groups);
   2623
   2624static int device_add_attrs(struct device *dev)
   2625{
   2626	struct class *class = dev->class;
   2627	const struct device_type *type = dev->type;
   2628	int error;
   2629
   2630	if (class) {
   2631		error = device_add_groups(dev, class->dev_groups);
   2632		if (error)
   2633			return error;
   2634	}
   2635
   2636	if (type) {
   2637		error = device_add_groups(dev, type->groups);
   2638		if (error)
   2639			goto err_remove_class_groups;
   2640	}
   2641
   2642	error = device_add_groups(dev, dev->groups);
   2643	if (error)
   2644		goto err_remove_type_groups;
   2645
   2646	if (device_supports_offline(dev) && !dev->offline_disabled) {
   2647		error = device_create_file(dev, &dev_attr_online);
   2648		if (error)
   2649			goto err_remove_dev_groups;
   2650	}
   2651
   2652	if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
   2653		error = device_create_file(dev, &dev_attr_waiting_for_supplier);
   2654		if (error)
   2655			goto err_remove_dev_online;
   2656	}
   2657
   2658	if (dev_removable_is_valid(dev)) {
   2659		error = device_create_file(dev, &dev_attr_removable);
   2660		if (error)
   2661			goto err_remove_dev_waiting_for_supplier;
   2662	}
   2663
   2664	if (dev_add_physical_location(dev)) {
   2665		error = device_add_group(dev,
   2666			&dev_attr_physical_location_group);
   2667		if (error)
   2668			goto err_remove_dev_removable;
   2669	}
   2670
   2671	return 0;
   2672
   2673 err_remove_dev_removable:
   2674	device_remove_file(dev, &dev_attr_removable);
   2675 err_remove_dev_waiting_for_supplier:
   2676	device_remove_file(dev, &dev_attr_waiting_for_supplier);
   2677 err_remove_dev_online:
   2678	device_remove_file(dev, &dev_attr_online);
   2679 err_remove_dev_groups:
   2680	device_remove_groups(dev, dev->groups);
   2681 err_remove_type_groups:
   2682	if (type)
   2683		device_remove_groups(dev, type->groups);
   2684 err_remove_class_groups:
   2685	if (class)
   2686		device_remove_groups(dev, class->dev_groups);
   2687
   2688	return error;
   2689}
   2690
   2691static void device_remove_attrs(struct device *dev)
   2692{
   2693	struct class *class = dev->class;
   2694	const struct device_type *type = dev->type;
   2695
   2696	if (dev->physical_location) {
   2697		device_remove_group(dev, &dev_attr_physical_location_group);
   2698		kfree(dev->physical_location);
   2699	}
   2700
   2701	device_remove_file(dev, &dev_attr_removable);
   2702	device_remove_file(dev, &dev_attr_waiting_for_supplier);
   2703	device_remove_file(dev, &dev_attr_online);
   2704	device_remove_groups(dev, dev->groups);
   2705
   2706	if (type)
   2707		device_remove_groups(dev, type->groups);
   2708
   2709	if (class)
   2710		device_remove_groups(dev, class->dev_groups);
   2711}
   2712
   2713static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
   2714			char *buf)
   2715{
   2716	return print_dev_t(buf, dev->devt);
   2717}
   2718static DEVICE_ATTR_RO(dev);
   2719
   2720/* /sys/devices/ */
   2721struct kset *devices_kset;
   2722
   2723/**
   2724 * devices_kset_move_before - Move device in the devices_kset's list.
   2725 * @deva: Device to move.
   2726 * @devb: Device @deva should come before.
   2727 */
   2728static void devices_kset_move_before(struct device *deva, struct device *devb)
   2729{
   2730	if (!devices_kset)
   2731		return;
   2732	pr_debug("devices_kset: Moving %s before %s\n",
   2733		 dev_name(deva), dev_name(devb));
   2734	spin_lock(&devices_kset->list_lock);
   2735	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
   2736	spin_unlock(&devices_kset->list_lock);
   2737}
   2738
   2739/**
   2740 * devices_kset_move_after - Move device in the devices_kset's list.
   2741 * @deva: Device to move
   2742 * @devb: Device @deva should come after.
   2743 */
   2744static void devices_kset_move_after(struct device *deva, struct device *devb)
   2745{
   2746	if (!devices_kset)
   2747		return;
   2748	pr_debug("devices_kset: Moving %s after %s\n",
   2749		 dev_name(deva), dev_name(devb));
   2750	spin_lock(&devices_kset->list_lock);
   2751	list_move(&deva->kobj.entry, &devb->kobj.entry);
   2752	spin_unlock(&devices_kset->list_lock);
   2753}
   2754
   2755/**
   2756 * devices_kset_move_last - move the device to the end of devices_kset's list.
   2757 * @dev: device to move
   2758 */
   2759void devices_kset_move_last(struct device *dev)
   2760{
   2761	if (!devices_kset)
   2762		return;
   2763	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
   2764	spin_lock(&devices_kset->list_lock);
   2765	list_move_tail(&dev->kobj.entry, &devices_kset->list);
   2766	spin_unlock(&devices_kset->list_lock);
   2767}
   2768
   2769/**
   2770 * device_create_file - create sysfs attribute file for device.
   2771 * @dev: device.
   2772 * @attr: device attribute descriptor.
   2773 */
   2774int device_create_file(struct device *dev,
   2775		       const struct device_attribute *attr)
   2776{
   2777	int error = 0;
   2778
   2779	if (dev) {
   2780		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
   2781			"Attribute %s: write permission without 'store'\n",
   2782			attr->attr.name);
   2783		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
   2784			"Attribute %s: read permission without 'show'\n",
   2785			attr->attr.name);
   2786		error = sysfs_create_file(&dev->kobj, &attr->attr);
   2787	}
   2788
   2789	return error;
   2790}
   2791EXPORT_SYMBOL_GPL(device_create_file);
   2792
   2793/**
   2794 * device_remove_file - remove sysfs attribute file.
   2795 * @dev: device.
   2796 * @attr: device attribute descriptor.
   2797 */
   2798void device_remove_file(struct device *dev,
   2799			const struct device_attribute *attr)
   2800{
   2801	if (dev)
   2802		sysfs_remove_file(&dev->kobj, &attr->attr);
   2803}
   2804EXPORT_SYMBOL_GPL(device_remove_file);
   2805
   2806/**
   2807 * device_remove_file_self - remove sysfs attribute file from its own method.
   2808 * @dev: device.
   2809 * @attr: device attribute descriptor.
   2810 *
   2811 * See kernfs_remove_self() for details.
   2812 */
   2813bool device_remove_file_self(struct device *dev,
   2814			     const struct device_attribute *attr)
   2815{
   2816	if (dev)
   2817		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
   2818	else
   2819		return false;
   2820}
   2821EXPORT_SYMBOL_GPL(device_remove_file_self);
   2822
   2823/**
   2824 * device_create_bin_file - create sysfs binary attribute file for device.
   2825 * @dev: device.
   2826 * @attr: device binary attribute descriptor.
   2827 */
   2828int device_create_bin_file(struct device *dev,
   2829			   const struct bin_attribute *attr)
   2830{
   2831	int error = -EINVAL;
   2832	if (dev)
   2833		error = sysfs_create_bin_file(&dev->kobj, attr);
   2834	return error;
   2835}
   2836EXPORT_SYMBOL_GPL(device_create_bin_file);
   2837
   2838/**
   2839 * device_remove_bin_file - remove sysfs binary attribute file
   2840 * @dev: device.
   2841 * @attr: device binary attribute descriptor.
   2842 */
   2843void device_remove_bin_file(struct device *dev,
   2844			    const struct bin_attribute *attr)
   2845{
   2846	if (dev)
   2847		sysfs_remove_bin_file(&dev->kobj, attr);
   2848}
   2849EXPORT_SYMBOL_GPL(device_remove_bin_file);
   2850
   2851static void klist_children_get(struct klist_node *n)
   2852{
   2853	struct device_private *p = to_device_private_parent(n);
   2854	struct device *dev = p->device;
   2855
   2856	get_device(dev);
   2857}
   2858
   2859static void klist_children_put(struct klist_node *n)
   2860{
   2861	struct device_private *p = to_device_private_parent(n);
   2862	struct device *dev = p->device;
   2863
   2864	put_device(dev);
   2865}
   2866
   2867/**
   2868 * device_initialize - init device structure.
   2869 * @dev: device.
   2870 *
   2871 * This prepares the device for use by other layers by initializing
   2872 * its fields.
   2873 * It is the first half of device_register(), if called by
   2874 * that function, though it can also be called separately, so one
   2875 * may use @dev's fields. In particular, get_device()/put_device()
   2876 * may be used for reference counting of @dev after calling this
   2877 * function.
   2878 *
   2879 * All fields in @dev must be initialized by the caller to 0, except
   2880 * for those explicitly set to some other value.  The simplest
   2881 * approach is to use kzalloc() to allocate the structure containing
   2882 * @dev.
   2883 *
   2884 * NOTE: Use put_device() to give up your reference instead of freeing
   2885 * @dev directly once you have called this function.
   2886 */
   2887void device_initialize(struct device *dev)
   2888{
   2889	dev->kobj.kset = devices_kset;
   2890	kobject_init(&dev->kobj, &device_ktype);
   2891	INIT_LIST_HEAD(&dev->dma_pools);
   2892	mutex_init(&dev->mutex);
   2893	lockdep_set_novalidate_class(&dev->mutex);
   2894	spin_lock_init(&dev->devres_lock);
   2895	INIT_LIST_HEAD(&dev->devres_head);
   2896	device_pm_init(dev);
   2897	set_dev_node(dev, NUMA_NO_NODE);
   2898	INIT_LIST_HEAD(&dev->links.consumers);
   2899	INIT_LIST_HEAD(&dev->links.suppliers);
   2900	INIT_LIST_HEAD(&dev->links.defer_sync);
   2901	dev->links.status = DL_DEV_NO_DRIVER;
   2902#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
   2903    defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
   2904    defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
   2905	dev->dma_coherent = dma_default_coherent;
   2906#endif
   2907#ifdef CONFIG_SWIOTLB
   2908	dev->dma_io_tlb_mem = &io_tlb_default_mem;
   2909#endif
   2910}
   2911EXPORT_SYMBOL_GPL(device_initialize);
   2912
   2913struct kobject *virtual_device_parent(struct device *dev)
   2914{
   2915	static struct kobject *virtual_dir = NULL;
   2916
   2917	if (!virtual_dir)
   2918		virtual_dir = kobject_create_and_add("virtual",
   2919						     &devices_kset->kobj);
   2920
   2921	return virtual_dir;
   2922}
   2923
   2924struct class_dir {
   2925	struct kobject kobj;
   2926	struct class *class;
   2927};
   2928
   2929#define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
   2930
   2931static void class_dir_release(struct kobject *kobj)
   2932{
   2933	struct class_dir *dir = to_class_dir(kobj);
   2934	kfree(dir);
   2935}
   2936
   2937static const
   2938struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
   2939{
   2940	struct class_dir *dir = to_class_dir(kobj);
   2941	return dir->class->ns_type;
   2942}
   2943
   2944static struct kobj_type class_dir_ktype = {
   2945	.release	= class_dir_release,
   2946	.sysfs_ops	= &kobj_sysfs_ops,
   2947	.child_ns_type	= class_dir_child_ns_type
   2948};
   2949
   2950static struct kobject *
   2951class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
   2952{
   2953	struct class_dir *dir;
   2954	int retval;
   2955
   2956	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
   2957	if (!dir)
   2958		return ERR_PTR(-ENOMEM);
   2959
   2960	dir->class = class;
   2961	kobject_init(&dir->kobj, &class_dir_ktype);
   2962
   2963	dir->kobj.kset = &class->p->glue_dirs;
   2964
   2965	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
   2966	if (retval < 0) {
   2967		kobject_put(&dir->kobj);
   2968		return ERR_PTR(retval);
   2969	}
   2970	return &dir->kobj;
   2971}
   2972
   2973static DEFINE_MUTEX(gdp_mutex);
   2974
   2975static struct kobject *get_device_parent(struct device *dev,
   2976					 struct device *parent)
   2977{
   2978	if (dev->class) {
   2979		struct kobject *kobj = NULL;
   2980		struct kobject *parent_kobj;
   2981		struct kobject *k;
   2982
   2983#ifdef CONFIG_BLOCK
   2984		/* block disks show up in /sys/block */
   2985		if (sysfs_deprecated && dev->class == &block_class) {
   2986			if (parent && parent->class == &block_class)
   2987				return &parent->kobj;
   2988			return &block_class.p->subsys.kobj;
   2989		}
   2990#endif
   2991
   2992		/*
   2993		 * If we have no parent, we live in "virtual".
   2994		 * Class-devices with a non class-device as parent, live
   2995		 * in a "glue" directory to prevent namespace collisions.
   2996		 */
   2997		if (parent == NULL)
   2998			parent_kobj = virtual_device_parent(dev);
   2999		else if (parent->class && !dev->class->ns_type)
   3000			return &parent->kobj;
   3001		else
   3002			parent_kobj = &parent->kobj;
   3003
   3004		mutex_lock(&gdp_mutex);
   3005
   3006		/* find our class-directory at the parent and reference it */
   3007		spin_lock(&dev->class->p->glue_dirs.list_lock);
   3008		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
   3009			if (k->parent == parent_kobj) {
   3010				kobj = kobject_get(k);
   3011				break;
   3012			}
   3013		spin_unlock(&dev->class->p->glue_dirs.list_lock);
   3014		if (kobj) {
   3015			mutex_unlock(&gdp_mutex);
   3016			return kobj;
   3017		}
   3018
   3019		/* or create a new class-directory at the parent device */
   3020		k = class_dir_create_and_add(dev->class, parent_kobj);
   3021		/* do not emit an uevent for this simple "glue" directory */
   3022		mutex_unlock(&gdp_mutex);
   3023		return k;
   3024	}
   3025
   3026	/* subsystems can specify a default root directory for their devices */
   3027	if (!parent && dev->bus && dev->bus->dev_root)
   3028		return &dev->bus->dev_root->kobj;
   3029
   3030	if (parent)
   3031		return &parent->kobj;
   3032	return NULL;
   3033}
   3034
   3035static inline bool live_in_glue_dir(struct kobject *kobj,
   3036				    struct device *dev)
   3037{
   3038	if (!kobj || !dev->class ||
   3039	    kobj->kset != &dev->class->p->glue_dirs)
   3040		return false;
   3041	return true;
   3042}
   3043
   3044static inline struct kobject *get_glue_dir(struct device *dev)
   3045{
   3046	return dev->kobj.parent;
   3047}
   3048
   3049/**
   3050 * kobject_has_children - Returns whether a kobject has children.
   3051 * @kobj: the object to test
   3052 *
   3053 * This will return whether a kobject has other kobjects as children.
   3054 *
   3055 * It does NOT account for the presence of attribute files, only sub
   3056 * directories. It also assumes there is no concurrent addition or
   3057 * removal of such children, and thus relies on external locking.
   3058 */
   3059static inline bool kobject_has_children(struct kobject *kobj)
   3060{
   3061	WARN_ON_ONCE(kref_read(&kobj->kref) == 0);
   3062
   3063	return kobj->sd && kobj->sd->dir.subdirs;
   3064}
   3065
   3066/*
   3067 * make sure cleaning up dir as the last step, we need to make
   3068 * sure .release handler of kobject is run with holding the
   3069 * global lock
   3070 */
   3071static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
   3072{
   3073	unsigned int ref;
   3074
   3075	/* see if we live in a "glue" directory */
   3076	if (!live_in_glue_dir(glue_dir, dev))
   3077		return;
   3078
   3079	mutex_lock(&gdp_mutex);
   3080	/**
   3081	 * There is a race condition between removing glue directory
   3082	 * and adding a new device under the glue directory.
   3083	 *
   3084	 * CPU1:                                         CPU2:
   3085	 *
   3086	 * device_add()
   3087	 *   get_device_parent()
   3088	 *     class_dir_create_and_add()
   3089	 *       kobject_add_internal()
   3090	 *         create_dir()    // create glue_dir
   3091	 *
   3092	 *                                               device_add()
   3093	 *                                                 get_device_parent()
   3094	 *                                                   kobject_get() // get glue_dir
   3095	 *
   3096	 * device_del()
   3097	 *   cleanup_glue_dir()
   3098	 *     kobject_del(glue_dir)
   3099	 *
   3100	 *                                               kobject_add()
   3101	 *                                                 kobject_add_internal()
   3102	 *                                                   create_dir() // in glue_dir
   3103	 *                                                     sysfs_create_dir_ns()
   3104	 *                                                       kernfs_create_dir_ns(sd)
   3105	 *
   3106	 *       sysfs_remove_dir() // glue_dir->sd=NULL
   3107	 *       sysfs_put()        // free glue_dir->sd
   3108	 *
   3109	 *                                                         // sd is freed
   3110	 *                                                         kernfs_new_node(sd)
   3111	 *                                                           kernfs_get(glue_dir)
   3112	 *                                                           kernfs_add_one()
   3113	 *                                                           kernfs_put()
   3114	 *
   3115	 * Before CPU1 remove last child device under glue dir, if CPU2 add
   3116	 * a new device under glue dir, the glue_dir kobject reference count
   3117	 * will be increase to 2 in kobject_get(k). And CPU2 has been called
   3118	 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
   3119	 * and sysfs_put(). This result in glue_dir->sd is freed.
   3120	 *
   3121	 * Then the CPU2 will see a stale "empty" but still potentially used
   3122	 * glue dir around in kernfs_new_node().
   3123	 *
   3124	 * In order to avoid this happening, we also should make sure that
   3125	 * kernfs_node for glue_dir is released in CPU1 only when refcount
   3126	 * for glue_dir kobj is 1.
   3127	 */
   3128	ref = kref_read(&glue_dir->kref);
   3129	if (!kobject_has_children(glue_dir) && !--ref)
   3130		kobject_del(glue_dir);
   3131	kobject_put(glue_dir);
   3132	mutex_unlock(&gdp_mutex);
   3133}
   3134
   3135static int device_add_class_symlinks(struct device *dev)
   3136{
   3137	struct device_node *of_node = dev_of_node(dev);
   3138	int error;
   3139
   3140	if (of_node) {
   3141		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
   3142		if (error)
   3143			dev_warn(dev, "Error %d creating of_node link\n",error);
   3144		/* An error here doesn't warrant bringing down the device */
   3145	}
   3146
   3147	if (!dev->class)
   3148		return 0;
   3149
   3150	error = sysfs_create_link(&dev->kobj,
   3151				  &dev->class->p->subsys.kobj,
   3152				  "subsystem");
   3153	if (error)
   3154		goto out_devnode;
   3155
   3156	if (dev->parent && device_is_not_partition(dev)) {
   3157		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
   3158					  "device");
   3159		if (error)
   3160			goto out_subsys;
   3161	}
   3162
   3163#ifdef CONFIG_BLOCK
   3164	/* /sys/block has directories and does not need symlinks */
   3165	if (sysfs_deprecated && dev->class == &block_class)
   3166		return 0;
   3167#endif
   3168
   3169	/* link in the class directory pointing to the device */
   3170	error = sysfs_create_link(&dev->class->p->subsys.kobj,
   3171				  &dev->kobj, dev_name(dev));
   3172	if (error)
   3173		goto out_device;
   3174
   3175	return 0;
   3176
   3177out_device:
   3178	sysfs_remove_link(&dev->kobj, "device");
   3179
   3180out_subsys:
   3181	sysfs_remove_link(&dev->kobj, "subsystem");
   3182out_devnode:
   3183	sysfs_remove_link(&dev->kobj, "of_node");
   3184	return error;
   3185}
   3186
   3187static void device_remove_class_symlinks(struct device *dev)
   3188{
   3189	if (dev_of_node(dev))
   3190		sysfs_remove_link(&dev->kobj, "of_node");
   3191
   3192	if (!dev->class)
   3193		return;
   3194
   3195	if (dev->parent && device_is_not_partition(dev))
   3196		sysfs_remove_link(&dev->kobj, "device");
   3197	sysfs_remove_link(&dev->kobj, "subsystem");
   3198#ifdef CONFIG_BLOCK
   3199	if (sysfs_deprecated && dev->class == &block_class)
   3200		return;
   3201#endif
   3202	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
   3203}
   3204
   3205/**
   3206 * dev_set_name - set a device name
   3207 * @dev: device
   3208 * @fmt: format string for the device's name
   3209 */
   3210int dev_set_name(struct device *dev, const char *fmt, ...)
   3211{
   3212	va_list vargs;
   3213	int err;
   3214
   3215	va_start(vargs, fmt);
   3216	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
   3217	va_end(vargs);
   3218	return err;
   3219}
   3220EXPORT_SYMBOL_GPL(dev_set_name);
   3221
   3222/**
   3223 * device_to_dev_kobj - select a /sys/dev/ directory for the device
   3224 * @dev: device
   3225 *
   3226 * By default we select char/ for new entries.  Setting class->dev_obj
   3227 * to NULL prevents an entry from being created.  class->dev_kobj must
   3228 * be set (or cleared) before any devices are registered to the class
   3229 * otherwise device_create_sys_dev_entry() and
   3230 * device_remove_sys_dev_entry() will disagree about the presence of
   3231 * the link.
   3232 */
   3233static struct kobject *device_to_dev_kobj(struct device *dev)
   3234{
   3235	struct kobject *kobj;
   3236
   3237	if (dev->class)
   3238		kobj = dev->class->dev_kobj;
   3239	else
   3240		kobj = sysfs_dev_char_kobj;
   3241
   3242	return kobj;
   3243}
   3244
   3245static int device_create_sys_dev_entry(struct device *dev)
   3246{
   3247	struct kobject *kobj = device_to_dev_kobj(dev);
   3248	int error = 0;
   3249	char devt_str[15];
   3250
   3251	if (kobj) {
   3252		format_dev_t(devt_str, dev->devt);
   3253		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
   3254	}
   3255
   3256	return error;
   3257}
   3258
   3259static void device_remove_sys_dev_entry(struct device *dev)
   3260{
   3261	struct kobject *kobj = device_to_dev_kobj(dev);
   3262	char devt_str[15];
   3263
   3264	if (kobj) {
   3265		format_dev_t(devt_str, dev->devt);
   3266		sysfs_remove_link(kobj, devt_str);
   3267	}
   3268}
   3269
   3270static int device_private_init(struct device *dev)
   3271{
   3272	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
   3273	if (!dev->p)
   3274		return -ENOMEM;
   3275	dev->p->device = dev;
   3276	klist_init(&dev->p->klist_children, klist_children_get,
   3277		   klist_children_put);
   3278	INIT_LIST_HEAD(&dev->p->deferred_probe);
   3279	return 0;
   3280}
   3281
   3282/**
   3283 * device_add - add device to device hierarchy.
   3284 * @dev: device.
   3285 *
   3286 * This is part 2 of device_register(), though may be called
   3287 * separately _iff_ device_initialize() has been called separately.
   3288 *
   3289 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
   3290 * to the global and sibling lists for the device, then
   3291 * adds it to the other relevant subsystems of the driver model.
   3292 *
   3293 * Do not call this routine or device_register() more than once for
   3294 * any device structure.  The driver model core is not designed to work
   3295 * with devices that get unregistered and then spring back to life.
   3296 * (Among other things, it's very hard to guarantee that all references
   3297 * to the previous incarnation of @dev have been dropped.)  Allocate
   3298 * and register a fresh new struct device instead.
   3299 *
   3300 * NOTE: _Never_ directly free @dev after calling this function, even
   3301 * if it returned an error! Always use put_device() to give up your
   3302 * reference instead.
   3303 *
   3304 * Rule of thumb is: if device_add() succeeds, you should call
   3305 * device_del() when you want to get rid of it. If device_add() has
   3306 * *not* succeeded, use *only* put_device() to drop the reference
   3307 * count.
   3308 */
   3309int device_add(struct device *dev)
   3310{
   3311	struct device *parent;
   3312	struct kobject *kobj;
   3313	struct class_interface *class_intf;
   3314	int error = -EINVAL;
   3315	struct kobject *glue_dir = NULL;
   3316
   3317	dev = get_device(dev);
   3318	if (!dev)
   3319		goto done;
   3320
   3321	if (!dev->p) {
   3322		error = device_private_init(dev);
   3323		if (error)
   3324			goto done;
   3325	}
   3326
   3327	/*
   3328	 * for statically allocated devices, which should all be converted
   3329	 * some day, we need to initialize the name. We prevent reading back
   3330	 * the name, and force the use of dev_name()
   3331	 */
   3332	if (dev->init_name) {
   3333		dev_set_name(dev, "%s", dev->init_name);
   3334		dev->init_name = NULL;
   3335	}
   3336
   3337	/* subsystems can specify simple device enumeration */
   3338	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
   3339		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
   3340
   3341	if (!dev_name(dev)) {
   3342		error = -EINVAL;
   3343		goto name_error;
   3344	}
   3345
   3346	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
   3347
   3348	parent = get_device(dev->parent);
   3349	kobj = get_device_parent(dev, parent);
   3350	if (IS_ERR(kobj)) {
   3351		error = PTR_ERR(kobj);
   3352		goto parent_error;
   3353	}
   3354	if (kobj)
   3355		dev->kobj.parent = kobj;
   3356
   3357	/* use parent numa_node */
   3358	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
   3359		set_dev_node(dev, dev_to_node(parent));
   3360
   3361	/* first, register with generic layer. */
   3362	/* we require the name to be set before, and pass NULL */
   3363	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
   3364	if (error) {
   3365		glue_dir = get_glue_dir(dev);
   3366		goto Error;
   3367	}
   3368
   3369	/* notify platform of device entry */
   3370	device_platform_notify(dev);
   3371
   3372	error = device_create_file(dev, &dev_attr_uevent);
   3373	if (error)
   3374		goto attrError;
   3375
   3376	error = device_add_class_symlinks(dev);
   3377	if (error)
   3378		goto SymlinkError;
   3379	error = device_add_attrs(dev);
   3380	if (error)
   3381		goto AttrsError;
   3382	error = bus_add_device(dev);
   3383	if (error)
   3384		goto BusError;
   3385	error = dpm_sysfs_add(dev);
   3386	if (error)
   3387		goto DPMError;
   3388	device_pm_add(dev);
   3389
   3390	if (MAJOR(dev->devt)) {
   3391		error = device_create_file(dev, &dev_attr_dev);
   3392		if (error)
   3393			goto DevAttrError;
   3394
   3395		error = device_create_sys_dev_entry(dev);
   3396		if (error)
   3397			goto SysEntryError;
   3398
   3399		devtmpfs_create_node(dev);
   3400	}
   3401
   3402	/* Notify clients of device addition.  This call must come
   3403	 * after dpm_sysfs_add() and before kobject_uevent().
   3404	 */
   3405	if (dev->bus)
   3406		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
   3407					     BUS_NOTIFY_ADD_DEVICE, dev);
   3408
   3409	kobject_uevent(&dev->kobj, KOBJ_ADD);
   3410
   3411	/*
   3412	 * Check if any of the other devices (consumers) have been waiting for
   3413	 * this device (supplier) to be added so that they can create a device
   3414	 * link to it.
   3415	 *
   3416	 * This needs to happen after device_pm_add() because device_link_add()
   3417	 * requires the supplier be registered before it's called.
   3418	 *
   3419	 * But this also needs to happen before bus_probe_device() to make sure
   3420	 * waiting consumers can link to it before the driver is bound to the
   3421	 * device and the driver sync_state callback is called for this device.
   3422	 */
   3423	if (dev->fwnode && !dev->fwnode->dev) {
   3424		dev->fwnode->dev = dev;
   3425		fw_devlink_link_device(dev);
   3426	}
   3427
   3428	bus_probe_device(dev);
   3429
   3430	/*
   3431	 * If all driver registration is done and a newly added device doesn't
   3432	 * match with any driver, don't block its consumers from probing in
   3433	 * case the consumer device is able to operate without this supplier.
   3434	 */
   3435	if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match)
   3436		fw_devlink_unblock_consumers(dev);
   3437
   3438	if (parent)
   3439		klist_add_tail(&dev->p->knode_parent,
   3440			       &parent->p->klist_children);
   3441
   3442	if (dev->class) {
   3443		mutex_lock(&dev->class->p->mutex);
   3444		/* tie the class to the device */
   3445		klist_add_tail(&dev->p->knode_class,
   3446			       &dev->class->p->klist_devices);
   3447
   3448		/* notify any interfaces that the device is here */
   3449		list_for_each_entry(class_intf,
   3450				    &dev->class->p->interfaces, node)
   3451			if (class_intf->add_dev)
   3452				class_intf->add_dev(dev, class_intf);
   3453		mutex_unlock(&dev->class->p->mutex);
   3454	}
   3455done:
   3456	put_device(dev);
   3457	return error;
   3458 SysEntryError:
   3459	if (MAJOR(dev->devt))
   3460		device_remove_file(dev, &dev_attr_dev);
   3461 DevAttrError:
   3462	device_pm_remove(dev);
   3463	dpm_sysfs_remove(dev);
   3464 DPMError:
   3465	bus_remove_device(dev);
   3466 BusError:
   3467	device_remove_attrs(dev);
   3468 AttrsError:
   3469	device_remove_class_symlinks(dev);
   3470 SymlinkError:
   3471	device_remove_file(dev, &dev_attr_uevent);
   3472 attrError:
   3473	device_platform_notify_remove(dev);
   3474	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
   3475	glue_dir = get_glue_dir(dev);
   3476	kobject_del(&dev->kobj);
   3477 Error:
   3478	cleanup_glue_dir(dev, glue_dir);
   3479parent_error:
   3480	put_device(parent);
   3481name_error:
   3482	kfree(dev->p);
   3483	dev->p = NULL;
   3484	goto done;
   3485}
   3486EXPORT_SYMBOL_GPL(device_add);
   3487
   3488/**
   3489 * device_register - register a device with the system.
   3490 * @dev: pointer to the device structure
   3491 *
   3492 * This happens in two clean steps - initialize the device
   3493 * and add it to the system. The two steps can be called
   3494 * separately, but this is the easiest and most common.
   3495 * I.e. you should only call the two helpers separately if
   3496 * have a clearly defined need to use and refcount the device
   3497 * before it is added to the hierarchy.
   3498 *
   3499 * For more information, see the kerneldoc for device_initialize()
   3500 * and device_add().
   3501 *
   3502 * NOTE: _Never_ directly free @dev after calling this function, even
   3503 * if it returned an error! Always use put_device() to give up the
   3504 * reference initialized in this function instead.
   3505 */
   3506int device_register(struct device *dev)
   3507{
   3508	device_initialize(dev);
   3509	return device_add(dev);
   3510}
   3511EXPORT_SYMBOL_GPL(device_register);
   3512
   3513/**
   3514 * get_device - increment reference count for device.
   3515 * @dev: device.
   3516 *
   3517 * This simply forwards the call to kobject_get(), though
   3518 * we do take care to provide for the case that we get a NULL
   3519 * pointer passed in.
   3520 */
   3521struct device *get_device(struct device *dev)
   3522{
   3523	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
   3524}
   3525EXPORT_SYMBOL_GPL(get_device);
   3526
   3527/**
   3528 * put_device - decrement reference count.
   3529 * @dev: device in question.
   3530 */
   3531void put_device(struct device *dev)
   3532{
   3533	/* might_sleep(); */
   3534	if (dev)
   3535		kobject_put(&dev->kobj);
   3536}
   3537EXPORT_SYMBOL_GPL(put_device);
   3538
   3539bool kill_device(struct device *dev)
   3540{
   3541	/*
   3542	 * Require the device lock and set the "dead" flag to guarantee that
   3543	 * the update behavior is consistent with the other bitfields near
   3544	 * it and that we cannot have an asynchronous probe routine trying
   3545	 * to run while we are tearing out the bus/class/sysfs from
   3546	 * underneath the device.
   3547	 */
   3548	device_lock_assert(dev);
   3549
   3550	if (dev->p->dead)
   3551		return false;
   3552	dev->p->dead = true;
   3553	return true;
   3554}
   3555EXPORT_SYMBOL_GPL(kill_device);
   3556
   3557/**
   3558 * device_del - delete device from system.
   3559 * @dev: device.
   3560 *
   3561 * This is the first part of the device unregistration
   3562 * sequence. This removes the device from the lists we control
   3563 * from here, has it removed from the other driver model
   3564 * subsystems it was added to in device_add(), and removes it
   3565 * from the kobject hierarchy.
   3566 *
   3567 * NOTE: this should be called manually _iff_ device_add() was
   3568 * also called manually.
   3569 */
   3570void device_del(struct device *dev)
   3571{
   3572	struct device *parent = dev->parent;
   3573	struct kobject *glue_dir = NULL;
   3574	struct class_interface *class_intf;
   3575	unsigned int noio_flag;
   3576
   3577	device_lock(dev);
   3578	kill_device(dev);
   3579	device_unlock(dev);
   3580
   3581	if (dev->fwnode && dev->fwnode->dev == dev)
   3582		dev->fwnode->dev = NULL;
   3583
   3584	/* Notify clients of device removal.  This call must come
   3585	 * before dpm_sysfs_remove().
   3586	 */
   3587	noio_flag = memalloc_noio_save();
   3588	if (dev->bus)
   3589		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
   3590					     BUS_NOTIFY_DEL_DEVICE, dev);
   3591
   3592	dpm_sysfs_remove(dev);
   3593	if (parent)
   3594		klist_del(&dev->p->knode_parent);
   3595	if (MAJOR(dev->devt)) {
   3596		devtmpfs_delete_node(dev);
   3597		device_remove_sys_dev_entry(dev);
   3598		device_remove_file(dev, &dev_attr_dev);
   3599	}
   3600	if (dev->class) {
   3601		device_remove_class_symlinks(dev);
   3602
   3603		mutex_lock(&dev->class->p->mutex);
   3604		/* notify any interfaces that the device is now gone */
   3605		list_for_each_entry(class_intf,
   3606				    &dev->class->p->interfaces, node)
   3607			if (class_intf->remove_dev)
   3608				class_intf->remove_dev(dev, class_intf);
   3609		/* remove the device from the class list */
   3610		klist_del(&dev->p->knode_class);
   3611		mutex_unlock(&dev->class->p->mutex);
   3612	}
   3613	device_remove_file(dev, &dev_attr_uevent);
   3614	device_remove_attrs(dev);
   3615	bus_remove_device(dev);
   3616	device_pm_remove(dev);
   3617	driver_deferred_probe_del(dev);
   3618	device_platform_notify_remove(dev);
   3619	device_links_purge(dev);
   3620
   3621	if (dev->bus)
   3622		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
   3623					     BUS_NOTIFY_REMOVED_DEVICE, dev);
   3624	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
   3625	glue_dir = get_glue_dir(dev);
   3626	kobject_del(&dev->kobj);
   3627	cleanup_glue_dir(dev, glue_dir);
   3628	memalloc_noio_restore(noio_flag);
   3629	put_device(parent);
   3630}
   3631EXPORT_SYMBOL_GPL(device_del);
   3632
   3633/**
   3634 * device_unregister - unregister device from system.
   3635 * @dev: device going away.
   3636 *
   3637 * We do this in two parts, like we do device_register(). First,
   3638 * we remove it from all the subsystems with device_del(), then
   3639 * we decrement the reference count via put_device(). If that
   3640 * is the final reference count, the device will be cleaned up
   3641 * via device_release() above. Otherwise, the structure will
   3642 * stick around until the final reference to the device is dropped.
   3643 */
   3644void device_unregister(struct device *dev)
   3645{
   3646	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
   3647	device_del(dev);
   3648	put_device(dev);
   3649}
   3650EXPORT_SYMBOL_GPL(device_unregister);
   3651
   3652static struct device *prev_device(struct klist_iter *i)
   3653{
   3654	struct klist_node *n = klist_prev(i);
   3655	struct device *dev = NULL;
   3656	struct device_private *p;
   3657
   3658	if (n) {
   3659		p = to_device_private_parent(n);
   3660		dev = p->device;
   3661	}
   3662	return dev;
   3663}
   3664
   3665static struct device *next_device(struct klist_iter *i)
   3666{
   3667	struct klist_node *n = klist_next(i);
   3668	struct device *dev = NULL;
   3669	struct device_private *p;
   3670
   3671	if (n) {
   3672		p = to_device_private_parent(n);
   3673		dev = p->device;
   3674	}
   3675	return dev;
   3676}
   3677
   3678/**
   3679 * device_get_devnode - path of device node file
   3680 * @dev: device
   3681 * @mode: returned file access mode
   3682 * @uid: returned file owner
   3683 * @gid: returned file group
   3684 * @tmp: possibly allocated string
   3685 *
   3686 * Return the relative path of a possible device node.
   3687 * Non-default names may need to allocate a memory to compose
   3688 * a name. This memory is returned in tmp and needs to be
   3689 * freed by the caller.
   3690 */
   3691const char *device_get_devnode(struct device *dev,
   3692			       umode_t *mode, kuid_t *uid, kgid_t *gid,
   3693			       const char **tmp)
   3694{
   3695	char *s;
   3696
   3697	*tmp = NULL;
   3698
   3699	/* the device type may provide a specific name */
   3700	if (dev->type && dev->type->devnode)
   3701		*tmp = dev->type->devnode(dev, mode, uid, gid);
   3702	if (*tmp)
   3703		return *tmp;
   3704
   3705	/* the class may provide a specific name */
   3706	if (dev->class && dev->class->devnode)
   3707		*tmp = dev->class->devnode(dev, mode);
   3708	if (*tmp)
   3709		return *tmp;
   3710
   3711	/* return name without allocation, tmp == NULL */
   3712	if (strchr(dev_name(dev), '!') == NULL)
   3713		return dev_name(dev);
   3714
   3715	/* replace '!' in the name with '/' */
   3716	s = kstrdup(dev_name(dev), GFP_KERNEL);
   3717	if (!s)
   3718		return NULL;
   3719	strreplace(s, '!', '/');
   3720	return *tmp = s;
   3721}
   3722
   3723/**
   3724 * device_for_each_child - device child iterator.
   3725 * @parent: parent struct device.
   3726 * @fn: function to be called for each device.
   3727 * @data: data for the callback.
   3728 *
   3729 * Iterate over @parent's child devices, and call @fn for each,
   3730 * passing it @data.
   3731 *
   3732 * We check the return of @fn each time. If it returns anything
   3733 * other than 0, we break out and return that value.
   3734 */
   3735int device_for_each_child(struct device *parent, void *data,
   3736			  int (*fn)(struct device *dev, void *data))
   3737{
   3738	struct klist_iter i;
   3739	struct device *child;
   3740	int error = 0;
   3741
   3742	if (!parent->p)
   3743		return 0;
   3744
   3745	klist_iter_init(&parent->p->klist_children, &i);
   3746	while (!error && (child = next_device(&i)))
   3747		error = fn(child, data);
   3748	klist_iter_exit(&i);
   3749	return error;
   3750}
   3751EXPORT_SYMBOL_GPL(device_for_each_child);
   3752
   3753/**
   3754 * device_for_each_child_reverse - device child iterator in reversed order.
   3755 * @parent: parent struct device.
   3756 * @fn: function to be called for each device.
   3757 * @data: data for the callback.
   3758 *
   3759 * Iterate over @parent's child devices, and call @fn for each,
   3760 * passing it @data.
   3761 *
   3762 * We check the return of @fn each time. If it returns anything
   3763 * other than 0, we break out and return that value.
   3764 */
   3765int device_for_each_child_reverse(struct device *parent, void *data,
   3766				  int (*fn)(struct device *dev, void *data))
   3767{
   3768	struct klist_iter i;
   3769	struct device *child;
   3770	int error = 0;
   3771
   3772	if (!parent->p)
   3773		return 0;
   3774
   3775	klist_iter_init(&parent->p->klist_children, &i);
   3776	while ((child = prev_device(&i)) && !error)
   3777		error = fn(child, data);
   3778	klist_iter_exit(&i);
   3779	return error;
   3780}
   3781EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
   3782
   3783/**
   3784 * device_find_child - device iterator for locating a particular device.
   3785 * @parent: parent struct device
   3786 * @match: Callback function to check device
   3787 * @data: Data to pass to match function
   3788 *
   3789 * This is similar to the device_for_each_child() function above, but it
   3790 * returns a reference to a device that is 'found' for later use, as
   3791 * determined by the @match callback.
   3792 *
   3793 * The callback should return 0 if the device doesn't match and non-zero
   3794 * if it does.  If the callback returns non-zero and a reference to the
   3795 * current device can be obtained, this function will return to the caller
   3796 * and not iterate over any more devices.
   3797 *
   3798 * NOTE: you will need to drop the reference with put_device() after use.
   3799 */
   3800struct device *device_find_child(struct device *parent, void *data,
   3801				 int (*match)(struct device *dev, void *data))
   3802{
   3803	struct klist_iter i;
   3804	struct device *child;
   3805
   3806	if (!parent)
   3807		return NULL;
   3808
   3809	klist_iter_init(&parent->p->klist_children, &i);
   3810	while ((child = next_device(&i)))
   3811		if (match(child, data) && get_device(child))
   3812			break;
   3813	klist_iter_exit(&i);
   3814	return child;
   3815}
   3816EXPORT_SYMBOL_GPL(device_find_child);
   3817
   3818/**
   3819 * device_find_child_by_name - device iterator for locating a child device.
   3820 * @parent: parent struct device
   3821 * @name: name of the child device
   3822 *
   3823 * This is similar to the device_find_child() function above, but it
   3824 * returns a reference to a device that has the name @name.
   3825 *
   3826 * NOTE: you will need to drop the reference with put_device() after use.
   3827 */
   3828struct device *device_find_child_by_name(struct device *parent,
   3829					 const char *name)
   3830{
   3831	struct klist_iter i;
   3832	struct device *child;
   3833
   3834	if (!parent)
   3835		return NULL;
   3836
   3837	klist_iter_init(&parent->p->klist_children, &i);
   3838	while ((child = next_device(&i)))
   3839		if (sysfs_streq(dev_name(child), name) && get_device(child))
   3840			break;
   3841	klist_iter_exit(&i);
   3842	return child;
   3843}
   3844EXPORT_SYMBOL_GPL(device_find_child_by_name);
   3845
   3846int __init devices_init(void)
   3847{
   3848	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
   3849	if (!devices_kset)
   3850		return -ENOMEM;
   3851	dev_kobj = kobject_create_and_add("dev", NULL);
   3852	if (!dev_kobj)
   3853		goto dev_kobj_err;
   3854	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
   3855	if (!sysfs_dev_block_kobj)
   3856		goto block_kobj_err;
   3857	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
   3858	if (!sysfs_dev_char_kobj)
   3859		goto char_kobj_err;
   3860
   3861	return 0;
   3862
   3863 char_kobj_err:
   3864	kobject_put(sysfs_dev_block_kobj);
   3865 block_kobj_err:
   3866	kobject_put(dev_kobj);
   3867 dev_kobj_err:
   3868	kset_unregister(devices_kset);
   3869	return -ENOMEM;
   3870}
   3871
   3872static int device_check_offline(struct device *dev, void *not_used)
   3873{
   3874	int ret;
   3875
   3876	ret = device_for_each_child(dev, NULL, device_check_offline);
   3877	if (ret)
   3878		return ret;
   3879
   3880	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
   3881}
   3882
   3883/**
   3884 * device_offline - Prepare the device for hot-removal.
   3885 * @dev: Device to be put offline.
   3886 *
   3887 * Execute the device bus type's .offline() callback, if present, to prepare
   3888 * the device for a subsequent hot-removal.  If that succeeds, the device must
   3889 * not be used until either it is removed or its bus type's .online() callback
   3890 * is executed.
   3891 *
   3892 * Call under device_hotplug_lock.
   3893 */
   3894int device_offline(struct device *dev)
   3895{
   3896	int ret;
   3897
   3898	if (dev->offline_disabled)
   3899		return -EPERM;
   3900
   3901	ret = device_for_each_child(dev, NULL, device_check_offline);
   3902	if (ret)
   3903		return ret;
   3904
   3905	device_lock(dev);
   3906	if (device_supports_offline(dev)) {
   3907		if (dev->offline) {
   3908			ret = 1;
   3909		} else {
   3910			ret = dev->bus->offline(dev);
   3911			if (!ret) {
   3912				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
   3913				dev->offline = true;
   3914			}
   3915		}
   3916	}
   3917	device_unlock(dev);
   3918
   3919	return ret;
   3920}
   3921
   3922/**
   3923 * device_online - Put the device back online after successful device_offline().
   3924 * @dev: Device to be put back online.
   3925 *
   3926 * If device_offline() has been successfully executed for @dev, but the device
   3927 * has not been removed subsequently, execute its bus type's .online() callback
   3928 * to indicate that the device can be used again.
   3929 *
   3930 * Call under device_hotplug_lock.
   3931 */
   3932int device_online(struct device *dev)
   3933{
   3934	int ret = 0;
   3935
   3936	device_lock(dev);
   3937	if (device_supports_offline(dev)) {
   3938		if (dev->offline) {
   3939			ret = dev->bus->online(dev);
   3940			if (!ret) {
   3941				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
   3942				dev->offline = false;
   3943			}
   3944		} else {
   3945			ret = 1;
   3946		}
   3947	}
   3948	device_unlock(dev);
   3949
   3950	return ret;
   3951}
   3952
   3953struct root_device {
   3954	struct device dev;
   3955	struct module *owner;
   3956};
   3957
   3958static inline struct root_device *to_root_device(struct device *d)
   3959{
   3960	return container_of(d, struct root_device, dev);
   3961}
   3962
   3963static void root_device_release(struct device *dev)
   3964{
   3965	kfree(to_root_device(dev));
   3966}
   3967
   3968/**
   3969 * __root_device_register - allocate and register a root device
   3970 * @name: root device name
   3971 * @owner: owner module of the root device, usually THIS_MODULE
   3972 *
   3973 * This function allocates a root device and registers it
   3974 * using device_register(). In order to free the returned
   3975 * device, use root_device_unregister().
   3976 *
   3977 * Root devices are dummy devices which allow other devices
   3978 * to be grouped under /sys/devices. Use this function to
   3979 * allocate a root device and then use it as the parent of
   3980 * any device which should appear under /sys/devices/{name}
   3981 *
   3982 * The /sys/devices/{name} directory will also contain a
   3983 * 'module' symlink which points to the @owner directory
   3984 * in sysfs.
   3985 *
   3986 * Returns &struct device pointer on success, or ERR_PTR() on error.
   3987 *
   3988 * Note: You probably want to use root_device_register().
   3989 */
   3990struct device *__root_device_register(const char *name, struct module *owner)
   3991{
   3992	struct root_device *root;
   3993	int err = -ENOMEM;
   3994
   3995	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
   3996	if (!root)
   3997		return ERR_PTR(err);
   3998
   3999	err = dev_set_name(&root->dev, "%s", name);
   4000	if (err) {
   4001		kfree(root);
   4002		return ERR_PTR(err);
   4003	}
   4004
   4005	root->dev.release = root_device_release;
   4006
   4007	err = device_register(&root->dev);
   4008	if (err) {
   4009		put_device(&root->dev);
   4010		return ERR_PTR(err);
   4011	}
   4012
   4013#ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
   4014	if (owner) {
   4015		struct module_kobject *mk = &owner->mkobj;
   4016
   4017		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
   4018		if (err) {
   4019			device_unregister(&root->dev);
   4020			return ERR_PTR(err);
   4021		}
   4022		root->owner = owner;
   4023	}
   4024#endif
   4025
   4026	return &root->dev;
   4027}
   4028EXPORT_SYMBOL_GPL(__root_device_register);
   4029
   4030/**
   4031 * root_device_unregister - unregister and free a root device
   4032 * @dev: device going away
   4033 *
   4034 * This function unregisters and cleans up a device that was created by
   4035 * root_device_register().
   4036 */
   4037void root_device_unregister(struct device *dev)
   4038{
   4039	struct root_device *root = to_root_device(dev);
   4040
   4041	if (root->owner)
   4042		sysfs_remove_link(&root->dev.kobj, "module");
   4043
   4044	device_unregister(dev);
   4045}
   4046EXPORT_SYMBOL_GPL(root_device_unregister);
   4047
   4048
   4049static void device_create_release(struct device *dev)
   4050{
   4051	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
   4052	kfree(dev);
   4053}
   4054
   4055static __printf(6, 0) struct device *
   4056device_create_groups_vargs(struct class *class, struct device *parent,
   4057			   dev_t devt, void *drvdata,
   4058			   const struct attribute_group **groups,
   4059			   const char *fmt, va_list args)
   4060{
   4061	struct device *dev = NULL;
   4062	int retval = -ENODEV;
   4063
   4064	if (class == NULL || IS_ERR(class))
   4065		goto error;
   4066
   4067	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
   4068	if (!dev) {
   4069		retval = -ENOMEM;
   4070		goto error;
   4071	}
   4072
   4073	device_initialize(dev);
   4074	dev->devt = devt;
   4075	dev->class = class;
   4076	dev->parent = parent;
   4077	dev->groups = groups;
   4078	dev->release = device_create_release;
   4079	dev_set_drvdata(dev, drvdata);
   4080
   4081	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
   4082	if (retval)
   4083		goto error;
   4084
   4085	retval = device_add(dev);
   4086	if (retval)
   4087		goto error;
   4088
   4089	return dev;
   4090
   4091error:
   4092	put_device(dev);
   4093	return ERR_PTR(retval);
   4094}
   4095
   4096/**
   4097 * device_create - creates a device and registers it with sysfs
   4098 * @class: pointer to the struct class that this device should be registered to
   4099 * @parent: pointer to the parent struct device of this new device, if any
   4100 * @devt: the dev_t for the char device to be added
   4101 * @drvdata: the data to be added to the device for callbacks
   4102 * @fmt: string for the device's name
   4103 *
   4104 * This function can be used by char device classes.  A struct device
   4105 * will be created in sysfs, registered to the specified class.
   4106 *
   4107 * A "dev" file will be created, showing the dev_t for the device, if
   4108 * the dev_t is not 0,0.
   4109 * If a pointer to a parent struct device is passed in, the newly created
   4110 * struct device will be a child of that device in sysfs.
   4111 * The pointer to the struct device will be returned from the call.
   4112 * Any further sysfs files that might be required can be created using this
   4113 * pointer.
   4114 *
   4115 * Returns &struct device pointer on success, or ERR_PTR() on error.
   4116 *
   4117 * Note: the struct class passed to this function must have previously
   4118 * been created with a call to class_create().
   4119 */
   4120struct device *device_create(struct class *class, struct device *parent,
   4121			     dev_t devt, void *drvdata, const char *fmt, ...)
   4122{
   4123	va_list vargs;
   4124	struct device *dev;
   4125
   4126	va_start(vargs, fmt);
   4127	dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
   4128					  fmt, vargs);
   4129	va_end(vargs);
   4130	return dev;
   4131}
   4132EXPORT_SYMBOL_GPL(device_create);
   4133
   4134/**
   4135 * device_create_with_groups - creates a device and registers it with sysfs
   4136 * @class: pointer to the struct class that this device should be registered to
   4137 * @parent: pointer to the parent struct device of this new device, if any
   4138 * @devt: the dev_t for the char device to be added
   4139 * @drvdata: the data to be added to the device for callbacks
   4140 * @groups: NULL-terminated list of attribute groups to be created
   4141 * @fmt: string for the device's name
   4142 *
   4143 * This function can be used by char device classes.  A struct device
   4144 * will be created in sysfs, registered to the specified class.
   4145 * Additional attributes specified in the groups parameter will also
   4146 * be created automatically.
   4147 *
   4148 * A "dev" file will be created, showing the dev_t for the device, if
   4149 * the dev_t is not 0,0.
   4150 * If a pointer to a parent struct device is passed in, the newly created
   4151 * struct device will be a child of that device in sysfs.
   4152 * The pointer to the struct device will be returned from the call.
   4153 * Any further sysfs files that might be required can be created using this
   4154 * pointer.
   4155 *
   4156 * Returns &struct device pointer on success, or ERR_PTR() on error.
   4157 *
   4158 * Note: the struct class passed to this function must have previously
   4159 * been created with a call to class_create().
   4160 */
   4161struct device *device_create_with_groups(struct class *class,
   4162					 struct device *parent, dev_t devt,
   4163					 void *drvdata,
   4164					 const struct attribute_group **groups,
   4165					 const char *fmt, ...)
   4166{
   4167	va_list vargs;
   4168	struct device *dev;
   4169
   4170	va_start(vargs, fmt);
   4171	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
   4172					 fmt, vargs);
   4173	va_end(vargs);
   4174	return dev;
   4175}
   4176EXPORT_SYMBOL_GPL(device_create_with_groups);
   4177
   4178/**
   4179 * device_destroy - removes a device that was created with device_create()
   4180 * @class: pointer to the struct class that this device was registered with
   4181 * @devt: the dev_t of the device that was previously registered
   4182 *
   4183 * This call unregisters and cleans up a device that was created with a
   4184 * call to device_create().
   4185 */
   4186void device_destroy(struct class *class, dev_t devt)
   4187{
   4188	struct device *dev;
   4189
   4190	dev = class_find_device_by_devt(class, devt);
   4191	if (dev) {
   4192		put_device(dev);
   4193		device_unregister(dev);
   4194	}
   4195}
   4196EXPORT_SYMBOL_GPL(device_destroy);
   4197
   4198/**
   4199 * device_rename - renames a device
   4200 * @dev: the pointer to the struct device to be renamed
   4201 * @new_name: the new name of the device
   4202 *
   4203 * It is the responsibility of the caller to provide mutual
   4204 * exclusion between two different calls of device_rename
   4205 * on the same device to ensure that new_name is valid and
   4206 * won't conflict with other devices.
   4207 *
   4208 * Note: Don't call this function.  Currently, the networking layer calls this
   4209 * function, but that will change.  The following text from Kay Sievers offers
   4210 * some insight:
   4211 *
   4212 * Renaming devices is racy at many levels, symlinks and other stuff are not
   4213 * replaced atomically, and you get a "move" uevent, but it's not easy to
   4214 * connect the event to the old and new device. Device nodes are not renamed at
   4215 * all, there isn't even support for that in the kernel now.
   4216 *
   4217 * In the meantime, during renaming, your target name might be taken by another
   4218 * driver, creating conflicts. Or the old name is taken directly after you
   4219 * renamed it -- then you get events for the same DEVPATH, before you even see
   4220 * the "move" event. It's just a mess, and nothing new should ever rely on
   4221 * kernel device renaming. Besides that, it's not even implemented now for
   4222 * other things than (driver-core wise very simple) network devices.
   4223 *
   4224 * We are currently about to change network renaming in udev to completely
   4225 * disallow renaming of devices in the same namespace as the kernel uses,
   4226 * because we can't solve the problems properly, that arise with swapping names
   4227 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
   4228 * be allowed to some other name than eth[0-9]*, for the aforementioned
   4229 * reasons.
   4230 *
   4231 * Make up a "real" name in the driver before you register anything, or add
   4232 * some other attributes for userspace to find the device, or use udev to add
   4233 * symlinks -- but never rename kernel devices later, it's a complete mess. We
   4234 * don't even want to get into that and try to implement the missing pieces in
   4235 * the core. We really have other pieces to fix in the driver core mess. :)
   4236 */
   4237int device_rename(struct device *dev, const char *new_name)
   4238{
   4239	struct kobject *kobj = &dev->kobj;
   4240	char *old_device_name = NULL;
   4241	int error;
   4242
   4243	dev = get_device(dev);
   4244	if (!dev)
   4245		return -EINVAL;
   4246
   4247	dev_dbg(dev, "renaming to %s\n", new_name);
   4248
   4249	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
   4250	if (!old_device_name) {
   4251		error = -ENOMEM;
   4252		goto out;
   4253	}
   4254
   4255	if (dev->class) {
   4256		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
   4257					     kobj, old_device_name,
   4258					     new_name, kobject_namespace(kobj));
   4259		if (error)
   4260			goto out;
   4261	}
   4262
   4263	error = kobject_rename(kobj, new_name);
   4264	if (error)
   4265		goto out;
   4266
   4267out:
   4268	put_device(dev);
   4269
   4270	kfree(old_device_name);
   4271
   4272	return error;
   4273}
   4274EXPORT_SYMBOL_GPL(device_rename);
   4275
   4276static int device_move_class_links(struct device *dev,
   4277				   struct device *old_parent,
   4278				   struct device *new_parent)
   4279{
   4280	int error = 0;
   4281
   4282	if (old_parent)
   4283		sysfs_remove_link(&dev->kobj, "device");
   4284	if (new_parent)
   4285		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
   4286					  "device");
   4287	return error;
   4288}
   4289
   4290/**
   4291 * device_move - moves a device to a new parent
   4292 * @dev: the pointer to the struct device to be moved
   4293 * @new_parent: the new parent of the device (can be NULL)
   4294 * @dpm_order: how to reorder the dpm_list
   4295 */
   4296int device_move(struct device *dev, struct device *new_parent,
   4297		enum dpm_order dpm_order)
   4298{
   4299	int error;
   4300	struct device *old_parent;
   4301	struct kobject *new_parent_kobj;
   4302
   4303	dev = get_device(dev);
   4304	if (!dev)
   4305		return -EINVAL;
   4306
   4307	device_pm_lock();
   4308	new_parent = get_device(new_parent);
   4309	new_parent_kobj = get_device_parent(dev, new_parent);
   4310	if (IS_ERR(new_parent_kobj)) {
   4311		error = PTR_ERR(new_parent_kobj);
   4312		put_device(new_parent);
   4313		goto out;
   4314	}
   4315
   4316	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
   4317		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
   4318	error = kobject_move(&dev->kobj, new_parent_kobj);
   4319	if (error) {
   4320		cleanup_glue_dir(dev, new_parent_kobj);
   4321		put_device(new_parent);
   4322		goto out;
   4323	}
   4324	old_parent = dev->parent;
   4325	dev->parent = new_parent;
   4326	if (old_parent)
   4327		klist_remove(&dev->p->knode_parent);
   4328	if (new_parent) {
   4329		klist_add_tail(&dev->p->knode_parent,
   4330			       &new_parent->p->klist_children);
   4331		set_dev_node(dev, dev_to_node(new_parent));
   4332	}
   4333
   4334	if (dev->class) {
   4335		error = device_move_class_links(dev, old_parent, new_parent);
   4336		if (error) {
   4337			/* We ignore errors on cleanup since we're hosed anyway... */
   4338			device_move_class_links(dev, new_parent, old_parent);
   4339			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
   4340				if (new_parent)
   4341					klist_remove(&dev->p->knode_parent);
   4342				dev->parent = old_parent;
   4343				if (old_parent) {
   4344					klist_add_tail(&dev->p->knode_parent,
   4345						       &old_parent->p->klist_children);
   4346					set_dev_node(dev, dev_to_node(old_parent));
   4347				}
   4348			}
   4349			cleanup_glue_dir(dev, new_parent_kobj);
   4350			put_device(new_parent);
   4351			goto out;
   4352		}
   4353	}
   4354	switch (dpm_order) {
   4355	case DPM_ORDER_NONE:
   4356		break;
   4357	case DPM_ORDER_DEV_AFTER_PARENT:
   4358		device_pm_move_after(dev, new_parent);
   4359		devices_kset_move_after(dev, new_parent);
   4360		break;
   4361	case DPM_ORDER_PARENT_BEFORE_DEV:
   4362		device_pm_move_before(new_parent, dev);
   4363		devices_kset_move_before(new_parent, dev);
   4364		break;
   4365	case DPM_ORDER_DEV_LAST:
   4366		device_pm_move_last(dev);
   4367		devices_kset_move_last(dev);
   4368		break;
   4369	}
   4370
   4371	put_device(old_parent);
   4372out:
   4373	device_pm_unlock();
   4374	put_device(dev);
   4375	return error;
   4376}
   4377EXPORT_SYMBOL_GPL(device_move);
   4378
   4379static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
   4380				     kgid_t kgid)
   4381{
   4382	struct kobject *kobj = &dev->kobj;
   4383	struct class *class = dev->class;
   4384	const struct device_type *type = dev->type;
   4385	int error;
   4386
   4387	if (class) {
   4388		/*
   4389		 * Change the device groups of the device class for @dev to
   4390		 * @kuid/@kgid.
   4391		 */
   4392		error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
   4393						  kgid);
   4394		if (error)
   4395			return error;
   4396	}
   4397
   4398	if (type) {
   4399		/*
   4400		 * Change the device groups of the device type for @dev to
   4401		 * @kuid/@kgid.
   4402		 */
   4403		error = sysfs_groups_change_owner(kobj, type->groups, kuid,
   4404						  kgid);
   4405		if (error)
   4406			return error;
   4407	}
   4408
   4409	/* Change the device groups of @dev to @kuid/@kgid. */
   4410	error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
   4411	if (error)
   4412		return error;
   4413
   4414	if (device_supports_offline(dev) && !dev->offline_disabled) {
   4415		/* Change online device attributes of @dev to @kuid/@kgid. */
   4416		error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
   4417						kuid, kgid);
   4418		if (error)
   4419			return error;
   4420	}
   4421
   4422	return 0;
   4423}
   4424
   4425/**
   4426 * device_change_owner - change the owner of an existing device.
   4427 * @dev: device.
   4428 * @kuid: new owner's kuid
   4429 * @kgid: new owner's kgid
   4430 *
   4431 * This changes the owner of @dev and its corresponding sysfs entries to
   4432 * @kuid/@kgid. This function closely mirrors how @dev was added via driver
   4433 * core.
   4434 *
   4435 * Returns 0 on success or error code on failure.
   4436 */
   4437int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
   4438{
   4439	int error;
   4440	struct kobject *kobj = &dev->kobj;
   4441
   4442	dev = get_device(dev);
   4443	if (!dev)
   4444		return -EINVAL;
   4445
   4446	/*
   4447	 * Change the kobject and the default attributes and groups of the
   4448	 * ktype associated with it to @kuid/@kgid.
   4449	 */
   4450	error = sysfs_change_owner(kobj, kuid, kgid);
   4451	if (error)
   4452		goto out;
   4453
   4454	/*
   4455	 * Change the uevent file for @dev to the new owner. The uevent file
   4456	 * was created in a separate step when @dev got added and we mirror
   4457	 * that step here.
   4458	 */
   4459	error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
   4460					kgid);
   4461	if (error)
   4462		goto out;
   4463
   4464	/*
   4465	 * Change the device groups, the device groups associated with the
   4466	 * device class, and the groups associated with the device type of @dev
   4467	 * to @kuid/@kgid.
   4468	 */
   4469	error = device_attrs_change_owner(dev, kuid, kgid);
   4470	if (error)
   4471		goto out;
   4472
   4473	error = dpm_sysfs_change_owner(dev, kuid, kgid);
   4474	if (error)
   4475		goto out;
   4476
   4477#ifdef CONFIG_BLOCK
   4478	if (sysfs_deprecated && dev->class == &block_class)
   4479		goto out;
   4480#endif
   4481
   4482	/*
   4483	 * Change the owner of the symlink located in the class directory of
   4484	 * the device class associated with @dev which points to the actual
   4485	 * directory entry for @dev to @kuid/@kgid. This ensures that the
   4486	 * symlink shows the same permissions as its target.
   4487	 */
   4488	error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj,
   4489					dev_name(dev), kuid, kgid);
   4490	if (error)
   4491		goto out;
   4492
   4493out:
   4494	put_device(dev);
   4495	return error;
   4496}
   4497EXPORT_SYMBOL_GPL(device_change_owner);
   4498
   4499/**
   4500 * device_shutdown - call ->shutdown() on each device to shutdown.
   4501 */
   4502void device_shutdown(void)
   4503{
   4504	struct device *dev, *parent;
   4505
   4506	wait_for_device_probe();
   4507	device_block_probing();
   4508
   4509	cpufreq_suspend();
   4510
   4511	spin_lock(&devices_kset->list_lock);
   4512	/*
   4513	 * Walk the devices list backward, shutting down each in turn.
   4514	 * Beware that device unplug events may also start pulling
   4515	 * devices offline, even as the system is shutting down.
   4516	 */
   4517	while (!list_empty(&devices_kset->list)) {
   4518		dev = list_entry(devices_kset->list.prev, struct device,
   4519				kobj.entry);
   4520
   4521		/*
   4522		 * hold reference count of device's parent to
   4523		 * prevent it from being freed because parent's
   4524		 * lock is to be held
   4525		 */
   4526		parent = get_device(dev->parent);
   4527		get_device(dev);
   4528		/*
   4529		 * Make sure the device is off the kset list, in the
   4530		 * event that dev->*->shutdown() doesn't remove it.
   4531		 */
   4532		list_del_init(&dev->kobj.entry);
   4533		spin_unlock(&devices_kset->list_lock);
   4534
   4535		/* hold lock to avoid race with probe/release */
   4536		if (parent)
   4537			device_lock(parent);
   4538		device_lock(dev);
   4539
   4540		/* Don't allow any more runtime suspends */
   4541		pm_runtime_get_noresume(dev);
   4542		pm_runtime_barrier(dev);
   4543
   4544		if (dev->class && dev->class->shutdown_pre) {
   4545			if (initcall_debug)
   4546				dev_info(dev, "shutdown_pre\n");
   4547			dev->class->shutdown_pre(dev);
   4548		}
   4549		if (dev->bus && dev->bus->shutdown) {
   4550			if (initcall_debug)
   4551				dev_info(dev, "shutdown\n");
   4552			dev->bus->shutdown(dev);
   4553		} else if (dev->driver && dev->driver->shutdown) {
   4554			if (initcall_debug)
   4555				dev_info(dev, "shutdown\n");
   4556			dev->driver->shutdown(dev);
   4557		}
   4558
   4559		device_unlock(dev);
   4560		if (parent)
   4561			device_unlock(parent);
   4562
   4563		put_device(dev);
   4564		put_device(parent);
   4565
   4566		spin_lock(&devices_kset->list_lock);
   4567	}
   4568	spin_unlock(&devices_kset->list_lock);
   4569}
   4570
   4571/*
   4572 * Device logging functions
   4573 */
   4574
   4575#ifdef CONFIG_PRINTK
   4576static void
   4577set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
   4578{
   4579	const char *subsys;
   4580
   4581	memset(dev_info, 0, sizeof(*dev_info));
   4582
   4583	if (dev->class)
   4584		subsys = dev->class->name;
   4585	else if (dev->bus)
   4586		subsys = dev->bus->name;
   4587	else
   4588		return;
   4589
   4590	strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem));
   4591
   4592	/*
   4593	 * Add device identifier DEVICE=:
   4594	 *   b12:8         block dev_t
   4595	 *   c127:3        char dev_t
   4596	 *   n8            netdev ifindex
   4597	 *   +sound:card0  subsystem:devname
   4598	 */
   4599	if (MAJOR(dev->devt)) {
   4600		char c;
   4601
   4602		if (strcmp(subsys, "block") == 0)
   4603			c = 'b';
   4604		else
   4605			c = 'c';
   4606
   4607		snprintf(dev_info->device, sizeof(dev_info->device),
   4608			 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
   4609	} else if (strcmp(subsys, "net") == 0) {
   4610		struct net_device *net = to_net_dev(dev);
   4611
   4612		snprintf(dev_info->device, sizeof(dev_info->device),
   4613			 "n%u", net->ifindex);
   4614	} else {
   4615		snprintf(dev_info->device, sizeof(dev_info->device),
   4616			 "+%s:%s", subsys, dev_name(dev));
   4617	}
   4618}
   4619
   4620int dev_vprintk_emit(int level, const struct device *dev,
   4621		     const char *fmt, va_list args)
   4622{
   4623	struct dev_printk_info dev_info;
   4624
   4625	set_dev_info(dev, &dev_info);
   4626
   4627	return vprintk_emit(0, level, &dev_info, fmt, args);
   4628}
   4629EXPORT_SYMBOL(dev_vprintk_emit);
   4630
   4631int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
   4632{
   4633	va_list args;
   4634	int r;
   4635
   4636	va_start(args, fmt);
   4637
   4638	r = dev_vprintk_emit(level, dev, fmt, args);
   4639
   4640	va_end(args);
   4641
   4642	return r;
   4643}
   4644EXPORT_SYMBOL(dev_printk_emit);
   4645
   4646static void __dev_printk(const char *level, const struct device *dev,
   4647			struct va_format *vaf)
   4648{
   4649	if (dev)
   4650		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
   4651				dev_driver_string(dev), dev_name(dev), vaf);
   4652	else
   4653		printk("%s(NULL device *): %pV", level, vaf);
   4654}
   4655
   4656void _dev_printk(const char *level, const struct device *dev,
   4657		 const char *fmt, ...)
   4658{
   4659	struct va_format vaf;
   4660	va_list args;
   4661
   4662	va_start(args, fmt);
   4663
   4664	vaf.fmt = fmt;
   4665	vaf.va = &args;
   4666
   4667	__dev_printk(level, dev, &vaf);
   4668
   4669	va_end(args);
   4670}
   4671EXPORT_SYMBOL(_dev_printk);
   4672
   4673#define define_dev_printk_level(func, kern_level)		\
   4674void func(const struct device *dev, const char *fmt, ...)	\
   4675{								\
   4676	struct va_format vaf;					\
   4677	va_list args;						\
   4678								\
   4679	va_start(args, fmt);					\
   4680								\
   4681	vaf.fmt = fmt;						\
   4682	vaf.va = &args;						\
   4683								\
   4684	__dev_printk(kern_level, dev, &vaf);			\
   4685								\
   4686	va_end(args);						\
   4687}								\
   4688EXPORT_SYMBOL(func);
   4689
   4690define_dev_printk_level(_dev_emerg, KERN_EMERG);
   4691define_dev_printk_level(_dev_alert, KERN_ALERT);
   4692define_dev_printk_level(_dev_crit, KERN_CRIT);
   4693define_dev_printk_level(_dev_err, KERN_ERR);
   4694define_dev_printk_level(_dev_warn, KERN_WARNING);
   4695define_dev_printk_level(_dev_notice, KERN_NOTICE);
   4696define_dev_printk_level(_dev_info, KERN_INFO);
   4697
   4698#endif
   4699
   4700/**
   4701 * dev_err_probe - probe error check and log helper
   4702 * @dev: the pointer to the struct device
   4703 * @err: error value to test
   4704 * @fmt: printf-style format string
   4705 * @...: arguments as specified in the format string
   4706 *
   4707 * This helper implements common pattern present in probe functions for error
   4708 * checking: print debug or error message depending if the error value is
   4709 * -EPROBE_DEFER and propagate error upwards.
   4710 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
   4711 * checked later by reading devices_deferred debugfs attribute.
   4712 * It replaces code sequence::
   4713 *
   4714 * 	if (err != -EPROBE_DEFER)
   4715 * 		dev_err(dev, ...);
   4716 * 	else
   4717 * 		dev_dbg(dev, ...);
   4718 * 	return err;
   4719 *
   4720 * with::
   4721 *
   4722 * 	return dev_err_probe(dev, err, ...);
   4723 *
   4724 * Note that it is deemed acceptable to use this function for error
   4725 * prints during probe even if the @err is known to never be -EPROBE_DEFER.
   4726 * The benefit compared to a normal dev_err() is the standardized format
   4727 * of the error code and the fact that the error code is returned.
   4728 *
   4729 * Returns @err.
   4730 *
   4731 */
   4732int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
   4733{
   4734	struct va_format vaf;
   4735	va_list args;
   4736
   4737	va_start(args, fmt);
   4738	vaf.fmt = fmt;
   4739	vaf.va = &args;
   4740
   4741	if (err != -EPROBE_DEFER) {
   4742		dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
   4743	} else {
   4744		device_set_deferred_probe_reason(dev, &vaf);
   4745		dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
   4746	}
   4747
   4748	va_end(args);
   4749
   4750	return err;
   4751}
   4752EXPORT_SYMBOL_GPL(dev_err_probe);
   4753
   4754static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
   4755{
   4756	return fwnode && !IS_ERR(fwnode->secondary);
   4757}
   4758
   4759/**
   4760 * set_primary_fwnode - Change the primary firmware node of a given device.
   4761 * @dev: Device to handle.
   4762 * @fwnode: New primary firmware node of the device.
   4763 *
   4764 * Set the device's firmware node pointer to @fwnode, but if a secondary
   4765 * firmware node of the device is present, preserve it.
   4766 *
   4767 * Valid fwnode cases are:
   4768 *  - primary --> secondary --> -ENODEV
   4769 *  - primary --> NULL
   4770 *  - secondary --> -ENODEV
   4771 *  - NULL
   4772 */
   4773void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
   4774{
   4775	struct device *parent = dev->parent;
   4776	struct fwnode_handle *fn = dev->fwnode;
   4777
   4778	if (fwnode) {
   4779		if (fwnode_is_primary(fn))
   4780			fn = fn->secondary;
   4781
   4782		if (fn) {
   4783			WARN_ON(fwnode->secondary);
   4784			fwnode->secondary = fn;
   4785		}
   4786		dev->fwnode = fwnode;
   4787	} else {
   4788		if (fwnode_is_primary(fn)) {
   4789			dev->fwnode = fn->secondary;
   4790			/* Set fn->secondary = NULL, so fn remains the primary fwnode */
   4791			if (!(parent && fn == parent->fwnode))
   4792				fn->secondary = NULL;
   4793		} else {
   4794			dev->fwnode = NULL;
   4795		}
   4796	}
   4797}
   4798EXPORT_SYMBOL_GPL(set_primary_fwnode);
   4799
   4800/**
   4801 * set_secondary_fwnode - Change the secondary firmware node of a given device.
   4802 * @dev: Device to handle.
   4803 * @fwnode: New secondary firmware node of the device.
   4804 *
   4805 * If a primary firmware node of the device is present, set its secondary
   4806 * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
   4807 * @fwnode.
   4808 */
   4809void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
   4810{
   4811	if (fwnode)
   4812		fwnode->secondary = ERR_PTR(-ENODEV);
   4813
   4814	if (fwnode_is_primary(dev->fwnode))
   4815		dev->fwnode->secondary = fwnode;
   4816	else
   4817		dev->fwnode = fwnode;
   4818}
   4819EXPORT_SYMBOL_GPL(set_secondary_fwnode);
   4820
   4821/**
   4822 * device_set_of_node_from_dev - reuse device-tree node of another device
   4823 * @dev: device whose device-tree node is being set
   4824 * @dev2: device whose device-tree node is being reused
   4825 *
   4826 * Takes another reference to the new device-tree node after first dropping
   4827 * any reference held to the old node.
   4828 */
   4829void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
   4830{
   4831	of_node_put(dev->of_node);
   4832	dev->of_node = of_node_get(dev2->of_node);
   4833	dev->of_node_reused = true;
   4834}
   4835EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
   4836
   4837void device_set_node(struct device *dev, struct fwnode_handle *fwnode)
   4838{
   4839	dev->fwnode = fwnode;
   4840	dev->of_node = to_of_node(fwnode);
   4841}
   4842EXPORT_SYMBOL_GPL(device_set_node);
   4843
   4844int device_match_name(struct device *dev, const void *name)
   4845{
   4846	return sysfs_streq(dev_name(dev), name);
   4847}
   4848EXPORT_SYMBOL_GPL(device_match_name);
   4849
   4850int device_match_of_node(struct device *dev, const void *np)
   4851{
   4852	return dev->of_node == np;
   4853}
   4854EXPORT_SYMBOL_GPL(device_match_of_node);
   4855
   4856int device_match_fwnode(struct device *dev, const void *fwnode)
   4857{
   4858	return dev_fwnode(dev) == fwnode;
   4859}
   4860EXPORT_SYMBOL_GPL(device_match_fwnode);
   4861
   4862int device_match_devt(struct device *dev, const void *pdevt)
   4863{
   4864	return dev->devt == *(dev_t *)pdevt;
   4865}
   4866EXPORT_SYMBOL_GPL(device_match_devt);
   4867
   4868int device_match_acpi_dev(struct device *dev, const void *adev)
   4869{
   4870	return ACPI_COMPANION(dev) == adev;
   4871}
   4872EXPORT_SYMBOL(device_match_acpi_dev);
   4873
   4874int device_match_acpi_handle(struct device *dev, const void *handle)
   4875{
   4876	return ACPI_HANDLE(dev) == handle;
   4877}
   4878EXPORT_SYMBOL(device_match_acpi_handle);
   4879
   4880int device_match_any(struct device *dev, const void *unused)
   4881{
   4882	return 1;
   4883}
   4884EXPORT_SYMBOL_GPL(device_match_any);