drbd_main.c (110800B)
1// SPDX-License-Identifier: GPL-2.0-or-later 2/* 3 drbd.c 4 5 This file is part of DRBD by Philipp Reisner and Lars Ellenberg. 6 7 Copyright (C) 2001-2008, LINBIT Information Technologies GmbH. 8 Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>. 9 Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>. 10 11 Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev 12 from Logicworks, Inc. for making SDP replication support possible. 13 14 15 */ 16 17#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19#include <linux/module.h> 20#include <linux/jiffies.h> 21#include <linux/drbd.h> 22#include <linux/uaccess.h> 23#include <asm/types.h> 24#include <net/sock.h> 25#include <linux/ctype.h> 26#include <linux/mutex.h> 27#include <linux/fs.h> 28#include <linux/file.h> 29#include <linux/proc_fs.h> 30#include <linux/init.h> 31#include <linux/mm.h> 32#include <linux/memcontrol.h> 33#include <linux/mm_inline.h> 34#include <linux/slab.h> 35#include <linux/random.h> 36#include <linux/reboot.h> 37#include <linux/notifier.h> 38#include <linux/kthread.h> 39#include <linux/workqueue.h> 40#define __KERNEL_SYSCALLS__ 41#include <linux/unistd.h> 42#include <linux/vmalloc.h> 43#include <linux/sched/signal.h> 44 45#include <linux/drbd_limits.h> 46#include "drbd_int.h" 47#include "drbd_protocol.h" 48#include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */ 49#include "drbd_vli.h" 50#include "drbd_debugfs.h" 51 52static DEFINE_MUTEX(drbd_main_mutex); 53static int drbd_open(struct block_device *bdev, fmode_t mode); 54static void drbd_release(struct gendisk *gd, fmode_t mode); 55static void md_sync_timer_fn(struct timer_list *t); 56static int w_bitmap_io(struct drbd_work *w, int unused); 57 58MODULE_AUTHOR("Philipp Reisner <phil@linbit.com>, " 59 "Lars Ellenberg <lars@linbit.com>"); 60MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION); 61MODULE_VERSION(REL_VERSION); 62MODULE_LICENSE("GPL"); 63MODULE_PARM_DESC(minor_count, "Approximate number of drbd devices (" 64 __stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")"); 65MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR); 66 67#include <linux/moduleparam.h> 68/* thanks to these macros, if compiled into the kernel (not-module), 69 * these become boot parameters (e.g., drbd.minor_count) */ 70 71#ifdef CONFIG_DRBD_FAULT_INJECTION 72int drbd_enable_faults; 73int drbd_fault_rate; 74static int drbd_fault_count; 75static int drbd_fault_devs; 76/* bitmap of enabled faults */ 77module_param_named(enable_faults, drbd_enable_faults, int, 0664); 78/* fault rate % value - applies to all enabled faults */ 79module_param_named(fault_rate, drbd_fault_rate, int, 0664); 80/* count of faults inserted */ 81module_param_named(fault_count, drbd_fault_count, int, 0664); 82/* bitmap of devices to insert faults on */ 83module_param_named(fault_devs, drbd_fault_devs, int, 0644); 84#endif 85 86/* module parameters we can keep static */ 87static bool drbd_allow_oos; /* allow_open_on_secondary */ 88static bool drbd_disable_sendpage; 89MODULE_PARM_DESC(allow_oos, "DONT USE!"); 90module_param_named(allow_oos, drbd_allow_oos, bool, 0); 91module_param_named(disable_sendpage, drbd_disable_sendpage, bool, 0644); 92 93/* module parameters we share */ 94int drbd_proc_details; /* Detail level in proc drbd*/ 95module_param_named(proc_details, drbd_proc_details, int, 0644); 96/* module parameters shared with defaults */ 97unsigned int drbd_minor_count = DRBD_MINOR_COUNT_DEF; 98/* Module parameter for setting the user mode helper program 99 * to run. Default is /sbin/drbdadm */ 100char drbd_usermode_helper[80] = "/sbin/drbdadm"; 101module_param_named(minor_count, drbd_minor_count, uint, 0444); 102module_param_string(usermode_helper, drbd_usermode_helper, sizeof(drbd_usermode_helper), 0644); 103 104/* in 2.6.x, our device mapping and config info contains our virtual gendisks 105 * as member "struct gendisk *vdisk;" 106 */ 107struct idr drbd_devices; 108struct list_head drbd_resources; 109struct mutex resources_mutex; 110 111struct kmem_cache *drbd_request_cache; 112struct kmem_cache *drbd_ee_cache; /* peer requests */ 113struct kmem_cache *drbd_bm_ext_cache; /* bitmap extents */ 114struct kmem_cache *drbd_al_ext_cache; /* activity log extents */ 115mempool_t drbd_request_mempool; 116mempool_t drbd_ee_mempool; 117mempool_t drbd_md_io_page_pool; 118struct bio_set drbd_md_io_bio_set; 119struct bio_set drbd_io_bio_set; 120 121/* I do not use a standard mempool, because: 122 1) I want to hand out the pre-allocated objects first. 123 2) I want to be able to interrupt sleeping allocation with a signal. 124 Note: This is a single linked list, the next pointer is the private 125 member of struct page. 126 */ 127struct page *drbd_pp_pool; 128DEFINE_SPINLOCK(drbd_pp_lock); 129int drbd_pp_vacant; 130wait_queue_head_t drbd_pp_wait; 131 132DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5); 133 134static const struct block_device_operations drbd_ops = { 135 .owner = THIS_MODULE, 136 .submit_bio = drbd_submit_bio, 137 .open = drbd_open, 138 .release = drbd_release, 139}; 140 141#ifdef __CHECKER__ 142/* When checking with sparse, and this is an inline function, sparse will 143 give tons of false positives. When this is a real functions sparse works. 144 */ 145int _get_ldev_if_state(struct drbd_device *device, enum drbd_disk_state mins) 146{ 147 int io_allowed; 148 149 atomic_inc(&device->local_cnt); 150 io_allowed = (device->state.disk >= mins); 151 if (!io_allowed) { 152 if (atomic_dec_and_test(&device->local_cnt)) 153 wake_up(&device->misc_wait); 154 } 155 return io_allowed; 156} 157 158#endif 159 160/** 161 * tl_release() - mark as BARRIER_ACKED all requests in the corresponding transfer log epoch 162 * @connection: DRBD connection. 163 * @barrier_nr: Expected identifier of the DRBD write barrier packet. 164 * @set_size: Expected number of requests before that barrier. 165 * 166 * In case the passed barrier_nr or set_size does not match the oldest 167 * epoch of not yet barrier-acked requests, this function will cause a 168 * termination of the connection. 169 */ 170void tl_release(struct drbd_connection *connection, unsigned int barrier_nr, 171 unsigned int set_size) 172{ 173 struct drbd_request *r; 174 struct drbd_request *req = NULL, *tmp = NULL; 175 int expect_epoch = 0; 176 int expect_size = 0; 177 178 spin_lock_irq(&connection->resource->req_lock); 179 180 /* find oldest not yet barrier-acked write request, 181 * count writes in its epoch. */ 182 list_for_each_entry(r, &connection->transfer_log, tl_requests) { 183 const unsigned s = r->rq_state; 184 if (!req) { 185 if (!(s & RQ_WRITE)) 186 continue; 187 if (!(s & RQ_NET_MASK)) 188 continue; 189 if (s & RQ_NET_DONE) 190 continue; 191 req = r; 192 expect_epoch = req->epoch; 193 expect_size ++; 194 } else { 195 if (r->epoch != expect_epoch) 196 break; 197 if (!(s & RQ_WRITE)) 198 continue; 199 /* if (s & RQ_DONE): not expected */ 200 /* if (!(s & RQ_NET_MASK)): not expected */ 201 expect_size++; 202 } 203 } 204 205 /* first some paranoia code */ 206 if (req == NULL) { 207 drbd_err(connection, "BAD! BarrierAck #%u received, but no epoch in tl!?\n", 208 barrier_nr); 209 goto bail; 210 } 211 if (expect_epoch != barrier_nr) { 212 drbd_err(connection, "BAD! BarrierAck #%u received, expected #%u!\n", 213 barrier_nr, expect_epoch); 214 goto bail; 215 } 216 217 if (expect_size != set_size) { 218 drbd_err(connection, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n", 219 barrier_nr, set_size, expect_size); 220 goto bail; 221 } 222 223 /* Clean up list of requests processed during current epoch. */ 224 /* this extra list walk restart is paranoia, 225 * to catch requests being barrier-acked "unexpectedly". 226 * It usually should find the same req again, or some READ preceding it. */ 227 list_for_each_entry(req, &connection->transfer_log, tl_requests) 228 if (req->epoch == expect_epoch) { 229 tmp = req; 230 break; 231 } 232 req = list_prepare_entry(tmp, &connection->transfer_log, tl_requests); 233 list_for_each_entry_safe_from(req, r, &connection->transfer_log, tl_requests) { 234 if (req->epoch != expect_epoch) 235 break; 236 _req_mod(req, BARRIER_ACKED); 237 } 238 spin_unlock_irq(&connection->resource->req_lock); 239 240 return; 241 242bail: 243 spin_unlock_irq(&connection->resource->req_lock); 244 conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD); 245} 246 247 248/** 249 * _tl_restart() - Walks the transfer log, and applies an action to all requests 250 * @connection: DRBD connection to operate on. 251 * @what: The action/event to perform with all request objects 252 * 253 * @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO, 254 * RESTART_FROZEN_DISK_IO. 255 */ 256/* must hold resource->req_lock */ 257void _tl_restart(struct drbd_connection *connection, enum drbd_req_event what) 258{ 259 struct drbd_request *req, *r; 260 261 list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) 262 _req_mod(req, what); 263} 264 265void tl_restart(struct drbd_connection *connection, enum drbd_req_event what) 266{ 267 spin_lock_irq(&connection->resource->req_lock); 268 _tl_restart(connection, what); 269 spin_unlock_irq(&connection->resource->req_lock); 270} 271 272/** 273 * tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL 274 * @connection: DRBD connection. 275 * 276 * This is called after the connection to the peer was lost. The storage covered 277 * by the requests on the transfer gets marked as our of sync. Called from the 278 * receiver thread and the worker thread. 279 */ 280void tl_clear(struct drbd_connection *connection) 281{ 282 tl_restart(connection, CONNECTION_LOST_WHILE_PENDING); 283} 284 285/** 286 * tl_abort_disk_io() - Abort disk I/O for all requests for a certain device in the TL 287 * @device: DRBD device. 288 */ 289void tl_abort_disk_io(struct drbd_device *device) 290{ 291 struct drbd_connection *connection = first_peer_device(device)->connection; 292 struct drbd_request *req, *r; 293 294 spin_lock_irq(&connection->resource->req_lock); 295 list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) { 296 if (!(req->rq_state & RQ_LOCAL_PENDING)) 297 continue; 298 if (req->device != device) 299 continue; 300 _req_mod(req, ABORT_DISK_IO); 301 } 302 spin_unlock_irq(&connection->resource->req_lock); 303} 304 305static int drbd_thread_setup(void *arg) 306{ 307 struct drbd_thread *thi = (struct drbd_thread *) arg; 308 struct drbd_resource *resource = thi->resource; 309 unsigned long flags; 310 int retval; 311 312 snprintf(current->comm, sizeof(current->comm), "drbd_%c_%s", 313 thi->name[0], 314 resource->name); 315 316 allow_kernel_signal(DRBD_SIGKILL); 317 allow_kernel_signal(SIGXCPU); 318restart: 319 retval = thi->function(thi); 320 321 spin_lock_irqsave(&thi->t_lock, flags); 322 323 /* if the receiver has been "EXITING", the last thing it did 324 * was set the conn state to "StandAlone", 325 * if now a re-connect request comes in, conn state goes C_UNCONNECTED, 326 * and receiver thread will be "started". 327 * drbd_thread_start needs to set "RESTARTING" in that case. 328 * t_state check and assignment needs to be within the same spinlock, 329 * so either thread_start sees EXITING, and can remap to RESTARTING, 330 * or thread_start see NONE, and can proceed as normal. 331 */ 332 333 if (thi->t_state == RESTARTING) { 334 drbd_info(resource, "Restarting %s thread\n", thi->name); 335 thi->t_state = RUNNING; 336 spin_unlock_irqrestore(&thi->t_lock, flags); 337 goto restart; 338 } 339 340 thi->task = NULL; 341 thi->t_state = NONE; 342 smp_mb(); 343 complete_all(&thi->stop); 344 spin_unlock_irqrestore(&thi->t_lock, flags); 345 346 drbd_info(resource, "Terminating %s\n", current->comm); 347 348 /* Release mod reference taken when thread was started */ 349 350 if (thi->connection) 351 kref_put(&thi->connection->kref, drbd_destroy_connection); 352 kref_put(&resource->kref, drbd_destroy_resource); 353 module_put(THIS_MODULE); 354 return retval; 355} 356 357static void drbd_thread_init(struct drbd_resource *resource, struct drbd_thread *thi, 358 int (*func) (struct drbd_thread *), const char *name) 359{ 360 spin_lock_init(&thi->t_lock); 361 thi->task = NULL; 362 thi->t_state = NONE; 363 thi->function = func; 364 thi->resource = resource; 365 thi->connection = NULL; 366 thi->name = name; 367} 368 369int drbd_thread_start(struct drbd_thread *thi) 370{ 371 struct drbd_resource *resource = thi->resource; 372 struct task_struct *nt; 373 unsigned long flags; 374 375 /* is used from state engine doing drbd_thread_stop_nowait, 376 * while holding the req lock irqsave */ 377 spin_lock_irqsave(&thi->t_lock, flags); 378 379 switch (thi->t_state) { 380 case NONE: 381 drbd_info(resource, "Starting %s thread (from %s [%d])\n", 382 thi->name, current->comm, current->pid); 383 384 /* Get ref on module for thread - this is released when thread exits */ 385 if (!try_module_get(THIS_MODULE)) { 386 drbd_err(resource, "Failed to get module reference in drbd_thread_start\n"); 387 spin_unlock_irqrestore(&thi->t_lock, flags); 388 return false; 389 } 390 391 kref_get(&resource->kref); 392 if (thi->connection) 393 kref_get(&thi->connection->kref); 394 395 init_completion(&thi->stop); 396 thi->reset_cpu_mask = 1; 397 thi->t_state = RUNNING; 398 spin_unlock_irqrestore(&thi->t_lock, flags); 399 flush_signals(current); /* otherw. may get -ERESTARTNOINTR */ 400 401 nt = kthread_create(drbd_thread_setup, (void *) thi, 402 "drbd_%c_%s", thi->name[0], thi->resource->name); 403 404 if (IS_ERR(nt)) { 405 drbd_err(resource, "Couldn't start thread\n"); 406 407 if (thi->connection) 408 kref_put(&thi->connection->kref, drbd_destroy_connection); 409 kref_put(&resource->kref, drbd_destroy_resource); 410 module_put(THIS_MODULE); 411 return false; 412 } 413 spin_lock_irqsave(&thi->t_lock, flags); 414 thi->task = nt; 415 thi->t_state = RUNNING; 416 spin_unlock_irqrestore(&thi->t_lock, flags); 417 wake_up_process(nt); 418 break; 419 case EXITING: 420 thi->t_state = RESTARTING; 421 drbd_info(resource, "Restarting %s thread (from %s [%d])\n", 422 thi->name, current->comm, current->pid); 423 fallthrough; 424 case RUNNING: 425 case RESTARTING: 426 default: 427 spin_unlock_irqrestore(&thi->t_lock, flags); 428 break; 429 } 430 431 return true; 432} 433 434 435void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait) 436{ 437 unsigned long flags; 438 439 enum drbd_thread_state ns = restart ? RESTARTING : EXITING; 440 441 /* may be called from state engine, holding the req lock irqsave */ 442 spin_lock_irqsave(&thi->t_lock, flags); 443 444 if (thi->t_state == NONE) { 445 spin_unlock_irqrestore(&thi->t_lock, flags); 446 if (restart) 447 drbd_thread_start(thi); 448 return; 449 } 450 451 if (thi->t_state != ns) { 452 if (thi->task == NULL) { 453 spin_unlock_irqrestore(&thi->t_lock, flags); 454 return; 455 } 456 457 thi->t_state = ns; 458 smp_mb(); 459 init_completion(&thi->stop); 460 if (thi->task != current) 461 send_sig(DRBD_SIGKILL, thi->task, 1); 462 } 463 464 spin_unlock_irqrestore(&thi->t_lock, flags); 465 466 if (wait) 467 wait_for_completion(&thi->stop); 468} 469 470int conn_lowest_minor(struct drbd_connection *connection) 471{ 472 struct drbd_peer_device *peer_device; 473 int vnr = 0, minor = -1; 474 475 rcu_read_lock(); 476 peer_device = idr_get_next(&connection->peer_devices, &vnr); 477 if (peer_device) 478 minor = device_to_minor(peer_device->device); 479 rcu_read_unlock(); 480 481 return minor; 482} 483 484#ifdef CONFIG_SMP 485/* 486 * drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs 487 * 488 * Forces all threads of a resource onto the same CPU. This is beneficial for 489 * DRBD's performance. May be overwritten by user's configuration. 490 */ 491static void drbd_calc_cpu_mask(cpumask_var_t *cpu_mask) 492{ 493 unsigned int *resources_per_cpu, min_index = ~0; 494 495 resources_per_cpu = kcalloc(nr_cpu_ids, sizeof(*resources_per_cpu), 496 GFP_KERNEL); 497 if (resources_per_cpu) { 498 struct drbd_resource *resource; 499 unsigned int cpu, min = ~0; 500 501 rcu_read_lock(); 502 for_each_resource_rcu(resource, &drbd_resources) { 503 for_each_cpu(cpu, resource->cpu_mask) 504 resources_per_cpu[cpu]++; 505 } 506 rcu_read_unlock(); 507 for_each_online_cpu(cpu) { 508 if (resources_per_cpu[cpu] < min) { 509 min = resources_per_cpu[cpu]; 510 min_index = cpu; 511 } 512 } 513 kfree(resources_per_cpu); 514 } 515 if (min_index == ~0) { 516 cpumask_setall(*cpu_mask); 517 return; 518 } 519 cpumask_set_cpu(min_index, *cpu_mask); 520} 521 522/** 523 * drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread 524 * @thi: drbd_thread object 525 * 526 * call in the "main loop" of _all_ threads, no need for any mutex, current won't die 527 * prematurely. 528 */ 529void drbd_thread_current_set_cpu(struct drbd_thread *thi) 530{ 531 struct drbd_resource *resource = thi->resource; 532 struct task_struct *p = current; 533 534 if (!thi->reset_cpu_mask) 535 return; 536 thi->reset_cpu_mask = 0; 537 set_cpus_allowed_ptr(p, resource->cpu_mask); 538} 539#else 540#define drbd_calc_cpu_mask(A) ({}) 541#endif 542 543/* 544 * drbd_header_size - size of a packet header 545 * 546 * The header size is a multiple of 8, so any payload following the header is 547 * word aligned on 64-bit architectures. (The bitmap send and receive code 548 * relies on this.) 549 */ 550unsigned int drbd_header_size(struct drbd_connection *connection) 551{ 552 if (connection->agreed_pro_version >= 100) { 553 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header100), 8)); 554 return sizeof(struct p_header100); 555 } else { 556 BUILD_BUG_ON(sizeof(struct p_header80) != 557 sizeof(struct p_header95)); 558 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header80), 8)); 559 return sizeof(struct p_header80); 560 } 561} 562 563static unsigned int prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size) 564{ 565 h->magic = cpu_to_be32(DRBD_MAGIC); 566 h->command = cpu_to_be16(cmd); 567 h->length = cpu_to_be16(size); 568 return sizeof(struct p_header80); 569} 570 571static unsigned int prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size) 572{ 573 h->magic = cpu_to_be16(DRBD_MAGIC_BIG); 574 h->command = cpu_to_be16(cmd); 575 h->length = cpu_to_be32(size); 576 return sizeof(struct p_header95); 577} 578 579static unsigned int prepare_header100(struct p_header100 *h, enum drbd_packet cmd, 580 int size, int vnr) 581{ 582 h->magic = cpu_to_be32(DRBD_MAGIC_100); 583 h->volume = cpu_to_be16(vnr); 584 h->command = cpu_to_be16(cmd); 585 h->length = cpu_to_be32(size); 586 h->pad = 0; 587 return sizeof(struct p_header100); 588} 589 590static unsigned int prepare_header(struct drbd_connection *connection, int vnr, 591 void *buffer, enum drbd_packet cmd, int size) 592{ 593 if (connection->agreed_pro_version >= 100) 594 return prepare_header100(buffer, cmd, size, vnr); 595 else if (connection->agreed_pro_version >= 95 && 596 size > DRBD_MAX_SIZE_H80_PACKET) 597 return prepare_header95(buffer, cmd, size); 598 else 599 return prepare_header80(buffer, cmd, size); 600} 601 602static void *__conn_prepare_command(struct drbd_connection *connection, 603 struct drbd_socket *sock) 604{ 605 if (!sock->socket) 606 return NULL; 607 return sock->sbuf + drbd_header_size(connection); 608} 609 610void *conn_prepare_command(struct drbd_connection *connection, struct drbd_socket *sock) 611{ 612 void *p; 613 614 mutex_lock(&sock->mutex); 615 p = __conn_prepare_command(connection, sock); 616 if (!p) 617 mutex_unlock(&sock->mutex); 618 619 return p; 620} 621 622void *drbd_prepare_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock) 623{ 624 return conn_prepare_command(peer_device->connection, sock); 625} 626 627static int __send_command(struct drbd_connection *connection, int vnr, 628 struct drbd_socket *sock, enum drbd_packet cmd, 629 unsigned int header_size, void *data, 630 unsigned int size) 631{ 632 int msg_flags; 633 int err; 634 635 /* 636 * Called with @data == NULL and the size of the data blocks in @size 637 * for commands that send data blocks. For those commands, omit the 638 * MSG_MORE flag: this will increase the likelihood that data blocks 639 * which are page aligned on the sender will end up page aligned on the 640 * receiver. 641 */ 642 msg_flags = data ? MSG_MORE : 0; 643 644 header_size += prepare_header(connection, vnr, sock->sbuf, cmd, 645 header_size + size); 646 err = drbd_send_all(connection, sock->socket, sock->sbuf, header_size, 647 msg_flags); 648 if (data && !err) 649 err = drbd_send_all(connection, sock->socket, data, size, 0); 650 /* DRBD protocol "pings" are latency critical. 651 * This is supposed to trigger tcp_push_pending_frames() */ 652 if (!err && (cmd == P_PING || cmd == P_PING_ACK)) 653 tcp_sock_set_nodelay(sock->socket->sk); 654 655 return err; 656} 657 658static int __conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock, 659 enum drbd_packet cmd, unsigned int header_size, 660 void *data, unsigned int size) 661{ 662 return __send_command(connection, 0, sock, cmd, header_size, data, size); 663} 664 665int conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock, 666 enum drbd_packet cmd, unsigned int header_size, 667 void *data, unsigned int size) 668{ 669 int err; 670 671 err = __conn_send_command(connection, sock, cmd, header_size, data, size); 672 mutex_unlock(&sock->mutex); 673 return err; 674} 675 676int drbd_send_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock, 677 enum drbd_packet cmd, unsigned int header_size, 678 void *data, unsigned int size) 679{ 680 int err; 681 682 err = __send_command(peer_device->connection, peer_device->device->vnr, 683 sock, cmd, header_size, data, size); 684 mutex_unlock(&sock->mutex); 685 return err; 686} 687 688int drbd_send_ping(struct drbd_connection *connection) 689{ 690 struct drbd_socket *sock; 691 692 sock = &connection->meta; 693 if (!conn_prepare_command(connection, sock)) 694 return -EIO; 695 return conn_send_command(connection, sock, P_PING, 0, NULL, 0); 696} 697 698int drbd_send_ping_ack(struct drbd_connection *connection) 699{ 700 struct drbd_socket *sock; 701 702 sock = &connection->meta; 703 if (!conn_prepare_command(connection, sock)) 704 return -EIO; 705 return conn_send_command(connection, sock, P_PING_ACK, 0, NULL, 0); 706} 707 708int drbd_send_sync_param(struct drbd_peer_device *peer_device) 709{ 710 struct drbd_socket *sock; 711 struct p_rs_param_95 *p; 712 int size; 713 const int apv = peer_device->connection->agreed_pro_version; 714 enum drbd_packet cmd; 715 struct net_conf *nc; 716 struct disk_conf *dc; 717 718 sock = &peer_device->connection->data; 719 p = drbd_prepare_command(peer_device, sock); 720 if (!p) 721 return -EIO; 722 723 rcu_read_lock(); 724 nc = rcu_dereference(peer_device->connection->net_conf); 725 726 size = apv <= 87 ? sizeof(struct p_rs_param) 727 : apv == 88 ? sizeof(struct p_rs_param) 728 + strlen(nc->verify_alg) + 1 729 : apv <= 94 ? sizeof(struct p_rs_param_89) 730 : /* apv >= 95 */ sizeof(struct p_rs_param_95); 731 732 cmd = apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM; 733 734 /* initialize verify_alg and csums_alg */ 735 BUILD_BUG_ON(sizeof(p->algs) != 2 * SHARED_SECRET_MAX); 736 memset(&p->algs, 0, sizeof(p->algs)); 737 738 if (get_ldev(peer_device->device)) { 739 dc = rcu_dereference(peer_device->device->ldev->disk_conf); 740 p->resync_rate = cpu_to_be32(dc->resync_rate); 741 p->c_plan_ahead = cpu_to_be32(dc->c_plan_ahead); 742 p->c_delay_target = cpu_to_be32(dc->c_delay_target); 743 p->c_fill_target = cpu_to_be32(dc->c_fill_target); 744 p->c_max_rate = cpu_to_be32(dc->c_max_rate); 745 put_ldev(peer_device->device); 746 } else { 747 p->resync_rate = cpu_to_be32(DRBD_RESYNC_RATE_DEF); 748 p->c_plan_ahead = cpu_to_be32(DRBD_C_PLAN_AHEAD_DEF); 749 p->c_delay_target = cpu_to_be32(DRBD_C_DELAY_TARGET_DEF); 750 p->c_fill_target = cpu_to_be32(DRBD_C_FILL_TARGET_DEF); 751 p->c_max_rate = cpu_to_be32(DRBD_C_MAX_RATE_DEF); 752 } 753 754 if (apv >= 88) 755 strcpy(p->verify_alg, nc->verify_alg); 756 if (apv >= 89) 757 strcpy(p->csums_alg, nc->csums_alg); 758 rcu_read_unlock(); 759 760 return drbd_send_command(peer_device, sock, cmd, size, NULL, 0); 761} 762 763int __drbd_send_protocol(struct drbd_connection *connection, enum drbd_packet cmd) 764{ 765 struct drbd_socket *sock; 766 struct p_protocol *p; 767 struct net_conf *nc; 768 int size, cf; 769 770 sock = &connection->data; 771 p = __conn_prepare_command(connection, sock); 772 if (!p) 773 return -EIO; 774 775 rcu_read_lock(); 776 nc = rcu_dereference(connection->net_conf); 777 778 if (nc->tentative && connection->agreed_pro_version < 92) { 779 rcu_read_unlock(); 780 drbd_err(connection, "--dry-run is not supported by peer"); 781 return -EOPNOTSUPP; 782 } 783 784 size = sizeof(*p); 785 if (connection->agreed_pro_version >= 87) 786 size += strlen(nc->integrity_alg) + 1; 787 788 p->protocol = cpu_to_be32(nc->wire_protocol); 789 p->after_sb_0p = cpu_to_be32(nc->after_sb_0p); 790 p->after_sb_1p = cpu_to_be32(nc->after_sb_1p); 791 p->after_sb_2p = cpu_to_be32(nc->after_sb_2p); 792 p->two_primaries = cpu_to_be32(nc->two_primaries); 793 cf = 0; 794 if (nc->discard_my_data) 795 cf |= CF_DISCARD_MY_DATA; 796 if (nc->tentative) 797 cf |= CF_DRY_RUN; 798 p->conn_flags = cpu_to_be32(cf); 799 800 if (connection->agreed_pro_version >= 87) 801 strcpy(p->integrity_alg, nc->integrity_alg); 802 rcu_read_unlock(); 803 804 return __conn_send_command(connection, sock, cmd, size, NULL, 0); 805} 806 807int drbd_send_protocol(struct drbd_connection *connection) 808{ 809 int err; 810 811 mutex_lock(&connection->data.mutex); 812 err = __drbd_send_protocol(connection, P_PROTOCOL); 813 mutex_unlock(&connection->data.mutex); 814 815 return err; 816} 817 818static int _drbd_send_uuids(struct drbd_peer_device *peer_device, u64 uuid_flags) 819{ 820 struct drbd_device *device = peer_device->device; 821 struct drbd_socket *sock; 822 struct p_uuids *p; 823 int i; 824 825 if (!get_ldev_if_state(device, D_NEGOTIATING)) 826 return 0; 827 828 sock = &peer_device->connection->data; 829 p = drbd_prepare_command(peer_device, sock); 830 if (!p) { 831 put_ldev(device); 832 return -EIO; 833 } 834 spin_lock_irq(&device->ldev->md.uuid_lock); 835 for (i = UI_CURRENT; i < UI_SIZE; i++) 836 p->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]); 837 spin_unlock_irq(&device->ldev->md.uuid_lock); 838 839 device->comm_bm_set = drbd_bm_total_weight(device); 840 p->uuid[UI_SIZE] = cpu_to_be64(device->comm_bm_set); 841 rcu_read_lock(); 842 uuid_flags |= rcu_dereference(peer_device->connection->net_conf)->discard_my_data ? 1 : 0; 843 rcu_read_unlock(); 844 uuid_flags |= test_bit(CRASHED_PRIMARY, &device->flags) ? 2 : 0; 845 uuid_flags |= device->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0; 846 p->uuid[UI_FLAGS] = cpu_to_be64(uuid_flags); 847 848 put_ldev(device); 849 return drbd_send_command(peer_device, sock, P_UUIDS, sizeof(*p), NULL, 0); 850} 851 852int drbd_send_uuids(struct drbd_peer_device *peer_device) 853{ 854 return _drbd_send_uuids(peer_device, 0); 855} 856 857int drbd_send_uuids_skip_initial_sync(struct drbd_peer_device *peer_device) 858{ 859 return _drbd_send_uuids(peer_device, 8); 860} 861 862void drbd_print_uuids(struct drbd_device *device, const char *text) 863{ 864 if (get_ldev_if_state(device, D_NEGOTIATING)) { 865 u64 *uuid = device->ldev->md.uuid; 866 drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX\n", 867 text, 868 (unsigned long long)uuid[UI_CURRENT], 869 (unsigned long long)uuid[UI_BITMAP], 870 (unsigned long long)uuid[UI_HISTORY_START], 871 (unsigned long long)uuid[UI_HISTORY_END]); 872 put_ldev(device); 873 } else { 874 drbd_info(device, "%s effective data uuid: %016llX\n", 875 text, 876 (unsigned long long)device->ed_uuid); 877 } 878} 879 880void drbd_gen_and_send_sync_uuid(struct drbd_peer_device *peer_device) 881{ 882 struct drbd_device *device = peer_device->device; 883 struct drbd_socket *sock; 884 struct p_rs_uuid *p; 885 u64 uuid; 886 887 D_ASSERT(device, device->state.disk == D_UP_TO_DATE); 888 889 uuid = device->ldev->md.uuid[UI_BITMAP]; 890 if (uuid && uuid != UUID_JUST_CREATED) 891 uuid = uuid + UUID_NEW_BM_OFFSET; 892 else 893 get_random_bytes(&uuid, sizeof(u64)); 894 drbd_uuid_set(device, UI_BITMAP, uuid); 895 drbd_print_uuids(device, "updated sync UUID"); 896 drbd_md_sync(device); 897 898 sock = &peer_device->connection->data; 899 p = drbd_prepare_command(peer_device, sock); 900 if (p) { 901 p->uuid = cpu_to_be64(uuid); 902 drbd_send_command(peer_device, sock, P_SYNC_UUID, sizeof(*p), NULL, 0); 903 } 904} 905 906int drbd_send_sizes(struct drbd_peer_device *peer_device, int trigger_reply, enum dds_flags flags) 907{ 908 struct drbd_device *device = peer_device->device; 909 struct drbd_socket *sock; 910 struct p_sizes *p; 911 sector_t d_size, u_size; 912 int q_order_type; 913 unsigned int max_bio_size; 914 unsigned int packet_size; 915 916 sock = &peer_device->connection->data; 917 p = drbd_prepare_command(peer_device, sock); 918 if (!p) 919 return -EIO; 920 921 packet_size = sizeof(*p); 922 if (peer_device->connection->agreed_features & DRBD_FF_WSAME) 923 packet_size += sizeof(p->qlim[0]); 924 925 memset(p, 0, packet_size); 926 if (get_ldev_if_state(device, D_NEGOTIATING)) { 927 struct block_device *bdev = device->ldev->backing_bdev; 928 struct request_queue *q = bdev_get_queue(bdev); 929 930 d_size = drbd_get_max_capacity(device->ldev); 931 rcu_read_lock(); 932 u_size = rcu_dereference(device->ldev->disk_conf)->disk_size; 933 rcu_read_unlock(); 934 q_order_type = drbd_queue_order_type(device); 935 max_bio_size = queue_max_hw_sectors(q) << 9; 936 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE); 937 p->qlim->physical_block_size = 938 cpu_to_be32(bdev_physical_block_size(bdev)); 939 p->qlim->logical_block_size = 940 cpu_to_be32(bdev_logical_block_size(bdev)); 941 p->qlim->alignment_offset = 942 cpu_to_be32(bdev_alignment_offset(bdev)); 943 p->qlim->io_min = cpu_to_be32(bdev_io_min(bdev)); 944 p->qlim->io_opt = cpu_to_be32(bdev_io_opt(bdev)); 945 p->qlim->discard_enabled = !!bdev_max_discard_sectors(bdev); 946 put_ldev(device); 947 } else { 948 struct request_queue *q = device->rq_queue; 949 950 p->qlim->physical_block_size = 951 cpu_to_be32(queue_physical_block_size(q)); 952 p->qlim->logical_block_size = 953 cpu_to_be32(queue_logical_block_size(q)); 954 p->qlim->alignment_offset = 0; 955 p->qlim->io_min = cpu_to_be32(queue_io_min(q)); 956 p->qlim->io_opt = cpu_to_be32(queue_io_opt(q)); 957 p->qlim->discard_enabled = 0; 958 959 d_size = 0; 960 u_size = 0; 961 q_order_type = QUEUE_ORDERED_NONE; 962 max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */ 963 } 964 965 if (peer_device->connection->agreed_pro_version <= 94) 966 max_bio_size = min(max_bio_size, DRBD_MAX_SIZE_H80_PACKET); 967 else if (peer_device->connection->agreed_pro_version < 100) 968 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE_P95); 969 970 p->d_size = cpu_to_be64(d_size); 971 p->u_size = cpu_to_be64(u_size); 972 if (trigger_reply) 973 p->c_size = 0; 974 else 975 p->c_size = cpu_to_be64(get_capacity(device->vdisk)); 976 p->max_bio_size = cpu_to_be32(max_bio_size); 977 p->queue_order_type = cpu_to_be16(q_order_type); 978 p->dds_flags = cpu_to_be16(flags); 979 980 return drbd_send_command(peer_device, sock, P_SIZES, packet_size, NULL, 0); 981} 982 983/** 984 * drbd_send_current_state() - Sends the drbd state to the peer 985 * @peer_device: DRBD peer device. 986 */ 987int drbd_send_current_state(struct drbd_peer_device *peer_device) 988{ 989 struct drbd_socket *sock; 990 struct p_state *p; 991 992 sock = &peer_device->connection->data; 993 p = drbd_prepare_command(peer_device, sock); 994 if (!p) 995 return -EIO; 996 p->state = cpu_to_be32(peer_device->device->state.i); /* Within the send mutex */ 997 return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0); 998} 999 1000/** 1001 * drbd_send_state() - After a state change, sends the new state to the peer 1002 * @peer_device: DRBD peer device. 1003 * @state: the state to send, not necessarily the current state. 1004 * 1005 * Each state change queues an "after_state_ch" work, which will eventually 1006 * send the resulting new state to the peer. If more state changes happen 1007 * between queuing and processing of the after_state_ch work, we still 1008 * want to send each intermediary state in the order it occurred. 1009 */ 1010int drbd_send_state(struct drbd_peer_device *peer_device, union drbd_state state) 1011{ 1012 struct drbd_socket *sock; 1013 struct p_state *p; 1014 1015 sock = &peer_device->connection->data; 1016 p = drbd_prepare_command(peer_device, sock); 1017 if (!p) 1018 return -EIO; 1019 p->state = cpu_to_be32(state.i); /* Within the send mutex */ 1020 return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0); 1021} 1022 1023int drbd_send_state_req(struct drbd_peer_device *peer_device, union drbd_state mask, union drbd_state val) 1024{ 1025 struct drbd_socket *sock; 1026 struct p_req_state *p; 1027 1028 sock = &peer_device->connection->data; 1029 p = drbd_prepare_command(peer_device, sock); 1030 if (!p) 1031 return -EIO; 1032 p->mask = cpu_to_be32(mask.i); 1033 p->val = cpu_to_be32(val.i); 1034 return drbd_send_command(peer_device, sock, P_STATE_CHG_REQ, sizeof(*p), NULL, 0); 1035} 1036 1037int conn_send_state_req(struct drbd_connection *connection, union drbd_state mask, union drbd_state val) 1038{ 1039 enum drbd_packet cmd; 1040 struct drbd_socket *sock; 1041 struct p_req_state *p; 1042 1043 cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REQ : P_CONN_ST_CHG_REQ; 1044 sock = &connection->data; 1045 p = conn_prepare_command(connection, sock); 1046 if (!p) 1047 return -EIO; 1048 p->mask = cpu_to_be32(mask.i); 1049 p->val = cpu_to_be32(val.i); 1050 return conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0); 1051} 1052 1053void drbd_send_sr_reply(struct drbd_peer_device *peer_device, enum drbd_state_rv retcode) 1054{ 1055 struct drbd_socket *sock; 1056 struct p_req_state_reply *p; 1057 1058 sock = &peer_device->connection->meta; 1059 p = drbd_prepare_command(peer_device, sock); 1060 if (p) { 1061 p->retcode = cpu_to_be32(retcode); 1062 drbd_send_command(peer_device, sock, P_STATE_CHG_REPLY, sizeof(*p), NULL, 0); 1063 } 1064} 1065 1066void conn_send_sr_reply(struct drbd_connection *connection, enum drbd_state_rv retcode) 1067{ 1068 struct drbd_socket *sock; 1069 struct p_req_state_reply *p; 1070 enum drbd_packet cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REPLY : P_CONN_ST_CHG_REPLY; 1071 1072 sock = &connection->meta; 1073 p = conn_prepare_command(connection, sock); 1074 if (p) { 1075 p->retcode = cpu_to_be32(retcode); 1076 conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0); 1077 } 1078} 1079 1080static void dcbp_set_code(struct p_compressed_bm *p, enum drbd_bitmap_code code) 1081{ 1082 BUG_ON(code & ~0xf); 1083 p->encoding = (p->encoding & ~0xf) | code; 1084} 1085 1086static void dcbp_set_start(struct p_compressed_bm *p, int set) 1087{ 1088 p->encoding = (p->encoding & ~0x80) | (set ? 0x80 : 0); 1089} 1090 1091static void dcbp_set_pad_bits(struct p_compressed_bm *p, int n) 1092{ 1093 BUG_ON(n & ~0x7); 1094 p->encoding = (p->encoding & (~0x7 << 4)) | (n << 4); 1095} 1096 1097static int fill_bitmap_rle_bits(struct drbd_device *device, 1098 struct p_compressed_bm *p, 1099 unsigned int size, 1100 struct bm_xfer_ctx *c) 1101{ 1102 struct bitstream bs; 1103 unsigned long plain_bits; 1104 unsigned long tmp; 1105 unsigned long rl; 1106 unsigned len; 1107 unsigned toggle; 1108 int bits, use_rle; 1109 1110 /* may we use this feature? */ 1111 rcu_read_lock(); 1112 use_rle = rcu_dereference(first_peer_device(device)->connection->net_conf)->use_rle; 1113 rcu_read_unlock(); 1114 if (!use_rle || first_peer_device(device)->connection->agreed_pro_version < 90) 1115 return 0; 1116 1117 if (c->bit_offset >= c->bm_bits) 1118 return 0; /* nothing to do. */ 1119 1120 /* use at most thus many bytes */ 1121 bitstream_init(&bs, p->code, size, 0); 1122 memset(p->code, 0, size); 1123 /* plain bits covered in this code string */ 1124 plain_bits = 0; 1125 1126 /* p->encoding & 0x80 stores whether the first run length is set. 1127 * bit offset is implicit. 1128 * start with toggle == 2 to be able to tell the first iteration */ 1129 toggle = 2; 1130 1131 /* see how much plain bits we can stuff into one packet 1132 * using RLE and VLI. */ 1133 do { 1134 tmp = (toggle == 0) ? _drbd_bm_find_next_zero(device, c->bit_offset) 1135 : _drbd_bm_find_next(device, c->bit_offset); 1136 if (tmp == -1UL) 1137 tmp = c->bm_bits; 1138 rl = tmp - c->bit_offset; 1139 1140 if (toggle == 2) { /* first iteration */ 1141 if (rl == 0) { 1142 /* the first checked bit was set, 1143 * store start value, */ 1144 dcbp_set_start(p, 1); 1145 /* but skip encoding of zero run length */ 1146 toggle = !toggle; 1147 continue; 1148 } 1149 dcbp_set_start(p, 0); 1150 } 1151 1152 /* paranoia: catch zero runlength. 1153 * can only happen if bitmap is modified while we scan it. */ 1154 if (rl == 0) { 1155 drbd_err(device, "unexpected zero runlength while encoding bitmap " 1156 "t:%u bo:%lu\n", toggle, c->bit_offset); 1157 return -1; 1158 } 1159 1160 bits = vli_encode_bits(&bs, rl); 1161 if (bits == -ENOBUFS) /* buffer full */ 1162 break; 1163 if (bits <= 0) { 1164 drbd_err(device, "error while encoding bitmap: %d\n", bits); 1165 return 0; 1166 } 1167 1168 toggle = !toggle; 1169 plain_bits += rl; 1170 c->bit_offset = tmp; 1171 } while (c->bit_offset < c->bm_bits); 1172 1173 len = bs.cur.b - p->code + !!bs.cur.bit; 1174 1175 if (plain_bits < (len << 3)) { 1176 /* incompressible with this method. 1177 * we need to rewind both word and bit position. */ 1178 c->bit_offset -= plain_bits; 1179 bm_xfer_ctx_bit_to_word_offset(c); 1180 c->bit_offset = c->word_offset * BITS_PER_LONG; 1181 return 0; 1182 } 1183 1184 /* RLE + VLI was able to compress it just fine. 1185 * update c->word_offset. */ 1186 bm_xfer_ctx_bit_to_word_offset(c); 1187 1188 /* store pad_bits */ 1189 dcbp_set_pad_bits(p, (8 - bs.cur.bit) & 0x7); 1190 1191 return len; 1192} 1193 1194/* 1195 * send_bitmap_rle_or_plain 1196 * 1197 * Return 0 when done, 1 when another iteration is needed, and a negative error 1198 * code upon failure. 1199 */ 1200static int 1201send_bitmap_rle_or_plain(struct drbd_device *device, struct bm_xfer_ctx *c) 1202{ 1203 struct drbd_socket *sock = &first_peer_device(device)->connection->data; 1204 unsigned int header_size = drbd_header_size(first_peer_device(device)->connection); 1205 struct p_compressed_bm *p = sock->sbuf + header_size; 1206 int len, err; 1207 1208 len = fill_bitmap_rle_bits(device, p, 1209 DRBD_SOCKET_BUFFER_SIZE - header_size - sizeof(*p), c); 1210 if (len < 0) 1211 return -EIO; 1212 1213 if (len) { 1214 dcbp_set_code(p, RLE_VLI_Bits); 1215 err = __send_command(first_peer_device(device)->connection, device->vnr, sock, 1216 P_COMPRESSED_BITMAP, sizeof(*p) + len, 1217 NULL, 0); 1218 c->packets[0]++; 1219 c->bytes[0] += header_size + sizeof(*p) + len; 1220 1221 if (c->bit_offset >= c->bm_bits) 1222 len = 0; /* DONE */ 1223 } else { 1224 /* was not compressible. 1225 * send a buffer full of plain text bits instead. */ 1226 unsigned int data_size; 1227 unsigned long num_words; 1228 unsigned long *p = sock->sbuf + header_size; 1229 1230 data_size = DRBD_SOCKET_BUFFER_SIZE - header_size; 1231 num_words = min_t(size_t, data_size / sizeof(*p), 1232 c->bm_words - c->word_offset); 1233 len = num_words * sizeof(*p); 1234 if (len) 1235 drbd_bm_get_lel(device, c->word_offset, num_words, p); 1236 err = __send_command(first_peer_device(device)->connection, device->vnr, sock, P_BITMAP, len, NULL, 0); 1237 c->word_offset += num_words; 1238 c->bit_offset = c->word_offset * BITS_PER_LONG; 1239 1240 c->packets[1]++; 1241 c->bytes[1] += header_size + len; 1242 1243 if (c->bit_offset > c->bm_bits) 1244 c->bit_offset = c->bm_bits; 1245 } 1246 if (!err) { 1247 if (len == 0) { 1248 INFO_bm_xfer_stats(device, "send", c); 1249 return 0; 1250 } else 1251 return 1; 1252 } 1253 return -EIO; 1254} 1255 1256/* See the comment at receive_bitmap() */ 1257static int _drbd_send_bitmap(struct drbd_device *device) 1258{ 1259 struct bm_xfer_ctx c; 1260 int err; 1261 1262 if (!expect(device->bitmap)) 1263 return false; 1264 1265 if (get_ldev(device)) { 1266 if (drbd_md_test_flag(device->ldev, MDF_FULL_SYNC)) { 1267 drbd_info(device, "Writing the whole bitmap, MDF_FullSync was set.\n"); 1268 drbd_bm_set_all(device); 1269 if (drbd_bm_write(device)) { 1270 /* write_bm did fail! Leave full sync flag set in Meta P_DATA 1271 * but otherwise process as per normal - need to tell other 1272 * side that a full resync is required! */ 1273 drbd_err(device, "Failed to write bitmap to disk!\n"); 1274 } else { 1275 drbd_md_clear_flag(device, MDF_FULL_SYNC); 1276 drbd_md_sync(device); 1277 } 1278 } 1279 put_ldev(device); 1280 } 1281 1282 c = (struct bm_xfer_ctx) { 1283 .bm_bits = drbd_bm_bits(device), 1284 .bm_words = drbd_bm_words(device), 1285 }; 1286 1287 do { 1288 err = send_bitmap_rle_or_plain(device, &c); 1289 } while (err > 0); 1290 1291 return err == 0; 1292} 1293 1294int drbd_send_bitmap(struct drbd_device *device) 1295{ 1296 struct drbd_socket *sock = &first_peer_device(device)->connection->data; 1297 int err = -1; 1298 1299 mutex_lock(&sock->mutex); 1300 if (sock->socket) 1301 err = !_drbd_send_bitmap(device); 1302 mutex_unlock(&sock->mutex); 1303 return err; 1304} 1305 1306void drbd_send_b_ack(struct drbd_connection *connection, u32 barrier_nr, u32 set_size) 1307{ 1308 struct drbd_socket *sock; 1309 struct p_barrier_ack *p; 1310 1311 if (connection->cstate < C_WF_REPORT_PARAMS) 1312 return; 1313 1314 sock = &connection->meta; 1315 p = conn_prepare_command(connection, sock); 1316 if (!p) 1317 return; 1318 p->barrier = barrier_nr; 1319 p->set_size = cpu_to_be32(set_size); 1320 conn_send_command(connection, sock, P_BARRIER_ACK, sizeof(*p), NULL, 0); 1321} 1322 1323/** 1324 * _drbd_send_ack() - Sends an ack packet 1325 * @peer_device: DRBD peer device. 1326 * @cmd: Packet command code. 1327 * @sector: sector, needs to be in big endian byte order 1328 * @blksize: size in byte, needs to be in big endian byte order 1329 * @block_id: Id, big endian byte order 1330 */ 1331static int _drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1332 u64 sector, u32 blksize, u64 block_id) 1333{ 1334 struct drbd_socket *sock; 1335 struct p_block_ack *p; 1336 1337 if (peer_device->device->state.conn < C_CONNECTED) 1338 return -EIO; 1339 1340 sock = &peer_device->connection->meta; 1341 p = drbd_prepare_command(peer_device, sock); 1342 if (!p) 1343 return -EIO; 1344 p->sector = sector; 1345 p->block_id = block_id; 1346 p->blksize = blksize; 1347 p->seq_num = cpu_to_be32(atomic_inc_return(&peer_device->device->packet_seq)); 1348 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0); 1349} 1350 1351/* dp->sector and dp->block_id already/still in network byte order, 1352 * data_size is payload size according to dp->head, 1353 * and may need to be corrected for digest size. */ 1354void drbd_send_ack_dp(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1355 struct p_data *dp, int data_size) 1356{ 1357 if (peer_device->connection->peer_integrity_tfm) 1358 data_size -= crypto_shash_digestsize(peer_device->connection->peer_integrity_tfm); 1359 _drbd_send_ack(peer_device, cmd, dp->sector, cpu_to_be32(data_size), 1360 dp->block_id); 1361} 1362 1363void drbd_send_ack_rp(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1364 struct p_block_req *rp) 1365{ 1366 _drbd_send_ack(peer_device, cmd, rp->sector, rp->blksize, rp->block_id); 1367} 1368 1369/** 1370 * drbd_send_ack() - Sends an ack packet 1371 * @peer_device: DRBD peer device 1372 * @cmd: packet command code 1373 * @peer_req: peer request 1374 */ 1375int drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1376 struct drbd_peer_request *peer_req) 1377{ 1378 return _drbd_send_ack(peer_device, cmd, 1379 cpu_to_be64(peer_req->i.sector), 1380 cpu_to_be32(peer_req->i.size), 1381 peer_req->block_id); 1382} 1383 1384/* This function misuses the block_id field to signal if the blocks 1385 * are is sync or not. */ 1386int drbd_send_ack_ex(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1387 sector_t sector, int blksize, u64 block_id) 1388{ 1389 return _drbd_send_ack(peer_device, cmd, 1390 cpu_to_be64(sector), 1391 cpu_to_be32(blksize), 1392 cpu_to_be64(block_id)); 1393} 1394 1395int drbd_send_rs_deallocated(struct drbd_peer_device *peer_device, 1396 struct drbd_peer_request *peer_req) 1397{ 1398 struct drbd_socket *sock; 1399 struct p_block_desc *p; 1400 1401 sock = &peer_device->connection->data; 1402 p = drbd_prepare_command(peer_device, sock); 1403 if (!p) 1404 return -EIO; 1405 p->sector = cpu_to_be64(peer_req->i.sector); 1406 p->blksize = cpu_to_be32(peer_req->i.size); 1407 p->pad = 0; 1408 return drbd_send_command(peer_device, sock, P_RS_DEALLOCATED, sizeof(*p), NULL, 0); 1409} 1410 1411int drbd_send_drequest(struct drbd_peer_device *peer_device, int cmd, 1412 sector_t sector, int size, u64 block_id) 1413{ 1414 struct drbd_socket *sock; 1415 struct p_block_req *p; 1416 1417 sock = &peer_device->connection->data; 1418 p = drbd_prepare_command(peer_device, sock); 1419 if (!p) 1420 return -EIO; 1421 p->sector = cpu_to_be64(sector); 1422 p->block_id = block_id; 1423 p->blksize = cpu_to_be32(size); 1424 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0); 1425} 1426 1427int drbd_send_drequest_csum(struct drbd_peer_device *peer_device, sector_t sector, int size, 1428 void *digest, int digest_size, enum drbd_packet cmd) 1429{ 1430 struct drbd_socket *sock; 1431 struct p_block_req *p; 1432 1433 /* FIXME: Put the digest into the preallocated socket buffer. */ 1434 1435 sock = &peer_device->connection->data; 1436 p = drbd_prepare_command(peer_device, sock); 1437 if (!p) 1438 return -EIO; 1439 p->sector = cpu_to_be64(sector); 1440 p->block_id = ID_SYNCER /* unused */; 1441 p->blksize = cpu_to_be32(size); 1442 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), digest, digest_size); 1443} 1444 1445int drbd_send_ov_request(struct drbd_peer_device *peer_device, sector_t sector, int size) 1446{ 1447 struct drbd_socket *sock; 1448 struct p_block_req *p; 1449 1450 sock = &peer_device->connection->data; 1451 p = drbd_prepare_command(peer_device, sock); 1452 if (!p) 1453 return -EIO; 1454 p->sector = cpu_to_be64(sector); 1455 p->block_id = ID_SYNCER /* unused */; 1456 p->blksize = cpu_to_be32(size); 1457 return drbd_send_command(peer_device, sock, P_OV_REQUEST, sizeof(*p), NULL, 0); 1458} 1459 1460/* called on sndtimeo 1461 * returns false if we should retry, 1462 * true if we think connection is dead 1463 */ 1464static int we_should_drop_the_connection(struct drbd_connection *connection, struct socket *sock) 1465{ 1466 int drop_it; 1467 /* long elapsed = (long)(jiffies - device->last_received); */ 1468 1469 drop_it = connection->meta.socket == sock 1470 || !connection->ack_receiver.task 1471 || get_t_state(&connection->ack_receiver) != RUNNING 1472 || connection->cstate < C_WF_REPORT_PARAMS; 1473 1474 if (drop_it) 1475 return true; 1476 1477 drop_it = !--connection->ko_count; 1478 if (!drop_it) { 1479 drbd_err(connection, "[%s/%d] sock_sendmsg time expired, ko = %u\n", 1480 current->comm, current->pid, connection->ko_count); 1481 request_ping(connection); 1482 } 1483 1484 return drop_it; /* && (device->state == R_PRIMARY) */; 1485} 1486 1487static void drbd_update_congested(struct drbd_connection *connection) 1488{ 1489 struct sock *sk = connection->data.socket->sk; 1490 if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5) 1491 set_bit(NET_CONGESTED, &connection->flags); 1492} 1493 1494/* The idea of sendpage seems to be to put some kind of reference 1495 * to the page into the skb, and to hand it over to the NIC. In 1496 * this process get_page() gets called. 1497 * 1498 * As soon as the page was really sent over the network put_page() 1499 * gets called by some part of the network layer. [ NIC driver? ] 1500 * 1501 * [ get_page() / put_page() increment/decrement the count. If count 1502 * reaches 0 the page will be freed. ] 1503 * 1504 * This works nicely with pages from FSs. 1505 * But this means that in protocol A we might signal IO completion too early! 1506 * 1507 * In order not to corrupt data during a resync we must make sure 1508 * that we do not reuse our own buffer pages (EEs) to early, therefore 1509 * we have the net_ee list. 1510 * 1511 * XFS seems to have problems, still, it submits pages with page_count == 0! 1512 * As a workaround, we disable sendpage on pages 1513 * with page_count == 0 or PageSlab. 1514 */ 1515static int _drbd_no_send_page(struct drbd_peer_device *peer_device, struct page *page, 1516 int offset, size_t size, unsigned msg_flags) 1517{ 1518 struct socket *socket; 1519 void *addr; 1520 int err; 1521 1522 socket = peer_device->connection->data.socket; 1523 addr = kmap(page) + offset; 1524 err = drbd_send_all(peer_device->connection, socket, addr, size, msg_flags); 1525 kunmap(page); 1526 if (!err) 1527 peer_device->device->send_cnt += size >> 9; 1528 return err; 1529} 1530 1531static int _drbd_send_page(struct drbd_peer_device *peer_device, struct page *page, 1532 int offset, size_t size, unsigned msg_flags) 1533{ 1534 struct socket *socket = peer_device->connection->data.socket; 1535 int len = size; 1536 int err = -EIO; 1537 1538 /* e.g. XFS meta- & log-data is in slab pages, which have a 1539 * page_count of 0 and/or have PageSlab() set. 1540 * we cannot use send_page for those, as that does get_page(); 1541 * put_page(); and would cause either a VM_BUG directly, or 1542 * __page_cache_release a page that would actually still be referenced 1543 * by someone, leading to some obscure delayed Oops somewhere else. */ 1544 if (drbd_disable_sendpage || !sendpage_ok(page)) 1545 return _drbd_no_send_page(peer_device, page, offset, size, msg_flags); 1546 1547 msg_flags |= MSG_NOSIGNAL; 1548 drbd_update_congested(peer_device->connection); 1549 do { 1550 int sent; 1551 1552 sent = socket->ops->sendpage(socket, page, offset, len, msg_flags); 1553 if (sent <= 0) { 1554 if (sent == -EAGAIN) { 1555 if (we_should_drop_the_connection(peer_device->connection, socket)) 1556 break; 1557 continue; 1558 } 1559 drbd_warn(peer_device->device, "%s: size=%d len=%d sent=%d\n", 1560 __func__, (int)size, len, sent); 1561 if (sent < 0) 1562 err = sent; 1563 break; 1564 } 1565 len -= sent; 1566 offset += sent; 1567 } while (len > 0 /* THINK && device->cstate >= C_CONNECTED*/); 1568 clear_bit(NET_CONGESTED, &peer_device->connection->flags); 1569 1570 if (len == 0) { 1571 err = 0; 1572 peer_device->device->send_cnt += size >> 9; 1573 } 1574 return err; 1575} 1576 1577static int _drbd_send_bio(struct drbd_peer_device *peer_device, struct bio *bio) 1578{ 1579 struct bio_vec bvec; 1580 struct bvec_iter iter; 1581 1582 /* hint all but last page with MSG_MORE */ 1583 bio_for_each_segment(bvec, bio, iter) { 1584 int err; 1585 1586 err = _drbd_no_send_page(peer_device, bvec.bv_page, 1587 bvec.bv_offset, bvec.bv_len, 1588 bio_iter_last(bvec, iter) 1589 ? 0 : MSG_MORE); 1590 if (err) 1591 return err; 1592 } 1593 return 0; 1594} 1595 1596static int _drbd_send_zc_bio(struct drbd_peer_device *peer_device, struct bio *bio) 1597{ 1598 struct bio_vec bvec; 1599 struct bvec_iter iter; 1600 1601 /* hint all but last page with MSG_MORE */ 1602 bio_for_each_segment(bvec, bio, iter) { 1603 int err; 1604 1605 err = _drbd_send_page(peer_device, bvec.bv_page, 1606 bvec.bv_offset, bvec.bv_len, 1607 bio_iter_last(bvec, iter) ? 0 : MSG_MORE); 1608 if (err) 1609 return err; 1610 } 1611 return 0; 1612} 1613 1614static int _drbd_send_zc_ee(struct drbd_peer_device *peer_device, 1615 struct drbd_peer_request *peer_req) 1616{ 1617 struct page *page = peer_req->pages; 1618 unsigned len = peer_req->i.size; 1619 int err; 1620 1621 /* hint all but last page with MSG_MORE */ 1622 page_chain_for_each(page) { 1623 unsigned l = min_t(unsigned, len, PAGE_SIZE); 1624 1625 err = _drbd_send_page(peer_device, page, 0, l, 1626 page_chain_next(page) ? MSG_MORE : 0); 1627 if (err) 1628 return err; 1629 len -= l; 1630 } 1631 return 0; 1632} 1633 1634static u32 bio_flags_to_wire(struct drbd_connection *connection, 1635 struct bio *bio) 1636{ 1637 if (connection->agreed_pro_version >= 95) 1638 return (bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0) | 1639 (bio->bi_opf & REQ_FUA ? DP_FUA : 0) | 1640 (bio->bi_opf & REQ_PREFLUSH ? DP_FLUSH : 0) | 1641 (bio_op(bio) == REQ_OP_DISCARD ? DP_DISCARD : 0) | 1642 (bio_op(bio) == REQ_OP_WRITE_ZEROES ? 1643 ((connection->agreed_features & DRBD_FF_WZEROES) ? 1644 (DP_ZEROES |(!(bio->bi_opf & REQ_NOUNMAP) ? DP_DISCARD : 0)) 1645 : DP_DISCARD) 1646 : 0); 1647 else 1648 return bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0; 1649} 1650 1651/* Used to send write or TRIM aka REQ_OP_DISCARD requests 1652 * R_PRIMARY -> Peer (P_DATA, P_TRIM) 1653 */ 1654int drbd_send_dblock(struct drbd_peer_device *peer_device, struct drbd_request *req) 1655{ 1656 struct drbd_device *device = peer_device->device; 1657 struct drbd_socket *sock; 1658 struct p_data *p; 1659 void *digest_out; 1660 unsigned int dp_flags = 0; 1661 int digest_size; 1662 int err; 1663 1664 sock = &peer_device->connection->data; 1665 p = drbd_prepare_command(peer_device, sock); 1666 digest_size = peer_device->connection->integrity_tfm ? 1667 crypto_shash_digestsize(peer_device->connection->integrity_tfm) : 0; 1668 1669 if (!p) 1670 return -EIO; 1671 p->sector = cpu_to_be64(req->i.sector); 1672 p->block_id = (unsigned long)req; 1673 p->seq_num = cpu_to_be32(atomic_inc_return(&device->packet_seq)); 1674 dp_flags = bio_flags_to_wire(peer_device->connection, req->master_bio); 1675 if (device->state.conn >= C_SYNC_SOURCE && 1676 device->state.conn <= C_PAUSED_SYNC_T) 1677 dp_flags |= DP_MAY_SET_IN_SYNC; 1678 if (peer_device->connection->agreed_pro_version >= 100) { 1679 if (req->rq_state & RQ_EXP_RECEIVE_ACK) 1680 dp_flags |= DP_SEND_RECEIVE_ACK; 1681 /* During resync, request an explicit write ack, 1682 * even in protocol != C */ 1683 if (req->rq_state & RQ_EXP_WRITE_ACK 1684 || (dp_flags & DP_MAY_SET_IN_SYNC)) 1685 dp_flags |= DP_SEND_WRITE_ACK; 1686 } 1687 p->dp_flags = cpu_to_be32(dp_flags); 1688 1689 if (dp_flags & (DP_DISCARD|DP_ZEROES)) { 1690 enum drbd_packet cmd = (dp_flags & DP_ZEROES) ? P_ZEROES : P_TRIM; 1691 struct p_trim *t = (struct p_trim*)p; 1692 t->size = cpu_to_be32(req->i.size); 1693 err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*t), NULL, 0); 1694 goto out; 1695 } 1696 digest_out = p + 1; 1697 1698 /* our digest is still only over the payload. 1699 * TRIM does not carry any payload. */ 1700 if (digest_size) 1701 drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest_out); 1702 err = __send_command(peer_device->connection, device->vnr, sock, P_DATA, 1703 sizeof(*p) + digest_size, NULL, req->i.size); 1704 if (!err) { 1705 /* For protocol A, we have to memcpy the payload into 1706 * socket buffers, as we may complete right away 1707 * as soon as we handed it over to tcp, at which point the data 1708 * pages may become invalid. 1709 * 1710 * For data-integrity enabled, we copy it as well, so we can be 1711 * sure that even if the bio pages may still be modified, it 1712 * won't change the data on the wire, thus if the digest checks 1713 * out ok after sending on this side, but does not fit on the 1714 * receiving side, we sure have detected corruption elsewhere. 1715 */ 1716 if (!(req->rq_state & (RQ_EXP_RECEIVE_ACK | RQ_EXP_WRITE_ACK)) || digest_size) 1717 err = _drbd_send_bio(peer_device, req->master_bio); 1718 else 1719 err = _drbd_send_zc_bio(peer_device, req->master_bio); 1720 1721 /* double check digest, sometimes buffers have been modified in flight. */ 1722 if (digest_size > 0 && digest_size <= 64) { 1723 /* 64 byte, 512 bit, is the largest digest size 1724 * currently supported in kernel crypto. */ 1725 unsigned char digest[64]; 1726 drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest); 1727 if (memcmp(p + 1, digest, digest_size)) { 1728 drbd_warn(device, 1729 "Digest mismatch, buffer modified by upper layers during write: %llus +%u\n", 1730 (unsigned long long)req->i.sector, req->i.size); 1731 } 1732 } /* else if (digest_size > 64) { 1733 ... Be noisy about digest too large ... 1734 } */ 1735 } 1736out: 1737 mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */ 1738 1739 return err; 1740} 1741 1742/* answer packet, used to send data back for read requests: 1743 * Peer -> (diskless) R_PRIMARY (P_DATA_REPLY) 1744 * C_SYNC_SOURCE -> C_SYNC_TARGET (P_RS_DATA_REPLY) 1745 */ 1746int drbd_send_block(struct drbd_peer_device *peer_device, enum drbd_packet cmd, 1747 struct drbd_peer_request *peer_req) 1748{ 1749 struct drbd_device *device = peer_device->device; 1750 struct drbd_socket *sock; 1751 struct p_data *p; 1752 int err; 1753 int digest_size; 1754 1755 sock = &peer_device->connection->data; 1756 p = drbd_prepare_command(peer_device, sock); 1757 1758 digest_size = peer_device->connection->integrity_tfm ? 1759 crypto_shash_digestsize(peer_device->connection->integrity_tfm) : 0; 1760 1761 if (!p) 1762 return -EIO; 1763 p->sector = cpu_to_be64(peer_req->i.sector); 1764 p->block_id = peer_req->block_id; 1765 p->seq_num = 0; /* unused */ 1766 p->dp_flags = 0; 1767 if (digest_size) 1768 drbd_csum_ee(peer_device->connection->integrity_tfm, peer_req, p + 1); 1769 err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*p) + digest_size, NULL, peer_req->i.size); 1770 if (!err) 1771 err = _drbd_send_zc_ee(peer_device, peer_req); 1772 mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */ 1773 1774 return err; 1775} 1776 1777int drbd_send_out_of_sync(struct drbd_peer_device *peer_device, struct drbd_request *req) 1778{ 1779 struct drbd_socket *sock; 1780 struct p_block_desc *p; 1781 1782 sock = &peer_device->connection->data; 1783 p = drbd_prepare_command(peer_device, sock); 1784 if (!p) 1785 return -EIO; 1786 p->sector = cpu_to_be64(req->i.sector); 1787 p->blksize = cpu_to_be32(req->i.size); 1788 return drbd_send_command(peer_device, sock, P_OUT_OF_SYNC, sizeof(*p), NULL, 0); 1789} 1790 1791/* 1792 drbd_send distinguishes two cases: 1793 1794 Packets sent via the data socket "sock" 1795 and packets sent via the meta data socket "msock" 1796 1797 sock msock 1798 -----------------+-------------------------+------------------------------ 1799 timeout conf.timeout / 2 conf.timeout / 2 1800 timeout action send a ping via msock Abort communication 1801 and close all sockets 1802*/ 1803 1804/* 1805 * you must have down()ed the appropriate [m]sock_mutex elsewhere! 1806 */ 1807int drbd_send(struct drbd_connection *connection, struct socket *sock, 1808 void *buf, size_t size, unsigned msg_flags) 1809{ 1810 struct kvec iov = {.iov_base = buf, .iov_len = size}; 1811 struct msghdr msg = {.msg_flags = msg_flags | MSG_NOSIGNAL}; 1812 int rv, sent = 0; 1813 1814 if (!sock) 1815 return -EBADR; 1816 1817 /* THINK if (signal_pending) return ... ? */ 1818 1819 iov_iter_kvec(&msg.msg_iter, WRITE, &iov, 1, size); 1820 1821 if (sock == connection->data.socket) { 1822 rcu_read_lock(); 1823 connection->ko_count = rcu_dereference(connection->net_conf)->ko_count; 1824 rcu_read_unlock(); 1825 drbd_update_congested(connection); 1826 } 1827 do { 1828 rv = sock_sendmsg(sock, &msg); 1829 if (rv == -EAGAIN) { 1830 if (we_should_drop_the_connection(connection, sock)) 1831 break; 1832 else 1833 continue; 1834 } 1835 if (rv == -EINTR) { 1836 flush_signals(current); 1837 rv = 0; 1838 } 1839 if (rv < 0) 1840 break; 1841 sent += rv; 1842 } while (sent < size); 1843 1844 if (sock == connection->data.socket) 1845 clear_bit(NET_CONGESTED, &connection->flags); 1846 1847 if (rv <= 0) { 1848 if (rv != -EAGAIN) { 1849 drbd_err(connection, "%s_sendmsg returned %d\n", 1850 sock == connection->meta.socket ? "msock" : "sock", 1851 rv); 1852 conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD); 1853 } else 1854 conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD); 1855 } 1856 1857 return sent; 1858} 1859 1860/* 1861 * drbd_send_all - Send an entire buffer 1862 * 1863 * Returns 0 upon success and a negative error value otherwise. 1864 */ 1865int drbd_send_all(struct drbd_connection *connection, struct socket *sock, void *buffer, 1866 size_t size, unsigned msg_flags) 1867{ 1868 int err; 1869 1870 err = drbd_send(connection, sock, buffer, size, msg_flags); 1871 if (err < 0) 1872 return err; 1873 if (err != size) 1874 return -EIO; 1875 return 0; 1876} 1877 1878static int drbd_open(struct block_device *bdev, fmode_t mode) 1879{ 1880 struct drbd_device *device = bdev->bd_disk->private_data; 1881 unsigned long flags; 1882 int rv = 0; 1883 1884 mutex_lock(&drbd_main_mutex); 1885 spin_lock_irqsave(&device->resource->req_lock, flags); 1886 /* to have a stable device->state.role 1887 * and no race with updating open_cnt */ 1888 1889 if (device->state.role != R_PRIMARY) { 1890 if (mode & FMODE_WRITE) 1891 rv = -EROFS; 1892 else if (!drbd_allow_oos) 1893 rv = -EMEDIUMTYPE; 1894 } 1895 1896 if (!rv) 1897 device->open_cnt++; 1898 spin_unlock_irqrestore(&device->resource->req_lock, flags); 1899 mutex_unlock(&drbd_main_mutex); 1900 1901 return rv; 1902} 1903 1904static void drbd_release(struct gendisk *gd, fmode_t mode) 1905{ 1906 struct drbd_device *device = gd->private_data; 1907 mutex_lock(&drbd_main_mutex); 1908 device->open_cnt--; 1909 mutex_unlock(&drbd_main_mutex); 1910} 1911 1912/* need to hold resource->req_lock */ 1913void drbd_queue_unplug(struct drbd_device *device) 1914{ 1915 if (device->state.pdsk >= D_INCONSISTENT && device->state.conn >= C_CONNECTED) { 1916 D_ASSERT(device, device->state.role == R_PRIMARY); 1917 if (test_and_clear_bit(UNPLUG_REMOTE, &device->flags)) { 1918 drbd_queue_work_if_unqueued( 1919 &first_peer_device(device)->connection->sender_work, 1920 &device->unplug_work); 1921 } 1922 } 1923} 1924 1925static void drbd_set_defaults(struct drbd_device *device) 1926{ 1927 /* Beware! The actual layout differs 1928 * between big endian and little endian */ 1929 device->state = (union drbd_dev_state) { 1930 { .role = R_SECONDARY, 1931 .peer = R_UNKNOWN, 1932 .conn = C_STANDALONE, 1933 .disk = D_DISKLESS, 1934 .pdsk = D_UNKNOWN, 1935 } }; 1936} 1937 1938void drbd_init_set_defaults(struct drbd_device *device) 1939{ 1940 /* the memset(,0,) did most of this. 1941 * note: only assignments, no allocation in here */ 1942 1943 drbd_set_defaults(device); 1944 1945 atomic_set(&device->ap_bio_cnt, 0); 1946 atomic_set(&device->ap_actlog_cnt, 0); 1947 atomic_set(&device->ap_pending_cnt, 0); 1948 atomic_set(&device->rs_pending_cnt, 0); 1949 atomic_set(&device->unacked_cnt, 0); 1950 atomic_set(&device->local_cnt, 0); 1951 atomic_set(&device->pp_in_use_by_net, 0); 1952 atomic_set(&device->rs_sect_in, 0); 1953 atomic_set(&device->rs_sect_ev, 0); 1954 atomic_set(&device->ap_in_flight, 0); 1955 atomic_set(&device->md_io.in_use, 0); 1956 1957 mutex_init(&device->own_state_mutex); 1958 device->state_mutex = &device->own_state_mutex; 1959 1960 spin_lock_init(&device->al_lock); 1961 spin_lock_init(&device->peer_seq_lock); 1962 1963 INIT_LIST_HEAD(&device->active_ee); 1964 INIT_LIST_HEAD(&device->sync_ee); 1965 INIT_LIST_HEAD(&device->done_ee); 1966 INIT_LIST_HEAD(&device->read_ee); 1967 INIT_LIST_HEAD(&device->net_ee); 1968 INIT_LIST_HEAD(&device->resync_reads); 1969 INIT_LIST_HEAD(&device->resync_work.list); 1970 INIT_LIST_HEAD(&device->unplug_work.list); 1971 INIT_LIST_HEAD(&device->bm_io_work.w.list); 1972 INIT_LIST_HEAD(&device->pending_master_completion[0]); 1973 INIT_LIST_HEAD(&device->pending_master_completion[1]); 1974 INIT_LIST_HEAD(&device->pending_completion[0]); 1975 INIT_LIST_HEAD(&device->pending_completion[1]); 1976 1977 device->resync_work.cb = w_resync_timer; 1978 device->unplug_work.cb = w_send_write_hint; 1979 device->bm_io_work.w.cb = w_bitmap_io; 1980 1981 timer_setup(&device->resync_timer, resync_timer_fn, 0); 1982 timer_setup(&device->md_sync_timer, md_sync_timer_fn, 0); 1983 timer_setup(&device->start_resync_timer, start_resync_timer_fn, 0); 1984 timer_setup(&device->request_timer, request_timer_fn, 0); 1985 1986 init_waitqueue_head(&device->misc_wait); 1987 init_waitqueue_head(&device->state_wait); 1988 init_waitqueue_head(&device->ee_wait); 1989 init_waitqueue_head(&device->al_wait); 1990 init_waitqueue_head(&device->seq_wait); 1991 1992 device->resync_wenr = LC_FREE; 1993 device->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE; 1994 device->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE; 1995} 1996 1997void drbd_set_my_capacity(struct drbd_device *device, sector_t size) 1998{ 1999 char ppb[10]; 2000 2001 set_capacity_and_notify(device->vdisk, size); 2002 2003 drbd_info(device, "size = %s (%llu KB)\n", 2004 ppsize(ppb, size>>1), (unsigned long long)size>>1); 2005} 2006 2007void drbd_device_cleanup(struct drbd_device *device) 2008{ 2009 int i; 2010 if (first_peer_device(device)->connection->receiver.t_state != NONE) 2011 drbd_err(device, "ASSERT FAILED: receiver t_state == %d expected 0.\n", 2012 first_peer_device(device)->connection->receiver.t_state); 2013 2014 device->al_writ_cnt = 2015 device->bm_writ_cnt = 2016 device->read_cnt = 2017 device->recv_cnt = 2018 device->send_cnt = 2019 device->writ_cnt = 2020 device->p_size = 2021 device->rs_start = 2022 device->rs_total = 2023 device->rs_failed = 0; 2024 device->rs_last_events = 0; 2025 device->rs_last_sect_ev = 0; 2026 for (i = 0; i < DRBD_SYNC_MARKS; i++) { 2027 device->rs_mark_left[i] = 0; 2028 device->rs_mark_time[i] = 0; 2029 } 2030 D_ASSERT(device, first_peer_device(device)->connection->net_conf == NULL); 2031 2032 set_capacity_and_notify(device->vdisk, 0); 2033 if (device->bitmap) { 2034 /* maybe never allocated. */ 2035 drbd_bm_resize(device, 0, 1); 2036 drbd_bm_cleanup(device); 2037 } 2038 2039 drbd_backing_dev_free(device, device->ldev); 2040 device->ldev = NULL; 2041 2042 clear_bit(AL_SUSPENDED, &device->flags); 2043 2044 D_ASSERT(device, list_empty(&device->active_ee)); 2045 D_ASSERT(device, list_empty(&device->sync_ee)); 2046 D_ASSERT(device, list_empty(&device->done_ee)); 2047 D_ASSERT(device, list_empty(&device->read_ee)); 2048 D_ASSERT(device, list_empty(&device->net_ee)); 2049 D_ASSERT(device, list_empty(&device->resync_reads)); 2050 D_ASSERT(device, list_empty(&first_peer_device(device)->connection->sender_work.q)); 2051 D_ASSERT(device, list_empty(&device->resync_work.list)); 2052 D_ASSERT(device, list_empty(&device->unplug_work.list)); 2053 2054 drbd_set_defaults(device); 2055} 2056 2057 2058static void drbd_destroy_mempools(void) 2059{ 2060 struct page *page; 2061 2062 while (drbd_pp_pool) { 2063 page = drbd_pp_pool; 2064 drbd_pp_pool = (struct page *)page_private(page); 2065 __free_page(page); 2066 drbd_pp_vacant--; 2067 } 2068 2069 /* D_ASSERT(device, atomic_read(&drbd_pp_vacant)==0); */ 2070 2071 bioset_exit(&drbd_io_bio_set); 2072 bioset_exit(&drbd_md_io_bio_set); 2073 mempool_exit(&drbd_md_io_page_pool); 2074 mempool_exit(&drbd_ee_mempool); 2075 mempool_exit(&drbd_request_mempool); 2076 kmem_cache_destroy(drbd_ee_cache); 2077 kmem_cache_destroy(drbd_request_cache); 2078 kmem_cache_destroy(drbd_bm_ext_cache); 2079 kmem_cache_destroy(drbd_al_ext_cache); 2080 2081 drbd_ee_cache = NULL; 2082 drbd_request_cache = NULL; 2083 drbd_bm_ext_cache = NULL; 2084 drbd_al_ext_cache = NULL; 2085 2086 return; 2087} 2088 2089static int drbd_create_mempools(void) 2090{ 2091 struct page *page; 2092 const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * drbd_minor_count; 2093 int i, ret; 2094 2095 /* caches */ 2096 drbd_request_cache = kmem_cache_create( 2097 "drbd_req", sizeof(struct drbd_request), 0, 0, NULL); 2098 if (drbd_request_cache == NULL) 2099 goto Enomem; 2100 2101 drbd_ee_cache = kmem_cache_create( 2102 "drbd_ee", sizeof(struct drbd_peer_request), 0, 0, NULL); 2103 if (drbd_ee_cache == NULL) 2104 goto Enomem; 2105 2106 drbd_bm_ext_cache = kmem_cache_create( 2107 "drbd_bm", sizeof(struct bm_extent), 0, 0, NULL); 2108 if (drbd_bm_ext_cache == NULL) 2109 goto Enomem; 2110 2111 drbd_al_ext_cache = kmem_cache_create( 2112 "drbd_al", sizeof(struct lc_element), 0, 0, NULL); 2113 if (drbd_al_ext_cache == NULL) 2114 goto Enomem; 2115 2116 /* mempools */ 2117 ret = bioset_init(&drbd_io_bio_set, BIO_POOL_SIZE, 0, 0); 2118 if (ret) 2119 goto Enomem; 2120 2121 ret = bioset_init(&drbd_md_io_bio_set, DRBD_MIN_POOL_PAGES, 0, 2122 BIOSET_NEED_BVECS); 2123 if (ret) 2124 goto Enomem; 2125 2126 ret = mempool_init_page_pool(&drbd_md_io_page_pool, DRBD_MIN_POOL_PAGES, 0); 2127 if (ret) 2128 goto Enomem; 2129 2130 ret = mempool_init_slab_pool(&drbd_request_mempool, number, 2131 drbd_request_cache); 2132 if (ret) 2133 goto Enomem; 2134 2135 ret = mempool_init_slab_pool(&drbd_ee_mempool, number, drbd_ee_cache); 2136 if (ret) 2137 goto Enomem; 2138 2139 for (i = 0; i < number; i++) { 2140 page = alloc_page(GFP_HIGHUSER); 2141 if (!page) 2142 goto Enomem; 2143 set_page_private(page, (unsigned long)drbd_pp_pool); 2144 drbd_pp_pool = page; 2145 } 2146 drbd_pp_vacant = number; 2147 2148 return 0; 2149 2150Enomem: 2151 drbd_destroy_mempools(); /* in case we allocated some */ 2152 return -ENOMEM; 2153} 2154 2155static void drbd_release_all_peer_reqs(struct drbd_device *device) 2156{ 2157 int rr; 2158 2159 rr = drbd_free_peer_reqs(device, &device->active_ee); 2160 if (rr) 2161 drbd_err(device, "%d EEs in active list found!\n", rr); 2162 2163 rr = drbd_free_peer_reqs(device, &device->sync_ee); 2164 if (rr) 2165 drbd_err(device, "%d EEs in sync list found!\n", rr); 2166 2167 rr = drbd_free_peer_reqs(device, &device->read_ee); 2168 if (rr) 2169 drbd_err(device, "%d EEs in read list found!\n", rr); 2170 2171 rr = drbd_free_peer_reqs(device, &device->done_ee); 2172 if (rr) 2173 drbd_err(device, "%d EEs in done list found!\n", rr); 2174 2175 rr = drbd_free_peer_reqs(device, &device->net_ee); 2176 if (rr) 2177 drbd_err(device, "%d EEs in net list found!\n", rr); 2178} 2179 2180/* caution. no locking. */ 2181void drbd_destroy_device(struct kref *kref) 2182{ 2183 struct drbd_device *device = container_of(kref, struct drbd_device, kref); 2184 struct drbd_resource *resource = device->resource; 2185 struct drbd_peer_device *peer_device, *tmp_peer_device; 2186 2187 del_timer_sync(&device->request_timer); 2188 2189 /* paranoia asserts */ 2190 D_ASSERT(device, device->open_cnt == 0); 2191 /* end paranoia asserts */ 2192 2193 /* cleanup stuff that may have been allocated during 2194 * device (re-)configuration or state changes */ 2195 2196 drbd_backing_dev_free(device, device->ldev); 2197 device->ldev = NULL; 2198 2199 drbd_release_all_peer_reqs(device); 2200 2201 lc_destroy(device->act_log); 2202 lc_destroy(device->resync); 2203 2204 kfree(device->p_uuid); 2205 /* device->p_uuid = NULL; */ 2206 2207 if (device->bitmap) /* should no longer be there. */ 2208 drbd_bm_cleanup(device); 2209 __free_page(device->md_io.page); 2210 blk_cleanup_disk(device->vdisk); 2211 kfree(device->rs_plan_s); 2212 2213 /* not for_each_connection(connection, resource): 2214 * those may have been cleaned up and disassociated already. 2215 */ 2216 for_each_peer_device_safe(peer_device, tmp_peer_device, device) { 2217 kref_put(&peer_device->connection->kref, drbd_destroy_connection); 2218 kfree(peer_device); 2219 } 2220 memset(device, 0xfd, sizeof(*device)); 2221 kfree(device); 2222 kref_put(&resource->kref, drbd_destroy_resource); 2223} 2224 2225/* One global retry thread, if we need to push back some bio and have it 2226 * reinserted through our make request function. 2227 */ 2228static struct retry_worker { 2229 struct workqueue_struct *wq; 2230 struct work_struct worker; 2231 2232 spinlock_t lock; 2233 struct list_head writes; 2234} retry; 2235 2236static void do_retry(struct work_struct *ws) 2237{ 2238 struct retry_worker *retry = container_of(ws, struct retry_worker, worker); 2239 LIST_HEAD(writes); 2240 struct drbd_request *req, *tmp; 2241 2242 spin_lock_irq(&retry->lock); 2243 list_splice_init(&retry->writes, &writes); 2244 spin_unlock_irq(&retry->lock); 2245 2246 list_for_each_entry_safe(req, tmp, &writes, tl_requests) { 2247 struct drbd_device *device = req->device; 2248 struct bio *bio = req->master_bio; 2249 bool expected; 2250 2251 expected = 2252 expect(atomic_read(&req->completion_ref) == 0) && 2253 expect(req->rq_state & RQ_POSTPONED) && 2254 expect((req->rq_state & RQ_LOCAL_PENDING) == 0 || 2255 (req->rq_state & RQ_LOCAL_ABORTED) != 0); 2256 2257 if (!expected) 2258 drbd_err(device, "req=%p completion_ref=%d rq_state=%x\n", 2259 req, atomic_read(&req->completion_ref), 2260 req->rq_state); 2261 2262 /* We still need to put one kref associated with the 2263 * "completion_ref" going zero in the code path that queued it 2264 * here. The request object may still be referenced by a 2265 * frozen local req->private_bio, in case we force-detached. 2266 */ 2267 kref_put(&req->kref, drbd_req_destroy); 2268 2269 /* A single suspended or otherwise blocking device may stall 2270 * all others as well. Fortunately, this code path is to 2271 * recover from a situation that "should not happen": 2272 * concurrent writes in multi-primary setup. 2273 * In a "normal" lifecycle, this workqueue is supposed to be 2274 * destroyed without ever doing anything. 2275 * If it turns out to be an issue anyways, we can do per 2276 * resource (replication group) or per device (minor) retry 2277 * workqueues instead. 2278 */ 2279 2280 /* We are not just doing submit_bio_noacct(), 2281 * as we want to keep the start_time information. */ 2282 inc_ap_bio(device); 2283 __drbd_make_request(device, bio); 2284 } 2285} 2286 2287/* called via drbd_req_put_completion_ref(), 2288 * holds resource->req_lock */ 2289void drbd_restart_request(struct drbd_request *req) 2290{ 2291 unsigned long flags; 2292 spin_lock_irqsave(&retry.lock, flags); 2293 list_move_tail(&req->tl_requests, &retry.writes); 2294 spin_unlock_irqrestore(&retry.lock, flags); 2295 2296 /* Drop the extra reference that would otherwise 2297 * have been dropped by complete_master_bio. 2298 * do_retry() needs to grab a new one. */ 2299 dec_ap_bio(req->device); 2300 2301 queue_work(retry.wq, &retry.worker); 2302} 2303 2304void drbd_destroy_resource(struct kref *kref) 2305{ 2306 struct drbd_resource *resource = 2307 container_of(kref, struct drbd_resource, kref); 2308 2309 idr_destroy(&resource->devices); 2310 free_cpumask_var(resource->cpu_mask); 2311 kfree(resource->name); 2312 memset(resource, 0xf2, sizeof(*resource)); 2313 kfree(resource); 2314} 2315 2316void drbd_free_resource(struct drbd_resource *resource) 2317{ 2318 struct drbd_connection *connection, *tmp; 2319 2320 for_each_connection_safe(connection, tmp, resource) { 2321 list_del(&connection->connections); 2322 drbd_debugfs_connection_cleanup(connection); 2323 kref_put(&connection->kref, drbd_destroy_connection); 2324 } 2325 drbd_debugfs_resource_cleanup(resource); 2326 kref_put(&resource->kref, drbd_destroy_resource); 2327} 2328 2329static void drbd_cleanup(void) 2330{ 2331 unsigned int i; 2332 struct drbd_device *device; 2333 struct drbd_resource *resource, *tmp; 2334 2335 /* first remove proc, 2336 * drbdsetup uses it's presence to detect 2337 * whether DRBD is loaded. 2338 * If we would get stuck in proc removal, 2339 * but have netlink already deregistered, 2340 * some drbdsetup commands may wait forever 2341 * for an answer. 2342 */ 2343 if (drbd_proc) 2344 remove_proc_entry("drbd", NULL); 2345 2346 if (retry.wq) 2347 destroy_workqueue(retry.wq); 2348 2349 drbd_genl_unregister(); 2350 2351 idr_for_each_entry(&drbd_devices, device, i) 2352 drbd_delete_device(device); 2353 2354 /* not _rcu since, no other updater anymore. Genl already unregistered */ 2355 for_each_resource_safe(resource, tmp, &drbd_resources) { 2356 list_del(&resource->resources); 2357 drbd_free_resource(resource); 2358 } 2359 2360 drbd_debugfs_cleanup(); 2361 2362 drbd_destroy_mempools(); 2363 unregister_blkdev(DRBD_MAJOR, "drbd"); 2364 2365 idr_destroy(&drbd_devices); 2366 2367 pr_info("module cleanup done.\n"); 2368} 2369 2370static void drbd_init_workqueue(struct drbd_work_queue* wq) 2371{ 2372 spin_lock_init(&wq->q_lock); 2373 INIT_LIST_HEAD(&wq->q); 2374 init_waitqueue_head(&wq->q_wait); 2375} 2376 2377struct completion_work { 2378 struct drbd_work w; 2379 struct completion done; 2380}; 2381 2382static int w_complete(struct drbd_work *w, int cancel) 2383{ 2384 struct completion_work *completion_work = 2385 container_of(w, struct completion_work, w); 2386 2387 complete(&completion_work->done); 2388 return 0; 2389} 2390 2391void drbd_flush_workqueue(struct drbd_work_queue *work_queue) 2392{ 2393 struct completion_work completion_work; 2394 2395 completion_work.w.cb = w_complete; 2396 init_completion(&completion_work.done); 2397 drbd_queue_work(work_queue, &completion_work.w); 2398 wait_for_completion(&completion_work.done); 2399} 2400 2401struct drbd_resource *drbd_find_resource(const char *name) 2402{ 2403 struct drbd_resource *resource; 2404 2405 if (!name || !name[0]) 2406 return NULL; 2407 2408 rcu_read_lock(); 2409 for_each_resource_rcu(resource, &drbd_resources) { 2410 if (!strcmp(resource->name, name)) { 2411 kref_get(&resource->kref); 2412 goto found; 2413 } 2414 } 2415 resource = NULL; 2416found: 2417 rcu_read_unlock(); 2418 return resource; 2419} 2420 2421struct drbd_connection *conn_get_by_addrs(void *my_addr, int my_addr_len, 2422 void *peer_addr, int peer_addr_len) 2423{ 2424 struct drbd_resource *resource; 2425 struct drbd_connection *connection; 2426 2427 rcu_read_lock(); 2428 for_each_resource_rcu(resource, &drbd_resources) { 2429 for_each_connection_rcu(connection, resource) { 2430 if (connection->my_addr_len == my_addr_len && 2431 connection->peer_addr_len == peer_addr_len && 2432 !memcmp(&connection->my_addr, my_addr, my_addr_len) && 2433 !memcmp(&connection->peer_addr, peer_addr, peer_addr_len)) { 2434 kref_get(&connection->kref); 2435 goto found; 2436 } 2437 } 2438 } 2439 connection = NULL; 2440found: 2441 rcu_read_unlock(); 2442 return connection; 2443} 2444 2445static int drbd_alloc_socket(struct drbd_socket *socket) 2446{ 2447 socket->rbuf = (void *) __get_free_page(GFP_KERNEL); 2448 if (!socket->rbuf) 2449 return -ENOMEM; 2450 socket->sbuf = (void *) __get_free_page(GFP_KERNEL); 2451 if (!socket->sbuf) 2452 return -ENOMEM; 2453 return 0; 2454} 2455 2456static void drbd_free_socket(struct drbd_socket *socket) 2457{ 2458 free_page((unsigned long) socket->sbuf); 2459 free_page((unsigned long) socket->rbuf); 2460} 2461 2462void conn_free_crypto(struct drbd_connection *connection) 2463{ 2464 drbd_free_sock(connection); 2465 2466 crypto_free_shash(connection->csums_tfm); 2467 crypto_free_shash(connection->verify_tfm); 2468 crypto_free_shash(connection->cram_hmac_tfm); 2469 crypto_free_shash(connection->integrity_tfm); 2470 crypto_free_shash(connection->peer_integrity_tfm); 2471 kfree(connection->int_dig_in); 2472 kfree(connection->int_dig_vv); 2473 2474 connection->csums_tfm = NULL; 2475 connection->verify_tfm = NULL; 2476 connection->cram_hmac_tfm = NULL; 2477 connection->integrity_tfm = NULL; 2478 connection->peer_integrity_tfm = NULL; 2479 connection->int_dig_in = NULL; 2480 connection->int_dig_vv = NULL; 2481} 2482 2483int set_resource_options(struct drbd_resource *resource, struct res_opts *res_opts) 2484{ 2485 struct drbd_connection *connection; 2486 cpumask_var_t new_cpu_mask; 2487 int err; 2488 2489 if (!zalloc_cpumask_var(&new_cpu_mask, GFP_KERNEL)) 2490 return -ENOMEM; 2491 2492 /* silently ignore cpu mask on UP kernel */ 2493 if (nr_cpu_ids > 1 && res_opts->cpu_mask[0] != 0) { 2494 err = bitmap_parse(res_opts->cpu_mask, DRBD_CPU_MASK_SIZE, 2495 cpumask_bits(new_cpu_mask), nr_cpu_ids); 2496 if (err == -EOVERFLOW) { 2497 /* So what. mask it out. */ 2498 cpumask_var_t tmp_cpu_mask; 2499 if (zalloc_cpumask_var(&tmp_cpu_mask, GFP_KERNEL)) { 2500 cpumask_setall(tmp_cpu_mask); 2501 cpumask_and(new_cpu_mask, new_cpu_mask, tmp_cpu_mask); 2502 drbd_warn(resource, "Overflow in bitmap_parse(%.12s%s), truncating to %u bits\n", 2503 res_opts->cpu_mask, 2504 strlen(res_opts->cpu_mask) > 12 ? "..." : "", 2505 nr_cpu_ids); 2506 free_cpumask_var(tmp_cpu_mask); 2507 err = 0; 2508 } 2509 } 2510 if (err) { 2511 drbd_warn(resource, "bitmap_parse() failed with %d\n", err); 2512 /* retcode = ERR_CPU_MASK_PARSE; */ 2513 goto fail; 2514 } 2515 } 2516 resource->res_opts = *res_opts; 2517 if (cpumask_empty(new_cpu_mask)) 2518 drbd_calc_cpu_mask(&new_cpu_mask); 2519 if (!cpumask_equal(resource->cpu_mask, new_cpu_mask)) { 2520 cpumask_copy(resource->cpu_mask, new_cpu_mask); 2521 for_each_connection_rcu(connection, resource) { 2522 connection->receiver.reset_cpu_mask = 1; 2523 connection->ack_receiver.reset_cpu_mask = 1; 2524 connection->worker.reset_cpu_mask = 1; 2525 } 2526 } 2527 err = 0; 2528 2529fail: 2530 free_cpumask_var(new_cpu_mask); 2531 return err; 2532 2533} 2534 2535struct drbd_resource *drbd_create_resource(const char *name) 2536{ 2537 struct drbd_resource *resource; 2538 2539 resource = kzalloc(sizeof(struct drbd_resource), GFP_KERNEL); 2540 if (!resource) 2541 goto fail; 2542 resource->name = kstrdup(name, GFP_KERNEL); 2543 if (!resource->name) 2544 goto fail_free_resource; 2545 if (!zalloc_cpumask_var(&resource->cpu_mask, GFP_KERNEL)) 2546 goto fail_free_name; 2547 kref_init(&resource->kref); 2548 idr_init(&resource->devices); 2549 INIT_LIST_HEAD(&resource->connections); 2550 resource->write_ordering = WO_BDEV_FLUSH; 2551 list_add_tail_rcu(&resource->resources, &drbd_resources); 2552 mutex_init(&resource->conf_update); 2553 mutex_init(&resource->adm_mutex); 2554 spin_lock_init(&resource->req_lock); 2555 drbd_debugfs_resource_add(resource); 2556 return resource; 2557 2558fail_free_name: 2559 kfree(resource->name); 2560fail_free_resource: 2561 kfree(resource); 2562fail: 2563 return NULL; 2564} 2565 2566/* caller must be under adm_mutex */ 2567struct drbd_connection *conn_create(const char *name, struct res_opts *res_opts) 2568{ 2569 struct drbd_resource *resource; 2570 struct drbd_connection *connection; 2571 2572 connection = kzalloc(sizeof(struct drbd_connection), GFP_KERNEL); 2573 if (!connection) 2574 return NULL; 2575 2576 if (drbd_alloc_socket(&connection->data)) 2577 goto fail; 2578 if (drbd_alloc_socket(&connection->meta)) 2579 goto fail; 2580 2581 connection->current_epoch = kzalloc(sizeof(struct drbd_epoch), GFP_KERNEL); 2582 if (!connection->current_epoch) 2583 goto fail; 2584 2585 INIT_LIST_HEAD(&connection->transfer_log); 2586 2587 INIT_LIST_HEAD(&connection->current_epoch->list); 2588 connection->epochs = 1; 2589 spin_lock_init(&connection->epoch_lock); 2590 2591 connection->send.seen_any_write_yet = false; 2592 connection->send.current_epoch_nr = 0; 2593 connection->send.current_epoch_writes = 0; 2594 2595 resource = drbd_create_resource(name); 2596 if (!resource) 2597 goto fail; 2598 2599 connection->cstate = C_STANDALONE; 2600 mutex_init(&connection->cstate_mutex); 2601 init_waitqueue_head(&connection->ping_wait); 2602 idr_init(&connection->peer_devices); 2603 2604 drbd_init_workqueue(&connection->sender_work); 2605 mutex_init(&connection->data.mutex); 2606 mutex_init(&connection->meta.mutex); 2607 2608 drbd_thread_init(resource, &connection->receiver, drbd_receiver, "receiver"); 2609 connection->receiver.connection = connection; 2610 drbd_thread_init(resource, &connection->worker, drbd_worker, "worker"); 2611 connection->worker.connection = connection; 2612 drbd_thread_init(resource, &connection->ack_receiver, drbd_ack_receiver, "ack_recv"); 2613 connection->ack_receiver.connection = connection; 2614 2615 kref_init(&connection->kref); 2616 2617 connection->resource = resource; 2618 2619 if (set_resource_options(resource, res_opts)) 2620 goto fail_resource; 2621 2622 kref_get(&resource->kref); 2623 list_add_tail_rcu(&connection->connections, &resource->connections); 2624 drbd_debugfs_connection_add(connection); 2625 return connection; 2626 2627fail_resource: 2628 list_del(&resource->resources); 2629 drbd_free_resource(resource); 2630fail: 2631 kfree(connection->current_epoch); 2632 drbd_free_socket(&connection->meta); 2633 drbd_free_socket(&connection->data); 2634 kfree(connection); 2635 return NULL; 2636} 2637 2638void drbd_destroy_connection(struct kref *kref) 2639{ 2640 struct drbd_connection *connection = container_of(kref, struct drbd_connection, kref); 2641 struct drbd_resource *resource = connection->resource; 2642 2643 if (atomic_read(&connection->current_epoch->epoch_size) != 0) 2644 drbd_err(connection, "epoch_size:%d\n", atomic_read(&connection->current_epoch->epoch_size)); 2645 kfree(connection->current_epoch); 2646 2647 idr_destroy(&connection->peer_devices); 2648 2649 drbd_free_socket(&connection->meta); 2650 drbd_free_socket(&connection->data); 2651 kfree(connection->int_dig_in); 2652 kfree(connection->int_dig_vv); 2653 memset(connection, 0xfc, sizeof(*connection)); 2654 kfree(connection); 2655 kref_put(&resource->kref, drbd_destroy_resource); 2656} 2657 2658static int init_submitter(struct drbd_device *device) 2659{ 2660 /* opencoded create_singlethread_workqueue(), 2661 * to be able to say "drbd%d", ..., minor */ 2662 device->submit.wq = 2663 alloc_ordered_workqueue("drbd%u_submit", WQ_MEM_RECLAIM, device->minor); 2664 if (!device->submit.wq) 2665 return -ENOMEM; 2666 2667 INIT_WORK(&device->submit.worker, do_submit); 2668 INIT_LIST_HEAD(&device->submit.writes); 2669 return 0; 2670} 2671 2672enum drbd_ret_code drbd_create_device(struct drbd_config_context *adm_ctx, unsigned int minor) 2673{ 2674 struct drbd_resource *resource = adm_ctx->resource; 2675 struct drbd_connection *connection; 2676 struct drbd_device *device; 2677 struct drbd_peer_device *peer_device, *tmp_peer_device; 2678 struct gendisk *disk; 2679 int id; 2680 int vnr = adm_ctx->volume; 2681 enum drbd_ret_code err = ERR_NOMEM; 2682 2683 device = minor_to_device(minor); 2684 if (device) 2685 return ERR_MINOR_OR_VOLUME_EXISTS; 2686 2687 /* GFP_KERNEL, we are outside of all write-out paths */ 2688 device = kzalloc(sizeof(struct drbd_device), GFP_KERNEL); 2689 if (!device) 2690 return ERR_NOMEM; 2691 kref_init(&device->kref); 2692 2693 kref_get(&resource->kref); 2694 device->resource = resource; 2695 device->minor = minor; 2696 device->vnr = vnr; 2697 2698 drbd_init_set_defaults(device); 2699 2700 disk = blk_alloc_disk(NUMA_NO_NODE); 2701 if (!disk) 2702 goto out_no_disk; 2703 2704 device->vdisk = disk; 2705 device->rq_queue = disk->queue; 2706 2707 set_disk_ro(disk, true); 2708 2709 disk->major = DRBD_MAJOR; 2710 disk->first_minor = minor; 2711 disk->minors = 1; 2712 disk->fops = &drbd_ops; 2713 disk->flags |= GENHD_FL_NO_PART; 2714 sprintf(disk->disk_name, "drbd%d", minor); 2715 disk->private_data = device; 2716 2717 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, disk->queue); 2718 blk_queue_write_cache(disk->queue, true, true); 2719 /* Setting the max_hw_sectors to an odd value of 8kibyte here 2720 This triggers a max_bio_size message upon first attach or connect */ 2721 blk_queue_max_hw_sectors(disk->queue, DRBD_MAX_BIO_SIZE_SAFE >> 8); 2722 2723 device->md_io.page = alloc_page(GFP_KERNEL); 2724 if (!device->md_io.page) 2725 goto out_no_io_page; 2726 2727 if (drbd_bm_init(device)) 2728 goto out_no_bitmap; 2729 device->read_requests = RB_ROOT; 2730 device->write_requests = RB_ROOT; 2731 2732 id = idr_alloc(&drbd_devices, device, minor, minor + 1, GFP_KERNEL); 2733 if (id < 0) { 2734 if (id == -ENOSPC) 2735 err = ERR_MINOR_OR_VOLUME_EXISTS; 2736 goto out_no_minor_idr; 2737 } 2738 kref_get(&device->kref); 2739 2740 id = idr_alloc(&resource->devices, device, vnr, vnr + 1, GFP_KERNEL); 2741 if (id < 0) { 2742 if (id == -ENOSPC) 2743 err = ERR_MINOR_OR_VOLUME_EXISTS; 2744 goto out_idr_remove_minor; 2745 } 2746 kref_get(&device->kref); 2747 2748 INIT_LIST_HEAD(&device->peer_devices); 2749 INIT_LIST_HEAD(&device->pending_bitmap_io); 2750 for_each_connection(connection, resource) { 2751 peer_device = kzalloc(sizeof(struct drbd_peer_device), GFP_KERNEL); 2752 if (!peer_device) 2753 goto out_idr_remove_from_resource; 2754 peer_device->connection = connection; 2755 peer_device->device = device; 2756 2757 list_add(&peer_device->peer_devices, &device->peer_devices); 2758 kref_get(&device->kref); 2759 2760 id = idr_alloc(&connection->peer_devices, peer_device, vnr, vnr + 1, GFP_KERNEL); 2761 if (id < 0) { 2762 if (id == -ENOSPC) 2763 err = ERR_INVALID_REQUEST; 2764 goto out_idr_remove_from_resource; 2765 } 2766 kref_get(&connection->kref); 2767 INIT_WORK(&peer_device->send_acks_work, drbd_send_acks_wf); 2768 } 2769 2770 if (init_submitter(device)) { 2771 err = ERR_NOMEM; 2772 goto out_idr_remove_from_resource; 2773 } 2774 2775 err = add_disk(disk); 2776 if (err) 2777 goto out_idr_remove_from_resource; 2778 2779 /* inherit the connection state */ 2780 device->state.conn = first_connection(resource)->cstate; 2781 if (device->state.conn == C_WF_REPORT_PARAMS) { 2782 for_each_peer_device(peer_device, device) 2783 drbd_connected(peer_device); 2784 } 2785 /* move to create_peer_device() */ 2786 for_each_peer_device(peer_device, device) 2787 drbd_debugfs_peer_device_add(peer_device); 2788 drbd_debugfs_device_add(device); 2789 return NO_ERROR; 2790 2791out_idr_remove_from_resource: 2792 for_each_connection(connection, resource) { 2793 peer_device = idr_remove(&connection->peer_devices, vnr); 2794 if (peer_device) 2795 kref_put(&connection->kref, drbd_destroy_connection); 2796 } 2797 for_each_peer_device_safe(peer_device, tmp_peer_device, device) { 2798 list_del(&peer_device->peer_devices); 2799 kfree(peer_device); 2800 } 2801 idr_remove(&resource->devices, vnr); 2802out_idr_remove_minor: 2803 idr_remove(&drbd_devices, minor); 2804 synchronize_rcu(); 2805out_no_minor_idr: 2806 drbd_bm_cleanup(device); 2807out_no_bitmap: 2808 __free_page(device->md_io.page); 2809out_no_io_page: 2810 blk_cleanup_disk(disk); 2811out_no_disk: 2812 kref_put(&resource->kref, drbd_destroy_resource); 2813 kfree(device); 2814 return err; 2815} 2816 2817void drbd_delete_device(struct drbd_device *device) 2818{ 2819 struct drbd_resource *resource = device->resource; 2820 struct drbd_connection *connection; 2821 struct drbd_peer_device *peer_device; 2822 2823 /* move to free_peer_device() */ 2824 for_each_peer_device(peer_device, device) 2825 drbd_debugfs_peer_device_cleanup(peer_device); 2826 drbd_debugfs_device_cleanup(device); 2827 for_each_connection(connection, resource) { 2828 idr_remove(&connection->peer_devices, device->vnr); 2829 kref_put(&device->kref, drbd_destroy_device); 2830 } 2831 idr_remove(&resource->devices, device->vnr); 2832 kref_put(&device->kref, drbd_destroy_device); 2833 idr_remove(&drbd_devices, device_to_minor(device)); 2834 kref_put(&device->kref, drbd_destroy_device); 2835 del_gendisk(device->vdisk); 2836 synchronize_rcu(); 2837 kref_put(&device->kref, drbd_destroy_device); 2838} 2839 2840static int __init drbd_init(void) 2841{ 2842 int err; 2843 2844 if (drbd_minor_count < DRBD_MINOR_COUNT_MIN || drbd_minor_count > DRBD_MINOR_COUNT_MAX) { 2845 pr_err("invalid minor_count (%d)\n", drbd_minor_count); 2846#ifdef MODULE 2847 return -EINVAL; 2848#else 2849 drbd_minor_count = DRBD_MINOR_COUNT_DEF; 2850#endif 2851 } 2852 2853 err = register_blkdev(DRBD_MAJOR, "drbd"); 2854 if (err) { 2855 pr_err("unable to register block device major %d\n", 2856 DRBD_MAJOR); 2857 return err; 2858 } 2859 2860 /* 2861 * allocate all necessary structs 2862 */ 2863 init_waitqueue_head(&drbd_pp_wait); 2864 2865 drbd_proc = NULL; /* play safe for drbd_cleanup */ 2866 idr_init(&drbd_devices); 2867 2868 mutex_init(&resources_mutex); 2869 INIT_LIST_HEAD(&drbd_resources); 2870 2871 err = drbd_genl_register(); 2872 if (err) { 2873 pr_err("unable to register generic netlink family\n"); 2874 goto fail; 2875 } 2876 2877 err = drbd_create_mempools(); 2878 if (err) 2879 goto fail; 2880 2881 err = -ENOMEM; 2882 drbd_proc = proc_create_single("drbd", S_IFREG | 0444 , NULL, drbd_seq_show); 2883 if (!drbd_proc) { 2884 pr_err("unable to register proc file\n"); 2885 goto fail; 2886 } 2887 2888 retry.wq = create_singlethread_workqueue("drbd-reissue"); 2889 if (!retry.wq) { 2890 pr_err("unable to create retry workqueue\n"); 2891 goto fail; 2892 } 2893 INIT_WORK(&retry.worker, do_retry); 2894 spin_lock_init(&retry.lock); 2895 INIT_LIST_HEAD(&retry.writes); 2896 2897 drbd_debugfs_init(); 2898 2899 pr_info("initialized. " 2900 "Version: " REL_VERSION " (api:%d/proto:%d-%d)\n", 2901 API_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX); 2902 pr_info("%s\n", drbd_buildtag()); 2903 pr_info("registered as block device major %d\n", DRBD_MAJOR); 2904 return 0; /* Success! */ 2905 2906fail: 2907 drbd_cleanup(); 2908 if (err == -ENOMEM) 2909 pr_err("ran out of memory\n"); 2910 else 2911 pr_err("initialization failure\n"); 2912 return err; 2913} 2914 2915static void drbd_free_one_sock(struct drbd_socket *ds) 2916{ 2917 struct socket *s; 2918 mutex_lock(&ds->mutex); 2919 s = ds->socket; 2920 ds->socket = NULL; 2921 mutex_unlock(&ds->mutex); 2922 if (s) { 2923 /* so debugfs does not need to mutex_lock() */ 2924 synchronize_rcu(); 2925 kernel_sock_shutdown(s, SHUT_RDWR); 2926 sock_release(s); 2927 } 2928} 2929 2930void drbd_free_sock(struct drbd_connection *connection) 2931{ 2932 if (connection->data.socket) 2933 drbd_free_one_sock(&connection->data); 2934 if (connection->meta.socket) 2935 drbd_free_one_sock(&connection->meta); 2936} 2937 2938/* meta data management */ 2939 2940void conn_md_sync(struct drbd_connection *connection) 2941{ 2942 struct drbd_peer_device *peer_device; 2943 int vnr; 2944 2945 rcu_read_lock(); 2946 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { 2947 struct drbd_device *device = peer_device->device; 2948 2949 kref_get(&device->kref); 2950 rcu_read_unlock(); 2951 drbd_md_sync(device); 2952 kref_put(&device->kref, drbd_destroy_device); 2953 rcu_read_lock(); 2954 } 2955 rcu_read_unlock(); 2956} 2957 2958/* aligned 4kByte */ 2959struct meta_data_on_disk { 2960 u64 la_size_sect; /* last agreed size. */ 2961 u64 uuid[UI_SIZE]; /* UUIDs. */ 2962 u64 device_uuid; 2963 u64 reserved_u64_1; 2964 u32 flags; /* MDF */ 2965 u32 magic; 2966 u32 md_size_sect; 2967 u32 al_offset; /* offset to this block */ 2968 u32 al_nr_extents; /* important for restoring the AL (userspace) */ 2969 /* `-- act_log->nr_elements <-- ldev->dc.al_extents */ 2970 u32 bm_offset; /* offset to the bitmap, from here */ 2971 u32 bm_bytes_per_bit; /* BM_BLOCK_SIZE */ 2972 u32 la_peer_max_bio_size; /* last peer max_bio_size */ 2973 2974 /* see al_tr_number_to_on_disk_sector() */ 2975 u32 al_stripes; 2976 u32 al_stripe_size_4k; 2977 2978 u8 reserved_u8[4096 - (7*8 + 10*4)]; 2979} __packed; 2980 2981 2982 2983void drbd_md_write(struct drbd_device *device, void *b) 2984{ 2985 struct meta_data_on_disk *buffer = b; 2986 sector_t sector; 2987 int i; 2988 2989 memset(buffer, 0, sizeof(*buffer)); 2990 2991 buffer->la_size_sect = cpu_to_be64(get_capacity(device->vdisk)); 2992 for (i = UI_CURRENT; i < UI_SIZE; i++) 2993 buffer->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]); 2994 buffer->flags = cpu_to_be32(device->ldev->md.flags); 2995 buffer->magic = cpu_to_be32(DRBD_MD_MAGIC_84_UNCLEAN); 2996 2997 buffer->md_size_sect = cpu_to_be32(device->ldev->md.md_size_sect); 2998 buffer->al_offset = cpu_to_be32(device->ldev->md.al_offset); 2999 buffer->al_nr_extents = cpu_to_be32(device->act_log->nr_elements); 3000 buffer->bm_bytes_per_bit = cpu_to_be32(BM_BLOCK_SIZE); 3001 buffer->device_uuid = cpu_to_be64(device->ldev->md.device_uuid); 3002 3003 buffer->bm_offset = cpu_to_be32(device->ldev->md.bm_offset); 3004 buffer->la_peer_max_bio_size = cpu_to_be32(device->peer_max_bio_size); 3005 3006 buffer->al_stripes = cpu_to_be32(device->ldev->md.al_stripes); 3007 buffer->al_stripe_size_4k = cpu_to_be32(device->ldev->md.al_stripe_size_4k); 3008 3009 D_ASSERT(device, drbd_md_ss(device->ldev) == device->ldev->md.md_offset); 3010 sector = device->ldev->md.md_offset; 3011 3012 if (drbd_md_sync_page_io(device, device->ldev, sector, REQ_OP_WRITE)) { 3013 /* this was a try anyways ... */ 3014 drbd_err(device, "meta data update failed!\n"); 3015 drbd_chk_io_error(device, 1, DRBD_META_IO_ERROR); 3016 } 3017} 3018 3019/** 3020 * drbd_md_sync() - Writes the meta data super block if the MD_DIRTY flag bit is set 3021 * @device: DRBD device. 3022 */ 3023void drbd_md_sync(struct drbd_device *device) 3024{ 3025 struct meta_data_on_disk *buffer; 3026 3027 /* Don't accidentally change the DRBD meta data layout. */ 3028 BUILD_BUG_ON(UI_SIZE != 4); 3029 BUILD_BUG_ON(sizeof(struct meta_data_on_disk) != 4096); 3030 3031 del_timer(&device->md_sync_timer); 3032 /* timer may be rearmed by drbd_md_mark_dirty() now. */ 3033 if (!test_and_clear_bit(MD_DIRTY, &device->flags)) 3034 return; 3035 3036 /* We use here D_FAILED and not D_ATTACHING because we try to write 3037 * metadata even if we detach due to a disk failure! */ 3038 if (!get_ldev_if_state(device, D_FAILED)) 3039 return; 3040 3041 buffer = drbd_md_get_buffer(device, __func__); 3042 if (!buffer) 3043 goto out; 3044 3045 drbd_md_write(device, buffer); 3046 3047 /* Update device->ldev->md.la_size_sect, 3048 * since we updated it on metadata. */ 3049 device->ldev->md.la_size_sect = get_capacity(device->vdisk); 3050 3051 drbd_md_put_buffer(device); 3052out: 3053 put_ldev(device); 3054} 3055 3056static int check_activity_log_stripe_size(struct drbd_device *device, 3057 struct meta_data_on_disk *on_disk, 3058 struct drbd_md *in_core) 3059{ 3060 u32 al_stripes = be32_to_cpu(on_disk->al_stripes); 3061 u32 al_stripe_size_4k = be32_to_cpu(on_disk->al_stripe_size_4k); 3062 u64 al_size_4k; 3063 3064 /* both not set: default to old fixed size activity log */ 3065 if (al_stripes == 0 && al_stripe_size_4k == 0) { 3066 al_stripes = 1; 3067 al_stripe_size_4k = MD_32kB_SECT/8; 3068 } 3069 3070 /* some paranoia plausibility checks */ 3071 3072 /* we need both values to be set */ 3073 if (al_stripes == 0 || al_stripe_size_4k == 0) 3074 goto err; 3075 3076 al_size_4k = (u64)al_stripes * al_stripe_size_4k; 3077 3078 /* Upper limit of activity log area, to avoid potential overflow 3079 * problems in al_tr_number_to_on_disk_sector(). As right now, more 3080 * than 72 * 4k blocks total only increases the amount of history, 3081 * limiting this arbitrarily to 16 GB is not a real limitation ;-) */ 3082 if (al_size_4k > (16 * 1024 * 1024/4)) 3083 goto err; 3084 3085 /* Lower limit: we need at least 8 transaction slots (32kB) 3086 * to not break existing setups */ 3087 if (al_size_4k < MD_32kB_SECT/8) 3088 goto err; 3089 3090 in_core->al_stripe_size_4k = al_stripe_size_4k; 3091 in_core->al_stripes = al_stripes; 3092 in_core->al_size_4k = al_size_4k; 3093 3094 return 0; 3095err: 3096 drbd_err(device, "invalid activity log striping: al_stripes=%u, al_stripe_size_4k=%u\n", 3097 al_stripes, al_stripe_size_4k); 3098 return -EINVAL; 3099} 3100 3101static int check_offsets_and_sizes(struct drbd_device *device, struct drbd_backing_dev *bdev) 3102{ 3103 sector_t capacity = drbd_get_capacity(bdev->md_bdev); 3104 struct drbd_md *in_core = &bdev->md; 3105 s32 on_disk_al_sect; 3106 s32 on_disk_bm_sect; 3107 3108 /* The on-disk size of the activity log, calculated from offsets, and 3109 * the size of the activity log calculated from the stripe settings, 3110 * should match. 3111 * Though we could relax this a bit: it is ok, if the striped activity log 3112 * fits in the available on-disk activity log size. 3113 * Right now, that would break how resize is implemented. 3114 * TODO: make drbd_determine_dev_size() (and the drbdmeta tool) aware 3115 * of possible unused padding space in the on disk layout. */ 3116 if (in_core->al_offset < 0) { 3117 if (in_core->bm_offset > in_core->al_offset) 3118 goto err; 3119 on_disk_al_sect = -in_core->al_offset; 3120 on_disk_bm_sect = in_core->al_offset - in_core->bm_offset; 3121 } else { 3122 if (in_core->al_offset != MD_4kB_SECT) 3123 goto err; 3124 if (in_core->bm_offset < in_core->al_offset + in_core->al_size_4k * MD_4kB_SECT) 3125 goto err; 3126 3127 on_disk_al_sect = in_core->bm_offset - MD_4kB_SECT; 3128 on_disk_bm_sect = in_core->md_size_sect - in_core->bm_offset; 3129 } 3130 3131 /* old fixed size meta data is exactly that: fixed. */ 3132 if (in_core->meta_dev_idx >= 0) { 3133 if (in_core->md_size_sect != MD_128MB_SECT 3134 || in_core->al_offset != MD_4kB_SECT 3135 || in_core->bm_offset != MD_4kB_SECT + MD_32kB_SECT 3136 || in_core->al_stripes != 1 3137 || in_core->al_stripe_size_4k != MD_32kB_SECT/8) 3138 goto err; 3139 } 3140 3141 if (capacity < in_core->md_size_sect) 3142 goto err; 3143 if (capacity - in_core->md_size_sect < drbd_md_first_sector(bdev)) 3144 goto err; 3145 3146 /* should be aligned, and at least 32k */ 3147 if ((on_disk_al_sect & 7) || (on_disk_al_sect < MD_32kB_SECT)) 3148 goto err; 3149 3150 /* should fit (for now: exactly) into the available on-disk space; 3151 * overflow prevention is in check_activity_log_stripe_size() above. */ 3152 if (on_disk_al_sect != in_core->al_size_4k * MD_4kB_SECT) 3153 goto err; 3154 3155 /* again, should be aligned */ 3156 if (in_core->bm_offset & 7) 3157 goto err; 3158 3159 /* FIXME check for device grow with flex external meta data? */ 3160 3161 /* can the available bitmap space cover the last agreed device size? */ 3162 if (on_disk_bm_sect < (in_core->la_size_sect+7)/MD_4kB_SECT/8/512) 3163 goto err; 3164 3165 return 0; 3166 3167err: 3168 drbd_err(device, "meta data offsets don't make sense: idx=%d " 3169 "al_s=%u, al_sz4k=%u, al_offset=%d, bm_offset=%d, " 3170 "md_size_sect=%u, la_size=%llu, md_capacity=%llu\n", 3171 in_core->meta_dev_idx, 3172 in_core->al_stripes, in_core->al_stripe_size_4k, 3173 in_core->al_offset, in_core->bm_offset, in_core->md_size_sect, 3174 (unsigned long long)in_core->la_size_sect, 3175 (unsigned long long)capacity); 3176 3177 return -EINVAL; 3178} 3179 3180 3181/** 3182 * drbd_md_read() - Reads in the meta data super block 3183 * @device: DRBD device. 3184 * @bdev: Device from which the meta data should be read in. 3185 * 3186 * Return NO_ERROR on success, and an enum drbd_ret_code in case 3187 * something goes wrong. 3188 * 3189 * Called exactly once during drbd_adm_attach(), while still being D_DISKLESS, 3190 * even before @bdev is assigned to @device->ldev. 3191 */ 3192int drbd_md_read(struct drbd_device *device, struct drbd_backing_dev *bdev) 3193{ 3194 struct meta_data_on_disk *buffer; 3195 u32 magic, flags; 3196 int i, rv = NO_ERROR; 3197 3198 if (device->state.disk != D_DISKLESS) 3199 return ERR_DISK_CONFIGURED; 3200 3201 buffer = drbd_md_get_buffer(device, __func__); 3202 if (!buffer) 3203 return ERR_NOMEM; 3204 3205 /* First, figure out where our meta data superblock is located, 3206 * and read it. */ 3207 bdev->md.meta_dev_idx = bdev->disk_conf->meta_dev_idx; 3208 bdev->md.md_offset = drbd_md_ss(bdev); 3209 /* Even for (flexible or indexed) external meta data, 3210 * initially restrict us to the 4k superblock for now. 3211 * Affects the paranoia out-of-range access check in drbd_md_sync_page_io(). */ 3212 bdev->md.md_size_sect = 8; 3213 3214 if (drbd_md_sync_page_io(device, bdev, bdev->md.md_offset, 3215 REQ_OP_READ)) { 3216 /* NOTE: can't do normal error processing here as this is 3217 called BEFORE disk is attached */ 3218 drbd_err(device, "Error while reading metadata.\n"); 3219 rv = ERR_IO_MD_DISK; 3220 goto err; 3221 } 3222 3223 magic = be32_to_cpu(buffer->magic); 3224 flags = be32_to_cpu(buffer->flags); 3225 if (magic == DRBD_MD_MAGIC_84_UNCLEAN || 3226 (magic == DRBD_MD_MAGIC_08 && !(flags & MDF_AL_CLEAN))) { 3227 /* btw: that's Activity Log clean, not "all" clean. */ 3228 drbd_err(device, "Found unclean meta data. Did you \"drbdadm apply-al\"?\n"); 3229 rv = ERR_MD_UNCLEAN; 3230 goto err; 3231 } 3232 3233 rv = ERR_MD_INVALID; 3234 if (magic != DRBD_MD_MAGIC_08) { 3235 if (magic == DRBD_MD_MAGIC_07) 3236 drbd_err(device, "Found old (0.7) meta data magic. Did you \"drbdadm create-md\"?\n"); 3237 else 3238 drbd_err(device, "Meta data magic not found. Did you \"drbdadm create-md\"?\n"); 3239 goto err; 3240 } 3241 3242 if (be32_to_cpu(buffer->bm_bytes_per_bit) != BM_BLOCK_SIZE) { 3243 drbd_err(device, "unexpected bm_bytes_per_bit: %u (expected %u)\n", 3244 be32_to_cpu(buffer->bm_bytes_per_bit), BM_BLOCK_SIZE); 3245 goto err; 3246 } 3247 3248 3249 /* convert to in_core endian */ 3250 bdev->md.la_size_sect = be64_to_cpu(buffer->la_size_sect); 3251 for (i = UI_CURRENT; i < UI_SIZE; i++) 3252 bdev->md.uuid[i] = be64_to_cpu(buffer->uuid[i]); 3253 bdev->md.flags = be32_to_cpu(buffer->flags); 3254 bdev->md.device_uuid = be64_to_cpu(buffer->device_uuid); 3255 3256 bdev->md.md_size_sect = be32_to_cpu(buffer->md_size_sect); 3257 bdev->md.al_offset = be32_to_cpu(buffer->al_offset); 3258 bdev->md.bm_offset = be32_to_cpu(buffer->bm_offset); 3259 3260 if (check_activity_log_stripe_size(device, buffer, &bdev->md)) 3261 goto err; 3262 if (check_offsets_and_sizes(device, bdev)) 3263 goto err; 3264 3265 if (be32_to_cpu(buffer->bm_offset) != bdev->md.bm_offset) { 3266 drbd_err(device, "unexpected bm_offset: %d (expected %d)\n", 3267 be32_to_cpu(buffer->bm_offset), bdev->md.bm_offset); 3268 goto err; 3269 } 3270 if (be32_to_cpu(buffer->md_size_sect) != bdev->md.md_size_sect) { 3271 drbd_err(device, "unexpected md_size: %u (expected %u)\n", 3272 be32_to_cpu(buffer->md_size_sect), bdev->md.md_size_sect); 3273 goto err; 3274 } 3275 3276 rv = NO_ERROR; 3277 3278 spin_lock_irq(&device->resource->req_lock); 3279 if (device->state.conn < C_CONNECTED) { 3280 unsigned int peer; 3281 peer = be32_to_cpu(buffer->la_peer_max_bio_size); 3282 peer = max(peer, DRBD_MAX_BIO_SIZE_SAFE); 3283 device->peer_max_bio_size = peer; 3284 } 3285 spin_unlock_irq(&device->resource->req_lock); 3286 3287 err: 3288 drbd_md_put_buffer(device); 3289 3290 return rv; 3291} 3292 3293/** 3294 * drbd_md_mark_dirty() - Mark meta data super block as dirty 3295 * @device: DRBD device. 3296 * 3297 * Call this function if you change anything that should be written to 3298 * the meta-data super block. This function sets MD_DIRTY, and starts a 3299 * timer that ensures that within five seconds you have to call drbd_md_sync(). 3300 */ 3301void drbd_md_mark_dirty(struct drbd_device *device) 3302{ 3303 if (!test_and_set_bit(MD_DIRTY, &device->flags)) 3304 mod_timer(&device->md_sync_timer, jiffies + 5*HZ); 3305} 3306 3307void drbd_uuid_move_history(struct drbd_device *device) __must_hold(local) 3308{ 3309 int i; 3310 3311 for (i = UI_HISTORY_START; i < UI_HISTORY_END; i++) 3312 device->ldev->md.uuid[i+1] = device->ldev->md.uuid[i]; 3313} 3314 3315void __drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local) 3316{ 3317 if (idx == UI_CURRENT) { 3318 if (device->state.role == R_PRIMARY) 3319 val |= 1; 3320 else 3321 val &= ~((u64)1); 3322 3323 drbd_set_ed_uuid(device, val); 3324 } 3325 3326 device->ldev->md.uuid[idx] = val; 3327 drbd_md_mark_dirty(device); 3328} 3329 3330void _drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local) 3331{ 3332 unsigned long flags; 3333 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags); 3334 __drbd_uuid_set(device, idx, val); 3335 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags); 3336} 3337 3338void drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local) 3339{ 3340 unsigned long flags; 3341 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags); 3342 if (device->ldev->md.uuid[idx]) { 3343 drbd_uuid_move_history(device); 3344 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[idx]; 3345 } 3346 __drbd_uuid_set(device, idx, val); 3347 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags); 3348} 3349 3350/** 3351 * drbd_uuid_new_current() - Creates a new current UUID 3352 * @device: DRBD device. 3353 * 3354 * Creates a new current UUID, and rotates the old current UUID into 3355 * the bitmap slot. Causes an incremental resync upon next connect. 3356 */ 3357void drbd_uuid_new_current(struct drbd_device *device) __must_hold(local) 3358{ 3359 u64 val; 3360 unsigned long long bm_uuid; 3361 3362 get_random_bytes(&val, sizeof(u64)); 3363 3364 spin_lock_irq(&device->ldev->md.uuid_lock); 3365 bm_uuid = device->ldev->md.uuid[UI_BITMAP]; 3366 3367 if (bm_uuid) 3368 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid); 3369 3370 device->ldev->md.uuid[UI_BITMAP] = device->ldev->md.uuid[UI_CURRENT]; 3371 __drbd_uuid_set(device, UI_CURRENT, val); 3372 spin_unlock_irq(&device->ldev->md.uuid_lock); 3373 3374 drbd_print_uuids(device, "new current UUID"); 3375 /* get it to stable storage _now_ */ 3376 drbd_md_sync(device); 3377} 3378 3379void drbd_uuid_set_bm(struct drbd_device *device, u64 val) __must_hold(local) 3380{ 3381 unsigned long flags; 3382 if (device->ldev->md.uuid[UI_BITMAP] == 0 && val == 0) 3383 return; 3384 3385 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags); 3386 if (val == 0) { 3387 drbd_uuid_move_history(device); 3388 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP]; 3389 device->ldev->md.uuid[UI_BITMAP] = 0; 3390 } else { 3391 unsigned long long bm_uuid = device->ldev->md.uuid[UI_BITMAP]; 3392 if (bm_uuid) 3393 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid); 3394 3395 device->ldev->md.uuid[UI_BITMAP] = val & ~((u64)1); 3396 } 3397 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags); 3398 3399 drbd_md_mark_dirty(device); 3400} 3401 3402/** 3403 * drbd_bmio_set_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io() 3404 * @device: DRBD device. 3405 * 3406 * Sets all bits in the bitmap and writes the whole bitmap to stable storage. 3407 */ 3408int drbd_bmio_set_n_write(struct drbd_device *device) __must_hold(local) 3409{ 3410 int rv = -EIO; 3411 3412 drbd_md_set_flag(device, MDF_FULL_SYNC); 3413 drbd_md_sync(device); 3414 drbd_bm_set_all(device); 3415 3416 rv = drbd_bm_write(device); 3417 3418 if (!rv) { 3419 drbd_md_clear_flag(device, MDF_FULL_SYNC); 3420 drbd_md_sync(device); 3421 } 3422 3423 return rv; 3424} 3425 3426/** 3427 * drbd_bmio_clear_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io() 3428 * @device: DRBD device. 3429 * 3430 * Clears all bits in the bitmap and writes the whole bitmap to stable storage. 3431 */ 3432int drbd_bmio_clear_n_write(struct drbd_device *device) __must_hold(local) 3433{ 3434 drbd_resume_al(device); 3435 drbd_bm_clear_all(device); 3436 return drbd_bm_write(device); 3437} 3438 3439static int w_bitmap_io(struct drbd_work *w, int unused) 3440{ 3441 struct drbd_device *device = 3442 container_of(w, struct drbd_device, bm_io_work.w); 3443 struct bm_io_work *work = &device->bm_io_work; 3444 int rv = -EIO; 3445 3446 if (work->flags != BM_LOCKED_CHANGE_ALLOWED) { 3447 int cnt = atomic_read(&device->ap_bio_cnt); 3448 if (cnt) 3449 drbd_err(device, "FIXME: ap_bio_cnt %d, expected 0; queued for '%s'\n", 3450 cnt, work->why); 3451 } 3452 3453 if (get_ldev(device)) { 3454 drbd_bm_lock(device, work->why, work->flags); 3455 rv = work->io_fn(device); 3456 drbd_bm_unlock(device); 3457 put_ldev(device); 3458 } 3459 3460 clear_bit_unlock(BITMAP_IO, &device->flags); 3461 wake_up(&device->misc_wait); 3462 3463 if (work->done) 3464 work->done(device, rv); 3465 3466 clear_bit(BITMAP_IO_QUEUED, &device->flags); 3467 work->why = NULL; 3468 work->flags = 0; 3469 3470 return 0; 3471} 3472 3473/** 3474 * drbd_queue_bitmap_io() - Queues an IO operation on the whole bitmap 3475 * @device: DRBD device. 3476 * @io_fn: IO callback to be called when bitmap IO is possible 3477 * @done: callback to be called after the bitmap IO was performed 3478 * @why: Descriptive text of the reason for doing the IO 3479 * @flags: Bitmap flags 3480 * 3481 * While IO on the bitmap happens we freeze application IO thus we ensure 3482 * that drbd_set_out_of_sync() can not be called. This function MAY ONLY be 3483 * called from worker context. It MUST NOT be used while a previous such 3484 * work is still pending! 3485 * 3486 * Its worker function encloses the call of io_fn() by get_ldev() and 3487 * put_ldev(). 3488 */ 3489void drbd_queue_bitmap_io(struct drbd_device *device, 3490 int (*io_fn)(struct drbd_device *), 3491 void (*done)(struct drbd_device *, int), 3492 char *why, enum bm_flag flags) 3493{ 3494 D_ASSERT(device, current == first_peer_device(device)->connection->worker.task); 3495 3496 D_ASSERT(device, !test_bit(BITMAP_IO_QUEUED, &device->flags)); 3497 D_ASSERT(device, !test_bit(BITMAP_IO, &device->flags)); 3498 D_ASSERT(device, list_empty(&device->bm_io_work.w.list)); 3499 if (device->bm_io_work.why) 3500 drbd_err(device, "FIXME going to queue '%s' but '%s' still pending?\n", 3501 why, device->bm_io_work.why); 3502 3503 device->bm_io_work.io_fn = io_fn; 3504 device->bm_io_work.done = done; 3505 device->bm_io_work.why = why; 3506 device->bm_io_work.flags = flags; 3507 3508 spin_lock_irq(&device->resource->req_lock); 3509 set_bit(BITMAP_IO, &device->flags); 3510 /* don't wait for pending application IO if the caller indicates that 3511 * application IO does not conflict anyways. */ 3512 if (flags == BM_LOCKED_CHANGE_ALLOWED || atomic_read(&device->ap_bio_cnt) == 0) { 3513 if (!test_and_set_bit(BITMAP_IO_QUEUED, &device->flags)) 3514 drbd_queue_work(&first_peer_device(device)->connection->sender_work, 3515 &device->bm_io_work.w); 3516 } 3517 spin_unlock_irq(&device->resource->req_lock); 3518} 3519 3520/** 3521 * drbd_bitmap_io() - Does an IO operation on the whole bitmap 3522 * @device: DRBD device. 3523 * @io_fn: IO callback to be called when bitmap IO is possible 3524 * @why: Descriptive text of the reason for doing the IO 3525 * @flags: Bitmap flags 3526 * 3527 * freezes application IO while that the actual IO operations runs. This 3528 * functions MAY NOT be called from worker context. 3529 */ 3530int drbd_bitmap_io(struct drbd_device *device, int (*io_fn)(struct drbd_device *), 3531 char *why, enum bm_flag flags) 3532{ 3533 /* Only suspend io, if some operation is supposed to be locked out */ 3534 const bool do_suspend_io = flags & (BM_DONT_CLEAR|BM_DONT_SET|BM_DONT_TEST); 3535 int rv; 3536 3537 D_ASSERT(device, current != first_peer_device(device)->connection->worker.task); 3538 3539 if (do_suspend_io) 3540 drbd_suspend_io(device); 3541 3542 drbd_bm_lock(device, why, flags); 3543 rv = io_fn(device); 3544 drbd_bm_unlock(device); 3545 3546 if (do_suspend_io) 3547 drbd_resume_io(device); 3548 3549 return rv; 3550} 3551 3552void drbd_md_set_flag(struct drbd_device *device, int flag) __must_hold(local) 3553{ 3554 if ((device->ldev->md.flags & flag) != flag) { 3555 drbd_md_mark_dirty(device); 3556 device->ldev->md.flags |= flag; 3557 } 3558} 3559 3560void drbd_md_clear_flag(struct drbd_device *device, int flag) __must_hold(local) 3561{ 3562 if ((device->ldev->md.flags & flag) != 0) { 3563 drbd_md_mark_dirty(device); 3564 device->ldev->md.flags &= ~flag; 3565 } 3566} 3567int drbd_md_test_flag(struct drbd_backing_dev *bdev, int flag) 3568{ 3569 return (bdev->md.flags & flag) != 0; 3570} 3571 3572static void md_sync_timer_fn(struct timer_list *t) 3573{ 3574 struct drbd_device *device = from_timer(device, t, md_sync_timer); 3575 drbd_device_post_work(device, MD_SYNC); 3576} 3577 3578const char *cmdname(enum drbd_packet cmd) 3579{ 3580 /* THINK may need to become several global tables 3581 * when we want to support more than 3582 * one PRO_VERSION */ 3583 static const char *cmdnames[] = { 3584 3585 [P_DATA] = "Data", 3586 [P_DATA_REPLY] = "DataReply", 3587 [P_RS_DATA_REPLY] = "RSDataReply", 3588 [P_BARRIER] = "Barrier", 3589 [P_BITMAP] = "ReportBitMap", 3590 [P_BECOME_SYNC_TARGET] = "BecomeSyncTarget", 3591 [P_BECOME_SYNC_SOURCE] = "BecomeSyncSource", 3592 [P_UNPLUG_REMOTE] = "UnplugRemote", 3593 [P_DATA_REQUEST] = "DataRequest", 3594 [P_RS_DATA_REQUEST] = "RSDataRequest", 3595 [P_SYNC_PARAM] = "SyncParam", 3596 [P_PROTOCOL] = "ReportProtocol", 3597 [P_UUIDS] = "ReportUUIDs", 3598 [P_SIZES] = "ReportSizes", 3599 [P_STATE] = "ReportState", 3600 [P_SYNC_UUID] = "ReportSyncUUID", 3601 [P_AUTH_CHALLENGE] = "AuthChallenge", 3602 [P_AUTH_RESPONSE] = "AuthResponse", 3603 [P_STATE_CHG_REQ] = "StateChgRequest", 3604 [P_PING] = "Ping", 3605 [P_PING_ACK] = "PingAck", 3606 [P_RECV_ACK] = "RecvAck", 3607 [P_WRITE_ACK] = "WriteAck", 3608 [P_RS_WRITE_ACK] = "RSWriteAck", 3609 [P_SUPERSEDED] = "Superseded", 3610 [P_NEG_ACK] = "NegAck", 3611 [P_NEG_DREPLY] = "NegDReply", 3612 [P_NEG_RS_DREPLY] = "NegRSDReply", 3613 [P_BARRIER_ACK] = "BarrierAck", 3614 [P_STATE_CHG_REPLY] = "StateChgReply", 3615 [P_OV_REQUEST] = "OVRequest", 3616 [P_OV_REPLY] = "OVReply", 3617 [P_OV_RESULT] = "OVResult", 3618 [P_CSUM_RS_REQUEST] = "CsumRSRequest", 3619 [P_RS_IS_IN_SYNC] = "CsumRSIsInSync", 3620 [P_SYNC_PARAM89] = "SyncParam89", 3621 [P_COMPRESSED_BITMAP] = "CBitmap", 3622 [P_DELAY_PROBE] = "DelayProbe", 3623 [P_OUT_OF_SYNC] = "OutOfSync", 3624 [P_RS_CANCEL] = "RSCancel", 3625 [P_CONN_ST_CHG_REQ] = "conn_st_chg_req", 3626 [P_CONN_ST_CHG_REPLY] = "conn_st_chg_reply", 3627 [P_PROTOCOL_UPDATE] = "protocol_update", 3628 [P_TRIM] = "Trim", 3629 [P_RS_THIN_REQ] = "rs_thin_req", 3630 [P_RS_DEALLOCATED] = "rs_deallocated", 3631 [P_WSAME] = "WriteSame", 3632 [P_ZEROES] = "Zeroes", 3633 3634 /* enum drbd_packet, but not commands - obsoleted flags: 3635 * P_MAY_IGNORE 3636 * P_MAX_OPT_CMD 3637 */ 3638 }; 3639 3640 /* too big for the array: 0xfffX */ 3641 if (cmd == P_INITIAL_META) 3642 return "InitialMeta"; 3643 if (cmd == P_INITIAL_DATA) 3644 return "InitialData"; 3645 if (cmd == P_CONNECTION_FEATURES) 3646 return "ConnectionFeatures"; 3647 if (cmd >= ARRAY_SIZE(cmdnames)) 3648 return "Unknown"; 3649 return cmdnames[cmd]; 3650} 3651 3652/** 3653 * drbd_wait_misc - wait for a request to make progress 3654 * @device: device associated with the request 3655 * @i: the struct drbd_interval embedded in struct drbd_request or 3656 * struct drbd_peer_request 3657 */ 3658int drbd_wait_misc(struct drbd_device *device, struct drbd_interval *i) 3659{ 3660 struct net_conf *nc; 3661 DEFINE_WAIT(wait); 3662 long timeout; 3663 3664 rcu_read_lock(); 3665 nc = rcu_dereference(first_peer_device(device)->connection->net_conf); 3666 if (!nc) { 3667 rcu_read_unlock(); 3668 return -ETIMEDOUT; 3669 } 3670 timeout = nc->ko_count ? nc->timeout * HZ / 10 * nc->ko_count : MAX_SCHEDULE_TIMEOUT; 3671 rcu_read_unlock(); 3672 3673 /* Indicate to wake up device->misc_wait on progress. */ 3674 i->waiting = true; 3675 prepare_to_wait(&device->misc_wait, &wait, TASK_INTERRUPTIBLE); 3676 spin_unlock_irq(&device->resource->req_lock); 3677 timeout = schedule_timeout(timeout); 3678 finish_wait(&device->misc_wait, &wait); 3679 spin_lock_irq(&device->resource->req_lock); 3680 if (!timeout || device->state.conn < C_CONNECTED) 3681 return -ETIMEDOUT; 3682 if (signal_pending(current)) 3683 return -ERESTARTSYS; 3684 return 0; 3685} 3686 3687void lock_all_resources(void) 3688{ 3689 struct drbd_resource *resource; 3690 int __maybe_unused i = 0; 3691 3692 mutex_lock(&resources_mutex); 3693 local_irq_disable(); 3694 for_each_resource(resource, &drbd_resources) 3695 spin_lock_nested(&resource->req_lock, i++); 3696} 3697 3698void unlock_all_resources(void) 3699{ 3700 struct drbd_resource *resource; 3701 3702 for_each_resource(resource, &drbd_resources) 3703 spin_unlock(&resource->req_lock); 3704 local_irq_enable(); 3705 mutex_unlock(&resources_mutex); 3706} 3707 3708#ifdef CONFIG_DRBD_FAULT_INJECTION 3709/* Fault insertion support including random number generator shamelessly 3710 * stolen from kernel/rcutorture.c */ 3711struct fault_random_state { 3712 unsigned long state; 3713 unsigned long count; 3714}; 3715 3716#define FAULT_RANDOM_MULT 39916801 /* prime */ 3717#define FAULT_RANDOM_ADD 479001701 /* prime */ 3718#define FAULT_RANDOM_REFRESH 10000 3719 3720/* 3721 * Crude but fast random-number generator. Uses a linear congruential 3722 * generator, with occasional help from get_random_bytes(). 3723 */ 3724static unsigned long 3725_drbd_fault_random(struct fault_random_state *rsp) 3726{ 3727 long refresh; 3728 3729 if (!rsp->count--) { 3730 get_random_bytes(&refresh, sizeof(refresh)); 3731 rsp->state += refresh; 3732 rsp->count = FAULT_RANDOM_REFRESH; 3733 } 3734 rsp->state = rsp->state * FAULT_RANDOM_MULT + FAULT_RANDOM_ADD; 3735 return swahw32(rsp->state); 3736} 3737 3738static char * 3739_drbd_fault_str(unsigned int type) { 3740 static char *_faults[] = { 3741 [DRBD_FAULT_MD_WR] = "Meta-data write", 3742 [DRBD_FAULT_MD_RD] = "Meta-data read", 3743 [DRBD_FAULT_RS_WR] = "Resync write", 3744 [DRBD_FAULT_RS_RD] = "Resync read", 3745 [DRBD_FAULT_DT_WR] = "Data write", 3746 [DRBD_FAULT_DT_RD] = "Data read", 3747 [DRBD_FAULT_DT_RA] = "Data read ahead", 3748 [DRBD_FAULT_BM_ALLOC] = "BM allocation", 3749 [DRBD_FAULT_AL_EE] = "EE allocation", 3750 [DRBD_FAULT_RECEIVE] = "receive data corruption", 3751 }; 3752 3753 return (type < DRBD_FAULT_MAX) ? _faults[type] : "**Unknown**"; 3754} 3755 3756unsigned int 3757_drbd_insert_fault(struct drbd_device *device, unsigned int type) 3758{ 3759 static struct fault_random_state rrs = {0, 0}; 3760 3761 unsigned int ret = ( 3762 (drbd_fault_devs == 0 || 3763 ((1 << device_to_minor(device)) & drbd_fault_devs) != 0) && 3764 (((_drbd_fault_random(&rrs) % 100) + 1) <= drbd_fault_rate)); 3765 3766 if (ret) { 3767 drbd_fault_count++; 3768 3769 if (__ratelimit(&drbd_ratelimit_state)) 3770 drbd_warn(device, "***Simulating %s failure\n", 3771 _drbd_fault_str(type)); 3772 } 3773 3774 return ret; 3775} 3776#endif 3777 3778const char *drbd_buildtag(void) 3779{ 3780 /* DRBD built from external sources has here a reference to the 3781 git hash of the source code. */ 3782 3783 static char buildtag[38] = "\0uilt-in"; 3784 3785 if (buildtag[0] == 0) { 3786#ifdef MODULE 3787 sprintf(buildtag, "srcversion: %-24s", THIS_MODULE->srcversion); 3788#else 3789 buildtag[0] = 'b'; 3790#endif 3791 } 3792 3793 return buildtag; 3794} 3795 3796module_init(drbd_init) 3797module_exit(drbd_cleanup) 3798 3799EXPORT_SYMBOL(drbd_conn_str); 3800EXPORT_SYMBOL(drbd_role_str); 3801EXPORT_SYMBOL(drbd_disk_str); 3802EXPORT_SYMBOL(drbd_set_st_err_str);