cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

main.c (56273B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Add configfs and memory store: Kyungchan Koh <kkc6196@fb.com> and
      4 * Shaohua Li <shli@fb.com>
      5 */
      6#include <linux/module.h>
      7
      8#include <linux/moduleparam.h>
      9#include <linux/sched.h>
     10#include <linux/fs.h>
     11#include <linux/init.h>
     12#include "null_blk.h"
     13
     14#undef pr_fmt
     15#define pr_fmt(fmt)	"null_blk: " fmt
     16
     17#define FREE_BATCH		16
     18
     19#define TICKS_PER_SEC		50ULL
     20#define TIMER_INTERVAL		(NSEC_PER_SEC / TICKS_PER_SEC)
     21
     22#ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
     23static DECLARE_FAULT_ATTR(null_timeout_attr);
     24static DECLARE_FAULT_ATTR(null_requeue_attr);
     25static DECLARE_FAULT_ATTR(null_init_hctx_attr);
     26#endif
     27
     28static inline u64 mb_per_tick(int mbps)
     29{
     30	return (1 << 20) / TICKS_PER_SEC * ((u64) mbps);
     31}
     32
     33/*
     34 * Status flags for nullb_device.
     35 *
     36 * CONFIGURED:	Device has been configured and turned on. Cannot reconfigure.
     37 * UP:		Device is currently on and visible in userspace.
     38 * THROTTLED:	Device is being throttled.
     39 * CACHE:	Device is using a write-back cache.
     40 */
     41enum nullb_device_flags {
     42	NULLB_DEV_FL_CONFIGURED	= 0,
     43	NULLB_DEV_FL_UP		= 1,
     44	NULLB_DEV_FL_THROTTLED	= 2,
     45	NULLB_DEV_FL_CACHE	= 3,
     46};
     47
     48#define MAP_SZ		((PAGE_SIZE >> SECTOR_SHIFT) + 2)
     49/*
     50 * nullb_page is a page in memory for nullb devices.
     51 *
     52 * @page:	The page holding the data.
     53 * @bitmap:	The bitmap represents which sector in the page has data.
     54 *		Each bit represents one block size. For example, sector 8
     55 *		will use the 7th bit
     56 * The highest 2 bits of bitmap are for special purpose. LOCK means the cache
     57 * page is being flushing to storage. FREE means the cache page is freed and
     58 * should be skipped from flushing to storage. Please see
     59 * null_make_cache_space
     60 */
     61struct nullb_page {
     62	struct page *page;
     63	DECLARE_BITMAP(bitmap, MAP_SZ);
     64};
     65#define NULLB_PAGE_LOCK (MAP_SZ - 1)
     66#define NULLB_PAGE_FREE (MAP_SZ - 2)
     67
     68static LIST_HEAD(nullb_list);
     69static struct mutex lock;
     70static int null_major;
     71static DEFINE_IDA(nullb_indexes);
     72static struct blk_mq_tag_set tag_set;
     73
     74enum {
     75	NULL_IRQ_NONE		= 0,
     76	NULL_IRQ_SOFTIRQ	= 1,
     77	NULL_IRQ_TIMER		= 2,
     78};
     79
     80static bool g_virt_boundary = false;
     81module_param_named(virt_boundary, g_virt_boundary, bool, 0444);
     82MODULE_PARM_DESC(virt_boundary, "Require a virtual boundary for the device. Default: False");
     83
     84static int g_no_sched;
     85module_param_named(no_sched, g_no_sched, int, 0444);
     86MODULE_PARM_DESC(no_sched, "No io scheduler");
     87
     88static int g_submit_queues = 1;
     89module_param_named(submit_queues, g_submit_queues, int, 0444);
     90MODULE_PARM_DESC(submit_queues, "Number of submission queues");
     91
     92static int g_poll_queues = 1;
     93module_param_named(poll_queues, g_poll_queues, int, 0444);
     94MODULE_PARM_DESC(poll_queues, "Number of IOPOLL submission queues");
     95
     96static int g_home_node = NUMA_NO_NODE;
     97module_param_named(home_node, g_home_node, int, 0444);
     98MODULE_PARM_DESC(home_node, "Home node for the device");
     99
    100#ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
    101/*
    102 * For more details about fault injection, please refer to
    103 * Documentation/fault-injection/fault-injection.rst.
    104 */
    105static char g_timeout_str[80];
    106module_param_string(timeout, g_timeout_str, sizeof(g_timeout_str), 0444);
    107MODULE_PARM_DESC(timeout, "Fault injection. timeout=<interval>,<probability>,<space>,<times>");
    108
    109static char g_requeue_str[80];
    110module_param_string(requeue, g_requeue_str, sizeof(g_requeue_str), 0444);
    111MODULE_PARM_DESC(requeue, "Fault injection. requeue=<interval>,<probability>,<space>,<times>");
    112
    113static char g_init_hctx_str[80];
    114module_param_string(init_hctx, g_init_hctx_str, sizeof(g_init_hctx_str), 0444);
    115MODULE_PARM_DESC(init_hctx, "Fault injection to fail hctx init. init_hctx=<interval>,<probability>,<space>,<times>");
    116#endif
    117
    118static int g_queue_mode = NULL_Q_MQ;
    119
    120static int null_param_store_val(const char *str, int *val, int min, int max)
    121{
    122	int ret, new_val;
    123
    124	ret = kstrtoint(str, 10, &new_val);
    125	if (ret)
    126		return -EINVAL;
    127
    128	if (new_val < min || new_val > max)
    129		return -EINVAL;
    130
    131	*val = new_val;
    132	return 0;
    133}
    134
    135static int null_set_queue_mode(const char *str, const struct kernel_param *kp)
    136{
    137	return null_param_store_val(str, &g_queue_mode, NULL_Q_BIO, NULL_Q_MQ);
    138}
    139
    140static const struct kernel_param_ops null_queue_mode_param_ops = {
    141	.set	= null_set_queue_mode,
    142	.get	= param_get_int,
    143};
    144
    145device_param_cb(queue_mode, &null_queue_mode_param_ops, &g_queue_mode, 0444);
    146MODULE_PARM_DESC(queue_mode, "Block interface to use (0=bio,1=rq,2=multiqueue)");
    147
    148static int g_gb = 250;
    149module_param_named(gb, g_gb, int, 0444);
    150MODULE_PARM_DESC(gb, "Size in GB");
    151
    152static int g_bs = 512;
    153module_param_named(bs, g_bs, int, 0444);
    154MODULE_PARM_DESC(bs, "Block size (in bytes)");
    155
    156static int g_max_sectors;
    157module_param_named(max_sectors, g_max_sectors, int, 0444);
    158MODULE_PARM_DESC(max_sectors, "Maximum size of a command (in 512B sectors)");
    159
    160static unsigned int nr_devices = 1;
    161module_param(nr_devices, uint, 0444);
    162MODULE_PARM_DESC(nr_devices, "Number of devices to register");
    163
    164static bool g_blocking;
    165module_param_named(blocking, g_blocking, bool, 0444);
    166MODULE_PARM_DESC(blocking, "Register as a blocking blk-mq driver device");
    167
    168static bool shared_tags;
    169module_param(shared_tags, bool, 0444);
    170MODULE_PARM_DESC(shared_tags, "Share tag set between devices for blk-mq");
    171
    172static bool g_shared_tag_bitmap;
    173module_param_named(shared_tag_bitmap, g_shared_tag_bitmap, bool, 0444);
    174MODULE_PARM_DESC(shared_tag_bitmap, "Use shared tag bitmap for all submission queues for blk-mq");
    175
    176static int g_irqmode = NULL_IRQ_SOFTIRQ;
    177
    178static int null_set_irqmode(const char *str, const struct kernel_param *kp)
    179{
    180	return null_param_store_val(str, &g_irqmode, NULL_IRQ_NONE,
    181					NULL_IRQ_TIMER);
    182}
    183
    184static const struct kernel_param_ops null_irqmode_param_ops = {
    185	.set	= null_set_irqmode,
    186	.get	= param_get_int,
    187};
    188
    189device_param_cb(irqmode, &null_irqmode_param_ops, &g_irqmode, 0444);
    190MODULE_PARM_DESC(irqmode, "IRQ completion handler. 0-none, 1-softirq, 2-timer");
    191
    192static unsigned long g_completion_nsec = 10000;
    193module_param_named(completion_nsec, g_completion_nsec, ulong, 0444);
    194MODULE_PARM_DESC(completion_nsec, "Time in ns to complete a request in hardware. Default: 10,000ns");
    195
    196static int g_hw_queue_depth = 64;
    197module_param_named(hw_queue_depth, g_hw_queue_depth, int, 0444);
    198MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: 64");
    199
    200static bool g_use_per_node_hctx;
    201module_param_named(use_per_node_hctx, g_use_per_node_hctx, bool, 0444);
    202MODULE_PARM_DESC(use_per_node_hctx, "Use per-node allocation for hardware context queues. Default: false");
    203
    204static bool g_zoned;
    205module_param_named(zoned, g_zoned, bool, S_IRUGO);
    206MODULE_PARM_DESC(zoned, "Make device as a host-managed zoned block device. Default: false");
    207
    208static unsigned long g_zone_size = 256;
    209module_param_named(zone_size, g_zone_size, ulong, S_IRUGO);
    210MODULE_PARM_DESC(zone_size, "Zone size in MB when block device is zoned. Must be power-of-two: Default: 256");
    211
    212static unsigned long g_zone_capacity;
    213module_param_named(zone_capacity, g_zone_capacity, ulong, 0444);
    214MODULE_PARM_DESC(zone_capacity, "Zone capacity in MB when block device is zoned. Can be less than or equal to zone size. Default: Zone size");
    215
    216static unsigned int g_zone_nr_conv;
    217module_param_named(zone_nr_conv, g_zone_nr_conv, uint, 0444);
    218MODULE_PARM_DESC(zone_nr_conv, "Number of conventional zones when block device is zoned. Default: 0");
    219
    220static unsigned int g_zone_max_open;
    221module_param_named(zone_max_open, g_zone_max_open, uint, 0444);
    222MODULE_PARM_DESC(zone_max_open, "Maximum number of open zones when block device is zoned. Default: 0 (no limit)");
    223
    224static unsigned int g_zone_max_active;
    225module_param_named(zone_max_active, g_zone_max_active, uint, 0444);
    226MODULE_PARM_DESC(zone_max_active, "Maximum number of active zones when block device is zoned. Default: 0 (no limit)");
    227
    228static struct nullb_device *null_alloc_dev(void);
    229static void null_free_dev(struct nullb_device *dev);
    230static void null_del_dev(struct nullb *nullb);
    231static int null_add_dev(struct nullb_device *dev);
    232static struct nullb *null_find_dev_by_name(const char *name);
    233static void null_free_device_storage(struct nullb_device *dev, bool is_cache);
    234
    235static inline struct nullb_device *to_nullb_device(struct config_item *item)
    236{
    237	return item ? container_of(item, struct nullb_device, item) : NULL;
    238}
    239
    240static inline ssize_t nullb_device_uint_attr_show(unsigned int val, char *page)
    241{
    242	return snprintf(page, PAGE_SIZE, "%u\n", val);
    243}
    244
    245static inline ssize_t nullb_device_ulong_attr_show(unsigned long val,
    246	char *page)
    247{
    248	return snprintf(page, PAGE_SIZE, "%lu\n", val);
    249}
    250
    251static inline ssize_t nullb_device_bool_attr_show(bool val, char *page)
    252{
    253	return snprintf(page, PAGE_SIZE, "%u\n", val);
    254}
    255
    256static ssize_t nullb_device_uint_attr_store(unsigned int *val,
    257	const char *page, size_t count)
    258{
    259	unsigned int tmp;
    260	int result;
    261
    262	result = kstrtouint(page, 0, &tmp);
    263	if (result < 0)
    264		return result;
    265
    266	*val = tmp;
    267	return count;
    268}
    269
    270static ssize_t nullb_device_ulong_attr_store(unsigned long *val,
    271	const char *page, size_t count)
    272{
    273	int result;
    274	unsigned long tmp;
    275
    276	result = kstrtoul(page, 0, &tmp);
    277	if (result < 0)
    278		return result;
    279
    280	*val = tmp;
    281	return count;
    282}
    283
    284static ssize_t nullb_device_bool_attr_store(bool *val, const char *page,
    285	size_t count)
    286{
    287	bool tmp;
    288	int result;
    289
    290	result = kstrtobool(page,  &tmp);
    291	if (result < 0)
    292		return result;
    293
    294	*val = tmp;
    295	return count;
    296}
    297
    298/* The following macro should only be used with TYPE = {uint, ulong, bool}. */
    299#define NULLB_DEVICE_ATTR(NAME, TYPE, APPLY)				\
    300static ssize_t								\
    301nullb_device_##NAME##_show(struct config_item *item, char *page)	\
    302{									\
    303	return nullb_device_##TYPE##_attr_show(				\
    304				to_nullb_device(item)->NAME, page);	\
    305}									\
    306static ssize_t								\
    307nullb_device_##NAME##_store(struct config_item *item, const char *page,	\
    308			    size_t count)				\
    309{									\
    310	int (*apply_fn)(struct nullb_device *dev, TYPE new_value) = APPLY;\
    311	struct nullb_device *dev = to_nullb_device(item);		\
    312	TYPE new_value = 0;						\
    313	int ret;							\
    314									\
    315	ret = nullb_device_##TYPE##_attr_store(&new_value, page, count);\
    316	if (ret < 0)							\
    317		return ret;						\
    318	if (apply_fn)							\
    319		ret = apply_fn(dev, new_value);				\
    320	else if (test_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags)) 	\
    321		ret = -EBUSY;						\
    322	if (ret < 0)							\
    323		return ret;						\
    324	dev->NAME = new_value;						\
    325	return count;							\
    326}									\
    327CONFIGFS_ATTR(nullb_device_, NAME);
    328
    329static int nullb_update_nr_hw_queues(struct nullb_device *dev,
    330				     unsigned int submit_queues,
    331				     unsigned int poll_queues)
    332
    333{
    334	struct blk_mq_tag_set *set;
    335	int ret, nr_hw_queues;
    336
    337	if (!dev->nullb)
    338		return 0;
    339
    340	/*
    341	 * Make sure at least one submit queue exists.
    342	 */
    343	if (!submit_queues)
    344		return -EINVAL;
    345
    346	/*
    347	 * Make sure that null_init_hctx() does not access nullb->queues[] past
    348	 * the end of that array.
    349	 */
    350	if (submit_queues > nr_cpu_ids || poll_queues > g_poll_queues)
    351		return -EINVAL;
    352
    353	/*
    354	 * Keep previous and new queue numbers in nullb_device for reference in
    355	 * the call back function null_map_queues().
    356	 */
    357	dev->prev_submit_queues = dev->submit_queues;
    358	dev->prev_poll_queues = dev->poll_queues;
    359	dev->submit_queues = submit_queues;
    360	dev->poll_queues = poll_queues;
    361
    362	set = dev->nullb->tag_set;
    363	nr_hw_queues = submit_queues + poll_queues;
    364	blk_mq_update_nr_hw_queues(set, nr_hw_queues);
    365	ret = set->nr_hw_queues == nr_hw_queues ? 0 : -ENOMEM;
    366
    367	if (ret) {
    368		/* on error, revert the queue numbers */
    369		dev->submit_queues = dev->prev_submit_queues;
    370		dev->poll_queues = dev->prev_poll_queues;
    371	}
    372
    373	return ret;
    374}
    375
    376static int nullb_apply_submit_queues(struct nullb_device *dev,
    377				     unsigned int submit_queues)
    378{
    379	return nullb_update_nr_hw_queues(dev, submit_queues, dev->poll_queues);
    380}
    381
    382static int nullb_apply_poll_queues(struct nullb_device *dev,
    383				   unsigned int poll_queues)
    384{
    385	return nullb_update_nr_hw_queues(dev, dev->submit_queues, poll_queues);
    386}
    387
    388NULLB_DEVICE_ATTR(size, ulong, NULL);
    389NULLB_DEVICE_ATTR(completion_nsec, ulong, NULL);
    390NULLB_DEVICE_ATTR(submit_queues, uint, nullb_apply_submit_queues);
    391NULLB_DEVICE_ATTR(poll_queues, uint, nullb_apply_poll_queues);
    392NULLB_DEVICE_ATTR(home_node, uint, NULL);
    393NULLB_DEVICE_ATTR(queue_mode, uint, NULL);
    394NULLB_DEVICE_ATTR(blocksize, uint, NULL);
    395NULLB_DEVICE_ATTR(max_sectors, uint, NULL);
    396NULLB_DEVICE_ATTR(irqmode, uint, NULL);
    397NULLB_DEVICE_ATTR(hw_queue_depth, uint, NULL);
    398NULLB_DEVICE_ATTR(index, uint, NULL);
    399NULLB_DEVICE_ATTR(blocking, bool, NULL);
    400NULLB_DEVICE_ATTR(use_per_node_hctx, bool, NULL);
    401NULLB_DEVICE_ATTR(memory_backed, bool, NULL);
    402NULLB_DEVICE_ATTR(discard, bool, NULL);
    403NULLB_DEVICE_ATTR(mbps, uint, NULL);
    404NULLB_DEVICE_ATTR(cache_size, ulong, NULL);
    405NULLB_DEVICE_ATTR(zoned, bool, NULL);
    406NULLB_DEVICE_ATTR(zone_size, ulong, NULL);
    407NULLB_DEVICE_ATTR(zone_capacity, ulong, NULL);
    408NULLB_DEVICE_ATTR(zone_nr_conv, uint, NULL);
    409NULLB_DEVICE_ATTR(zone_max_open, uint, NULL);
    410NULLB_DEVICE_ATTR(zone_max_active, uint, NULL);
    411NULLB_DEVICE_ATTR(virt_boundary, bool, NULL);
    412
    413static ssize_t nullb_device_power_show(struct config_item *item, char *page)
    414{
    415	return nullb_device_bool_attr_show(to_nullb_device(item)->power, page);
    416}
    417
    418static ssize_t nullb_device_power_store(struct config_item *item,
    419				     const char *page, size_t count)
    420{
    421	struct nullb_device *dev = to_nullb_device(item);
    422	bool newp = false;
    423	ssize_t ret;
    424
    425	ret = nullb_device_bool_attr_store(&newp, page, count);
    426	if (ret < 0)
    427		return ret;
    428
    429	if (!dev->power && newp) {
    430		if (test_and_set_bit(NULLB_DEV_FL_UP, &dev->flags))
    431			return count;
    432		ret = null_add_dev(dev);
    433		if (ret) {
    434			clear_bit(NULLB_DEV_FL_UP, &dev->flags);
    435			return ret;
    436		}
    437
    438		set_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags);
    439		dev->power = newp;
    440	} else if (dev->power && !newp) {
    441		if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) {
    442			mutex_lock(&lock);
    443			dev->power = newp;
    444			null_del_dev(dev->nullb);
    445			mutex_unlock(&lock);
    446		}
    447		clear_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags);
    448	}
    449
    450	return count;
    451}
    452
    453CONFIGFS_ATTR(nullb_device_, power);
    454
    455static ssize_t nullb_device_badblocks_show(struct config_item *item, char *page)
    456{
    457	struct nullb_device *t_dev = to_nullb_device(item);
    458
    459	return badblocks_show(&t_dev->badblocks, page, 0);
    460}
    461
    462static ssize_t nullb_device_badblocks_store(struct config_item *item,
    463				     const char *page, size_t count)
    464{
    465	struct nullb_device *t_dev = to_nullb_device(item);
    466	char *orig, *buf, *tmp;
    467	u64 start, end;
    468	int ret;
    469
    470	orig = kstrndup(page, count, GFP_KERNEL);
    471	if (!orig)
    472		return -ENOMEM;
    473
    474	buf = strstrip(orig);
    475
    476	ret = -EINVAL;
    477	if (buf[0] != '+' && buf[0] != '-')
    478		goto out;
    479	tmp = strchr(&buf[1], '-');
    480	if (!tmp)
    481		goto out;
    482	*tmp = '\0';
    483	ret = kstrtoull(buf + 1, 0, &start);
    484	if (ret)
    485		goto out;
    486	ret = kstrtoull(tmp + 1, 0, &end);
    487	if (ret)
    488		goto out;
    489	ret = -EINVAL;
    490	if (start > end)
    491		goto out;
    492	/* enable badblocks */
    493	cmpxchg(&t_dev->badblocks.shift, -1, 0);
    494	if (buf[0] == '+')
    495		ret = badblocks_set(&t_dev->badblocks, start,
    496			end - start + 1, 1);
    497	else
    498		ret = badblocks_clear(&t_dev->badblocks, start,
    499			end - start + 1);
    500	if (ret == 0)
    501		ret = count;
    502out:
    503	kfree(orig);
    504	return ret;
    505}
    506CONFIGFS_ATTR(nullb_device_, badblocks);
    507
    508static struct configfs_attribute *nullb_device_attrs[] = {
    509	&nullb_device_attr_size,
    510	&nullb_device_attr_completion_nsec,
    511	&nullb_device_attr_submit_queues,
    512	&nullb_device_attr_poll_queues,
    513	&nullb_device_attr_home_node,
    514	&nullb_device_attr_queue_mode,
    515	&nullb_device_attr_blocksize,
    516	&nullb_device_attr_max_sectors,
    517	&nullb_device_attr_irqmode,
    518	&nullb_device_attr_hw_queue_depth,
    519	&nullb_device_attr_index,
    520	&nullb_device_attr_blocking,
    521	&nullb_device_attr_use_per_node_hctx,
    522	&nullb_device_attr_power,
    523	&nullb_device_attr_memory_backed,
    524	&nullb_device_attr_discard,
    525	&nullb_device_attr_mbps,
    526	&nullb_device_attr_cache_size,
    527	&nullb_device_attr_badblocks,
    528	&nullb_device_attr_zoned,
    529	&nullb_device_attr_zone_size,
    530	&nullb_device_attr_zone_capacity,
    531	&nullb_device_attr_zone_nr_conv,
    532	&nullb_device_attr_zone_max_open,
    533	&nullb_device_attr_zone_max_active,
    534	&nullb_device_attr_virt_boundary,
    535	NULL,
    536};
    537
    538static void nullb_device_release(struct config_item *item)
    539{
    540	struct nullb_device *dev = to_nullb_device(item);
    541
    542	null_free_device_storage(dev, false);
    543	null_free_dev(dev);
    544}
    545
    546static struct configfs_item_operations nullb_device_ops = {
    547	.release	= nullb_device_release,
    548};
    549
    550static const struct config_item_type nullb_device_type = {
    551	.ct_item_ops	= &nullb_device_ops,
    552	.ct_attrs	= nullb_device_attrs,
    553	.ct_owner	= THIS_MODULE,
    554};
    555
    556static struct
    557config_item *nullb_group_make_item(struct config_group *group, const char *name)
    558{
    559	struct nullb_device *dev;
    560
    561	if (null_find_dev_by_name(name))
    562		return ERR_PTR(-EEXIST);
    563
    564	dev = null_alloc_dev();
    565	if (!dev)
    566		return ERR_PTR(-ENOMEM);
    567
    568	config_item_init_type_name(&dev->item, name, &nullb_device_type);
    569
    570	return &dev->item;
    571}
    572
    573static void
    574nullb_group_drop_item(struct config_group *group, struct config_item *item)
    575{
    576	struct nullb_device *dev = to_nullb_device(item);
    577
    578	if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) {
    579		mutex_lock(&lock);
    580		dev->power = false;
    581		null_del_dev(dev->nullb);
    582		mutex_unlock(&lock);
    583	}
    584
    585	config_item_put(item);
    586}
    587
    588static ssize_t memb_group_features_show(struct config_item *item, char *page)
    589{
    590	return snprintf(page, PAGE_SIZE,
    591			"memory_backed,discard,bandwidth,cache,badblocks,zoned,zone_size,zone_capacity,zone_nr_conv,zone_max_open,zone_max_active,blocksize,max_sectors,virt_boundary\n");
    592}
    593
    594CONFIGFS_ATTR_RO(memb_group_, features);
    595
    596static struct configfs_attribute *nullb_group_attrs[] = {
    597	&memb_group_attr_features,
    598	NULL,
    599};
    600
    601static struct configfs_group_operations nullb_group_ops = {
    602	.make_item	= nullb_group_make_item,
    603	.drop_item	= nullb_group_drop_item,
    604};
    605
    606static const struct config_item_type nullb_group_type = {
    607	.ct_group_ops	= &nullb_group_ops,
    608	.ct_attrs	= nullb_group_attrs,
    609	.ct_owner	= THIS_MODULE,
    610};
    611
    612static struct configfs_subsystem nullb_subsys = {
    613	.su_group = {
    614		.cg_item = {
    615			.ci_namebuf = "nullb",
    616			.ci_type = &nullb_group_type,
    617		},
    618	},
    619};
    620
    621static inline int null_cache_active(struct nullb *nullb)
    622{
    623	return test_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags);
    624}
    625
    626static struct nullb_device *null_alloc_dev(void)
    627{
    628	struct nullb_device *dev;
    629
    630	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
    631	if (!dev)
    632		return NULL;
    633	INIT_RADIX_TREE(&dev->data, GFP_ATOMIC);
    634	INIT_RADIX_TREE(&dev->cache, GFP_ATOMIC);
    635	if (badblocks_init(&dev->badblocks, 0)) {
    636		kfree(dev);
    637		return NULL;
    638	}
    639
    640	dev->size = g_gb * 1024;
    641	dev->completion_nsec = g_completion_nsec;
    642	dev->submit_queues = g_submit_queues;
    643	dev->prev_submit_queues = g_submit_queues;
    644	dev->poll_queues = g_poll_queues;
    645	dev->prev_poll_queues = g_poll_queues;
    646	dev->home_node = g_home_node;
    647	dev->queue_mode = g_queue_mode;
    648	dev->blocksize = g_bs;
    649	dev->max_sectors = g_max_sectors;
    650	dev->irqmode = g_irqmode;
    651	dev->hw_queue_depth = g_hw_queue_depth;
    652	dev->blocking = g_blocking;
    653	dev->use_per_node_hctx = g_use_per_node_hctx;
    654	dev->zoned = g_zoned;
    655	dev->zone_size = g_zone_size;
    656	dev->zone_capacity = g_zone_capacity;
    657	dev->zone_nr_conv = g_zone_nr_conv;
    658	dev->zone_max_open = g_zone_max_open;
    659	dev->zone_max_active = g_zone_max_active;
    660	dev->virt_boundary = g_virt_boundary;
    661	return dev;
    662}
    663
    664static void null_free_dev(struct nullb_device *dev)
    665{
    666	if (!dev)
    667		return;
    668
    669	null_free_zoned_dev(dev);
    670	badblocks_exit(&dev->badblocks);
    671	kfree(dev);
    672}
    673
    674static void put_tag(struct nullb_queue *nq, unsigned int tag)
    675{
    676	clear_bit_unlock(tag, nq->tag_map);
    677
    678	if (waitqueue_active(&nq->wait))
    679		wake_up(&nq->wait);
    680}
    681
    682static unsigned int get_tag(struct nullb_queue *nq)
    683{
    684	unsigned int tag;
    685
    686	do {
    687		tag = find_first_zero_bit(nq->tag_map, nq->queue_depth);
    688		if (tag >= nq->queue_depth)
    689			return -1U;
    690	} while (test_and_set_bit_lock(tag, nq->tag_map));
    691
    692	return tag;
    693}
    694
    695static void free_cmd(struct nullb_cmd *cmd)
    696{
    697	put_tag(cmd->nq, cmd->tag);
    698}
    699
    700static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer);
    701
    702static struct nullb_cmd *__alloc_cmd(struct nullb_queue *nq)
    703{
    704	struct nullb_cmd *cmd;
    705	unsigned int tag;
    706
    707	tag = get_tag(nq);
    708	if (tag != -1U) {
    709		cmd = &nq->cmds[tag];
    710		cmd->tag = tag;
    711		cmd->error = BLK_STS_OK;
    712		cmd->nq = nq;
    713		if (nq->dev->irqmode == NULL_IRQ_TIMER) {
    714			hrtimer_init(&cmd->timer, CLOCK_MONOTONIC,
    715				     HRTIMER_MODE_REL);
    716			cmd->timer.function = null_cmd_timer_expired;
    717		}
    718		return cmd;
    719	}
    720
    721	return NULL;
    722}
    723
    724static struct nullb_cmd *alloc_cmd(struct nullb_queue *nq, struct bio *bio)
    725{
    726	struct nullb_cmd *cmd;
    727	DEFINE_WAIT(wait);
    728
    729	do {
    730		/*
    731		 * This avoids multiple return statements, multiple calls to
    732		 * __alloc_cmd() and a fast path call to prepare_to_wait().
    733		 */
    734		cmd = __alloc_cmd(nq);
    735		if (cmd) {
    736			cmd->bio = bio;
    737			return cmd;
    738		}
    739		prepare_to_wait(&nq->wait, &wait, TASK_UNINTERRUPTIBLE);
    740		io_schedule();
    741		finish_wait(&nq->wait, &wait);
    742	} while (1);
    743}
    744
    745static void end_cmd(struct nullb_cmd *cmd)
    746{
    747	int queue_mode = cmd->nq->dev->queue_mode;
    748
    749	switch (queue_mode)  {
    750	case NULL_Q_MQ:
    751		blk_mq_end_request(cmd->rq, cmd->error);
    752		return;
    753	case NULL_Q_BIO:
    754		cmd->bio->bi_status = cmd->error;
    755		bio_endio(cmd->bio);
    756		break;
    757	}
    758
    759	free_cmd(cmd);
    760}
    761
    762static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer)
    763{
    764	end_cmd(container_of(timer, struct nullb_cmd, timer));
    765
    766	return HRTIMER_NORESTART;
    767}
    768
    769static void null_cmd_end_timer(struct nullb_cmd *cmd)
    770{
    771	ktime_t kt = cmd->nq->dev->completion_nsec;
    772
    773	hrtimer_start(&cmd->timer, kt, HRTIMER_MODE_REL);
    774}
    775
    776static void null_complete_rq(struct request *rq)
    777{
    778	end_cmd(blk_mq_rq_to_pdu(rq));
    779}
    780
    781static struct nullb_page *null_alloc_page(void)
    782{
    783	struct nullb_page *t_page;
    784
    785	t_page = kmalloc(sizeof(struct nullb_page), GFP_NOIO);
    786	if (!t_page)
    787		return NULL;
    788
    789	t_page->page = alloc_pages(GFP_NOIO, 0);
    790	if (!t_page->page) {
    791		kfree(t_page);
    792		return NULL;
    793	}
    794
    795	memset(t_page->bitmap, 0, sizeof(t_page->bitmap));
    796	return t_page;
    797}
    798
    799static void null_free_page(struct nullb_page *t_page)
    800{
    801	__set_bit(NULLB_PAGE_FREE, t_page->bitmap);
    802	if (test_bit(NULLB_PAGE_LOCK, t_page->bitmap))
    803		return;
    804	__free_page(t_page->page);
    805	kfree(t_page);
    806}
    807
    808static bool null_page_empty(struct nullb_page *page)
    809{
    810	int size = MAP_SZ - 2;
    811
    812	return find_first_bit(page->bitmap, size) == size;
    813}
    814
    815static void null_free_sector(struct nullb *nullb, sector_t sector,
    816	bool is_cache)
    817{
    818	unsigned int sector_bit;
    819	u64 idx;
    820	struct nullb_page *t_page, *ret;
    821	struct radix_tree_root *root;
    822
    823	root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
    824	idx = sector >> PAGE_SECTORS_SHIFT;
    825	sector_bit = (sector & SECTOR_MASK);
    826
    827	t_page = radix_tree_lookup(root, idx);
    828	if (t_page) {
    829		__clear_bit(sector_bit, t_page->bitmap);
    830
    831		if (null_page_empty(t_page)) {
    832			ret = radix_tree_delete_item(root, idx, t_page);
    833			WARN_ON(ret != t_page);
    834			null_free_page(ret);
    835			if (is_cache)
    836				nullb->dev->curr_cache -= PAGE_SIZE;
    837		}
    838	}
    839}
    840
    841static struct nullb_page *null_radix_tree_insert(struct nullb *nullb, u64 idx,
    842	struct nullb_page *t_page, bool is_cache)
    843{
    844	struct radix_tree_root *root;
    845
    846	root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
    847
    848	if (radix_tree_insert(root, idx, t_page)) {
    849		null_free_page(t_page);
    850		t_page = radix_tree_lookup(root, idx);
    851		WARN_ON(!t_page || t_page->page->index != idx);
    852	} else if (is_cache)
    853		nullb->dev->curr_cache += PAGE_SIZE;
    854
    855	return t_page;
    856}
    857
    858static void null_free_device_storage(struct nullb_device *dev, bool is_cache)
    859{
    860	unsigned long pos = 0;
    861	int nr_pages;
    862	struct nullb_page *ret, *t_pages[FREE_BATCH];
    863	struct radix_tree_root *root;
    864
    865	root = is_cache ? &dev->cache : &dev->data;
    866
    867	do {
    868		int i;
    869
    870		nr_pages = radix_tree_gang_lookup(root,
    871				(void **)t_pages, pos, FREE_BATCH);
    872
    873		for (i = 0; i < nr_pages; i++) {
    874			pos = t_pages[i]->page->index;
    875			ret = radix_tree_delete_item(root, pos, t_pages[i]);
    876			WARN_ON(ret != t_pages[i]);
    877			null_free_page(ret);
    878		}
    879
    880		pos++;
    881	} while (nr_pages == FREE_BATCH);
    882
    883	if (is_cache)
    884		dev->curr_cache = 0;
    885}
    886
    887static struct nullb_page *__null_lookup_page(struct nullb *nullb,
    888	sector_t sector, bool for_write, bool is_cache)
    889{
    890	unsigned int sector_bit;
    891	u64 idx;
    892	struct nullb_page *t_page;
    893	struct radix_tree_root *root;
    894
    895	idx = sector >> PAGE_SECTORS_SHIFT;
    896	sector_bit = (sector & SECTOR_MASK);
    897
    898	root = is_cache ? &nullb->dev->cache : &nullb->dev->data;
    899	t_page = radix_tree_lookup(root, idx);
    900	WARN_ON(t_page && t_page->page->index != idx);
    901
    902	if (t_page && (for_write || test_bit(sector_bit, t_page->bitmap)))
    903		return t_page;
    904
    905	return NULL;
    906}
    907
    908static struct nullb_page *null_lookup_page(struct nullb *nullb,
    909	sector_t sector, bool for_write, bool ignore_cache)
    910{
    911	struct nullb_page *page = NULL;
    912
    913	if (!ignore_cache)
    914		page = __null_lookup_page(nullb, sector, for_write, true);
    915	if (page)
    916		return page;
    917	return __null_lookup_page(nullb, sector, for_write, false);
    918}
    919
    920static struct nullb_page *null_insert_page(struct nullb *nullb,
    921					   sector_t sector, bool ignore_cache)
    922	__releases(&nullb->lock)
    923	__acquires(&nullb->lock)
    924{
    925	u64 idx;
    926	struct nullb_page *t_page;
    927
    928	t_page = null_lookup_page(nullb, sector, true, ignore_cache);
    929	if (t_page)
    930		return t_page;
    931
    932	spin_unlock_irq(&nullb->lock);
    933
    934	t_page = null_alloc_page();
    935	if (!t_page)
    936		goto out_lock;
    937
    938	if (radix_tree_preload(GFP_NOIO))
    939		goto out_freepage;
    940
    941	spin_lock_irq(&nullb->lock);
    942	idx = sector >> PAGE_SECTORS_SHIFT;
    943	t_page->page->index = idx;
    944	t_page = null_radix_tree_insert(nullb, idx, t_page, !ignore_cache);
    945	radix_tree_preload_end();
    946
    947	return t_page;
    948out_freepage:
    949	null_free_page(t_page);
    950out_lock:
    951	spin_lock_irq(&nullb->lock);
    952	return null_lookup_page(nullb, sector, true, ignore_cache);
    953}
    954
    955static int null_flush_cache_page(struct nullb *nullb, struct nullb_page *c_page)
    956{
    957	int i;
    958	unsigned int offset;
    959	u64 idx;
    960	struct nullb_page *t_page, *ret;
    961	void *dst, *src;
    962
    963	idx = c_page->page->index;
    964
    965	t_page = null_insert_page(nullb, idx << PAGE_SECTORS_SHIFT, true);
    966
    967	__clear_bit(NULLB_PAGE_LOCK, c_page->bitmap);
    968	if (test_bit(NULLB_PAGE_FREE, c_page->bitmap)) {
    969		null_free_page(c_page);
    970		if (t_page && null_page_empty(t_page)) {
    971			ret = radix_tree_delete_item(&nullb->dev->data,
    972				idx, t_page);
    973			null_free_page(t_page);
    974		}
    975		return 0;
    976	}
    977
    978	if (!t_page)
    979		return -ENOMEM;
    980
    981	src = kmap_atomic(c_page->page);
    982	dst = kmap_atomic(t_page->page);
    983
    984	for (i = 0; i < PAGE_SECTORS;
    985			i += (nullb->dev->blocksize >> SECTOR_SHIFT)) {
    986		if (test_bit(i, c_page->bitmap)) {
    987			offset = (i << SECTOR_SHIFT);
    988			memcpy(dst + offset, src + offset,
    989				nullb->dev->blocksize);
    990			__set_bit(i, t_page->bitmap);
    991		}
    992	}
    993
    994	kunmap_atomic(dst);
    995	kunmap_atomic(src);
    996
    997	ret = radix_tree_delete_item(&nullb->dev->cache, idx, c_page);
    998	null_free_page(ret);
    999	nullb->dev->curr_cache -= PAGE_SIZE;
   1000
   1001	return 0;
   1002}
   1003
   1004static int null_make_cache_space(struct nullb *nullb, unsigned long n)
   1005{
   1006	int i, err, nr_pages;
   1007	struct nullb_page *c_pages[FREE_BATCH];
   1008	unsigned long flushed = 0, one_round;
   1009
   1010again:
   1011	if ((nullb->dev->cache_size * 1024 * 1024) >
   1012	     nullb->dev->curr_cache + n || nullb->dev->curr_cache == 0)
   1013		return 0;
   1014
   1015	nr_pages = radix_tree_gang_lookup(&nullb->dev->cache,
   1016			(void **)c_pages, nullb->cache_flush_pos, FREE_BATCH);
   1017	/*
   1018	 * nullb_flush_cache_page could unlock before using the c_pages. To
   1019	 * avoid race, we don't allow page free
   1020	 */
   1021	for (i = 0; i < nr_pages; i++) {
   1022		nullb->cache_flush_pos = c_pages[i]->page->index;
   1023		/*
   1024		 * We found the page which is being flushed to disk by other
   1025		 * threads
   1026		 */
   1027		if (test_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap))
   1028			c_pages[i] = NULL;
   1029		else
   1030			__set_bit(NULLB_PAGE_LOCK, c_pages[i]->bitmap);
   1031	}
   1032
   1033	one_round = 0;
   1034	for (i = 0; i < nr_pages; i++) {
   1035		if (c_pages[i] == NULL)
   1036			continue;
   1037		err = null_flush_cache_page(nullb, c_pages[i]);
   1038		if (err)
   1039			return err;
   1040		one_round++;
   1041	}
   1042	flushed += one_round << PAGE_SHIFT;
   1043
   1044	if (n > flushed) {
   1045		if (nr_pages == 0)
   1046			nullb->cache_flush_pos = 0;
   1047		if (one_round == 0) {
   1048			/* give other threads a chance */
   1049			spin_unlock_irq(&nullb->lock);
   1050			spin_lock_irq(&nullb->lock);
   1051		}
   1052		goto again;
   1053	}
   1054	return 0;
   1055}
   1056
   1057static int copy_to_nullb(struct nullb *nullb, struct page *source,
   1058	unsigned int off, sector_t sector, size_t n, bool is_fua)
   1059{
   1060	size_t temp, count = 0;
   1061	unsigned int offset;
   1062	struct nullb_page *t_page;
   1063	void *dst, *src;
   1064
   1065	while (count < n) {
   1066		temp = min_t(size_t, nullb->dev->blocksize, n - count);
   1067
   1068		if (null_cache_active(nullb) && !is_fua)
   1069			null_make_cache_space(nullb, PAGE_SIZE);
   1070
   1071		offset = (sector & SECTOR_MASK) << SECTOR_SHIFT;
   1072		t_page = null_insert_page(nullb, sector,
   1073			!null_cache_active(nullb) || is_fua);
   1074		if (!t_page)
   1075			return -ENOSPC;
   1076
   1077		src = kmap_atomic(source);
   1078		dst = kmap_atomic(t_page->page);
   1079		memcpy(dst + offset, src + off + count, temp);
   1080		kunmap_atomic(dst);
   1081		kunmap_atomic(src);
   1082
   1083		__set_bit(sector & SECTOR_MASK, t_page->bitmap);
   1084
   1085		if (is_fua)
   1086			null_free_sector(nullb, sector, true);
   1087
   1088		count += temp;
   1089		sector += temp >> SECTOR_SHIFT;
   1090	}
   1091	return 0;
   1092}
   1093
   1094static int copy_from_nullb(struct nullb *nullb, struct page *dest,
   1095	unsigned int off, sector_t sector, size_t n)
   1096{
   1097	size_t temp, count = 0;
   1098	unsigned int offset;
   1099	struct nullb_page *t_page;
   1100	void *dst, *src;
   1101
   1102	while (count < n) {
   1103		temp = min_t(size_t, nullb->dev->blocksize, n - count);
   1104
   1105		offset = (sector & SECTOR_MASK) << SECTOR_SHIFT;
   1106		t_page = null_lookup_page(nullb, sector, false,
   1107			!null_cache_active(nullb));
   1108
   1109		dst = kmap_atomic(dest);
   1110		if (!t_page) {
   1111			memset(dst + off + count, 0, temp);
   1112			goto next;
   1113		}
   1114		src = kmap_atomic(t_page->page);
   1115		memcpy(dst + off + count, src + offset, temp);
   1116		kunmap_atomic(src);
   1117next:
   1118		kunmap_atomic(dst);
   1119
   1120		count += temp;
   1121		sector += temp >> SECTOR_SHIFT;
   1122	}
   1123	return 0;
   1124}
   1125
   1126static void nullb_fill_pattern(struct nullb *nullb, struct page *page,
   1127			       unsigned int len, unsigned int off)
   1128{
   1129	void *dst;
   1130
   1131	dst = kmap_atomic(page);
   1132	memset(dst + off, 0xFF, len);
   1133	kunmap_atomic(dst);
   1134}
   1135
   1136blk_status_t null_handle_discard(struct nullb_device *dev,
   1137				 sector_t sector, sector_t nr_sectors)
   1138{
   1139	struct nullb *nullb = dev->nullb;
   1140	size_t n = nr_sectors << SECTOR_SHIFT;
   1141	size_t temp;
   1142
   1143	spin_lock_irq(&nullb->lock);
   1144	while (n > 0) {
   1145		temp = min_t(size_t, n, dev->blocksize);
   1146		null_free_sector(nullb, sector, false);
   1147		if (null_cache_active(nullb))
   1148			null_free_sector(nullb, sector, true);
   1149		sector += temp >> SECTOR_SHIFT;
   1150		n -= temp;
   1151	}
   1152	spin_unlock_irq(&nullb->lock);
   1153
   1154	return BLK_STS_OK;
   1155}
   1156
   1157static int null_handle_flush(struct nullb *nullb)
   1158{
   1159	int err;
   1160
   1161	if (!null_cache_active(nullb))
   1162		return 0;
   1163
   1164	spin_lock_irq(&nullb->lock);
   1165	while (true) {
   1166		err = null_make_cache_space(nullb,
   1167			nullb->dev->cache_size * 1024 * 1024);
   1168		if (err || nullb->dev->curr_cache == 0)
   1169			break;
   1170	}
   1171
   1172	WARN_ON(!radix_tree_empty(&nullb->dev->cache));
   1173	spin_unlock_irq(&nullb->lock);
   1174	return err;
   1175}
   1176
   1177static int null_transfer(struct nullb *nullb, struct page *page,
   1178	unsigned int len, unsigned int off, bool is_write, sector_t sector,
   1179	bool is_fua)
   1180{
   1181	struct nullb_device *dev = nullb->dev;
   1182	unsigned int valid_len = len;
   1183	int err = 0;
   1184
   1185	if (!is_write) {
   1186		if (dev->zoned)
   1187			valid_len = null_zone_valid_read_len(nullb,
   1188				sector, len);
   1189
   1190		if (valid_len) {
   1191			err = copy_from_nullb(nullb, page, off,
   1192				sector, valid_len);
   1193			off += valid_len;
   1194			len -= valid_len;
   1195		}
   1196
   1197		if (len)
   1198			nullb_fill_pattern(nullb, page, len, off);
   1199		flush_dcache_page(page);
   1200	} else {
   1201		flush_dcache_page(page);
   1202		err = copy_to_nullb(nullb, page, off, sector, len, is_fua);
   1203	}
   1204
   1205	return err;
   1206}
   1207
   1208static int null_handle_rq(struct nullb_cmd *cmd)
   1209{
   1210	struct request *rq = cmd->rq;
   1211	struct nullb *nullb = cmd->nq->dev->nullb;
   1212	int err;
   1213	unsigned int len;
   1214	sector_t sector = blk_rq_pos(rq);
   1215	struct req_iterator iter;
   1216	struct bio_vec bvec;
   1217
   1218	spin_lock_irq(&nullb->lock);
   1219	rq_for_each_segment(bvec, rq, iter) {
   1220		len = bvec.bv_len;
   1221		err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset,
   1222				     op_is_write(req_op(rq)), sector,
   1223				     rq->cmd_flags & REQ_FUA);
   1224		if (err) {
   1225			spin_unlock_irq(&nullb->lock);
   1226			return err;
   1227		}
   1228		sector += len >> SECTOR_SHIFT;
   1229	}
   1230	spin_unlock_irq(&nullb->lock);
   1231
   1232	return 0;
   1233}
   1234
   1235static int null_handle_bio(struct nullb_cmd *cmd)
   1236{
   1237	struct bio *bio = cmd->bio;
   1238	struct nullb *nullb = cmd->nq->dev->nullb;
   1239	int err;
   1240	unsigned int len;
   1241	sector_t sector = bio->bi_iter.bi_sector;
   1242	struct bio_vec bvec;
   1243	struct bvec_iter iter;
   1244
   1245	spin_lock_irq(&nullb->lock);
   1246	bio_for_each_segment(bvec, bio, iter) {
   1247		len = bvec.bv_len;
   1248		err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset,
   1249				     op_is_write(bio_op(bio)), sector,
   1250				     bio->bi_opf & REQ_FUA);
   1251		if (err) {
   1252			spin_unlock_irq(&nullb->lock);
   1253			return err;
   1254		}
   1255		sector += len >> SECTOR_SHIFT;
   1256	}
   1257	spin_unlock_irq(&nullb->lock);
   1258	return 0;
   1259}
   1260
   1261static void null_stop_queue(struct nullb *nullb)
   1262{
   1263	struct request_queue *q = nullb->q;
   1264
   1265	if (nullb->dev->queue_mode == NULL_Q_MQ)
   1266		blk_mq_stop_hw_queues(q);
   1267}
   1268
   1269static void null_restart_queue_async(struct nullb *nullb)
   1270{
   1271	struct request_queue *q = nullb->q;
   1272
   1273	if (nullb->dev->queue_mode == NULL_Q_MQ)
   1274		blk_mq_start_stopped_hw_queues(q, true);
   1275}
   1276
   1277static inline blk_status_t null_handle_throttled(struct nullb_cmd *cmd)
   1278{
   1279	struct nullb_device *dev = cmd->nq->dev;
   1280	struct nullb *nullb = dev->nullb;
   1281	blk_status_t sts = BLK_STS_OK;
   1282	struct request *rq = cmd->rq;
   1283
   1284	if (!hrtimer_active(&nullb->bw_timer))
   1285		hrtimer_restart(&nullb->bw_timer);
   1286
   1287	if (atomic_long_sub_return(blk_rq_bytes(rq), &nullb->cur_bytes) < 0) {
   1288		null_stop_queue(nullb);
   1289		/* race with timer */
   1290		if (atomic_long_read(&nullb->cur_bytes) > 0)
   1291			null_restart_queue_async(nullb);
   1292		/* requeue request */
   1293		sts = BLK_STS_DEV_RESOURCE;
   1294	}
   1295	return sts;
   1296}
   1297
   1298static inline blk_status_t null_handle_badblocks(struct nullb_cmd *cmd,
   1299						 sector_t sector,
   1300						 sector_t nr_sectors)
   1301{
   1302	struct badblocks *bb = &cmd->nq->dev->badblocks;
   1303	sector_t first_bad;
   1304	int bad_sectors;
   1305
   1306	if (badblocks_check(bb, sector, nr_sectors, &first_bad, &bad_sectors))
   1307		return BLK_STS_IOERR;
   1308
   1309	return BLK_STS_OK;
   1310}
   1311
   1312static inline blk_status_t null_handle_memory_backed(struct nullb_cmd *cmd,
   1313						     enum req_opf op,
   1314						     sector_t sector,
   1315						     sector_t nr_sectors)
   1316{
   1317	struct nullb_device *dev = cmd->nq->dev;
   1318	int err;
   1319
   1320	if (op == REQ_OP_DISCARD)
   1321		return null_handle_discard(dev, sector, nr_sectors);
   1322
   1323	if (dev->queue_mode == NULL_Q_BIO)
   1324		err = null_handle_bio(cmd);
   1325	else
   1326		err = null_handle_rq(cmd);
   1327
   1328	return errno_to_blk_status(err);
   1329}
   1330
   1331static void nullb_zero_read_cmd_buffer(struct nullb_cmd *cmd)
   1332{
   1333	struct nullb_device *dev = cmd->nq->dev;
   1334	struct bio *bio;
   1335
   1336	if (dev->memory_backed)
   1337		return;
   1338
   1339	if (dev->queue_mode == NULL_Q_BIO && bio_op(cmd->bio) == REQ_OP_READ) {
   1340		zero_fill_bio(cmd->bio);
   1341	} else if (req_op(cmd->rq) == REQ_OP_READ) {
   1342		__rq_for_each_bio(bio, cmd->rq)
   1343			zero_fill_bio(bio);
   1344	}
   1345}
   1346
   1347static inline void nullb_complete_cmd(struct nullb_cmd *cmd)
   1348{
   1349	/*
   1350	 * Since root privileges are required to configure the null_blk
   1351	 * driver, it is fine that this driver does not initialize the
   1352	 * data buffers of read commands. Zero-initialize these buffers
   1353	 * anyway if KMSAN is enabled to prevent that KMSAN complains
   1354	 * about null_blk not initializing read data buffers.
   1355	 */
   1356	if (IS_ENABLED(CONFIG_KMSAN))
   1357		nullb_zero_read_cmd_buffer(cmd);
   1358
   1359	/* Complete IO by inline, softirq or timer */
   1360	switch (cmd->nq->dev->irqmode) {
   1361	case NULL_IRQ_SOFTIRQ:
   1362		switch (cmd->nq->dev->queue_mode) {
   1363		case NULL_Q_MQ:
   1364			if (likely(!blk_should_fake_timeout(cmd->rq->q)))
   1365				blk_mq_complete_request(cmd->rq);
   1366			break;
   1367		case NULL_Q_BIO:
   1368			/*
   1369			 * XXX: no proper submitting cpu information available.
   1370			 */
   1371			end_cmd(cmd);
   1372			break;
   1373		}
   1374		break;
   1375	case NULL_IRQ_NONE:
   1376		end_cmd(cmd);
   1377		break;
   1378	case NULL_IRQ_TIMER:
   1379		null_cmd_end_timer(cmd);
   1380		break;
   1381	}
   1382}
   1383
   1384blk_status_t null_process_cmd(struct nullb_cmd *cmd,
   1385			      enum req_opf op, sector_t sector,
   1386			      unsigned int nr_sectors)
   1387{
   1388	struct nullb_device *dev = cmd->nq->dev;
   1389	blk_status_t ret;
   1390
   1391	if (dev->badblocks.shift != -1) {
   1392		ret = null_handle_badblocks(cmd, sector, nr_sectors);
   1393		if (ret != BLK_STS_OK)
   1394			return ret;
   1395	}
   1396
   1397	if (dev->memory_backed)
   1398		return null_handle_memory_backed(cmd, op, sector, nr_sectors);
   1399
   1400	return BLK_STS_OK;
   1401}
   1402
   1403static blk_status_t null_handle_cmd(struct nullb_cmd *cmd, sector_t sector,
   1404				    sector_t nr_sectors, enum req_opf op)
   1405{
   1406	struct nullb_device *dev = cmd->nq->dev;
   1407	struct nullb *nullb = dev->nullb;
   1408	blk_status_t sts;
   1409
   1410	if (test_bit(NULLB_DEV_FL_THROTTLED, &dev->flags)) {
   1411		sts = null_handle_throttled(cmd);
   1412		if (sts != BLK_STS_OK)
   1413			return sts;
   1414	}
   1415
   1416	if (op == REQ_OP_FLUSH) {
   1417		cmd->error = errno_to_blk_status(null_handle_flush(nullb));
   1418		goto out;
   1419	}
   1420
   1421	if (dev->zoned)
   1422		sts = null_process_zoned_cmd(cmd, op, sector, nr_sectors);
   1423	else
   1424		sts = null_process_cmd(cmd, op, sector, nr_sectors);
   1425
   1426	/* Do not overwrite errors (e.g. timeout errors) */
   1427	if (cmd->error == BLK_STS_OK)
   1428		cmd->error = sts;
   1429
   1430out:
   1431	nullb_complete_cmd(cmd);
   1432	return BLK_STS_OK;
   1433}
   1434
   1435static enum hrtimer_restart nullb_bwtimer_fn(struct hrtimer *timer)
   1436{
   1437	struct nullb *nullb = container_of(timer, struct nullb, bw_timer);
   1438	ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL);
   1439	unsigned int mbps = nullb->dev->mbps;
   1440
   1441	if (atomic_long_read(&nullb->cur_bytes) == mb_per_tick(mbps))
   1442		return HRTIMER_NORESTART;
   1443
   1444	atomic_long_set(&nullb->cur_bytes, mb_per_tick(mbps));
   1445	null_restart_queue_async(nullb);
   1446
   1447	hrtimer_forward_now(&nullb->bw_timer, timer_interval);
   1448
   1449	return HRTIMER_RESTART;
   1450}
   1451
   1452static void nullb_setup_bwtimer(struct nullb *nullb)
   1453{
   1454	ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL);
   1455
   1456	hrtimer_init(&nullb->bw_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
   1457	nullb->bw_timer.function = nullb_bwtimer_fn;
   1458	atomic_long_set(&nullb->cur_bytes, mb_per_tick(nullb->dev->mbps));
   1459	hrtimer_start(&nullb->bw_timer, timer_interval, HRTIMER_MODE_REL);
   1460}
   1461
   1462static struct nullb_queue *nullb_to_queue(struct nullb *nullb)
   1463{
   1464	int index = 0;
   1465
   1466	if (nullb->nr_queues != 1)
   1467		index = raw_smp_processor_id() / ((nr_cpu_ids + nullb->nr_queues - 1) / nullb->nr_queues);
   1468
   1469	return &nullb->queues[index];
   1470}
   1471
   1472static void null_submit_bio(struct bio *bio)
   1473{
   1474	sector_t sector = bio->bi_iter.bi_sector;
   1475	sector_t nr_sectors = bio_sectors(bio);
   1476	struct nullb *nullb = bio->bi_bdev->bd_disk->private_data;
   1477	struct nullb_queue *nq = nullb_to_queue(nullb);
   1478
   1479	null_handle_cmd(alloc_cmd(nq, bio), sector, nr_sectors, bio_op(bio));
   1480}
   1481
   1482static bool should_timeout_request(struct request *rq)
   1483{
   1484#ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
   1485	if (g_timeout_str[0])
   1486		return should_fail(&null_timeout_attr, 1);
   1487#endif
   1488	return false;
   1489}
   1490
   1491static bool should_requeue_request(struct request *rq)
   1492{
   1493#ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
   1494	if (g_requeue_str[0])
   1495		return should_fail(&null_requeue_attr, 1);
   1496#endif
   1497	return false;
   1498}
   1499
   1500static int null_map_queues(struct blk_mq_tag_set *set)
   1501{
   1502	struct nullb *nullb = set->driver_data;
   1503	int i, qoff;
   1504	unsigned int submit_queues = g_submit_queues;
   1505	unsigned int poll_queues = g_poll_queues;
   1506
   1507	if (nullb) {
   1508		struct nullb_device *dev = nullb->dev;
   1509
   1510		/*
   1511		 * Refer nr_hw_queues of the tag set to check if the expected
   1512		 * number of hardware queues are prepared. If block layer failed
   1513		 * to prepare them, use previous numbers of submit queues and
   1514		 * poll queues to map queues.
   1515		 */
   1516		if (set->nr_hw_queues ==
   1517		    dev->submit_queues + dev->poll_queues) {
   1518			submit_queues = dev->submit_queues;
   1519			poll_queues = dev->poll_queues;
   1520		} else if (set->nr_hw_queues ==
   1521			   dev->prev_submit_queues + dev->prev_poll_queues) {
   1522			submit_queues = dev->prev_submit_queues;
   1523			poll_queues = dev->prev_poll_queues;
   1524		} else {
   1525			pr_warn("tag set has unexpected nr_hw_queues: %d\n",
   1526				set->nr_hw_queues);
   1527			return -EINVAL;
   1528		}
   1529	}
   1530
   1531	for (i = 0, qoff = 0; i < set->nr_maps; i++) {
   1532		struct blk_mq_queue_map *map = &set->map[i];
   1533
   1534		switch (i) {
   1535		case HCTX_TYPE_DEFAULT:
   1536			map->nr_queues = submit_queues;
   1537			break;
   1538		case HCTX_TYPE_READ:
   1539			map->nr_queues = 0;
   1540			continue;
   1541		case HCTX_TYPE_POLL:
   1542			map->nr_queues = poll_queues;
   1543			break;
   1544		}
   1545		map->queue_offset = qoff;
   1546		qoff += map->nr_queues;
   1547		blk_mq_map_queues(map);
   1548	}
   1549
   1550	return 0;
   1551}
   1552
   1553static int null_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
   1554{
   1555	struct nullb_queue *nq = hctx->driver_data;
   1556	LIST_HEAD(list);
   1557	int nr = 0;
   1558
   1559	spin_lock(&nq->poll_lock);
   1560	list_splice_init(&nq->poll_list, &list);
   1561	spin_unlock(&nq->poll_lock);
   1562
   1563	while (!list_empty(&list)) {
   1564		struct nullb_cmd *cmd;
   1565		struct request *req;
   1566
   1567		req = list_first_entry(&list, struct request, queuelist);
   1568		list_del_init(&req->queuelist);
   1569		cmd = blk_mq_rq_to_pdu(req);
   1570		cmd->error = null_process_cmd(cmd, req_op(req), blk_rq_pos(req),
   1571						blk_rq_sectors(req));
   1572		if (!blk_mq_add_to_batch(req, iob, (__force int) cmd->error,
   1573					blk_mq_end_request_batch))
   1574			end_cmd(cmd);
   1575		nr++;
   1576	}
   1577
   1578	return nr;
   1579}
   1580
   1581static enum blk_eh_timer_return null_timeout_rq(struct request *rq, bool res)
   1582{
   1583	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
   1584	struct nullb_cmd *cmd = blk_mq_rq_to_pdu(rq);
   1585
   1586	pr_info("rq %p timed out\n", rq);
   1587
   1588	if (hctx->type == HCTX_TYPE_POLL) {
   1589		struct nullb_queue *nq = hctx->driver_data;
   1590
   1591		spin_lock(&nq->poll_lock);
   1592		list_del_init(&rq->queuelist);
   1593		spin_unlock(&nq->poll_lock);
   1594	}
   1595
   1596	/*
   1597	 * If the device is marked as blocking (i.e. memory backed or zoned
   1598	 * device), the submission path may be blocked waiting for resources
   1599	 * and cause real timeouts. For these real timeouts, the submission
   1600	 * path will complete the request using blk_mq_complete_request().
   1601	 * Only fake timeouts need to execute blk_mq_complete_request() here.
   1602	 */
   1603	cmd->error = BLK_STS_TIMEOUT;
   1604	if (cmd->fake_timeout || hctx->type == HCTX_TYPE_POLL)
   1605		blk_mq_complete_request(rq);
   1606	return BLK_EH_DONE;
   1607}
   1608
   1609static blk_status_t null_queue_rq(struct blk_mq_hw_ctx *hctx,
   1610			 const struct blk_mq_queue_data *bd)
   1611{
   1612	struct nullb_cmd *cmd = blk_mq_rq_to_pdu(bd->rq);
   1613	struct nullb_queue *nq = hctx->driver_data;
   1614	sector_t nr_sectors = blk_rq_sectors(bd->rq);
   1615	sector_t sector = blk_rq_pos(bd->rq);
   1616	const bool is_poll = hctx->type == HCTX_TYPE_POLL;
   1617
   1618	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
   1619
   1620	if (!is_poll && nq->dev->irqmode == NULL_IRQ_TIMER) {
   1621		hrtimer_init(&cmd->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
   1622		cmd->timer.function = null_cmd_timer_expired;
   1623	}
   1624	cmd->rq = bd->rq;
   1625	cmd->error = BLK_STS_OK;
   1626	cmd->nq = nq;
   1627	cmd->fake_timeout = should_timeout_request(bd->rq);
   1628
   1629	blk_mq_start_request(bd->rq);
   1630
   1631	if (should_requeue_request(bd->rq)) {
   1632		/*
   1633		 * Alternate between hitting the core BUSY path, and the
   1634		 * driver driven requeue path
   1635		 */
   1636		nq->requeue_selection++;
   1637		if (nq->requeue_selection & 1)
   1638			return BLK_STS_RESOURCE;
   1639		else {
   1640			blk_mq_requeue_request(bd->rq, true);
   1641			return BLK_STS_OK;
   1642		}
   1643	}
   1644
   1645	if (is_poll) {
   1646		spin_lock(&nq->poll_lock);
   1647		list_add_tail(&bd->rq->queuelist, &nq->poll_list);
   1648		spin_unlock(&nq->poll_lock);
   1649		return BLK_STS_OK;
   1650	}
   1651	if (cmd->fake_timeout)
   1652		return BLK_STS_OK;
   1653
   1654	return null_handle_cmd(cmd, sector, nr_sectors, req_op(bd->rq));
   1655}
   1656
   1657static void cleanup_queue(struct nullb_queue *nq)
   1658{
   1659	kfree(nq->tag_map);
   1660	kfree(nq->cmds);
   1661}
   1662
   1663static void cleanup_queues(struct nullb *nullb)
   1664{
   1665	int i;
   1666
   1667	for (i = 0; i < nullb->nr_queues; i++)
   1668		cleanup_queue(&nullb->queues[i]);
   1669
   1670	kfree(nullb->queues);
   1671}
   1672
   1673static void null_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
   1674{
   1675	struct nullb_queue *nq = hctx->driver_data;
   1676	struct nullb *nullb = nq->dev->nullb;
   1677
   1678	nullb->nr_queues--;
   1679}
   1680
   1681static void null_init_queue(struct nullb *nullb, struct nullb_queue *nq)
   1682{
   1683	init_waitqueue_head(&nq->wait);
   1684	nq->queue_depth = nullb->queue_depth;
   1685	nq->dev = nullb->dev;
   1686	INIT_LIST_HEAD(&nq->poll_list);
   1687	spin_lock_init(&nq->poll_lock);
   1688}
   1689
   1690static int null_init_hctx(struct blk_mq_hw_ctx *hctx, void *driver_data,
   1691			  unsigned int hctx_idx)
   1692{
   1693	struct nullb *nullb = hctx->queue->queuedata;
   1694	struct nullb_queue *nq;
   1695
   1696#ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
   1697	if (g_init_hctx_str[0] && should_fail(&null_init_hctx_attr, 1))
   1698		return -EFAULT;
   1699#endif
   1700
   1701	nq = &nullb->queues[hctx_idx];
   1702	hctx->driver_data = nq;
   1703	null_init_queue(nullb, nq);
   1704	nullb->nr_queues++;
   1705
   1706	return 0;
   1707}
   1708
   1709static const struct blk_mq_ops null_mq_ops = {
   1710	.queue_rq       = null_queue_rq,
   1711	.complete	= null_complete_rq,
   1712	.timeout	= null_timeout_rq,
   1713	.poll		= null_poll,
   1714	.map_queues	= null_map_queues,
   1715	.init_hctx	= null_init_hctx,
   1716	.exit_hctx	= null_exit_hctx,
   1717};
   1718
   1719static void null_del_dev(struct nullb *nullb)
   1720{
   1721	struct nullb_device *dev;
   1722
   1723	if (!nullb)
   1724		return;
   1725
   1726	dev = nullb->dev;
   1727
   1728	ida_simple_remove(&nullb_indexes, nullb->index);
   1729
   1730	list_del_init(&nullb->list);
   1731
   1732	del_gendisk(nullb->disk);
   1733
   1734	if (test_bit(NULLB_DEV_FL_THROTTLED, &nullb->dev->flags)) {
   1735		hrtimer_cancel(&nullb->bw_timer);
   1736		atomic_long_set(&nullb->cur_bytes, LONG_MAX);
   1737		null_restart_queue_async(nullb);
   1738	}
   1739
   1740	blk_cleanup_disk(nullb->disk);
   1741	if (dev->queue_mode == NULL_Q_MQ &&
   1742	    nullb->tag_set == &nullb->__tag_set)
   1743		blk_mq_free_tag_set(nullb->tag_set);
   1744	cleanup_queues(nullb);
   1745	if (null_cache_active(nullb))
   1746		null_free_device_storage(nullb->dev, true);
   1747	kfree(nullb);
   1748	dev->nullb = NULL;
   1749}
   1750
   1751static void null_config_discard(struct nullb *nullb)
   1752{
   1753	if (nullb->dev->discard == false)
   1754		return;
   1755
   1756	if (!nullb->dev->memory_backed) {
   1757		nullb->dev->discard = false;
   1758		pr_info("discard option is ignored without memory backing\n");
   1759		return;
   1760	}
   1761
   1762	if (nullb->dev->zoned) {
   1763		nullb->dev->discard = false;
   1764		pr_info("discard option is ignored in zoned mode\n");
   1765		return;
   1766	}
   1767
   1768	nullb->q->limits.discard_granularity = nullb->dev->blocksize;
   1769	blk_queue_max_discard_sectors(nullb->q, UINT_MAX >> 9);
   1770}
   1771
   1772static const struct block_device_operations null_bio_ops = {
   1773	.owner		= THIS_MODULE,
   1774	.submit_bio	= null_submit_bio,
   1775	.report_zones	= null_report_zones,
   1776};
   1777
   1778static const struct block_device_operations null_rq_ops = {
   1779	.owner		= THIS_MODULE,
   1780	.report_zones	= null_report_zones,
   1781};
   1782
   1783static int setup_commands(struct nullb_queue *nq)
   1784{
   1785	struct nullb_cmd *cmd;
   1786	int i, tag_size;
   1787
   1788	nq->cmds = kcalloc(nq->queue_depth, sizeof(*cmd), GFP_KERNEL);
   1789	if (!nq->cmds)
   1790		return -ENOMEM;
   1791
   1792	tag_size = ALIGN(nq->queue_depth, BITS_PER_LONG) / BITS_PER_LONG;
   1793	nq->tag_map = kcalloc(tag_size, sizeof(unsigned long), GFP_KERNEL);
   1794	if (!nq->tag_map) {
   1795		kfree(nq->cmds);
   1796		return -ENOMEM;
   1797	}
   1798
   1799	for (i = 0; i < nq->queue_depth; i++) {
   1800		cmd = &nq->cmds[i];
   1801		cmd->tag = -1U;
   1802	}
   1803
   1804	return 0;
   1805}
   1806
   1807static int setup_queues(struct nullb *nullb)
   1808{
   1809	int nqueues = nr_cpu_ids;
   1810
   1811	if (g_poll_queues)
   1812		nqueues += g_poll_queues;
   1813
   1814	nullb->queues = kcalloc(nqueues, sizeof(struct nullb_queue),
   1815				GFP_KERNEL);
   1816	if (!nullb->queues)
   1817		return -ENOMEM;
   1818
   1819	nullb->queue_depth = nullb->dev->hw_queue_depth;
   1820	return 0;
   1821}
   1822
   1823static int init_driver_queues(struct nullb *nullb)
   1824{
   1825	struct nullb_queue *nq;
   1826	int i, ret = 0;
   1827
   1828	for (i = 0; i < nullb->dev->submit_queues; i++) {
   1829		nq = &nullb->queues[i];
   1830
   1831		null_init_queue(nullb, nq);
   1832
   1833		ret = setup_commands(nq);
   1834		if (ret)
   1835			return ret;
   1836		nullb->nr_queues++;
   1837	}
   1838	return 0;
   1839}
   1840
   1841static int null_gendisk_register(struct nullb *nullb)
   1842{
   1843	sector_t size = ((sector_t)nullb->dev->size * SZ_1M) >> SECTOR_SHIFT;
   1844	struct gendisk *disk = nullb->disk;
   1845
   1846	set_capacity(disk, size);
   1847
   1848	disk->major		= null_major;
   1849	disk->first_minor	= nullb->index;
   1850	disk->minors		= 1;
   1851	if (queue_is_mq(nullb->q))
   1852		disk->fops		= &null_rq_ops;
   1853	else
   1854		disk->fops		= &null_bio_ops;
   1855	disk->private_data	= nullb;
   1856	strncpy(disk->disk_name, nullb->disk_name, DISK_NAME_LEN);
   1857
   1858	if (nullb->dev->zoned) {
   1859		int ret = null_register_zoned_dev(nullb);
   1860
   1861		if (ret)
   1862			return ret;
   1863	}
   1864
   1865	return add_disk(disk);
   1866}
   1867
   1868static int null_init_tag_set(struct nullb *nullb, struct blk_mq_tag_set *set)
   1869{
   1870	int poll_queues;
   1871
   1872	set->ops = &null_mq_ops;
   1873	set->nr_hw_queues = nullb ? nullb->dev->submit_queues :
   1874						g_submit_queues;
   1875	poll_queues = nullb ? nullb->dev->poll_queues : g_poll_queues;
   1876	if (poll_queues)
   1877		set->nr_hw_queues += poll_queues;
   1878	set->queue_depth = nullb ? nullb->dev->hw_queue_depth :
   1879						g_hw_queue_depth;
   1880	set->numa_node = nullb ? nullb->dev->home_node : g_home_node;
   1881	set->cmd_size	= sizeof(struct nullb_cmd);
   1882	set->flags = BLK_MQ_F_SHOULD_MERGE;
   1883	if (g_no_sched)
   1884		set->flags |= BLK_MQ_F_NO_SCHED;
   1885	if (g_shared_tag_bitmap)
   1886		set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
   1887	set->driver_data = nullb;
   1888	if (poll_queues)
   1889		set->nr_maps = 3;
   1890	else
   1891		set->nr_maps = 1;
   1892
   1893	if ((nullb && nullb->dev->blocking) || g_blocking)
   1894		set->flags |= BLK_MQ_F_BLOCKING;
   1895
   1896	return blk_mq_alloc_tag_set(set);
   1897}
   1898
   1899static int null_validate_conf(struct nullb_device *dev)
   1900{
   1901	dev->blocksize = round_down(dev->blocksize, 512);
   1902	dev->blocksize = clamp_t(unsigned int, dev->blocksize, 512, 4096);
   1903
   1904	if (dev->queue_mode == NULL_Q_MQ && dev->use_per_node_hctx) {
   1905		if (dev->submit_queues != nr_online_nodes)
   1906			dev->submit_queues = nr_online_nodes;
   1907	} else if (dev->submit_queues > nr_cpu_ids)
   1908		dev->submit_queues = nr_cpu_ids;
   1909	else if (dev->submit_queues == 0)
   1910		dev->submit_queues = 1;
   1911	dev->prev_submit_queues = dev->submit_queues;
   1912
   1913	if (dev->poll_queues > g_poll_queues)
   1914		dev->poll_queues = g_poll_queues;
   1915	dev->prev_poll_queues = dev->poll_queues;
   1916
   1917	dev->queue_mode = min_t(unsigned int, dev->queue_mode, NULL_Q_MQ);
   1918	dev->irqmode = min_t(unsigned int, dev->irqmode, NULL_IRQ_TIMER);
   1919
   1920	/* Do memory allocation, so set blocking */
   1921	if (dev->memory_backed)
   1922		dev->blocking = true;
   1923	else /* cache is meaningless */
   1924		dev->cache_size = 0;
   1925	dev->cache_size = min_t(unsigned long, ULONG_MAX / 1024 / 1024,
   1926						dev->cache_size);
   1927	dev->mbps = min_t(unsigned int, 1024 * 40, dev->mbps);
   1928	/* can not stop a queue */
   1929	if (dev->queue_mode == NULL_Q_BIO)
   1930		dev->mbps = 0;
   1931
   1932	if (dev->zoned &&
   1933	    (!dev->zone_size || !is_power_of_2(dev->zone_size))) {
   1934		pr_err("zone_size must be power-of-two\n");
   1935		return -EINVAL;
   1936	}
   1937
   1938	return 0;
   1939}
   1940
   1941#ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
   1942static bool __null_setup_fault(struct fault_attr *attr, char *str)
   1943{
   1944	if (!str[0])
   1945		return true;
   1946
   1947	if (!setup_fault_attr(attr, str))
   1948		return false;
   1949
   1950	attr->verbose = 0;
   1951	return true;
   1952}
   1953#endif
   1954
   1955static bool null_setup_fault(void)
   1956{
   1957#ifdef CONFIG_BLK_DEV_NULL_BLK_FAULT_INJECTION
   1958	if (!__null_setup_fault(&null_timeout_attr, g_timeout_str))
   1959		return false;
   1960	if (!__null_setup_fault(&null_requeue_attr, g_requeue_str))
   1961		return false;
   1962	if (!__null_setup_fault(&null_init_hctx_attr, g_init_hctx_str))
   1963		return false;
   1964#endif
   1965	return true;
   1966}
   1967
   1968static int null_add_dev(struct nullb_device *dev)
   1969{
   1970	struct nullb *nullb;
   1971	int rv;
   1972
   1973	rv = null_validate_conf(dev);
   1974	if (rv)
   1975		return rv;
   1976
   1977	nullb = kzalloc_node(sizeof(*nullb), GFP_KERNEL, dev->home_node);
   1978	if (!nullb) {
   1979		rv = -ENOMEM;
   1980		goto out;
   1981	}
   1982	nullb->dev = dev;
   1983	dev->nullb = nullb;
   1984
   1985	spin_lock_init(&nullb->lock);
   1986
   1987	rv = setup_queues(nullb);
   1988	if (rv)
   1989		goto out_free_nullb;
   1990
   1991	if (dev->queue_mode == NULL_Q_MQ) {
   1992		if (shared_tags) {
   1993			nullb->tag_set = &tag_set;
   1994			rv = 0;
   1995		} else {
   1996			nullb->tag_set = &nullb->__tag_set;
   1997			rv = null_init_tag_set(nullb, nullb->tag_set);
   1998		}
   1999
   2000		if (rv)
   2001			goto out_cleanup_queues;
   2002
   2003		if (!null_setup_fault())
   2004			goto out_cleanup_tags;
   2005
   2006		nullb->tag_set->timeout = 5 * HZ;
   2007		nullb->disk = blk_mq_alloc_disk(nullb->tag_set, nullb);
   2008		if (IS_ERR(nullb->disk)) {
   2009			rv = PTR_ERR(nullb->disk);
   2010			goto out_cleanup_tags;
   2011		}
   2012		nullb->q = nullb->disk->queue;
   2013	} else if (dev->queue_mode == NULL_Q_BIO) {
   2014		rv = -ENOMEM;
   2015		nullb->disk = blk_alloc_disk(nullb->dev->home_node);
   2016		if (!nullb->disk)
   2017			goto out_cleanup_queues;
   2018
   2019		nullb->q = nullb->disk->queue;
   2020		rv = init_driver_queues(nullb);
   2021		if (rv)
   2022			goto out_cleanup_disk;
   2023	}
   2024
   2025	if (dev->mbps) {
   2026		set_bit(NULLB_DEV_FL_THROTTLED, &dev->flags);
   2027		nullb_setup_bwtimer(nullb);
   2028	}
   2029
   2030	if (dev->cache_size > 0) {
   2031		set_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags);
   2032		blk_queue_write_cache(nullb->q, true, true);
   2033	}
   2034
   2035	if (dev->zoned) {
   2036		rv = null_init_zoned_dev(dev, nullb->q);
   2037		if (rv)
   2038			goto out_cleanup_disk;
   2039	}
   2040
   2041	nullb->q->queuedata = nullb;
   2042	blk_queue_flag_set(QUEUE_FLAG_NONROT, nullb->q);
   2043	blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, nullb->q);
   2044
   2045	mutex_lock(&lock);
   2046	nullb->index = ida_simple_get(&nullb_indexes, 0, 0, GFP_KERNEL);
   2047	dev->index = nullb->index;
   2048	mutex_unlock(&lock);
   2049
   2050	blk_queue_logical_block_size(nullb->q, dev->blocksize);
   2051	blk_queue_physical_block_size(nullb->q, dev->blocksize);
   2052	if (!dev->max_sectors)
   2053		dev->max_sectors = queue_max_hw_sectors(nullb->q);
   2054	dev->max_sectors = min_t(unsigned int, dev->max_sectors,
   2055				 BLK_DEF_MAX_SECTORS);
   2056	blk_queue_max_hw_sectors(nullb->q, dev->max_sectors);
   2057
   2058	if (dev->virt_boundary)
   2059		blk_queue_virt_boundary(nullb->q, PAGE_SIZE - 1);
   2060
   2061	null_config_discard(nullb);
   2062
   2063	if (config_item_name(&dev->item)) {
   2064		/* Use configfs dir name as the device name */
   2065		snprintf(nullb->disk_name, sizeof(nullb->disk_name),
   2066			 "%s", config_item_name(&dev->item));
   2067	} else {
   2068		sprintf(nullb->disk_name, "nullb%d", nullb->index);
   2069	}
   2070
   2071	rv = null_gendisk_register(nullb);
   2072	if (rv)
   2073		goto out_cleanup_zone;
   2074
   2075	mutex_lock(&lock);
   2076	list_add_tail(&nullb->list, &nullb_list);
   2077	mutex_unlock(&lock);
   2078
   2079	pr_info("disk %s created\n", nullb->disk_name);
   2080
   2081	return 0;
   2082out_cleanup_zone:
   2083	null_free_zoned_dev(dev);
   2084out_cleanup_disk:
   2085	blk_cleanup_disk(nullb->disk);
   2086out_cleanup_tags:
   2087	if (dev->queue_mode == NULL_Q_MQ && nullb->tag_set == &nullb->__tag_set)
   2088		blk_mq_free_tag_set(nullb->tag_set);
   2089out_cleanup_queues:
   2090	cleanup_queues(nullb);
   2091out_free_nullb:
   2092	kfree(nullb);
   2093	dev->nullb = NULL;
   2094out:
   2095	return rv;
   2096}
   2097
   2098static struct nullb *null_find_dev_by_name(const char *name)
   2099{
   2100	struct nullb *nullb = NULL, *nb;
   2101
   2102	mutex_lock(&lock);
   2103	list_for_each_entry(nb, &nullb_list, list) {
   2104		if (strcmp(nb->disk_name, name) == 0) {
   2105			nullb = nb;
   2106			break;
   2107		}
   2108	}
   2109	mutex_unlock(&lock);
   2110
   2111	return nullb;
   2112}
   2113
   2114static int null_create_dev(void)
   2115{
   2116	struct nullb_device *dev;
   2117	int ret;
   2118
   2119	dev = null_alloc_dev();
   2120	if (!dev)
   2121		return -ENOMEM;
   2122
   2123	ret = null_add_dev(dev);
   2124	if (ret) {
   2125		null_free_dev(dev);
   2126		return ret;
   2127	}
   2128
   2129	return 0;
   2130}
   2131
   2132static void null_destroy_dev(struct nullb *nullb)
   2133{
   2134	struct nullb_device *dev = nullb->dev;
   2135
   2136	null_del_dev(nullb);
   2137	null_free_dev(dev);
   2138}
   2139
   2140static int __init null_init(void)
   2141{
   2142	int ret = 0;
   2143	unsigned int i;
   2144	struct nullb *nullb;
   2145
   2146	if (g_bs > PAGE_SIZE) {
   2147		pr_warn("invalid block size\n");
   2148		pr_warn("defaults block size to %lu\n", PAGE_SIZE);
   2149		g_bs = PAGE_SIZE;
   2150	}
   2151
   2152	if (g_max_sectors > BLK_DEF_MAX_SECTORS) {
   2153		pr_warn("invalid max sectors\n");
   2154		pr_warn("defaults max sectors to %u\n", BLK_DEF_MAX_SECTORS);
   2155		g_max_sectors = BLK_DEF_MAX_SECTORS;
   2156	}
   2157
   2158	if (g_home_node != NUMA_NO_NODE && g_home_node >= nr_online_nodes) {
   2159		pr_err("invalid home_node value\n");
   2160		g_home_node = NUMA_NO_NODE;
   2161	}
   2162
   2163	if (g_queue_mode == NULL_Q_RQ) {
   2164		pr_err("legacy IO path is no longer available\n");
   2165		return -EINVAL;
   2166	}
   2167
   2168	if (g_queue_mode == NULL_Q_MQ && g_use_per_node_hctx) {
   2169		if (g_submit_queues != nr_online_nodes) {
   2170			pr_warn("submit_queues param is set to %u.\n",
   2171				nr_online_nodes);
   2172			g_submit_queues = nr_online_nodes;
   2173		}
   2174	} else if (g_submit_queues > nr_cpu_ids) {
   2175		g_submit_queues = nr_cpu_ids;
   2176	} else if (g_submit_queues <= 0) {
   2177		g_submit_queues = 1;
   2178	}
   2179
   2180	if (g_queue_mode == NULL_Q_MQ && shared_tags) {
   2181		ret = null_init_tag_set(NULL, &tag_set);
   2182		if (ret)
   2183			return ret;
   2184	}
   2185
   2186	config_group_init(&nullb_subsys.su_group);
   2187	mutex_init(&nullb_subsys.su_mutex);
   2188
   2189	ret = configfs_register_subsystem(&nullb_subsys);
   2190	if (ret)
   2191		goto err_tagset;
   2192
   2193	mutex_init(&lock);
   2194
   2195	null_major = register_blkdev(0, "nullb");
   2196	if (null_major < 0) {
   2197		ret = null_major;
   2198		goto err_conf;
   2199	}
   2200
   2201	for (i = 0; i < nr_devices; i++) {
   2202		ret = null_create_dev();
   2203		if (ret)
   2204			goto err_dev;
   2205	}
   2206
   2207	pr_info("module loaded\n");
   2208	return 0;
   2209
   2210err_dev:
   2211	while (!list_empty(&nullb_list)) {
   2212		nullb = list_entry(nullb_list.next, struct nullb, list);
   2213		null_destroy_dev(nullb);
   2214	}
   2215	unregister_blkdev(null_major, "nullb");
   2216err_conf:
   2217	configfs_unregister_subsystem(&nullb_subsys);
   2218err_tagset:
   2219	if (g_queue_mode == NULL_Q_MQ && shared_tags)
   2220		blk_mq_free_tag_set(&tag_set);
   2221	return ret;
   2222}
   2223
   2224static void __exit null_exit(void)
   2225{
   2226	struct nullb *nullb;
   2227
   2228	configfs_unregister_subsystem(&nullb_subsys);
   2229
   2230	unregister_blkdev(null_major, "nullb");
   2231
   2232	mutex_lock(&lock);
   2233	while (!list_empty(&nullb_list)) {
   2234		nullb = list_entry(nullb_list.next, struct nullb, list);
   2235		null_destroy_dev(nullb);
   2236	}
   2237	mutex_unlock(&lock);
   2238
   2239	if (g_queue_mode == NULL_Q_MQ && shared_tags)
   2240		blk_mq_free_tag_set(&tag_set);
   2241}
   2242
   2243module_init(null_init);
   2244module_exit(null_exit);
   2245
   2246MODULE_AUTHOR("Jens Axboe <axboe@kernel.dk>");
   2247MODULE_LICENSE("GPL");