cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

zram_drv.c (51850B)


      1/*
      2 * Compressed RAM block device
      3 *
      4 * Copyright (C) 2008, 2009, 2010  Nitin Gupta
      5 *               2012, 2013 Minchan Kim
      6 *
      7 * This code is released using a dual license strategy: BSD/GPL
      8 * You can choose the licence that better fits your requirements.
      9 *
     10 * Released under the terms of 3-clause BSD License
     11 * Released under the terms of GNU General Public License Version 2.0
     12 *
     13 */
     14
     15#define KMSG_COMPONENT "zram"
     16#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
     17
     18#include <linux/module.h>
     19#include <linux/kernel.h>
     20#include <linux/bio.h>
     21#include <linux/bitops.h>
     22#include <linux/blkdev.h>
     23#include <linux/buffer_head.h>
     24#include <linux/device.h>
     25#include <linux/highmem.h>
     26#include <linux/slab.h>
     27#include <linux/backing-dev.h>
     28#include <linux/string.h>
     29#include <linux/vmalloc.h>
     30#include <linux/err.h>
     31#include <linux/idr.h>
     32#include <linux/sysfs.h>
     33#include <linux/debugfs.h>
     34#include <linux/cpuhotplug.h>
     35#include <linux/part_stat.h>
     36
     37#include "zram_drv.h"
     38
     39static DEFINE_IDR(zram_index_idr);
     40/* idr index must be protected */
     41static DEFINE_MUTEX(zram_index_mutex);
     42
     43static int zram_major;
     44static const char *default_compressor = CONFIG_ZRAM_DEF_COMP;
     45
     46/* Module params (documentation at end) */
     47static unsigned int num_devices = 1;
     48/*
     49 * Pages that compress to sizes equals or greater than this are stored
     50 * uncompressed in memory.
     51 */
     52static size_t huge_class_size;
     53
     54static const struct block_device_operations zram_devops;
     55static const struct block_device_operations zram_wb_devops;
     56
     57static void zram_free_page(struct zram *zram, size_t index);
     58static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
     59				u32 index, int offset, struct bio *bio);
     60
     61
     62static int zram_slot_trylock(struct zram *zram, u32 index)
     63{
     64	return bit_spin_trylock(ZRAM_LOCK, &zram->table[index].flags);
     65}
     66
     67static void zram_slot_lock(struct zram *zram, u32 index)
     68{
     69	bit_spin_lock(ZRAM_LOCK, &zram->table[index].flags);
     70}
     71
     72static void zram_slot_unlock(struct zram *zram, u32 index)
     73{
     74	bit_spin_unlock(ZRAM_LOCK, &zram->table[index].flags);
     75}
     76
     77static inline bool init_done(struct zram *zram)
     78{
     79	return zram->disksize;
     80}
     81
     82static inline struct zram *dev_to_zram(struct device *dev)
     83{
     84	return (struct zram *)dev_to_disk(dev)->private_data;
     85}
     86
     87static unsigned long zram_get_handle(struct zram *zram, u32 index)
     88{
     89	return zram->table[index].handle;
     90}
     91
     92static void zram_set_handle(struct zram *zram, u32 index, unsigned long handle)
     93{
     94	zram->table[index].handle = handle;
     95}
     96
     97/* flag operations require table entry bit_spin_lock() being held */
     98static bool zram_test_flag(struct zram *zram, u32 index,
     99			enum zram_pageflags flag)
    100{
    101	return zram->table[index].flags & BIT(flag);
    102}
    103
    104static void zram_set_flag(struct zram *zram, u32 index,
    105			enum zram_pageflags flag)
    106{
    107	zram->table[index].flags |= BIT(flag);
    108}
    109
    110static void zram_clear_flag(struct zram *zram, u32 index,
    111			enum zram_pageflags flag)
    112{
    113	zram->table[index].flags &= ~BIT(flag);
    114}
    115
    116static inline void zram_set_element(struct zram *zram, u32 index,
    117			unsigned long element)
    118{
    119	zram->table[index].element = element;
    120}
    121
    122static unsigned long zram_get_element(struct zram *zram, u32 index)
    123{
    124	return zram->table[index].element;
    125}
    126
    127static size_t zram_get_obj_size(struct zram *zram, u32 index)
    128{
    129	return zram->table[index].flags & (BIT(ZRAM_FLAG_SHIFT) - 1);
    130}
    131
    132static void zram_set_obj_size(struct zram *zram,
    133					u32 index, size_t size)
    134{
    135	unsigned long flags = zram->table[index].flags >> ZRAM_FLAG_SHIFT;
    136
    137	zram->table[index].flags = (flags << ZRAM_FLAG_SHIFT) | size;
    138}
    139
    140static inline bool zram_allocated(struct zram *zram, u32 index)
    141{
    142	return zram_get_obj_size(zram, index) ||
    143			zram_test_flag(zram, index, ZRAM_SAME) ||
    144			zram_test_flag(zram, index, ZRAM_WB);
    145}
    146
    147#if PAGE_SIZE != 4096
    148static inline bool is_partial_io(struct bio_vec *bvec)
    149{
    150	return bvec->bv_len != PAGE_SIZE;
    151}
    152#else
    153static inline bool is_partial_io(struct bio_vec *bvec)
    154{
    155	return false;
    156}
    157#endif
    158
    159/*
    160 * Check if request is within bounds and aligned on zram logical blocks.
    161 */
    162static inline bool valid_io_request(struct zram *zram,
    163		sector_t start, unsigned int size)
    164{
    165	u64 end, bound;
    166
    167	/* unaligned request */
    168	if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
    169		return false;
    170	if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
    171		return false;
    172
    173	end = start + (size >> SECTOR_SHIFT);
    174	bound = zram->disksize >> SECTOR_SHIFT;
    175	/* out of range range */
    176	if (unlikely(start >= bound || end > bound || start > end))
    177		return false;
    178
    179	/* I/O request is valid */
    180	return true;
    181}
    182
    183static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
    184{
    185	*index  += (*offset + bvec->bv_len) / PAGE_SIZE;
    186	*offset = (*offset + bvec->bv_len) % PAGE_SIZE;
    187}
    188
    189static inline void update_used_max(struct zram *zram,
    190					const unsigned long pages)
    191{
    192	unsigned long old_max, cur_max;
    193
    194	old_max = atomic_long_read(&zram->stats.max_used_pages);
    195
    196	do {
    197		cur_max = old_max;
    198		if (pages > cur_max)
    199			old_max = atomic_long_cmpxchg(
    200				&zram->stats.max_used_pages, cur_max, pages);
    201	} while (old_max != cur_max);
    202}
    203
    204static inline void zram_fill_page(void *ptr, unsigned long len,
    205					unsigned long value)
    206{
    207	WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long)));
    208	memset_l(ptr, value, len / sizeof(unsigned long));
    209}
    210
    211static bool page_same_filled(void *ptr, unsigned long *element)
    212{
    213	unsigned long *page;
    214	unsigned long val;
    215	unsigned int pos, last_pos = PAGE_SIZE / sizeof(*page) - 1;
    216
    217	page = (unsigned long *)ptr;
    218	val = page[0];
    219
    220	if (val != page[last_pos])
    221		return false;
    222
    223	for (pos = 1; pos < last_pos; pos++) {
    224		if (val != page[pos])
    225			return false;
    226	}
    227
    228	*element = val;
    229
    230	return true;
    231}
    232
    233static ssize_t initstate_show(struct device *dev,
    234		struct device_attribute *attr, char *buf)
    235{
    236	u32 val;
    237	struct zram *zram = dev_to_zram(dev);
    238
    239	down_read(&zram->init_lock);
    240	val = init_done(zram);
    241	up_read(&zram->init_lock);
    242
    243	return scnprintf(buf, PAGE_SIZE, "%u\n", val);
    244}
    245
    246static ssize_t disksize_show(struct device *dev,
    247		struct device_attribute *attr, char *buf)
    248{
    249	struct zram *zram = dev_to_zram(dev);
    250
    251	return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
    252}
    253
    254static ssize_t mem_limit_store(struct device *dev,
    255		struct device_attribute *attr, const char *buf, size_t len)
    256{
    257	u64 limit;
    258	char *tmp;
    259	struct zram *zram = dev_to_zram(dev);
    260
    261	limit = memparse(buf, &tmp);
    262	if (buf == tmp) /* no chars parsed, invalid input */
    263		return -EINVAL;
    264
    265	down_write(&zram->init_lock);
    266	zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
    267	up_write(&zram->init_lock);
    268
    269	return len;
    270}
    271
    272static ssize_t mem_used_max_store(struct device *dev,
    273		struct device_attribute *attr, const char *buf, size_t len)
    274{
    275	int err;
    276	unsigned long val;
    277	struct zram *zram = dev_to_zram(dev);
    278
    279	err = kstrtoul(buf, 10, &val);
    280	if (err || val != 0)
    281		return -EINVAL;
    282
    283	down_read(&zram->init_lock);
    284	if (init_done(zram)) {
    285		atomic_long_set(&zram->stats.max_used_pages,
    286				zs_get_total_pages(zram->mem_pool));
    287	}
    288	up_read(&zram->init_lock);
    289
    290	return len;
    291}
    292
    293/*
    294 * Mark all pages which are older than or equal to cutoff as IDLE.
    295 * Callers should hold the zram init lock in read mode
    296 */
    297static void mark_idle(struct zram *zram, ktime_t cutoff)
    298{
    299	int is_idle = 1;
    300	unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
    301	int index;
    302
    303	for (index = 0; index < nr_pages; index++) {
    304		/*
    305		 * Do not mark ZRAM_UNDER_WB slot as ZRAM_IDLE to close race.
    306		 * See the comment in writeback_store.
    307		 */
    308		zram_slot_lock(zram, index);
    309		if (zram_allocated(zram, index) &&
    310				!zram_test_flag(zram, index, ZRAM_UNDER_WB)) {
    311#ifdef CONFIG_ZRAM_MEMORY_TRACKING
    312			is_idle = !cutoff || ktime_after(cutoff, zram->table[index].ac_time);
    313#endif
    314			if (is_idle)
    315				zram_set_flag(zram, index, ZRAM_IDLE);
    316		}
    317		zram_slot_unlock(zram, index);
    318	}
    319}
    320
    321static ssize_t idle_store(struct device *dev,
    322		struct device_attribute *attr, const char *buf, size_t len)
    323{
    324	struct zram *zram = dev_to_zram(dev);
    325	ktime_t cutoff_time = 0;
    326	ssize_t rv = -EINVAL;
    327
    328	if (!sysfs_streq(buf, "all")) {
    329		/*
    330		 * If it did not parse as 'all' try to treat it as an integer when
    331		 * we have memory tracking enabled.
    332		 */
    333		u64 age_sec;
    334
    335		if (IS_ENABLED(CONFIG_ZRAM_MEMORY_TRACKING) && !kstrtoull(buf, 0, &age_sec))
    336			cutoff_time = ktime_sub(ktime_get_boottime(),
    337					ns_to_ktime(age_sec * NSEC_PER_SEC));
    338		else
    339			goto out;
    340	}
    341
    342	down_read(&zram->init_lock);
    343	if (!init_done(zram))
    344		goto out_unlock;
    345
    346	/* A cutoff_time of 0 marks everything as idle, this is the "all" behavior */
    347	mark_idle(zram, cutoff_time);
    348	rv = len;
    349
    350out_unlock:
    351	up_read(&zram->init_lock);
    352out:
    353	return rv;
    354}
    355
    356#ifdef CONFIG_ZRAM_WRITEBACK
    357static ssize_t writeback_limit_enable_store(struct device *dev,
    358		struct device_attribute *attr, const char *buf, size_t len)
    359{
    360	struct zram *zram = dev_to_zram(dev);
    361	u64 val;
    362	ssize_t ret = -EINVAL;
    363
    364	if (kstrtoull(buf, 10, &val))
    365		return ret;
    366
    367	down_read(&zram->init_lock);
    368	spin_lock(&zram->wb_limit_lock);
    369	zram->wb_limit_enable = val;
    370	spin_unlock(&zram->wb_limit_lock);
    371	up_read(&zram->init_lock);
    372	ret = len;
    373
    374	return ret;
    375}
    376
    377static ssize_t writeback_limit_enable_show(struct device *dev,
    378		struct device_attribute *attr, char *buf)
    379{
    380	bool val;
    381	struct zram *zram = dev_to_zram(dev);
    382
    383	down_read(&zram->init_lock);
    384	spin_lock(&zram->wb_limit_lock);
    385	val = zram->wb_limit_enable;
    386	spin_unlock(&zram->wb_limit_lock);
    387	up_read(&zram->init_lock);
    388
    389	return scnprintf(buf, PAGE_SIZE, "%d\n", val);
    390}
    391
    392static ssize_t writeback_limit_store(struct device *dev,
    393		struct device_attribute *attr, const char *buf, size_t len)
    394{
    395	struct zram *zram = dev_to_zram(dev);
    396	u64 val;
    397	ssize_t ret = -EINVAL;
    398
    399	if (kstrtoull(buf, 10, &val))
    400		return ret;
    401
    402	down_read(&zram->init_lock);
    403	spin_lock(&zram->wb_limit_lock);
    404	zram->bd_wb_limit = val;
    405	spin_unlock(&zram->wb_limit_lock);
    406	up_read(&zram->init_lock);
    407	ret = len;
    408
    409	return ret;
    410}
    411
    412static ssize_t writeback_limit_show(struct device *dev,
    413		struct device_attribute *attr, char *buf)
    414{
    415	u64 val;
    416	struct zram *zram = dev_to_zram(dev);
    417
    418	down_read(&zram->init_lock);
    419	spin_lock(&zram->wb_limit_lock);
    420	val = zram->bd_wb_limit;
    421	spin_unlock(&zram->wb_limit_lock);
    422	up_read(&zram->init_lock);
    423
    424	return scnprintf(buf, PAGE_SIZE, "%llu\n", val);
    425}
    426
    427static void reset_bdev(struct zram *zram)
    428{
    429	struct block_device *bdev;
    430
    431	if (!zram->backing_dev)
    432		return;
    433
    434	bdev = zram->bdev;
    435	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
    436	/* hope filp_close flush all of IO */
    437	filp_close(zram->backing_dev, NULL);
    438	zram->backing_dev = NULL;
    439	zram->bdev = NULL;
    440	zram->disk->fops = &zram_devops;
    441	kvfree(zram->bitmap);
    442	zram->bitmap = NULL;
    443}
    444
    445static ssize_t backing_dev_show(struct device *dev,
    446		struct device_attribute *attr, char *buf)
    447{
    448	struct file *file;
    449	struct zram *zram = dev_to_zram(dev);
    450	char *p;
    451	ssize_t ret;
    452
    453	down_read(&zram->init_lock);
    454	file = zram->backing_dev;
    455	if (!file) {
    456		memcpy(buf, "none\n", 5);
    457		up_read(&zram->init_lock);
    458		return 5;
    459	}
    460
    461	p = file_path(file, buf, PAGE_SIZE - 1);
    462	if (IS_ERR(p)) {
    463		ret = PTR_ERR(p);
    464		goto out;
    465	}
    466
    467	ret = strlen(p);
    468	memmove(buf, p, ret);
    469	buf[ret++] = '\n';
    470out:
    471	up_read(&zram->init_lock);
    472	return ret;
    473}
    474
    475static ssize_t backing_dev_store(struct device *dev,
    476		struct device_attribute *attr, const char *buf, size_t len)
    477{
    478	char *file_name;
    479	size_t sz;
    480	struct file *backing_dev = NULL;
    481	struct inode *inode;
    482	struct address_space *mapping;
    483	unsigned int bitmap_sz;
    484	unsigned long nr_pages, *bitmap = NULL;
    485	struct block_device *bdev = NULL;
    486	int err;
    487	struct zram *zram = dev_to_zram(dev);
    488
    489	file_name = kmalloc(PATH_MAX, GFP_KERNEL);
    490	if (!file_name)
    491		return -ENOMEM;
    492
    493	down_write(&zram->init_lock);
    494	if (init_done(zram)) {
    495		pr_info("Can't setup backing device for initialized device\n");
    496		err = -EBUSY;
    497		goto out;
    498	}
    499
    500	strlcpy(file_name, buf, PATH_MAX);
    501	/* ignore trailing newline */
    502	sz = strlen(file_name);
    503	if (sz > 0 && file_name[sz - 1] == '\n')
    504		file_name[sz - 1] = 0x00;
    505
    506	backing_dev = filp_open(file_name, O_RDWR|O_LARGEFILE, 0);
    507	if (IS_ERR(backing_dev)) {
    508		err = PTR_ERR(backing_dev);
    509		backing_dev = NULL;
    510		goto out;
    511	}
    512
    513	mapping = backing_dev->f_mapping;
    514	inode = mapping->host;
    515
    516	/* Support only block device in this moment */
    517	if (!S_ISBLK(inode->i_mode)) {
    518		err = -ENOTBLK;
    519		goto out;
    520	}
    521
    522	bdev = blkdev_get_by_dev(inode->i_rdev,
    523			FMODE_READ | FMODE_WRITE | FMODE_EXCL, zram);
    524	if (IS_ERR(bdev)) {
    525		err = PTR_ERR(bdev);
    526		bdev = NULL;
    527		goto out;
    528	}
    529
    530	nr_pages = i_size_read(inode) >> PAGE_SHIFT;
    531	bitmap_sz = BITS_TO_LONGS(nr_pages) * sizeof(long);
    532	bitmap = kvzalloc(bitmap_sz, GFP_KERNEL);
    533	if (!bitmap) {
    534		err = -ENOMEM;
    535		goto out;
    536	}
    537
    538	reset_bdev(zram);
    539
    540	zram->bdev = bdev;
    541	zram->backing_dev = backing_dev;
    542	zram->bitmap = bitmap;
    543	zram->nr_pages = nr_pages;
    544	/*
    545	 * With writeback feature, zram does asynchronous IO so it's no longer
    546	 * synchronous device so let's remove synchronous io flag. Othewise,
    547	 * upper layer(e.g., swap) could wait IO completion rather than
    548	 * (submit and return), which will cause system sluggish.
    549	 * Furthermore, when the IO function returns(e.g., swap_readpage),
    550	 * upper layer expects IO was done so it could deallocate the page
    551	 * freely but in fact, IO is going on so finally could cause
    552	 * use-after-free when the IO is really done.
    553	 */
    554	zram->disk->fops = &zram_wb_devops;
    555	up_write(&zram->init_lock);
    556
    557	pr_info("setup backing device %s\n", file_name);
    558	kfree(file_name);
    559
    560	return len;
    561out:
    562	kvfree(bitmap);
    563
    564	if (bdev)
    565		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
    566
    567	if (backing_dev)
    568		filp_close(backing_dev, NULL);
    569
    570	up_write(&zram->init_lock);
    571
    572	kfree(file_name);
    573
    574	return err;
    575}
    576
    577static unsigned long alloc_block_bdev(struct zram *zram)
    578{
    579	unsigned long blk_idx = 1;
    580retry:
    581	/* skip 0 bit to confuse zram.handle = 0 */
    582	blk_idx = find_next_zero_bit(zram->bitmap, zram->nr_pages, blk_idx);
    583	if (blk_idx == zram->nr_pages)
    584		return 0;
    585
    586	if (test_and_set_bit(blk_idx, zram->bitmap))
    587		goto retry;
    588
    589	atomic64_inc(&zram->stats.bd_count);
    590	return blk_idx;
    591}
    592
    593static void free_block_bdev(struct zram *zram, unsigned long blk_idx)
    594{
    595	int was_set;
    596
    597	was_set = test_and_clear_bit(blk_idx, zram->bitmap);
    598	WARN_ON_ONCE(!was_set);
    599	atomic64_dec(&zram->stats.bd_count);
    600}
    601
    602static void zram_page_end_io(struct bio *bio)
    603{
    604	struct page *page = bio_first_page_all(bio);
    605
    606	page_endio(page, op_is_write(bio_op(bio)),
    607			blk_status_to_errno(bio->bi_status));
    608	bio_put(bio);
    609}
    610
    611/*
    612 * Returns 1 if the submission is successful.
    613 */
    614static int read_from_bdev_async(struct zram *zram, struct bio_vec *bvec,
    615			unsigned long entry, struct bio *parent)
    616{
    617	struct bio *bio;
    618
    619	bio = bio_alloc(zram->bdev, 1, parent ? parent->bi_opf : REQ_OP_READ,
    620			GFP_NOIO);
    621	if (!bio)
    622		return -ENOMEM;
    623
    624	bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9);
    625	if (!bio_add_page(bio, bvec->bv_page, bvec->bv_len, bvec->bv_offset)) {
    626		bio_put(bio);
    627		return -EIO;
    628	}
    629
    630	if (!parent)
    631		bio->bi_end_io = zram_page_end_io;
    632	else
    633		bio_chain(bio, parent);
    634
    635	submit_bio(bio);
    636	return 1;
    637}
    638
    639#define PAGE_WB_SIG "page_index="
    640
    641#define PAGE_WRITEBACK 0
    642#define HUGE_WRITEBACK (1<<0)
    643#define IDLE_WRITEBACK (1<<1)
    644
    645
    646static ssize_t writeback_store(struct device *dev,
    647		struct device_attribute *attr, const char *buf, size_t len)
    648{
    649	struct zram *zram = dev_to_zram(dev);
    650	unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
    651	unsigned long index = 0;
    652	struct bio bio;
    653	struct bio_vec bio_vec;
    654	struct page *page;
    655	ssize_t ret = len;
    656	int mode, err;
    657	unsigned long blk_idx = 0;
    658
    659	if (sysfs_streq(buf, "idle"))
    660		mode = IDLE_WRITEBACK;
    661	else if (sysfs_streq(buf, "huge"))
    662		mode = HUGE_WRITEBACK;
    663	else if (sysfs_streq(buf, "huge_idle"))
    664		mode = IDLE_WRITEBACK | HUGE_WRITEBACK;
    665	else {
    666		if (strncmp(buf, PAGE_WB_SIG, sizeof(PAGE_WB_SIG) - 1))
    667			return -EINVAL;
    668
    669		if (kstrtol(buf + sizeof(PAGE_WB_SIG) - 1, 10, &index) ||
    670				index >= nr_pages)
    671			return -EINVAL;
    672
    673		nr_pages = 1;
    674		mode = PAGE_WRITEBACK;
    675	}
    676
    677	down_read(&zram->init_lock);
    678	if (!init_done(zram)) {
    679		ret = -EINVAL;
    680		goto release_init_lock;
    681	}
    682
    683	if (!zram->backing_dev) {
    684		ret = -ENODEV;
    685		goto release_init_lock;
    686	}
    687
    688	page = alloc_page(GFP_KERNEL);
    689	if (!page) {
    690		ret = -ENOMEM;
    691		goto release_init_lock;
    692	}
    693
    694	for (; nr_pages != 0; index++, nr_pages--) {
    695		struct bio_vec bvec;
    696
    697		bvec.bv_page = page;
    698		bvec.bv_len = PAGE_SIZE;
    699		bvec.bv_offset = 0;
    700
    701		spin_lock(&zram->wb_limit_lock);
    702		if (zram->wb_limit_enable && !zram->bd_wb_limit) {
    703			spin_unlock(&zram->wb_limit_lock);
    704			ret = -EIO;
    705			break;
    706		}
    707		spin_unlock(&zram->wb_limit_lock);
    708
    709		if (!blk_idx) {
    710			blk_idx = alloc_block_bdev(zram);
    711			if (!blk_idx) {
    712				ret = -ENOSPC;
    713				break;
    714			}
    715		}
    716
    717		zram_slot_lock(zram, index);
    718		if (!zram_allocated(zram, index))
    719			goto next;
    720
    721		if (zram_test_flag(zram, index, ZRAM_WB) ||
    722				zram_test_flag(zram, index, ZRAM_SAME) ||
    723				zram_test_flag(zram, index, ZRAM_UNDER_WB))
    724			goto next;
    725
    726		if (mode & IDLE_WRITEBACK &&
    727			  !zram_test_flag(zram, index, ZRAM_IDLE))
    728			goto next;
    729		if (mode & HUGE_WRITEBACK &&
    730			  !zram_test_flag(zram, index, ZRAM_HUGE))
    731			goto next;
    732		/*
    733		 * Clearing ZRAM_UNDER_WB is duty of caller.
    734		 * IOW, zram_free_page never clear it.
    735		 */
    736		zram_set_flag(zram, index, ZRAM_UNDER_WB);
    737		/* Need for hugepage writeback racing */
    738		zram_set_flag(zram, index, ZRAM_IDLE);
    739		zram_slot_unlock(zram, index);
    740		if (zram_bvec_read(zram, &bvec, index, 0, NULL)) {
    741			zram_slot_lock(zram, index);
    742			zram_clear_flag(zram, index, ZRAM_UNDER_WB);
    743			zram_clear_flag(zram, index, ZRAM_IDLE);
    744			zram_slot_unlock(zram, index);
    745			continue;
    746		}
    747
    748		bio_init(&bio, zram->bdev, &bio_vec, 1,
    749			 REQ_OP_WRITE | REQ_SYNC);
    750		bio.bi_iter.bi_sector = blk_idx * (PAGE_SIZE >> 9);
    751
    752		bio_add_page(&bio, bvec.bv_page, bvec.bv_len,
    753				bvec.bv_offset);
    754		/*
    755		 * XXX: A single page IO would be inefficient for write
    756		 * but it would be not bad as starter.
    757		 */
    758		err = submit_bio_wait(&bio);
    759		if (err) {
    760			zram_slot_lock(zram, index);
    761			zram_clear_flag(zram, index, ZRAM_UNDER_WB);
    762			zram_clear_flag(zram, index, ZRAM_IDLE);
    763			zram_slot_unlock(zram, index);
    764			/*
    765			 * Return last IO error unless every IO were
    766			 * not suceeded.
    767			 */
    768			ret = err;
    769			continue;
    770		}
    771
    772		atomic64_inc(&zram->stats.bd_writes);
    773		/*
    774		 * We released zram_slot_lock so need to check if the slot was
    775		 * changed. If there is freeing for the slot, we can catch it
    776		 * easily by zram_allocated.
    777		 * A subtle case is the slot is freed/reallocated/marked as
    778		 * ZRAM_IDLE again. To close the race, idle_store doesn't
    779		 * mark ZRAM_IDLE once it found the slot was ZRAM_UNDER_WB.
    780		 * Thus, we could close the race by checking ZRAM_IDLE bit.
    781		 */
    782		zram_slot_lock(zram, index);
    783		if (!zram_allocated(zram, index) ||
    784			  !zram_test_flag(zram, index, ZRAM_IDLE)) {
    785			zram_clear_flag(zram, index, ZRAM_UNDER_WB);
    786			zram_clear_flag(zram, index, ZRAM_IDLE);
    787			goto next;
    788		}
    789
    790		zram_free_page(zram, index);
    791		zram_clear_flag(zram, index, ZRAM_UNDER_WB);
    792		zram_set_flag(zram, index, ZRAM_WB);
    793		zram_set_element(zram, index, blk_idx);
    794		blk_idx = 0;
    795		atomic64_inc(&zram->stats.pages_stored);
    796		spin_lock(&zram->wb_limit_lock);
    797		if (zram->wb_limit_enable && zram->bd_wb_limit > 0)
    798			zram->bd_wb_limit -=  1UL << (PAGE_SHIFT - 12);
    799		spin_unlock(&zram->wb_limit_lock);
    800next:
    801		zram_slot_unlock(zram, index);
    802	}
    803
    804	if (blk_idx)
    805		free_block_bdev(zram, blk_idx);
    806	__free_page(page);
    807release_init_lock:
    808	up_read(&zram->init_lock);
    809
    810	return ret;
    811}
    812
    813struct zram_work {
    814	struct work_struct work;
    815	struct zram *zram;
    816	unsigned long entry;
    817	struct bio *bio;
    818	struct bio_vec bvec;
    819};
    820
    821#if PAGE_SIZE != 4096
    822static void zram_sync_read(struct work_struct *work)
    823{
    824	struct zram_work *zw = container_of(work, struct zram_work, work);
    825	struct zram *zram = zw->zram;
    826	unsigned long entry = zw->entry;
    827	struct bio *bio = zw->bio;
    828
    829	read_from_bdev_async(zram, &zw->bvec, entry, bio);
    830}
    831
    832/*
    833 * Block layer want one ->submit_bio to be active at a time, so if we use
    834 * chained IO with parent IO in same context, it's a deadlock. To avoid that,
    835 * use a worker thread context.
    836 */
    837static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec,
    838				unsigned long entry, struct bio *bio)
    839{
    840	struct zram_work work;
    841
    842	work.bvec = *bvec;
    843	work.zram = zram;
    844	work.entry = entry;
    845	work.bio = bio;
    846
    847	INIT_WORK_ONSTACK(&work.work, zram_sync_read);
    848	queue_work(system_unbound_wq, &work.work);
    849	flush_work(&work.work);
    850	destroy_work_on_stack(&work.work);
    851
    852	return 1;
    853}
    854#else
    855static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec,
    856				unsigned long entry, struct bio *bio)
    857{
    858	WARN_ON(1);
    859	return -EIO;
    860}
    861#endif
    862
    863static int read_from_bdev(struct zram *zram, struct bio_vec *bvec,
    864			unsigned long entry, struct bio *parent, bool sync)
    865{
    866	atomic64_inc(&zram->stats.bd_reads);
    867	if (sync)
    868		return read_from_bdev_sync(zram, bvec, entry, parent);
    869	else
    870		return read_from_bdev_async(zram, bvec, entry, parent);
    871}
    872#else
    873static inline void reset_bdev(struct zram *zram) {};
    874static int read_from_bdev(struct zram *zram, struct bio_vec *bvec,
    875			unsigned long entry, struct bio *parent, bool sync)
    876{
    877	return -EIO;
    878}
    879
    880static void free_block_bdev(struct zram *zram, unsigned long blk_idx) {};
    881#endif
    882
    883#ifdef CONFIG_ZRAM_MEMORY_TRACKING
    884
    885static struct dentry *zram_debugfs_root;
    886
    887static void zram_debugfs_create(void)
    888{
    889	zram_debugfs_root = debugfs_create_dir("zram", NULL);
    890}
    891
    892static void zram_debugfs_destroy(void)
    893{
    894	debugfs_remove_recursive(zram_debugfs_root);
    895}
    896
    897static void zram_accessed(struct zram *zram, u32 index)
    898{
    899	zram_clear_flag(zram, index, ZRAM_IDLE);
    900	zram->table[index].ac_time = ktime_get_boottime();
    901}
    902
    903static ssize_t read_block_state(struct file *file, char __user *buf,
    904				size_t count, loff_t *ppos)
    905{
    906	char *kbuf;
    907	ssize_t index, written = 0;
    908	struct zram *zram = file->private_data;
    909	unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
    910	struct timespec64 ts;
    911
    912	kbuf = kvmalloc(count, GFP_KERNEL);
    913	if (!kbuf)
    914		return -ENOMEM;
    915
    916	down_read(&zram->init_lock);
    917	if (!init_done(zram)) {
    918		up_read(&zram->init_lock);
    919		kvfree(kbuf);
    920		return -EINVAL;
    921	}
    922
    923	for (index = *ppos; index < nr_pages; index++) {
    924		int copied;
    925
    926		zram_slot_lock(zram, index);
    927		if (!zram_allocated(zram, index))
    928			goto next;
    929
    930		ts = ktime_to_timespec64(zram->table[index].ac_time);
    931		copied = snprintf(kbuf + written, count,
    932			"%12zd %12lld.%06lu %c%c%c%c\n",
    933			index, (s64)ts.tv_sec,
    934			ts.tv_nsec / NSEC_PER_USEC,
    935			zram_test_flag(zram, index, ZRAM_SAME) ? 's' : '.',
    936			zram_test_flag(zram, index, ZRAM_WB) ? 'w' : '.',
    937			zram_test_flag(zram, index, ZRAM_HUGE) ? 'h' : '.',
    938			zram_test_flag(zram, index, ZRAM_IDLE) ? 'i' : '.');
    939
    940		if (count <= copied) {
    941			zram_slot_unlock(zram, index);
    942			break;
    943		}
    944		written += copied;
    945		count -= copied;
    946next:
    947		zram_slot_unlock(zram, index);
    948		*ppos += 1;
    949	}
    950
    951	up_read(&zram->init_lock);
    952	if (copy_to_user(buf, kbuf, written))
    953		written = -EFAULT;
    954	kvfree(kbuf);
    955
    956	return written;
    957}
    958
    959static const struct file_operations proc_zram_block_state_op = {
    960	.open = simple_open,
    961	.read = read_block_state,
    962	.llseek = default_llseek,
    963};
    964
    965static void zram_debugfs_register(struct zram *zram)
    966{
    967	if (!zram_debugfs_root)
    968		return;
    969
    970	zram->debugfs_dir = debugfs_create_dir(zram->disk->disk_name,
    971						zram_debugfs_root);
    972	debugfs_create_file("block_state", 0400, zram->debugfs_dir,
    973				zram, &proc_zram_block_state_op);
    974}
    975
    976static void zram_debugfs_unregister(struct zram *zram)
    977{
    978	debugfs_remove_recursive(zram->debugfs_dir);
    979}
    980#else
    981static void zram_debugfs_create(void) {};
    982static void zram_debugfs_destroy(void) {};
    983static void zram_accessed(struct zram *zram, u32 index)
    984{
    985	zram_clear_flag(zram, index, ZRAM_IDLE);
    986};
    987static void zram_debugfs_register(struct zram *zram) {};
    988static void zram_debugfs_unregister(struct zram *zram) {};
    989#endif
    990
    991/*
    992 * We switched to per-cpu streams and this attr is not needed anymore.
    993 * However, we will keep it around for some time, because:
    994 * a) we may revert per-cpu streams in the future
    995 * b) it's visible to user space and we need to follow our 2 years
    996 *    retirement rule; but we already have a number of 'soon to be
    997 *    altered' attrs, so max_comp_streams need to wait for the next
    998 *    layoff cycle.
    999 */
   1000static ssize_t max_comp_streams_show(struct device *dev,
   1001		struct device_attribute *attr, char *buf)
   1002{
   1003	return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus());
   1004}
   1005
   1006static ssize_t max_comp_streams_store(struct device *dev,
   1007		struct device_attribute *attr, const char *buf, size_t len)
   1008{
   1009	return len;
   1010}
   1011
   1012static ssize_t comp_algorithm_show(struct device *dev,
   1013		struct device_attribute *attr, char *buf)
   1014{
   1015	size_t sz;
   1016	struct zram *zram = dev_to_zram(dev);
   1017
   1018	down_read(&zram->init_lock);
   1019	sz = zcomp_available_show(zram->compressor, buf);
   1020	up_read(&zram->init_lock);
   1021
   1022	return sz;
   1023}
   1024
   1025static ssize_t comp_algorithm_store(struct device *dev,
   1026		struct device_attribute *attr, const char *buf, size_t len)
   1027{
   1028	struct zram *zram = dev_to_zram(dev);
   1029	char compressor[ARRAY_SIZE(zram->compressor)];
   1030	size_t sz;
   1031
   1032	strlcpy(compressor, buf, sizeof(compressor));
   1033	/* ignore trailing newline */
   1034	sz = strlen(compressor);
   1035	if (sz > 0 && compressor[sz - 1] == '\n')
   1036		compressor[sz - 1] = 0x00;
   1037
   1038	if (!zcomp_available_algorithm(compressor))
   1039		return -EINVAL;
   1040
   1041	down_write(&zram->init_lock);
   1042	if (init_done(zram)) {
   1043		up_write(&zram->init_lock);
   1044		pr_info("Can't change algorithm for initialized device\n");
   1045		return -EBUSY;
   1046	}
   1047
   1048	strcpy(zram->compressor, compressor);
   1049	up_write(&zram->init_lock);
   1050	return len;
   1051}
   1052
   1053static ssize_t compact_store(struct device *dev,
   1054		struct device_attribute *attr, const char *buf, size_t len)
   1055{
   1056	struct zram *zram = dev_to_zram(dev);
   1057
   1058	down_read(&zram->init_lock);
   1059	if (!init_done(zram)) {
   1060		up_read(&zram->init_lock);
   1061		return -EINVAL;
   1062	}
   1063
   1064	zs_compact(zram->mem_pool);
   1065	up_read(&zram->init_lock);
   1066
   1067	return len;
   1068}
   1069
   1070static ssize_t io_stat_show(struct device *dev,
   1071		struct device_attribute *attr, char *buf)
   1072{
   1073	struct zram *zram = dev_to_zram(dev);
   1074	ssize_t ret;
   1075
   1076	down_read(&zram->init_lock);
   1077	ret = scnprintf(buf, PAGE_SIZE,
   1078			"%8llu %8llu %8llu %8llu\n",
   1079			(u64)atomic64_read(&zram->stats.failed_reads),
   1080			(u64)atomic64_read(&zram->stats.failed_writes),
   1081			(u64)atomic64_read(&zram->stats.invalid_io),
   1082			(u64)atomic64_read(&zram->stats.notify_free));
   1083	up_read(&zram->init_lock);
   1084
   1085	return ret;
   1086}
   1087
   1088static ssize_t mm_stat_show(struct device *dev,
   1089		struct device_attribute *attr, char *buf)
   1090{
   1091	struct zram *zram = dev_to_zram(dev);
   1092	struct zs_pool_stats pool_stats;
   1093	u64 orig_size, mem_used = 0;
   1094	long max_used;
   1095	ssize_t ret;
   1096
   1097	memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats));
   1098
   1099	down_read(&zram->init_lock);
   1100	if (init_done(zram)) {
   1101		mem_used = zs_get_total_pages(zram->mem_pool);
   1102		zs_pool_stats(zram->mem_pool, &pool_stats);
   1103	}
   1104
   1105	orig_size = atomic64_read(&zram->stats.pages_stored);
   1106	max_used = atomic_long_read(&zram->stats.max_used_pages);
   1107
   1108	ret = scnprintf(buf, PAGE_SIZE,
   1109			"%8llu %8llu %8llu %8lu %8ld %8llu %8lu %8llu %8llu\n",
   1110			orig_size << PAGE_SHIFT,
   1111			(u64)atomic64_read(&zram->stats.compr_data_size),
   1112			mem_used << PAGE_SHIFT,
   1113			zram->limit_pages << PAGE_SHIFT,
   1114			max_used << PAGE_SHIFT,
   1115			(u64)atomic64_read(&zram->stats.same_pages),
   1116			atomic_long_read(&pool_stats.pages_compacted),
   1117			(u64)atomic64_read(&zram->stats.huge_pages),
   1118			(u64)atomic64_read(&zram->stats.huge_pages_since));
   1119	up_read(&zram->init_lock);
   1120
   1121	return ret;
   1122}
   1123
   1124#ifdef CONFIG_ZRAM_WRITEBACK
   1125#define FOUR_K(x) ((x) * (1 << (PAGE_SHIFT - 12)))
   1126static ssize_t bd_stat_show(struct device *dev,
   1127		struct device_attribute *attr, char *buf)
   1128{
   1129	struct zram *zram = dev_to_zram(dev);
   1130	ssize_t ret;
   1131
   1132	down_read(&zram->init_lock);
   1133	ret = scnprintf(buf, PAGE_SIZE,
   1134		"%8llu %8llu %8llu\n",
   1135			FOUR_K((u64)atomic64_read(&zram->stats.bd_count)),
   1136			FOUR_K((u64)atomic64_read(&zram->stats.bd_reads)),
   1137			FOUR_K((u64)atomic64_read(&zram->stats.bd_writes)));
   1138	up_read(&zram->init_lock);
   1139
   1140	return ret;
   1141}
   1142#endif
   1143
   1144static ssize_t debug_stat_show(struct device *dev,
   1145		struct device_attribute *attr, char *buf)
   1146{
   1147	int version = 2;
   1148	struct zram *zram = dev_to_zram(dev);
   1149	ssize_t ret;
   1150
   1151	down_read(&zram->init_lock);
   1152	ret = scnprintf(buf, PAGE_SIZE,
   1153			"version: %d\n%8llu\n",
   1154			version,
   1155			(u64)atomic64_read(&zram->stats.miss_free));
   1156	up_read(&zram->init_lock);
   1157
   1158	return ret;
   1159}
   1160
   1161static DEVICE_ATTR_RO(io_stat);
   1162static DEVICE_ATTR_RO(mm_stat);
   1163#ifdef CONFIG_ZRAM_WRITEBACK
   1164static DEVICE_ATTR_RO(bd_stat);
   1165#endif
   1166static DEVICE_ATTR_RO(debug_stat);
   1167
   1168static void zram_meta_free(struct zram *zram, u64 disksize)
   1169{
   1170	size_t num_pages = disksize >> PAGE_SHIFT;
   1171	size_t index;
   1172
   1173	/* Free all pages that are still in this zram device */
   1174	for (index = 0; index < num_pages; index++)
   1175		zram_free_page(zram, index);
   1176
   1177	zs_destroy_pool(zram->mem_pool);
   1178	vfree(zram->table);
   1179}
   1180
   1181static bool zram_meta_alloc(struct zram *zram, u64 disksize)
   1182{
   1183	size_t num_pages;
   1184
   1185	num_pages = disksize >> PAGE_SHIFT;
   1186	zram->table = vzalloc(array_size(num_pages, sizeof(*zram->table)));
   1187	if (!zram->table)
   1188		return false;
   1189
   1190	zram->mem_pool = zs_create_pool(zram->disk->disk_name);
   1191	if (!zram->mem_pool) {
   1192		vfree(zram->table);
   1193		return false;
   1194	}
   1195
   1196	if (!huge_class_size)
   1197		huge_class_size = zs_huge_class_size(zram->mem_pool);
   1198	return true;
   1199}
   1200
   1201/*
   1202 * To protect concurrent access to the same index entry,
   1203 * caller should hold this table index entry's bit_spinlock to
   1204 * indicate this index entry is accessing.
   1205 */
   1206static void zram_free_page(struct zram *zram, size_t index)
   1207{
   1208	unsigned long handle;
   1209
   1210#ifdef CONFIG_ZRAM_MEMORY_TRACKING
   1211	zram->table[index].ac_time = 0;
   1212#endif
   1213	if (zram_test_flag(zram, index, ZRAM_IDLE))
   1214		zram_clear_flag(zram, index, ZRAM_IDLE);
   1215
   1216	if (zram_test_flag(zram, index, ZRAM_HUGE)) {
   1217		zram_clear_flag(zram, index, ZRAM_HUGE);
   1218		atomic64_dec(&zram->stats.huge_pages);
   1219	}
   1220
   1221	if (zram_test_flag(zram, index, ZRAM_WB)) {
   1222		zram_clear_flag(zram, index, ZRAM_WB);
   1223		free_block_bdev(zram, zram_get_element(zram, index));
   1224		goto out;
   1225	}
   1226
   1227	/*
   1228	 * No memory is allocated for same element filled pages.
   1229	 * Simply clear same page flag.
   1230	 */
   1231	if (zram_test_flag(zram, index, ZRAM_SAME)) {
   1232		zram_clear_flag(zram, index, ZRAM_SAME);
   1233		atomic64_dec(&zram->stats.same_pages);
   1234		goto out;
   1235	}
   1236
   1237	handle = zram_get_handle(zram, index);
   1238	if (!handle)
   1239		return;
   1240
   1241	zs_free(zram->mem_pool, handle);
   1242
   1243	atomic64_sub(zram_get_obj_size(zram, index),
   1244			&zram->stats.compr_data_size);
   1245out:
   1246	atomic64_dec(&zram->stats.pages_stored);
   1247	zram_set_handle(zram, index, 0);
   1248	zram_set_obj_size(zram, index, 0);
   1249	WARN_ON_ONCE(zram->table[index].flags &
   1250		~(1UL << ZRAM_LOCK | 1UL << ZRAM_UNDER_WB));
   1251}
   1252
   1253static int __zram_bvec_read(struct zram *zram, struct page *page, u32 index,
   1254				struct bio *bio, bool partial_io)
   1255{
   1256	struct zcomp_strm *zstrm;
   1257	unsigned long handle;
   1258	unsigned int size;
   1259	void *src, *dst;
   1260	int ret;
   1261
   1262	zram_slot_lock(zram, index);
   1263	if (zram_test_flag(zram, index, ZRAM_WB)) {
   1264		struct bio_vec bvec;
   1265
   1266		zram_slot_unlock(zram, index);
   1267
   1268		bvec.bv_page = page;
   1269		bvec.bv_len = PAGE_SIZE;
   1270		bvec.bv_offset = 0;
   1271		return read_from_bdev(zram, &bvec,
   1272				zram_get_element(zram, index),
   1273				bio, partial_io);
   1274	}
   1275
   1276	handle = zram_get_handle(zram, index);
   1277	if (!handle || zram_test_flag(zram, index, ZRAM_SAME)) {
   1278		unsigned long value;
   1279		void *mem;
   1280
   1281		value = handle ? zram_get_element(zram, index) : 0;
   1282		mem = kmap_atomic(page);
   1283		zram_fill_page(mem, PAGE_SIZE, value);
   1284		kunmap_atomic(mem);
   1285		zram_slot_unlock(zram, index);
   1286		return 0;
   1287	}
   1288
   1289	size = zram_get_obj_size(zram, index);
   1290
   1291	if (size != PAGE_SIZE)
   1292		zstrm = zcomp_stream_get(zram->comp);
   1293
   1294	src = zs_map_object(zram->mem_pool, handle, ZS_MM_RO);
   1295	if (size == PAGE_SIZE) {
   1296		dst = kmap_atomic(page);
   1297		memcpy(dst, src, PAGE_SIZE);
   1298		kunmap_atomic(dst);
   1299		ret = 0;
   1300	} else {
   1301		dst = kmap_atomic(page);
   1302		ret = zcomp_decompress(zstrm, src, size, dst);
   1303		kunmap_atomic(dst);
   1304		zcomp_stream_put(zram->comp);
   1305	}
   1306	zs_unmap_object(zram->mem_pool, handle);
   1307	zram_slot_unlock(zram, index);
   1308
   1309	/* Should NEVER happen. Return bio error if it does. */
   1310	if (WARN_ON(ret))
   1311		pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
   1312
   1313	return ret;
   1314}
   1315
   1316static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
   1317				u32 index, int offset, struct bio *bio)
   1318{
   1319	int ret;
   1320	struct page *page;
   1321
   1322	page = bvec->bv_page;
   1323	if (is_partial_io(bvec)) {
   1324		/* Use a temporary buffer to decompress the page */
   1325		page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
   1326		if (!page)
   1327			return -ENOMEM;
   1328	}
   1329
   1330	ret = __zram_bvec_read(zram, page, index, bio, is_partial_io(bvec));
   1331	if (unlikely(ret))
   1332		goto out;
   1333
   1334	if (is_partial_io(bvec)) {
   1335		void *src = kmap_atomic(page);
   1336
   1337		memcpy_to_bvec(bvec, src + offset);
   1338		kunmap_atomic(src);
   1339	}
   1340out:
   1341	if (is_partial_io(bvec))
   1342		__free_page(page);
   1343
   1344	return ret;
   1345}
   1346
   1347static int __zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
   1348				u32 index, struct bio *bio)
   1349{
   1350	int ret = 0;
   1351	unsigned long alloced_pages;
   1352	unsigned long handle = 0;
   1353	unsigned int comp_len = 0;
   1354	void *src, *dst, *mem;
   1355	struct zcomp_strm *zstrm;
   1356	struct page *page = bvec->bv_page;
   1357	unsigned long element = 0;
   1358	enum zram_pageflags flags = 0;
   1359
   1360	mem = kmap_atomic(page);
   1361	if (page_same_filled(mem, &element)) {
   1362		kunmap_atomic(mem);
   1363		/* Free memory associated with this sector now. */
   1364		flags = ZRAM_SAME;
   1365		atomic64_inc(&zram->stats.same_pages);
   1366		goto out;
   1367	}
   1368	kunmap_atomic(mem);
   1369
   1370	zstrm = zcomp_stream_get(zram->comp);
   1371	src = kmap_atomic(page);
   1372	ret = zcomp_compress(zstrm, src, &comp_len);
   1373	kunmap_atomic(src);
   1374
   1375	if (unlikely(ret)) {
   1376		zcomp_stream_put(zram->comp);
   1377		pr_err("Compression failed! err=%d\n", ret);
   1378		return ret;
   1379	}
   1380
   1381	if (comp_len >= huge_class_size)
   1382		comp_len = PAGE_SIZE;
   1383
   1384	handle = zs_malloc(zram->mem_pool, comp_len,
   1385			__GFP_KSWAPD_RECLAIM |
   1386			__GFP_NOWARN |
   1387			__GFP_HIGHMEM |
   1388			__GFP_MOVABLE);
   1389
   1390	if (unlikely(!handle)) {
   1391		zcomp_stream_put(zram->comp);
   1392		return -ENOMEM;
   1393	}
   1394
   1395	alloced_pages = zs_get_total_pages(zram->mem_pool);
   1396	update_used_max(zram, alloced_pages);
   1397
   1398	if (zram->limit_pages && alloced_pages > zram->limit_pages) {
   1399		zcomp_stream_put(zram->comp);
   1400		zs_free(zram->mem_pool, handle);
   1401		return -ENOMEM;
   1402	}
   1403
   1404	dst = zs_map_object(zram->mem_pool, handle, ZS_MM_WO);
   1405
   1406	src = zstrm->buffer;
   1407	if (comp_len == PAGE_SIZE)
   1408		src = kmap_atomic(page);
   1409	memcpy(dst, src, comp_len);
   1410	if (comp_len == PAGE_SIZE)
   1411		kunmap_atomic(src);
   1412
   1413	zcomp_stream_put(zram->comp);
   1414	zs_unmap_object(zram->mem_pool, handle);
   1415	atomic64_add(comp_len, &zram->stats.compr_data_size);
   1416out:
   1417	/*
   1418	 * Free memory associated with this sector
   1419	 * before overwriting unused sectors.
   1420	 */
   1421	zram_slot_lock(zram, index);
   1422	zram_free_page(zram, index);
   1423
   1424	if (comp_len == PAGE_SIZE) {
   1425		zram_set_flag(zram, index, ZRAM_HUGE);
   1426		atomic64_inc(&zram->stats.huge_pages);
   1427		atomic64_inc(&zram->stats.huge_pages_since);
   1428	}
   1429
   1430	if (flags) {
   1431		zram_set_flag(zram, index, flags);
   1432		zram_set_element(zram, index, element);
   1433	}  else {
   1434		zram_set_handle(zram, index, handle);
   1435		zram_set_obj_size(zram, index, comp_len);
   1436	}
   1437	zram_slot_unlock(zram, index);
   1438
   1439	/* Update stats */
   1440	atomic64_inc(&zram->stats.pages_stored);
   1441	return ret;
   1442}
   1443
   1444static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
   1445				u32 index, int offset, struct bio *bio)
   1446{
   1447	int ret;
   1448	struct page *page = NULL;
   1449	struct bio_vec vec;
   1450
   1451	vec = *bvec;
   1452	if (is_partial_io(bvec)) {
   1453		void *dst;
   1454		/*
   1455		 * This is a partial IO. We need to read the full page
   1456		 * before to write the changes.
   1457		 */
   1458		page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
   1459		if (!page)
   1460			return -ENOMEM;
   1461
   1462		ret = __zram_bvec_read(zram, page, index, bio, true);
   1463		if (ret)
   1464			goto out;
   1465
   1466		dst = kmap_atomic(page);
   1467		memcpy_from_bvec(dst + offset, bvec);
   1468		kunmap_atomic(dst);
   1469
   1470		vec.bv_page = page;
   1471		vec.bv_len = PAGE_SIZE;
   1472		vec.bv_offset = 0;
   1473	}
   1474
   1475	ret = __zram_bvec_write(zram, &vec, index, bio);
   1476out:
   1477	if (is_partial_io(bvec))
   1478		__free_page(page);
   1479	return ret;
   1480}
   1481
   1482/*
   1483 * zram_bio_discard - handler on discard request
   1484 * @index: physical block index in PAGE_SIZE units
   1485 * @offset: byte offset within physical block
   1486 */
   1487static void zram_bio_discard(struct zram *zram, u32 index,
   1488			     int offset, struct bio *bio)
   1489{
   1490	size_t n = bio->bi_iter.bi_size;
   1491
   1492	/*
   1493	 * zram manages data in physical block size units. Because logical block
   1494	 * size isn't identical with physical block size on some arch, we
   1495	 * could get a discard request pointing to a specific offset within a
   1496	 * certain physical block.  Although we can handle this request by
   1497	 * reading that physiclal block and decompressing and partially zeroing
   1498	 * and re-compressing and then re-storing it, this isn't reasonable
   1499	 * because our intent with a discard request is to save memory.  So
   1500	 * skipping this logical block is appropriate here.
   1501	 */
   1502	if (offset) {
   1503		if (n <= (PAGE_SIZE - offset))
   1504			return;
   1505
   1506		n -= (PAGE_SIZE - offset);
   1507		index++;
   1508	}
   1509
   1510	while (n >= PAGE_SIZE) {
   1511		zram_slot_lock(zram, index);
   1512		zram_free_page(zram, index);
   1513		zram_slot_unlock(zram, index);
   1514		atomic64_inc(&zram->stats.notify_free);
   1515		index++;
   1516		n -= PAGE_SIZE;
   1517	}
   1518}
   1519
   1520/*
   1521 * Returns errno if it has some problem. Otherwise return 0 or 1.
   1522 * Returns 0 if IO request was done synchronously
   1523 * Returns 1 if IO request was successfully submitted.
   1524 */
   1525static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
   1526			int offset, unsigned int op, struct bio *bio)
   1527{
   1528	int ret;
   1529
   1530	if (!op_is_write(op)) {
   1531		atomic64_inc(&zram->stats.num_reads);
   1532		ret = zram_bvec_read(zram, bvec, index, offset, bio);
   1533		flush_dcache_page(bvec->bv_page);
   1534	} else {
   1535		atomic64_inc(&zram->stats.num_writes);
   1536		ret = zram_bvec_write(zram, bvec, index, offset, bio);
   1537	}
   1538
   1539	zram_slot_lock(zram, index);
   1540	zram_accessed(zram, index);
   1541	zram_slot_unlock(zram, index);
   1542
   1543	if (unlikely(ret < 0)) {
   1544		if (!op_is_write(op))
   1545			atomic64_inc(&zram->stats.failed_reads);
   1546		else
   1547			atomic64_inc(&zram->stats.failed_writes);
   1548	}
   1549
   1550	return ret;
   1551}
   1552
   1553static void __zram_make_request(struct zram *zram, struct bio *bio)
   1554{
   1555	int offset;
   1556	u32 index;
   1557	struct bio_vec bvec;
   1558	struct bvec_iter iter;
   1559	unsigned long start_time;
   1560
   1561	index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
   1562	offset = (bio->bi_iter.bi_sector &
   1563		  (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
   1564
   1565	switch (bio_op(bio)) {
   1566	case REQ_OP_DISCARD:
   1567	case REQ_OP_WRITE_ZEROES:
   1568		zram_bio_discard(zram, index, offset, bio);
   1569		bio_endio(bio);
   1570		return;
   1571	default:
   1572		break;
   1573	}
   1574
   1575	start_time = bio_start_io_acct(bio);
   1576	bio_for_each_segment(bvec, bio, iter) {
   1577		struct bio_vec bv = bvec;
   1578		unsigned int unwritten = bvec.bv_len;
   1579
   1580		do {
   1581			bv.bv_len = min_t(unsigned int, PAGE_SIZE - offset,
   1582							unwritten);
   1583			if (zram_bvec_rw(zram, &bv, index, offset,
   1584					 bio_op(bio), bio) < 0) {
   1585				bio->bi_status = BLK_STS_IOERR;
   1586				break;
   1587			}
   1588
   1589			bv.bv_offset += bv.bv_len;
   1590			unwritten -= bv.bv_len;
   1591
   1592			update_position(&index, &offset, &bv);
   1593		} while (unwritten);
   1594	}
   1595	bio_end_io_acct(bio, start_time);
   1596	bio_endio(bio);
   1597}
   1598
   1599/*
   1600 * Handler function for all zram I/O requests.
   1601 */
   1602static void zram_submit_bio(struct bio *bio)
   1603{
   1604	struct zram *zram = bio->bi_bdev->bd_disk->private_data;
   1605
   1606	if (!valid_io_request(zram, bio->bi_iter.bi_sector,
   1607					bio->bi_iter.bi_size)) {
   1608		atomic64_inc(&zram->stats.invalid_io);
   1609		bio_io_error(bio);
   1610		return;
   1611	}
   1612
   1613	__zram_make_request(zram, bio);
   1614}
   1615
   1616static void zram_slot_free_notify(struct block_device *bdev,
   1617				unsigned long index)
   1618{
   1619	struct zram *zram;
   1620
   1621	zram = bdev->bd_disk->private_data;
   1622
   1623	atomic64_inc(&zram->stats.notify_free);
   1624	if (!zram_slot_trylock(zram, index)) {
   1625		atomic64_inc(&zram->stats.miss_free);
   1626		return;
   1627	}
   1628
   1629	zram_free_page(zram, index);
   1630	zram_slot_unlock(zram, index);
   1631}
   1632
   1633static int zram_rw_page(struct block_device *bdev, sector_t sector,
   1634		       struct page *page, unsigned int op)
   1635{
   1636	int offset, ret;
   1637	u32 index;
   1638	struct zram *zram;
   1639	struct bio_vec bv;
   1640	unsigned long start_time;
   1641
   1642	if (PageTransHuge(page))
   1643		return -ENOTSUPP;
   1644	zram = bdev->bd_disk->private_data;
   1645
   1646	if (!valid_io_request(zram, sector, PAGE_SIZE)) {
   1647		atomic64_inc(&zram->stats.invalid_io);
   1648		ret = -EINVAL;
   1649		goto out;
   1650	}
   1651
   1652	index = sector >> SECTORS_PER_PAGE_SHIFT;
   1653	offset = (sector & (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
   1654
   1655	bv.bv_page = page;
   1656	bv.bv_len = PAGE_SIZE;
   1657	bv.bv_offset = 0;
   1658
   1659	start_time = bdev_start_io_acct(bdev->bd_disk->part0,
   1660			SECTORS_PER_PAGE, op, jiffies);
   1661	ret = zram_bvec_rw(zram, &bv, index, offset, op, NULL);
   1662	bdev_end_io_acct(bdev->bd_disk->part0, op, start_time);
   1663out:
   1664	/*
   1665	 * If I/O fails, just return error(ie, non-zero) without
   1666	 * calling page_endio.
   1667	 * It causes resubmit the I/O with bio request by upper functions
   1668	 * of rw_page(e.g., swap_readpage, __swap_writepage) and
   1669	 * bio->bi_end_io does things to handle the error
   1670	 * (e.g., SetPageError, set_page_dirty and extra works).
   1671	 */
   1672	if (unlikely(ret < 0))
   1673		return ret;
   1674
   1675	switch (ret) {
   1676	case 0:
   1677		page_endio(page, op_is_write(op), 0);
   1678		break;
   1679	case 1:
   1680		ret = 0;
   1681		break;
   1682	default:
   1683		WARN_ON(1);
   1684	}
   1685	return ret;
   1686}
   1687
   1688static void zram_reset_device(struct zram *zram)
   1689{
   1690	struct zcomp *comp;
   1691	u64 disksize;
   1692
   1693	down_write(&zram->init_lock);
   1694
   1695	zram->limit_pages = 0;
   1696
   1697	if (!init_done(zram)) {
   1698		up_write(&zram->init_lock);
   1699		return;
   1700	}
   1701
   1702	comp = zram->comp;
   1703	disksize = zram->disksize;
   1704	zram->disksize = 0;
   1705
   1706	set_capacity_and_notify(zram->disk, 0);
   1707	part_stat_set_all(zram->disk->part0, 0);
   1708
   1709	/* I/O operation under all of CPU are done so let's free */
   1710	zram_meta_free(zram, disksize);
   1711	memset(&zram->stats, 0, sizeof(zram->stats));
   1712	zcomp_destroy(comp);
   1713	reset_bdev(zram);
   1714
   1715	up_write(&zram->init_lock);
   1716}
   1717
   1718static ssize_t disksize_store(struct device *dev,
   1719		struct device_attribute *attr, const char *buf, size_t len)
   1720{
   1721	u64 disksize;
   1722	struct zcomp *comp;
   1723	struct zram *zram = dev_to_zram(dev);
   1724	int err;
   1725
   1726	disksize = memparse(buf, NULL);
   1727	if (!disksize)
   1728		return -EINVAL;
   1729
   1730	down_write(&zram->init_lock);
   1731	if (init_done(zram)) {
   1732		pr_info("Cannot change disksize for initialized device\n");
   1733		err = -EBUSY;
   1734		goto out_unlock;
   1735	}
   1736
   1737	disksize = PAGE_ALIGN(disksize);
   1738	if (!zram_meta_alloc(zram, disksize)) {
   1739		err = -ENOMEM;
   1740		goto out_unlock;
   1741	}
   1742
   1743	comp = zcomp_create(zram->compressor);
   1744	if (IS_ERR(comp)) {
   1745		pr_err("Cannot initialise %s compressing backend\n",
   1746				zram->compressor);
   1747		err = PTR_ERR(comp);
   1748		goto out_free_meta;
   1749	}
   1750
   1751	zram->comp = comp;
   1752	zram->disksize = disksize;
   1753	set_capacity_and_notify(zram->disk, zram->disksize >> SECTOR_SHIFT);
   1754	up_write(&zram->init_lock);
   1755
   1756	return len;
   1757
   1758out_free_meta:
   1759	zram_meta_free(zram, disksize);
   1760out_unlock:
   1761	up_write(&zram->init_lock);
   1762	return err;
   1763}
   1764
   1765static ssize_t reset_store(struct device *dev,
   1766		struct device_attribute *attr, const char *buf, size_t len)
   1767{
   1768	int ret;
   1769	unsigned short do_reset;
   1770	struct zram *zram;
   1771	struct gendisk *disk;
   1772
   1773	ret = kstrtou16(buf, 10, &do_reset);
   1774	if (ret)
   1775		return ret;
   1776
   1777	if (!do_reset)
   1778		return -EINVAL;
   1779
   1780	zram = dev_to_zram(dev);
   1781	disk = zram->disk;
   1782
   1783	mutex_lock(&disk->open_mutex);
   1784	/* Do not reset an active device or claimed device */
   1785	if (disk_openers(disk) || zram->claim) {
   1786		mutex_unlock(&disk->open_mutex);
   1787		return -EBUSY;
   1788	}
   1789
   1790	/* From now on, anyone can't open /dev/zram[0-9] */
   1791	zram->claim = true;
   1792	mutex_unlock(&disk->open_mutex);
   1793
   1794	/* Make sure all the pending I/O are finished */
   1795	sync_blockdev(disk->part0);
   1796	zram_reset_device(zram);
   1797
   1798	mutex_lock(&disk->open_mutex);
   1799	zram->claim = false;
   1800	mutex_unlock(&disk->open_mutex);
   1801
   1802	return len;
   1803}
   1804
   1805static int zram_open(struct block_device *bdev, fmode_t mode)
   1806{
   1807	int ret = 0;
   1808	struct zram *zram;
   1809
   1810	WARN_ON(!mutex_is_locked(&bdev->bd_disk->open_mutex));
   1811
   1812	zram = bdev->bd_disk->private_data;
   1813	/* zram was claimed to reset so open request fails */
   1814	if (zram->claim)
   1815		ret = -EBUSY;
   1816
   1817	return ret;
   1818}
   1819
   1820static const struct block_device_operations zram_devops = {
   1821	.open = zram_open,
   1822	.submit_bio = zram_submit_bio,
   1823	.swap_slot_free_notify = zram_slot_free_notify,
   1824	.rw_page = zram_rw_page,
   1825	.owner = THIS_MODULE
   1826};
   1827
   1828#ifdef CONFIG_ZRAM_WRITEBACK
   1829static const struct block_device_operations zram_wb_devops = {
   1830	.open = zram_open,
   1831	.submit_bio = zram_submit_bio,
   1832	.swap_slot_free_notify = zram_slot_free_notify,
   1833	.owner = THIS_MODULE
   1834};
   1835#endif
   1836
   1837static DEVICE_ATTR_WO(compact);
   1838static DEVICE_ATTR_RW(disksize);
   1839static DEVICE_ATTR_RO(initstate);
   1840static DEVICE_ATTR_WO(reset);
   1841static DEVICE_ATTR_WO(mem_limit);
   1842static DEVICE_ATTR_WO(mem_used_max);
   1843static DEVICE_ATTR_WO(idle);
   1844static DEVICE_ATTR_RW(max_comp_streams);
   1845static DEVICE_ATTR_RW(comp_algorithm);
   1846#ifdef CONFIG_ZRAM_WRITEBACK
   1847static DEVICE_ATTR_RW(backing_dev);
   1848static DEVICE_ATTR_WO(writeback);
   1849static DEVICE_ATTR_RW(writeback_limit);
   1850static DEVICE_ATTR_RW(writeback_limit_enable);
   1851#endif
   1852
   1853static struct attribute *zram_disk_attrs[] = {
   1854	&dev_attr_disksize.attr,
   1855	&dev_attr_initstate.attr,
   1856	&dev_attr_reset.attr,
   1857	&dev_attr_compact.attr,
   1858	&dev_attr_mem_limit.attr,
   1859	&dev_attr_mem_used_max.attr,
   1860	&dev_attr_idle.attr,
   1861	&dev_attr_max_comp_streams.attr,
   1862	&dev_attr_comp_algorithm.attr,
   1863#ifdef CONFIG_ZRAM_WRITEBACK
   1864	&dev_attr_backing_dev.attr,
   1865	&dev_attr_writeback.attr,
   1866	&dev_attr_writeback_limit.attr,
   1867	&dev_attr_writeback_limit_enable.attr,
   1868#endif
   1869	&dev_attr_io_stat.attr,
   1870	&dev_attr_mm_stat.attr,
   1871#ifdef CONFIG_ZRAM_WRITEBACK
   1872	&dev_attr_bd_stat.attr,
   1873#endif
   1874	&dev_attr_debug_stat.attr,
   1875	NULL,
   1876};
   1877
   1878ATTRIBUTE_GROUPS(zram_disk);
   1879
   1880/*
   1881 * Allocate and initialize new zram device. the function returns
   1882 * '>= 0' device_id upon success, and negative value otherwise.
   1883 */
   1884static int zram_add(void)
   1885{
   1886	struct zram *zram;
   1887	int ret, device_id;
   1888
   1889	zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
   1890	if (!zram)
   1891		return -ENOMEM;
   1892
   1893	ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
   1894	if (ret < 0)
   1895		goto out_free_dev;
   1896	device_id = ret;
   1897
   1898	init_rwsem(&zram->init_lock);
   1899#ifdef CONFIG_ZRAM_WRITEBACK
   1900	spin_lock_init(&zram->wb_limit_lock);
   1901#endif
   1902
   1903	/* gendisk structure */
   1904	zram->disk = blk_alloc_disk(NUMA_NO_NODE);
   1905	if (!zram->disk) {
   1906		pr_err("Error allocating disk structure for device %d\n",
   1907			device_id);
   1908		ret = -ENOMEM;
   1909		goto out_free_idr;
   1910	}
   1911
   1912	zram->disk->major = zram_major;
   1913	zram->disk->first_minor = device_id;
   1914	zram->disk->minors = 1;
   1915	zram->disk->flags |= GENHD_FL_NO_PART;
   1916	zram->disk->fops = &zram_devops;
   1917	zram->disk->private_data = zram;
   1918	snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
   1919
   1920	/* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
   1921	set_capacity(zram->disk, 0);
   1922	/* zram devices sort of resembles non-rotational disks */
   1923	blk_queue_flag_set(QUEUE_FLAG_NONROT, zram->disk->queue);
   1924	blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
   1925
   1926	/*
   1927	 * To ensure that we always get PAGE_SIZE aligned
   1928	 * and n*PAGE_SIZED sized I/O requests.
   1929	 */
   1930	blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
   1931	blk_queue_logical_block_size(zram->disk->queue,
   1932					ZRAM_LOGICAL_BLOCK_SIZE);
   1933	blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
   1934	blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
   1935	zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
   1936	blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX);
   1937
   1938	/*
   1939	 * zram_bio_discard() will clear all logical blocks if logical block
   1940	 * size is identical with physical block size(PAGE_SIZE). But if it is
   1941	 * different, we will skip discarding some parts of logical blocks in
   1942	 * the part of the request range which isn't aligned to physical block
   1943	 * size.  So we can't ensure that all discarded logical blocks are
   1944	 * zeroed.
   1945	 */
   1946	if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
   1947		blk_queue_max_write_zeroes_sectors(zram->disk->queue, UINT_MAX);
   1948
   1949	ret = device_add_disk(NULL, zram->disk, zram_disk_groups);
   1950	if (ret)
   1951		goto out_cleanup_disk;
   1952
   1953	strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
   1954
   1955	zram_debugfs_register(zram);
   1956	pr_info("Added device: %s\n", zram->disk->disk_name);
   1957	return device_id;
   1958
   1959out_cleanup_disk:
   1960	blk_cleanup_disk(zram->disk);
   1961out_free_idr:
   1962	idr_remove(&zram_index_idr, device_id);
   1963out_free_dev:
   1964	kfree(zram);
   1965	return ret;
   1966}
   1967
   1968static int zram_remove(struct zram *zram)
   1969{
   1970	bool claimed;
   1971
   1972	mutex_lock(&zram->disk->open_mutex);
   1973	if (disk_openers(zram->disk)) {
   1974		mutex_unlock(&zram->disk->open_mutex);
   1975		return -EBUSY;
   1976	}
   1977
   1978	claimed = zram->claim;
   1979	if (!claimed)
   1980		zram->claim = true;
   1981	mutex_unlock(&zram->disk->open_mutex);
   1982
   1983	zram_debugfs_unregister(zram);
   1984
   1985	if (claimed) {
   1986		/*
   1987		 * If we were claimed by reset_store(), del_gendisk() will
   1988		 * wait until reset_store() is done, so nothing need to do.
   1989		 */
   1990		;
   1991	} else {
   1992		/* Make sure all the pending I/O are finished */
   1993		sync_blockdev(zram->disk->part0);
   1994		zram_reset_device(zram);
   1995	}
   1996
   1997	pr_info("Removed device: %s\n", zram->disk->disk_name);
   1998
   1999	del_gendisk(zram->disk);
   2000
   2001	/* del_gendisk drains pending reset_store */
   2002	WARN_ON_ONCE(claimed && zram->claim);
   2003
   2004	/*
   2005	 * disksize_store() may be called in between zram_reset_device()
   2006	 * and del_gendisk(), so run the last reset to avoid leaking
   2007	 * anything allocated with disksize_store()
   2008	 */
   2009	zram_reset_device(zram);
   2010
   2011	blk_cleanup_disk(zram->disk);
   2012	kfree(zram);
   2013	return 0;
   2014}
   2015
   2016/* zram-control sysfs attributes */
   2017
   2018/*
   2019 * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a
   2020 * sense that reading from this file does alter the state of your system -- it
   2021 * creates a new un-initialized zram device and returns back this device's
   2022 * device_id (or an error code if it fails to create a new device).
   2023 */
   2024static ssize_t hot_add_show(struct class *class,
   2025			struct class_attribute *attr,
   2026			char *buf)
   2027{
   2028	int ret;
   2029
   2030	mutex_lock(&zram_index_mutex);
   2031	ret = zram_add();
   2032	mutex_unlock(&zram_index_mutex);
   2033
   2034	if (ret < 0)
   2035		return ret;
   2036	return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
   2037}
   2038static struct class_attribute class_attr_hot_add =
   2039	__ATTR(hot_add, 0400, hot_add_show, NULL);
   2040
   2041static ssize_t hot_remove_store(struct class *class,
   2042			struct class_attribute *attr,
   2043			const char *buf,
   2044			size_t count)
   2045{
   2046	struct zram *zram;
   2047	int ret, dev_id;
   2048
   2049	/* dev_id is gendisk->first_minor, which is `int' */
   2050	ret = kstrtoint(buf, 10, &dev_id);
   2051	if (ret)
   2052		return ret;
   2053	if (dev_id < 0)
   2054		return -EINVAL;
   2055
   2056	mutex_lock(&zram_index_mutex);
   2057
   2058	zram = idr_find(&zram_index_idr, dev_id);
   2059	if (zram) {
   2060		ret = zram_remove(zram);
   2061		if (!ret)
   2062			idr_remove(&zram_index_idr, dev_id);
   2063	} else {
   2064		ret = -ENODEV;
   2065	}
   2066
   2067	mutex_unlock(&zram_index_mutex);
   2068	return ret ? ret : count;
   2069}
   2070static CLASS_ATTR_WO(hot_remove);
   2071
   2072static struct attribute *zram_control_class_attrs[] = {
   2073	&class_attr_hot_add.attr,
   2074	&class_attr_hot_remove.attr,
   2075	NULL,
   2076};
   2077ATTRIBUTE_GROUPS(zram_control_class);
   2078
   2079static struct class zram_control_class = {
   2080	.name		= "zram-control",
   2081	.owner		= THIS_MODULE,
   2082	.class_groups	= zram_control_class_groups,
   2083};
   2084
   2085static int zram_remove_cb(int id, void *ptr, void *data)
   2086{
   2087	WARN_ON_ONCE(zram_remove(ptr));
   2088	return 0;
   2089}
   2090
   2091static void destroy_devices(void)
   2092{
   2093	class_unregister(&zram_control_class);
   2094	idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
   2095	zram_debugfs_destroy();
   2096	idr_destroy(&zram_index_idr);
   2097	unregister_blkdev(zram_major, "zram");
   2098	cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
   2099}
   2100
   2101static int __init zram_init(void)
   2102{
   2103	int ret;
   2104
   2105	ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare",
   2106				      zcomp_cpu_up_prepare, zcomp_cpu_dead);
   2107	if (ret < 0)
   2108		return ret;
   2109
   2110	ret = class_register(&zram_control_class);
   2111	if (ret) {
   2112		pr_err("Unable to register zram-control class\n");
   2113		cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
   2114		return ret;
   2115	}
   2116
   2117	zram_debugfs_create();
   2118	zram_major = register_blkdev(0, "zram");
   2119	if (zram_major <= 0) {
   2120		pr_err("Unable to get major number\n");
   2121		class_unregister(&zram_control_class);
   2122		cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
   2123		return -EBUSY;
   2124	}
   2125
   2126	while (num_devices != 0) {
   2127		mutex_lock(&zram_index_mutex);
   2128		ret = zram_add();
   2129		mutex_unlock(&zram_index_mutex);
   2130		if (ret < 0)
   2131			goto out_error;
   2132		num_devices--;
   2133	}
   2134
   2135	return 0;
   2136
   2137out_error:
   2138	destroy_devices();
   2139	return ret;
   2140}
   2141
   2142static void __exit zram_exit(void)
   2143{
   2144	destroy_devices();
   2145}
   2146
   2147module_init(zram_init);
   2148module_exit(zram_exit);
   2149
   2150module_param(num_devices, uint, 0);
   2151MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
   2152
   2153MODULE_LICENSE("Dual BSD/GPL");
   2154MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
   2155MODULE_DESCRIPTION("Compressed RAM Block Device");