cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

isoch.c (13143B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 * Setup routines for AGP 3.5 compliant bridges.
      4 */
      5
      6#include <linux/list.h>
      7#include <linux/pci.h>
      8#include <linux/agp_backend.h>
      9#include <linux/module.h>
     10#include <linux/slab.h>
     11
     12#include "agp.h"
     13
     14/* Generic AGP 3.5 enabling routines */
     15
     16struct agp_3_5_dev {
     17	struct list_head list;
     18	u8 capndx;
     19	u32 maxbw;
     20	struct pci_dev *dev;
     21};
     22
     23static void agp_3_5_dev_list_insert(struct list_head *head, struct list_head *new)
     24{
     25	struct agp_3_5_dev *cur, *n = list_entry(new, struct agp_3_5_dev, list);
     26	struct list_head *pos;
     27
     28	list_for_each(pos, head) {
     29		cur = list_entry(pos, struct agp_3_5_dev, list);
     30		if (cur->maxbw > n->maxbw)
     31			break;
     32	}
     33	list_add_tail(new, pos);
     34}
     35
     36static void agp_3_5_dev_list_sort(struct agp_3_5_dev *list, unsigned int ndevs)
     37{
     38	struct agp_3_5_dev *cur;
     39	struct pci_dev *dev;
     40	struct list_head *pos, *tmp, *head = &list->list, *start = head->next;
     41	u32 nistat;
     42
     43	INIT_LIST_HEAD(head);
     44
     45	for (pos=start; pos!=head; ) {
     46		cur = list_entry(pos, struct agp_3_5_dev, list);
     47		dev = cur->dev;
     48
     49		pci_read_config_dword(dev, cur->capndx+AGPNISTAT, &nistat);
     50		cur->maxbw = (nistat >> 16) & 0xff;
     51
     52		tmp = pos;
     53		pos = pos->next;
     54		agp_3_5_dev_list_insert(head, tmp);
     55	}
     56}
     57
     58/*
     59 * Initialize all isochronous transfer parameters for an AGP 3.0
     60 * node (i.e. a host bridge in combination with the adapters
     61 * lying behind it...)
     62 */
     63
     64static int agp_3_5_isochronous_node_enable(struct agp_bridge_data *bridge,
     65		struct agp_3_5_dev *dev_list, unsigned int ndevs)
     66{
     67	/*
     68	 * Convenience structure to make the calculations clearer
     69	 * here.  The field names come straight from the AGP 3.0 spec.
     70	 */
     71	struct isoch_data {
     72		u32 maxbw;
     73		u32 n;
     74		u32 y;
     75		u32 l;
     76		u32 rq;
     77		struct agp_3_5_dev *dev;
     78	};
     79
     80	struct pci_dev *td = bridge->dev, *dev;
     81	struct list_head *head = &dev_list->list, *pos;
     82	struct agp_3_5_dev *cur;
     83	struct isoch_data *master, target;
     84	unsigned int cdev = 0;
     85	u32 mnistat, tnistat, tstatus, mcmd;
     86	u16 tnicmd, mnicmd;
     87	u32 tot_bw = 0, tot_n = 0, tot_rq = 0, y_max, rq_isoch, rq_async;
     88	u32 step, rem, rem_isoch, rem_async;
     89	int ret = 0;
     90
     91	/*
     92	 * We'll work with an array of isoch_data's (one for each
     93	 * device in dev_list) throughout this function.
     94	 */
     95	master = kmalloc_array(ndevs, sizeof(*master), GFP_KERNEL);
     96	if (master == NULL) {
     97		ret = -ENOMEM;
     98		goto get_out;
     99	}
    100
    101	/*
    102	 * Sort the device list by maxbw.  We need to do this because the
    103	 * spec suggests that the devices with the smallest requirements
    104	 * have their resources allocated first, with all remaining resources
    105	 * falling to the device with the largest requirement.
    106	 *
    107	 * We don't exactly do this, we divide target resources by ndevs
    108	 * and split them amongst the AGP 3.0 devices.  The remainder of such
    109	 * division operations are dropped on the last device, sort of like
    110	 * the spec mentions it should be done.
    111	 *
    112	 * We can't do this sort when we initially construct the dev_list
    113	 * because we don't know until this function whether isochronous
    114	 * transfers are enabled and consequently whether maxbw will mean
    115	 * anything.
    116	 */
    117	agp_3_5_dev_list_sort(dev_list, ndevs);
    118
    119	pci_read_config_dword(td, bridge->capndx+AGPNISTAT, &tnistat);
    120	pci_read_config_dword(td, bridge->capndx+AGPSTAT, &tstatus);
    121
    122	/* Extract power-on defaults from the target */
    123	target.maxbw = (tnistat >> 16) & 0xff;
    124	target.n     = (tnistat >> 8)  & 0xff;
    125	target.y     = (tnistat >> 6)  & 0x3;
    126	target.l     = (tnistat >> 3)  & 0x7;
    127	target.rq    = (tstatus >> 24) & 0xff;
    128
    129	y_max = target.y;
    130
    131	/*
    132	 * Extract power-on defaults for each device in dev_list.  Along
    133	 * the way, calculate the total isochronous bandwidth required
    134	 * by these devices and the largest requested payload size.
    135	 */
    136	list_for_each(pos, head) {
    137		cur = list_entry(pos, struct agp_3_5_dev, list);
    138		dev = cur->dev;
    139
    140		pci_read_config_dword(dev, cur->capndx+AGPNISTAT, &mnistat);
    141
    142		master[cdev].maxbw = (mnistat >> 16) & 0xff;
    143		master[cdev].n     = (mnistat >> 8)  & 0xff;
    144		master[cdev].y     = (mnistat >> 6)  & 0x3;
    145		master[cdev].dev   = cur;
    146
    147		tot_bw += master[cdev].maxbw;
    148		y_max = max(y_max, master[cdev].y);
    149
    150		cdev++;
    151	}
    152
    153	/* Check if this configuration has any chance of working */
    154	if (tot_bw > target.maxbw) {
    155		dev_err(&td->dev, "isochronous bandwidth required "
    156			"by AGP 3.0 devices exceeds that which is supported by "
    157			"the AGP 3.0 bridge!\n");
    158		ret = -ENODEV;
    159		goto free_and_exit;
    160	}
    161
    162	target.y = y_max;
    163
    164	/*
    165	 * Write the calculated payload size into the target's NICMD
    166	 * register.  Doing this directly effects the ISOCH_N value
    167	 * in the target's NISTAT register, so we need to do this now
    168	 * to get an accurate value for ISOCH_N later.
    169	 */
    170	pci_read_config_word(td, bridge->capndx+AGPNICMD, &tnicmd);
    171	tnicmd &= ~(0x3 << 6);
    172	tnicmd |= target.y << 6;
    173	pci_write_config_word(td, bridge->capndx+AGPNICMD, tnicmd);
    174
    175	/* Reread the target's ISOCH_N */
    176	pci_read_config_dword(td, bridge->capndx+AGPNISTAT, &tnistat);
    177	target.n = (tnistat >> 8) & 0xff;
    178
    179	/* Calculate the minimum ISOCH_N needed by each master */
    180	for (cdev=0; cdev<ndevs; cdev++) {
    181		master[cdev].y = target.y;
    182		master[cdev].n = master[cdev].maxbw / (master[cdev].y + 1);
    183
    184		tot_n += master[cdev].n;
    185	}
    186
    187	/* Exit if the minimal ISOCH_N allocation among the masters is more
    188	 * than the target can handle. */
    189	if (tot_n > target.n) {
    190		dev_err(&td->dev, "number of isochronous "
    191			"transactions per period required by AGP 3.0 devices "
    192			"exceeds that which is supported by the AGP 3.0 "
    193			"bridge!\n");
    194		ret = -ENODEV;
    195		goto free_and_exit;
    196	}
    197
    198	/* Calculate left over ISOCH_N capability in the target.  We'll give
    199	 * this to the hungriest device (as per the spec) */
    200	rem  = target.n - tot_n;
    201
    202	/*
    203	 * Calculate the minimum isochronous RQ depth needed by each master.
    204	 * Along the way, distribute the extra ISOCH_N capability calculated
    205	 * above.
    206	 */
    207	for (cdev=0; cdev<ndevs; cdev++) {
    208		/*
    209		 * This is a little subtle.  If ISOCH_Y > 64B, then ISOCH_Y
    210		 * byte isochronous writes will be broken into 64B pieces.
    211		 * This means we need to budget more RQ depth to account for
    212		 * these kind of writes (each isochronous write is actually
    213		 * many writes on the AGP bus).
    214		 */
    215		master[cdev].rq = master[cdev].n;
    216		if (master[cdev].y > 0x1)
    217			master[cdev].rq *= (1 << (master[cdev].y - 1));
    218
    219		tot_rq += master[cdev].rq;
    220	}
    221	master[ndevs-1].n += rem;
    222
    223	/* Figure the number of isochronous and asynchronous RQ slots the
    224	 * target is providing. */
    225	rq_isoch = (target.y > 0x1) ? target.n * (1 << (target.y - 1)) : target.n;
    226	rq_async = target.rq - rq_isoch;
    227
    228	/* Exit if the minimal RQ needs of the masters exceeds what the target
    229	 * can provide. */
    230	if (tot_rq > rq_isoch) {
    231		dev_err(&td->dev, "number of request queue slots "
    232			"required by the isochronous bandwidth requested by "
    233			"AGP 3.0 devices exceeds the number provided by the "
    234			"AGP 3.0 bridge!\n");
    235		ret = -ENODEV;
    236		goto free_and_exit;
    237	}
    238
    239	/* Calculate asynchronous RQ capability in the target (per master) as
    240	 * well as the total number of leftover isochronous RQ slots. */
    241	step      = rq_async / ndevs;
    242	rem_async = step + (rq_async % ndevs);
    243	rem_isoch = rq_isoch - tot_rq;
    244
    245	/* Distribute the extra RQ slots calculated above and write our
    246	 * isochronous settings out to the actual devices. */
    247	for (cdev=0; cdev<ndevs; cdev++) {
    248		cur = master[cdev].dev;
    249		dev = cur->dev;
    250
    251		master[cdev].rq += (cdev == ndevs - 1)
    252		              ? (rem_async + rem_isoch) : step;
    253
    254		pci_read_config_word(dev, cur->capndx+AGPNICMD, &mnicmd);
    255		pci_read_config_dword(dev, cur->capndx+AGPCMD, &mcmd);
    256
    257		mnicmd &= ~(0xff << 8);
    258		mnicmd &= ~(0x3  << 6);
    259		mcmd   &= ~(0xff << 24);
    260
    261		mnicmd |= master[cdev].n  << 8;
    262		mnicmd |= master[cdev].y  << 6;
    263		mcmd   |= master[cdev].rq << 24;
    264
    265		pci_write_config_dword(dev, cur->capndx+AGPCMD, mcmd);
    266		pci_write_config_word(dev, cur->capndx+AGPNICMD, mnicmd);
    267	}
    268
    269free_and_exit:
    270	kfree(master);
    271
    272get_out:
    273	return ret;
    274}
    275
    276/*
    277 * This function basically allocates request queue slots among the
    278 * AGP 3.0 systems in nonisochronous nodes.  The algorithm is
    279 * pretty stupid, divide the total number of RQ slots provided by the
    280 * target by ndevs.  Distribute this many slots to each AGP 3.0 device,
    281 * giving any left over slots to the last device in dev_list.
    282 */
    283static void agp_3_5_nonisochronous_node_enable(struct agp_bridge_data *bridge,
    284		struct agp_3_5_dev *dev_list, unsigned int ndevs)
    285{
    286	struct agp_3_5_dev *cur;
    287	struct list_head *head = &dev_list->list, *pos;
    288	u32 tstatus, mcmd;
    289	u32 trq, mrq, rem;
    290	unsigned int cdev = 0;
    291
    292	pci_read_config_dword(bridge->dev, bridge->capndx+AGPSTAT, &tstatus);
    293
    294	trq = (tstatus >> 24) & 0xff;
    295	mrq = trq / ndevs;
    296
    297	rem = mrq + (trq % ndevs);
    298
    299	for (pos=head->next; cdev<ndevs; cdev++, pos=pos->next) {
    300		cur = list_entry(pos, struct agp_3_5_dev, list);
    301
    302		pci_read_config_dword(cur->dev, cur->capndx+AGPCMD, &mcmd);
    303		mcmd &= ~(0xff << 24);
    304		mcmd |= ((cdev == ndevs - 1) ? rem : mrq) << 24;
    305		pci_write_config_dword(cur->dev, cur->capndx+AGPCMD, mcmd);
    306	}
    307}
    308
    309/*
    310 * Fully configure and enable an AGP 3.0 host bridge and all the devices
    311 * lying behind it.
    312 */
    313int agp_3_5_enable(struct agp_bridge_data *bridge)
    314{
    315	struct pci_dev *td = bridge->dev, *dev = NULL;
    316	u8 mcapndx;
    317	u32 isoch;
    318	u32 tstatus, mstatus, ncapid;
    319	u32 mmajor;
    320	u16 mpstat;
    321	struct agp_3_5_dev *dev_list, *cur;
    322	struct list_head *head, *pos;
    323	unsigned int ndevs = 0;
    324	int ret = 0;
    325
    326	/* Extract some power-on defaults from the target */
    327	pci_read_config_dword(td, bridge->capndx+AGPSTAT, &tstatus);
    328	isoch     = (tstatus >> 17) & 0x1;
    329	if (isoch == 0)	/* isoch xfers not available, bail out. */
    330		return -ENODEV;
    331
    332	/*
    333	 * Allocate a head for our AGP 3.5 device list
    334	 * (multiple AGP v3 devices are allowed behind a single bridge).
    335	 */
    336	if ((dev_list = kmalloc(sizeof(*dev_list), GFP_KERNEL)) == NULL) {
    337		ret = -ENOMEM;
    338		goto get_out;
    339	}
    340	head = &dev_list->list;
    341	INIT_LIST_HEAD(head);
    342
    343	/* Find all AGP devices, and add them to dev_list. */
    344	for_each_pci_dev(dev) {
    345		mcapndx = pci_find_capability(dev, PCI_CAP_ID_AGP);
    346		if (mcapndx == 0)
    347			continue;
    348
    349		switch ((dev->class >>8) & 0xff00) {
    350			case 0x0600:    /* Bridge */
    351				/* Skip bridges. We should call this function for each one. */
    352				continue;
    353
    354			case 0x0001:    /* Unclassified device */
    355				/* Don't know what this is, but log it for investigation. */
    356				if (mcapndx != 0) {
    357					dev_info(&td->dev, "wacky, found unclassified AGP device %s [%04x/%04x]\n",
    358						 pci_name(dev),
    359						 dev->vendor, dev->device);
    360				}
    361				continue;
    362
    363			case 0x0300:    /* Display controller */
    364			case 0x0400:    /* Multimedia controller */
    365				if ((cur = kmalloc(sizeof(*cur), GFP_KERNEL)) == NULL) {
    366					ret = -ENOMEM;
    367					goto free_and_exit;
    368				}
    369				cur->dev = dev;
    370
    371				pos = &cur->list;
    372				list_add(pos, head);
    373				ndevs++;
    374				continue;
    375
    376			default:
    377				continue;
    378		}
    379	}
    380
    381	/*
    382	 * Take an initial pass through the devices lying behind our host
    383	 * bridge.  Make sure each one is actually an AGP 3.0 device, otherwise
    384	 * exit with an error message.  Along the way store the AGP 3.0
    385	 * cap_ptr for each device
    386	 */
    387	list_for_each(pos, head) {
    388		cur = list_entry(pos, struct agp_3_5_dev, list);
    389		dev = cur->dev;
    390
    391		pci_read_config_word(dev, PCI_STATUS, &mpstat);
    392		if ((mpstat & PCI_STATUS_CAP_LIST) == 0)
    393			continue;
    394
    395		pci_read_config_byte(dev, PCI_CAPABILITY_LIST, &mcapndx);
    396		if (mcapndx != 0) {
    397			do {
    398				pci_read_config_dword(dev, mcapndx, &ncapid);
    399				if ((ncapid & 0xff) != 2)
    400					mcapndx = (ncapid >> 8) & 0xff;
    401			}
    402			while (((ncapid & 0xff) != 2) && (mcapndx != 0));
    403		}
    404
    405		if (mcapndx == 0) {
    406			dev_err(&td->dev, "woah!  Non-AGP device %s on "
    407				"secondary bus of AGP 3.5 bridge!\n",
    408				pci_name(dev));
    409			ret = -ENODEV;
    410			goto free_and_exit;
    411		}
    412
    413		mmajor = (ncapid >> AGP_MAJOR_VERSION_SHIFT) & 0xf;
    414		if (mmajor < 3) {
    415			dev_err(&td->dev, "woah!  AGP 2.0 device %s on "
    416				"secondary bus of AGP 3.5 bridge operating "
    417				"with AGP 3.0 electricals!\n", pci_name(dev));
    418			ret = -ENODEV;
    419			goto free_and_exit;
    420		}
    421
    422		cur->capndx = mcapndx;
    423
    424		pci_read_config_dword(dev, cur->capndx+AGPSTAT, &mstatus);
    425
    426		if (((mstatus >> 3) & 0x1) == 0) {
    427			dev_err(&td->dev, "woah!  AGP 3.x device %s not "
    428				"operating in AGP 3.x mode on secondary bus "
    429				"of AGP 3.5 bridge operating with AGP 3.0 "
    430				"electricals!\n", pci_name(dev));
    431			ret = -ENODEV;
    432			goto free_and_exit;
    433		}
    434	}		
    435
    436	/*
    437	 * Call functions to divide target resources amongst the AGP 3.0
    438	 * masters.  This process is dramatically different depending on
    439	 * whether isochronous transfers are supported.
    440	 */
    441	if (isoch) {
    442		ret = agp_3_5_isochronous_node_enable(bridge, dev_list, ndevs);
    443		if (ret) {
    444			dev_info(&td->dev, "something bad happened setting "
    445				 "up isochronous xfers; falling back to "
    446				 "non-isochronous xfer mode\n");
    447		} else {
    448			goto free_and_exit;
    449		}
    450	}
    451	agp_3_5_nonisochronous_node_enable(bridge, dev_list, ndevs);
    452
    453free_and_exit:
    454	/* Be sure to free the dev_list */
    455	for (pos=head->next; pos!=head; ) {
    456		cur = list_entry(pos, struct agp_3_5_dev, list);
    457
    458		pos = pos->next;
    459		kfree(cur);
    460	}
    461	kfree(dev_list);
    462
    463get_out:
    464	return ret;
    465}