cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

ipmi_msghandler.c (144723B)


      1// SPDX-License-Identifier: GPL-2.0+
      2/*
      3 * ipmi_msghandler.c
      4 *
      5 * Incoming and outgoing message routing for an IPMI interface.
      6 *
      7 * Author: MontaVista Software, Inc.
      8 *         Corey Minyard <minyard@mvista.com>
      9 *         source@mvista.com
     10 *
     11 * Copyright 2002 MontaVista Software Inc.
     12 */
     13
     14#define pr_fmt(fmt) "IPMI message handler: " fmt
     15#define dev_fmt(fmt) pr_fmt(fmt)
     16
     17#include <linux/module.h>
     18#include <linux/errno.h>
     19#include <linux/panic_notifier.h>
     20#include <linux/poll.h>
     21#include <linux/sched.h>
     22#include <linux/seq_file.h>
     23#include <linux/spinlock.h>
     24#include <linux/mutex.h>
     25#include <linux/slab.h>
     26#include <linux/ipmi.h>
     27#include <linux/ipmi_smi.h>
     28#include <linux/notifier.h>
     29#include <linux/init.h>
     30#include <linux/proc_fs.h>
     31#include <linux/rcupdate.h>
     32#include <linux/interrupt.h>
     33#include <linux/moduleparam.h>
     34#include <linux/workqueue.h>
     35#include <linux/uuid.h>
     36#include <linux/nospec.h>
     37#include <linux/vmalloc.h>
     38#include <linux/delay.h>
     39
     40#define IPMI_DRIVER_VERSION "39.2"
     41
     42static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
     43static int ipmi_init_msghandler(void);
     44static void smi_recv_tasklet(struct tasklet_struct *t);
     45static void handle_new_recv_msgs(struct ipmi_smi *intf);
     46static void need_waiter(struct ipmi_smi *intf);
     47static int handle_one_recv_msg(struct ipmi_smi *intf,
     48			       struct ipmi_smi_msg *msg);
     49
     50static bool initialized;
     51static bool drvregistered;
     52
     53/* Numbers in this enumerator should be mapped to ipmi_panic_event_str */
     54enum ipmi_panic_event_op {
     55	IPMI_SEND_PANIC_EVENT_NONE,
     56	IPMI_SEND_PANIC_EVENT,
     57	IPMI_SEND_PANIC_EVENT_STRING,
     58	IPMI_SEND_PANIC_EVENT_MAX
     59};
     60
     61/* Indices in this array should be mapped to enum ipmi_panic_event_op */
     62static const char *const ipmi_panic_event_str[] = { "none", "event", "string", NULL };
     63
     64#ifdef CONFIG_IPMI_PANIC_STRING
     65#define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_STRING
     66#elif defined(CONFIG_IPMI_PANIC_EVENT)
     67#define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT
     68#else
     69#define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_NONE
     70#endif
     71
     72static enum ipmi_panic_event_op ipmi_send_panic_event = IPMI_PANIC_DEFAULT;
     73
     74static int panic_op_write_handler(const char *val,
     75				  const struct kernel_param *kp)
     76{
     77	char valcp[16];
     78	int e;
     79
     80	strscpy(valcp, val, sizeof(valcp));
     81	e = match_string(ipmi_panic_event_str, -1, strstrip(valcp));
     82	if (e < 0)
     83		return e;
     84
     85	ipmi_send_panic_event = e;
     86	return 0;
     87}
     88
     89static int panic_op_read_handler(char *buffer, const struct kernel_param *kp)
     90{
     91	const char *event_str;
     92
     93	if (ipmi_send_panic_event >= IPMI_SEND_PANIC_EVENT_MAX)
     94		event_str = "???";
     95	else
     96		event_str = ipmi_panic_event_str[ipmi_send_panic_event];
     97
     98	return sprintf(buffer, "%s\n", event_str);
     99}
    100
    101static const struct kernel_param_ops panic_op_ops = {
    102	.set = panic_op_write_handler,
    103	.get = panic_op_read_handler
    104};
    105module_param_cb(panic_op, &panic_op_ops, NULL, 0600);
    106MODULE_PARM_DESC(panic_op, "Sets if the IPMI driver will attempt to store panic information in the event log in the event of a panic.  Set to 'none' for no, 'event' for a single event, or 'string' for a generic event and the panic string in IPMI OEM events.");
    107
    108
    109#define MAX_EVENTS_IN_QUEUE	25
    110
    111/* Remain in auto-maintenance mode for this amount of time (in ms). */
    112static unsigned long maintenance_mode_timeout_ms = 30000;
    113module_param(maintenance_mode_timeout_ms, ulong, 0644);
    114MODULE_PARM_DESC(maintenance_mode_timeout_ms,
    115		 "The time (milliseconds) after the last maintenance message that the connection stays in maintenance mode.");
    116
    117/*
    118 * Don't let a message sit in a queue forever, always time it with at lest
    119 * the max message timer.  This is in milliseconds.
    120 */
    121#define MAX_MSG_TIMEOUT		60000
    122
    123/*
    124 * Timeout times below are in milliseconds, and are done off a 1
    125 * second timer.  So setting the value to 1000 would mean anything
    126 * between 0 and 1000ms.  So really the only reasonable minimum
    127 * setting it 2000ms, which is between 1 and 2 seconds.
    128 */
    129
    130/* The default timeout for message retries. */
    131static unsigned long default_retry_ms = 2000;
    132module_param(default_retry_ms, ulong, 0644);
    133MODULE_PARM_DESC(default_retry_ms,
    134		 "The time (milliseconds) between retry sends");
    135
    136/* The default timeout for maintenance mode message retries. */
    137static unsigned long default_maintenance_retry_ms = 3000;
    138module_param(default_maintenance_retry_ms, ulong, 0644);
    139MODULE_PARM_DESC(default_maintenance_retry_ms,
    140		 "The time (milliseconds) between retry sends in maintenance mode");
    141
    142/* The default maximum number of retries */
    143static unsigned int default_max_retries = 4;
    144module_param(default_max_retries, uint, 0644);
    145MODULE_PARM_DESC(default_max_retries,
    146		 "The time (milliseconds) between retry sends in maintenance mode");
    147
    148/* The default maximum number of users that may register. */
    149static unsigned int max_users = 30;
    150module_param(max_users, uint, 0644);
    151MODULE_PARM_DESC(max_users,
    152		 "The most users that may use the IPMI stack at one time.");
    153
    154/* The default maximum number of message a user may have outstanding. */
    155static unsigned int max_msgs_per_user = 100;
    156module_param(max_msgs_per_user, uint, 0644);
    157MODULE_PARM_DESC(max_msgs_per_user,
    158		 "The most message a user may have outstanding.");
    159
    160/* Call every ~1000 ms. */
    161#define IPMI_TIMEOUT_TIME	1000
    162
    163/* How many jiffies does it take to get to the timeout time. */
    164#define IPMI_TIMEOUT_JIFFIES	((IPMI_TIMEOUT_TIME * HZ) / 1000)
    165
    166/*
    167 * Request events from the queue every second (this is the number of
    168 * IPMI_TIMEOUT_TIMES between event requests).  Hopefully, in the
    169 * future, IPMI will add a way to know immediately if an event is in
    170 * the queue and this silliness can go away.
    171 */
    172#define IPMI_REQUEST_EV_TIME	(1000 / (IPMI_TIMEOUT_TIME))
    173
    174/* How long should we cache dynamic device IDs? */
    175#define IPMI_DYN_DEV_ID_EXPIRY	(10 * HZ)
    176
    177/*
    178 * The main "user" data structure.
    179 */
    180struct ipmi_user {
    181	struct list_head link;
    182
    183	/*
    184	 * Set to NULL when the user is destroyed, a pointer to myself
    185	 * so srcu_dereference can be used on it.
    186	 */
    187	struct ipmi_user *self;
    188	struct srcu_struct release_barrier;
    189
    190	struct kref refcount;
    191
    192	/* The upper layer that handles receive messages. */
    193	const struct ipmi_user_hndl *handler;
    194	void             *handler_data;
    195
    196	/* The interface this user is bound to. */
    197	struct ipmi_smi *intf;
    198
    199	/* Does this interface receive IPMI events? */
    200	bool gets_events;
    201
    202	atomic_t nr_msgs;
    203
    204	/* Free must run in process context for RCU cleanup. */
    205	struct work_struct remove_work;
    206};
    207
    208static struct workqueue_struct *remove_work_wq;
    209
    210static struct ipmi_user *acquire_ipmi_user(struct ipmi_user *user, int *index)
    211	__acquires(user->release_barrier)
    212{
    213	struct ipmi_user *ruser;
    214
    215	*index = srcu_read_lock(&user->release_barrier);
    216	ruser = srcu_dereference(user->self, &user->release_barrier);
    217	if (!ruser)
    218		srcu_read_unlock(&user->release_barrier, *index);
    219	return ruser;
    220}
    221
    222static void release_ipmi_user(struct ipmi_user *user, int index)
    223{
    224	srcu_read_unlock(&user->release_barrier, index);
    225}
    226
    227struct cmd_rcvr {
    228	struct list_head link;
    229
    230	struct ipmi_user *user;
    231	unsigned char netfn;
    232	unsigned char cmd;
    233	unsigned int  chans;
    234
    235	/*
    236	 * This is used to form a linked lised during mass deletion.
    237	 * Since this is in an RCU list, we cannot use the link above
    238	 * or change any data until the RCU period completes.  So we
    239	 * use this next variable during mass deletion so we can have
    240	 * a list and don't have to wait and restart the search on
    241	 * every individual deletion of a command.
    242	 */
    243	struct cmd_rcvr *next;
    244};
    245
    246struct seq_table {
    247	unsigned int         inuse : 1;
    248	unsigned int         broadcast : 1;
    249
    250	unsigned long        timeout;
    251	unsigned long        orig_timeout;
    252	unsigned int         retries_left;
    253
    254	/*
    255	 * To verify on an incoming send message response that this is
    256	 * the message that the response is for, we keep a sequence id
    257	 * and increment it every time we send a message.
    258	 */
    259	long                 seqid;
    260
    261	/*
    262	 * This is held so we can properly respond to the message on a
    263	 * timeout, and it is used to hold the temporary data for
    264	 * retransmission, too.
    265	 */
    266	struct ipmi_recv_msg *recv_msg;
    267};
    268
    269/*
    270 * Store the information in a msgid (long) to allow us to find a
    271 * sequence table entry from the msgid.
    272 */
    273#define STORE_SEQ_IN_MSGID(seq, seqid) \
    274	((((seq) & 0x3f) << 26) | ((seqid) & 0x3ffffff))
    275
    276#define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
    277	do {								\
    278		seq = (((msgid) >> 26) & 0x3f);				\
    279		seqid = ((msgid) & 0x3ffffff);				\
    280	} while (0)
    281
    282#define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3ffffff)
    283
    284#define IPMI_MAX_CHANNELS       16
    285struct ipmi_channel {
    286	unsigned char medium;
    287	unsigned char protocol;
    288};
    289
    290struct ipmi_channel_set {
    291	struct ipmi_channel c[IPMI_MAX_CHANNELS];
    292};
    293
    294struct ipmi_my_addrinfo {
    295	/*
    296	 * My slave address.  This is initialized to IPMI_BMC_SLAVE_ADDR,
    297	 * but may be changed by the user.
    298	 */
    299	unsigned char address;
    300
    301	/*
    302	 * My LUN.  This should generally stay the SMS LUN, but just in
    303	 * case...
    304	 */
    305	unsigned char lun;
    306};
    307
    308/*
    309 * Note that the product id, manufacturer id, guid, and device id are
    310 * immutable in this structure, so dyn_mutex is not required for
    311 * accessing those.  If those change on a BMC, a new BMC is allocated.
    312 */
    313struct bmc_device {
    314	struct platform_device pdev;
    315	struct list_head       intfs; /* Interfaces on this BMC. */
    316	struct ipmi_device_id  id;
    317	struct ipmi_device_id  fetch_id;
    318	int                    dyn_id_set;
    319	unsigned long          dyn_id_expiry;
    320	struct mutex           dyn_mutex; /* Protects id, intfs, & dyn* */
    321	guid_t                 guid;
    322	guid_t                 fetch_guid;
    323	int                    dyn_guid_set;
    324	struct kref	       usecount;
    325	struct work_struct     remove_work;
    326	unsigned char	       cc; /* completion code */
    327};
    328#define to_bmc_device(x) container_of((x), struct bmc_device, pdev.dev)
    329
    330static int bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
    331			     struct ipmi_device_id *id,
    332			     bool *guid_set, guid_t *guid);
    333
    334/*
    335 * Various statistics for IPMI, these index stats[] in the ipmi_smi
    336 * structure.
    337 */
    338enum ipmi_stat_indexes {
    339	/* Commands we got from the user that were invalid. */
    340	IPMI_STAT_sent_invalid_commands = 0,
    341
    342	/* Commands we sent to the MC. */
    343	IPMI_STAT_sent_local_commands,
    344
    345	/* Responses from the MC that were delivered to a user. */
    346	IPMI_STAT_handled_local_responses,
    347
    348	/* Responses from the MC that were not delivered to a user. */
    349	IPMI_STAT_unhandled_local_responses,
    350
    351	/* Commands we sent out to the IPMB bus. */
    352	IPMI_STAT_sent_ipmb_commands,
    353
    354	/* Commands sent on the IPMB that had errors on the SEND CMD */
    355	IPMI_STAT_sent_ipmb_command_errs,
    356
    357	/* Each retransmit increments this count. */
    358	IPMI_STAT_retransmitted_ipmb_commands,
    359
    360	/*
    361	 * When a message times out (runs out of retransmits) this is
    362	 * incremented.
    363	 */
    364	IPMI_STAT_timed_out_ipmb_commands,
    365
    366	/*
    367	 * This is like above, but for broadcasts.  Broadcasts are
    368	 * *not* included in the above count (they are expected to
    369	 * time out).
    370	 */
    371	IPMI_STAT_timed_out_ipmb_broadcasts,
    372
    373	/* Responses I have sent to the IPMB bus. */
    374	IPMI_STAT_sent_ipmb_responses,
    375
    376	/* The response was delivered to the user. */
    377	IPMI_STAT_handled_ipmb_responses,
    378
    379	/* The response had invalid data in it. */
    380	IPMI_STAT_invalid_ipmb_responses,
    381
    382	/* The response didn't have anyone waiting for it. */
    383	IPMI_STAT_unhandled_ipmb_responses,
    384
    385	/* Commands we sent out to the IPMB bus. */
    386	IPMI_STAT_sent_lan_commands,
    387
    388	/* Commands sent on the IPMB that had errors on the SEND CMD */
    389	IPMI_STAT_sent_lan_command_errs,
    390
    391	/* Each retransmit increments this count. */
    392	IPMI_STAT_retransmitted_lan_commands,
    393
    394	/*
    395	 * When a message times out (runs out of retransmits) this is
    396	 * incremented.
    397	 */
    398	IPMI_STAT_timed_out_lan_commands,
    399
    400	/* Responses I have sent to the IPMB bus. */
    401	IPMI_STAT_sent_lan_responses,
    402
    403	/* The response was delivered to the user. */
    404	IPMI_STAT_handled_lan_responses,
    405
    406	/* The response had invalid data in it. */
    407	IPMI_STAT_invalid_lan_responses,
    408
    409	/* The response didn't have anyone waiting for it. */
    410	IPMI_STAT_unhandled_lan_responses,
    411
    412	/* The command was delivered to the user. */
    413	IPMI_STAT_handled_commands,
    414
    415	/* The command had invalid data in it. */
    416	IPMI_STAT_invalid_commands,
    417
    418	/* The command didn't have anyone waiting for it. */
    419	IPMI_STAT_unhandled_commands,
    420
    421	/* Invalid data in an event. */
    422	IPMI_STAT_invalid_events,
    423
    424	/* Events that were received with the proper format. */
    425	IPMI_STAT_events,
    426
    427	/* Retransmissions on IPMB that failed. */
    428	IPMI_STAT_dropped_rexmit_ipmb_commands,
    429
    430	/* Retransmissions on LAN that failed. */
    431	IPMI_STAT_dropped_rexmit_lan_commands,
    432
    433	/* This *must* remain last, add new values above this. */
    434	IPMI_NUM_STATS
    435};
    436
    437
    438#define IPMI_IPMB_NUM_SEQ	64
    439struct ipmi_smi {
    440	struct module *owner;
    441
    442	/* What interface number are we? */
    443	int intf_num;
    444
    445	struct kref refcount;
    446
    447	/* Set when the interface is being unregistered. */
    448	bool in_shutdown;
    449
    450	/* Used for a list of interfaces. */
    451	struct list_head link;
    452
    453	/*
    454	 * The list of upper layers that are using me.  seq_lock write
    455	 * protects this.  Read protection is with srcu.
    456	 */
    457	struct list_head users;
    458	struct srcu_struct users_srcu;
    459	atomic_t nr_users;
    460	struct device_attribute nr_users_devattr;
    461	struct device_attribute nr_msgs_devattr;
    462
    463
    464	/* Used for wake ups at startup. */
    465	wait_queue_head_t waitq;
    466
    467	/*
    468	 * Prevents the interface from being unregistered when the
    469	 * interface is used by being looked up through the BMC
    470	 * structure.
    471	 */
    472	struct mutex bmc_reg_mutex;
    473
    474	struct bmc_device tmp_bmc;
    475	struct bmc_device *bmc;
    476	bool bmc_registered;
    477	struct list_head bmc_link;
    478	char *my_dev_name;
    479	bool in_bmc_register;  /* Handle recursive situations.  Yuck. */
    480	struct work_struct bmc_reg_work;
    481
    482	const struct ipmi_smi_handlers *handlers;
    483	void                     *send_info;
    484
    485	/* Driver-model device for the system interface. */
    486	struct device          *si_dev;
    487
    488	/*
    489	 * A table of sequence numbers for this interface.  We use the
    490	 * sequence numbers for IPMB messages that go out of the
    491	 * interface to match them up with their responses.  A routine
    492	 * is called periodically to time the items in this list.
    493	 */
    494	spinlock_t       seq_lock;
    495	struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
    496	int curr_seq;
    497
    498	/*
    499	 * Messages queued for delivery.  If delivery fails (out of memory
    500	 * for instance), They will stay in here to be processed later in a
    501	 * periodic timer interrupt.  The tasklet is for handling received
    502	 * messages directly from the handler.
    503	 */
    504	spinlock_t       waiting_rcv_msgs_lock;
    505	struct list_head waiting_rcv_msgs;
    506	atomic_t	 watchdog_pretimeouts_to_deliver;
    507	struct tasklet_struct recv_tasklet;
    508
    509	spinlock_t             xmit_msgs_lock;
    510	struct list_head       xmit_msgs;
    511	struct ipmi_smi_msg    *curr_msg;
    512	struct list_head       hp_xmit_msgs;
    513
    514	/*
    515	 * The list of command receivers that are registered for commands
    516	 * on this interface.
    517	 */
    518	struct mutex     cmd_rcvrs_mutex;
    519	struct list_head cmd_rcvrs;
    520
    521	/*
    522	 * Events that were queues because no one was there to receive
    523	 * them.
    524	 */
    525	spinlock_t       events_lock; /* For dealing with event stuff. */
    526	struct list_head waiting_events;
    527	unsigned int     waiting_events_count; /* How many events in queue? */
    528	char             delivering_events;
    529	char             event_msg_printed;
    530
    531	/* How many users are waiting for events? */
    532	atomic_t         event_waiters;
    533	unsigned int     ticks_to_req_ev;
    534
    535	spinlock_t       watch_lock; /* For dealing with watch stuff below. */
    536
    537	/* How many users are waiting for commands? */
    538	unsigned int     command_waiters;
    539
    540	/* How many users are waiting for watchdogs? */
    541	unsigned int     watchdog_waiters;
    542
    543	/* How many users are waiting for message responses? */
    544	unsigned int     response_waiters;
    545
    546	/*
    547	 * Tells what the lower layer has last been asked to watch for,
    548	 * messages and/or watchdogs.  Protected by watch_lock.
    549	 */
    550	unsigned int     last_watch_mask;
    551
    552	/*
    553	 * The event receiver for my BMC, only really used at panic
    554	 * shutdown as a place to store this.
    555	 */
    556	unsigned char event_receiver;
    557	unsigned char event_receiver_lun;
    558	unsigned char local_sel_device;
    559	unsigned char local_event_generator;
    560
    561	/* For handling of maintenance mode. */
    562	int maintenance_mode;
    563	bool maintenance_mode_enable;
    564	int auto_maintenance_timeout;
    565	spinlock_t maintenance_mode_lock; /* Used in a timer... */
    566
    567	/*
    568	 * If we are doing maintenance on something on IPMB, extend
    569	 * the timeout time to avoid timeouts writing firmware and
    570	 * such.
    571	 */
    572	int ipmb_maintenance_mode_timeout;
    573
    574	/*
    575	 * A cheap hack, if this is non-null and a message to an
    576	 * interface comes in with a NULL user, call this routine with
    577	 * it.  Note that the message will still be freed by the
    578	 * caller.  This only works on the system interface.
    579	 *
    580	 * Protected by bmc_reg_mutex.
    581	 */
    582	void (*null_user_handler)(struct ipmi_smi *intf,
    583				  struct ipmi_recv_msg *msg);
    584
    585	/*
    586	 * When we are scanning the channels for an SMI, this will
    587	 * tell which channel we are scanning.
    588	 */
    589	int curr_channel;
    590
    591	/* Channel information */
    592	struct ipmi_channel_set *channel_list;
    593	unsigned int curr_working_cset; /* First index into the following. */
    594	struct ipmi_channel_set wchannels[2];
    595	struct ipmi_my_addrinfo addrinfo[IPMI_MAX_CHANNELS];
    596	bool channels_ready;
    597
    598	atomic_t stats[IPMI_NUM_STATS];
    599
    600	/*
    601	 * run_to_completion duplicate of smb_info, smi_info
    602	 * and ipmi_serial_info structures. Used to decrease numbers of
    603	 * parameters passed by "low" level IPMI code.
    604	 */
    605	int run_to_completion;
    606};
    607#define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
    608
    609static void __get_guid(struct ipmi_smi *intf);
    610static void __ipmi_bmc_unregister(struct ipmi_smi *intf);
    611static int __ipmi_bmc_register(struct ipmi_smi *intf,
    612			       struct ipmi_device_id *id,
    613			       bool guid_set, guid_t *guid, int intf_num);
    614static int __scan_channels(struct ipmi_smi *intf, struct ipmi_device_id *id);
    615
    616
    617/**
    618 * The driver model view of the IPMI messaging driver.
    619 */
    620static struct platform_driver ipmidriver = {
    621	.driver = {
    622		.name = "ipmi",
    623		.bus = &platform_bus_type
    624	}
    625};
    626/*
    627 * This mutex keeps us from adding the same BMC twice.
    628 */
    629static DEFINE_MUTEX(ipmidriver_mutex);
    630
    631static LIST_HEAD(ipmi_interfaces);
    632static DEFINE_MUTEX(ipmi_interfaces_mutex);
    633#define ipmi_interfaces_mutex_held() \
    634	lockdep_is_held(&ipmi_interfaces_mutex)
    635static struct srcu_struct ipmi_interfaces_srcu;
    636
    637/*
    638 * List of watchers that want to know when smi's are added and deleted.
    639 */
    640static LIST_HEAD(smi_watchers);
    641static DEFINE_MUTEX(smi_watchers_mutex);
    642
    643#define ipmi_inc_stat(intf, stat) \
    644	atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
    645#define ipmi_get_stat(intf, stat) \
    646	((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
    647
    648static const char * const addr_src_to_str[] = {
    649	"invalid", "hotmod", "hardcoded", "SPMI", "ACPI", "SMBIOS", "PCI",
    650	"device-tree", "platform"
    651};
    652
    653const char *ipmi_addr_src_to_str(enum ipmi_addr_src src)
    654{
    655	if (src >= SI_LAST)
    656		src = 0; /* Invalid */
    657	return addr_src_to_str[src];
    658}
    659EXPORT_SYMBOL(ipmi_addr_src_to_str);
    660
    661static int is_lan_addr(struct ipmi_addr *addr)
    662{
    663	return addr->addr_type == IPMI_LAN_ADDR_TYPE;
    664}
    665
    666static int is_ipmb_addr(struct ipmi_addr *addr)
    667{
    668	return addr->addr_type == IPMI_IPMB_ADDR_TYPE;
    669}
    670
    671static int is_ipmb_bcast_addr(struct ipmi_addr *addr)
    672{
    673	return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE;
    674}
    675
    676static int is_ipmb_direct_addr(struct ipmi_addr *addr)
    677{
    678	return addr->addr_type == IPMI_IPMB_DIRECT_ADDR_TYPE;
    679}
    680
    681static void free_recv_msg_list(struct list_head *q)
    682{
    683	struct ipmi_recv_msg *msg, *msg2;
    684
    685	list_for_each_entry_safe(msg, msg2, q, link) {
    686		list_del(&msg->link);
    687		ipmi_free_recv_msg(msg);
    688	}
    689}
    690
    691static void free_smi_msg_list(struct list_head *q)
    692{
    693	struct ipmi_smi_msg *msg, *msg2;
    694
    695	list_for_each_entry_safe(msg, msg2, q, link) {
    696		list_del(&msg->link);
    697		ipmi_free_smi_msg(msg);
    698	}
    699}
    700
    701static void clean_up_interface_data(struct ipmi_smi *intf)
    702{
    703	int              i;
    704	struct cmd_rcvr  *rcvr, *rcvr2;
    705	struct list_head list;
    706
    707	tasklet_kill(&intf->recv_tasklet);
    708
    709	free_smi_msg_list(&intf->waiting_rcv_msgs);
    710	free_recv_msg_list(&intf->waiting_events);
    711
    712	/*
    713	 * Wholesale remove all the entries from the list in the
    714	 * interface and wait for RCU to know that none are in use.
    715	 */
    716	mutex_lock(&intf->cmd_rcvrs_mutex);
    717	INIT_LIST_HEAD(&list);
    718	list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu);
    719	mutex_unlock(&intf->cmd_rcvrs_mutex);
    720
    721	list_for_each_entry_safe(rcvr, rcvr2, &list, link)
    722		kfree(rcvr);
    723
    724	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
    725		if ((intf->seq_table[i].inuse)
    726					&& (intf->seq_table[i].recv_msg))
    727			ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
    728	}
    729}
    730
    731static void intf_free(struct kref *ref)
    732{
    733	struct ipmi_smi *intf = container_of(ref, struct ipmi_smi, refcount);
    734
    735	clean_up_interface_data(intf);
    736	kfree(intf);
    737}
    738
    739struct watcher_entry {
    740	int              intf_num;
    741	struct ipmi_smi  *intf;
    742	struct list_head link;
    743};
    744
    745int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
    746{
    747	struct ipmi_smi *intf;
    748	int index, rv;
    749
    750	/*
    751	 * Make sure the driver is actually initialized, this handles
    752	 * problems with initialization order.
    753	 */
    754	rv = ipmi_init_msghandler();
    755	if (rv)
    756		return rv;
    757
    758	mutex_lock(&smi_watchers_mutex);
    759
    760	list_add(&watcher->link, &smi_watchers);
    761
    762	index = srcu_read_lock(&ipmi_interfaces_srcu);
    763	list_for_each_entry_rcu(intf, &ipmi_interfaces, link,
    764			lockdep_is_held(&smi_watchers_mutex)) {
    765		int intf_num = READ_ONCE(intf->intf_num);
    766
    767		if (intf_num == -1)
    768			continue;
    769		watcher->new_smi(intf_num, intf->si_dev);
    770	}
    771	srcu_read_unlock(&ipmi_interfaces_srcu, index);
    772
    773	mutex_unlock(&smi_watchers_mutex);
    774
    775	return 0;
    776}
    777EXPORT_SYMBOL(ipmi_smi_watcher_register);
    778
    779int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
    780{
    781	mutex_lock(&smi_watchers_mutex);
    782	list_del(&watcher->link);
    783	mutex_unlock(&smi_watchers_mutex);
    784	return 0;
    785}
    786EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
    787
    788/*
    789 * Must be called with smi_watchers_mutex held.
    790 */
    791static void
    792call_smi_watchers(int i, struct device *dev)
    793{
    794	struct ipmi_smi_watcher *w;
    795
    796	mutex_lock(&smi_watchers_mutex);
    797	list_for_each_entry(w, &smi_watchers, link) {
    798		if (try_module_get(w->owner)) {
    799			w->new_smi(i, dev);
    800			module_put(w->owner);
    801		}
    802	}
    803	mutex_unlock(&smi_watchers_mutex);
    804}
    805
    806static int
    807ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
    808{
    809	if (addr1->addr_type != addr2->addr_type)
    810		return 0;
    811
    812	if (addr1->channel != addr2->channel)
    813		return 0;
    814
    815	if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
    816		struct ipmi_system_interface_addr *smi_addr1
    817		    = (struct ipmi_system_interface_addr *) addr1;
    818		struct ipmi_system_interface_addr *smi_addr2
    819		    = (struct ipmi_system_interface_addr *) addr2;
    820		return (smi_addr1->lun == smi_addr2->lun);
    821	}
    822
    823	if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) {
    824		struct ipmi_ipmb_addr *ipmb_addr1
    825		    = (struct ipmi_ipmb_addr *) addr1;
    826		struct ipmi_ipmb_addr *ipmb_addr2
    827		    = (struct ipmi_ipmb_addr *) addr2;
    828
    829		return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
    830			&& (ipmb_addr1->lun == ipmb_addr2->lun));
    831	}
    832
    833	if (is_ipmb_direct_addr(addr1)) {
    834		struct ipmi_ipmb_direct_addr *daddr1
    835			= (struct ipmi_ipmb_direct_addr *) addr1;
    836		struct ipmi_ipmb_direct_addr *daddr2
    837			= (struct ipmi_ipmb_direct_addr *) addr2;
    838
    839		return daddr1->slave_addr == daddr2->slave_addr &&
    840			daddr1->rq_lun == daddr2->rq_lun &&
    841			daddr1->rs_lun == daddr2->rs_lun;
    842	}
    843
    844	if (is_lan_addr(addr1)) {
    845		struct ipmi_lan_addr *lan_addr1
    846			= (struct ipmi_lan_addr *) addr1;
    847		struct ipmi_lan_addr *lan_addr2
    848		    = (struct ipmi_lan_addr *) addr2;
    849
    850		return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
    851			&& (lan_addr1->local_SWID == lan_addr2->local_SWID)
    852			&& (lan_addr1->session_handle
    853			    == lan_addr2->session_handle)
    854			&& (lan_addr1->lun == lan_addr2->lun));
    855	}
    856
    857	return 1;
    858}
    859
    860int ipmi_validate_addr(struct ipmi_addr *addr, int len)
    861{
    862	if (len < sizeof(struct ipmi_system_interface_addr))
    863		return -EINVAL;
    864
    865	if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
    866		if (addr->channel != IPMI_BMC_CHANNEL)
    867			return -EINVAL;
    868		return 0;
    869	}
    870
    871	if ((addr->channel == IPMI_BMC_CHANNEL)
    872	    || (addr->channel >= IPMI_MAX_CHANNELS)
    873	    || (addr->channel < 0))
    874		return -EINVAL;
    875
    876	if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
    877		if (len < sizeof(struct ipmi_ipmb_addr))
    878			return -EINVAL;
    879		return 0;
    880	}
    881
    882	if (is_ipmb_direct_addr(addr)) {
    883		struct ipmi_ipmb_direct_addr *daddr = (void *) addr;
    884
    885		if (addr->channel != 0)
    886			return -EINVAL;
    887		if (len < sizeof(struct ipmi_ipmb_direct_addr))
    888			return -EINVAL;
    889
    890		if (daddr->slave_addr & 0x01)
    891			return -EINVAL;
    892		if (daddr->rq_lun >= 4)
    893			return -EINVAL;
    894		if (daddr->rs_lun >= 4)
    895			return -EINVAL;
    896		return 0;
    897	}
    898
    899	if (is_lan_addr(addr)) {
    900		if (len < sizeof(struct ipmi_lan_addr))
    901			return -EINVAL;
    902		return 0;
    903	}
    904
    905	return -EINVAL;
    906}
    907EXPORT_SYMBOL(ipmi_validate_addr);
    908
    909unsigned int ipmi_addr_length(int addr_type)
    910{
    911	if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
    912		return sizeof(struct ipmi_system_interface_addr);
    913
    914	if ((addr_type == IPMI_IPMB_ADDR_TYPE)
    915			|| (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
    916		return sizeof(struct ipmi_ipmb_addr);
    917
    918	if (addr_type == IPMI_IPMB_DIRECT_ADDR_TYPE)
    919		return sizeof(struct ipmi_ipmb_direct_addr);
    920
    921	if (addr_type == IPMI_LAN_ADDR_TYPE)
    922		return sizeof(struct ipmi_lan_addr);
    923
    924	return 0;
    925}
    926EXPORT_SYMBOL(ipmi_addr_length);
    927
    928static int deliver_response(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
    929{
    930	int rv = 0;
    931
    932	if (!msg->user) {
    933		/* Special handling for NULL users. */
    934		if (intf->null_user_handler) {
    935			intf->null_user_handler(intf, msg);
    936		} else {
    937			/* No handler, so give up. */
    938			rv = -EINVAL;
    939		}
    940		ipmi_free_recv_msg(msg);
    941	} else if (oops_in_progress) {
    942		/*
    943		 * If we are running in the panic context, calling the
    944		 * receive handler doesn't much meaning and has a deadlock
    945		 * risk.  At this moment, simply skip it in that case.
    946		 */
    947		ipmi_free_recv_msg(msg);
    948		atomic_dec(&msg->user->nr_msgs);
    949	} else {
    950		int index;
    951		struct ipmi_user *user = acquire_ipmi_user(msg->user, &index);
    952
    953		if (user) {
    954			atomic_dec(&user->nr_msgs);
    955			user->handler->ipmi_recv_hndl(msg, user->handler_data);
    956			release_ipmi_user(user, index);
    957		} else {
    958			/* User went away, give up. */
    959			ipmi_free_recv_msg(msg);
    960			rv = -EINVAL;
    961		}
    962	}
    963
    964	return rv;
    965}
    966
    967static void deliver_local_response(struct ipmi_smi *intf,
    968				   struct ipmi_recv_msg *msg)
    969{
    970	if (deliver_response(intf, msg))
    971		ipmi_inc_stat(intf, unhandled_local_responses);
    972	else
    973		ipmi_inc_stat(intf, handled_local_responses);
    974}
    975
    976static void deliver_err_response(struct ipmi_smi *intf,
    977				 struct ipmi_recv_msg *msg, int err)
    978{
    979	msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
    980	msg->msg_data[0] = err;
    981	msg->msg.netfn |= 1; /* Convert to a response. */
    982	msg->msg.data_len = 1;
    983	msg->msg.data = msg->msg_data;
    984	deliver_local_response(intf, msg);
    985}
    986
    987static void smi_add_watch(struct ipmi_smi *intf, unsigned int flags)
    988{
    989	unsigned long iflags;
    990
    991	if (!intf->handlers->set_need_watch)
    992		return;
    993
    994	spin_lock_irqsave(&intf->watch_lock, iflags);
    995	if (flags & IPMI_WATCH_MASK_CHECK_MESSAGES)
    996		intf->response_waiters++;
    997
    998	if (flags & IPMI_WATCH_MASK_CHECK_WATCHDOG)
    999		intf->watchdog_waiters++;
   1000
   1001	if (flags & IPMI_WATCH_MASK_CHECK_COMMANDS)
   1002		intf->command_waiters++;
   1003
   1004	if ((intf->last_watch_mask & flags) != flags) {
   1005		intf->last_watch_mask |= flags;
   1006		intf->handlers->set_need_watch(intf->send_info,
   1007					       intf->last_watch_mask);
   1008	}
   1009	spin_unlock_irqrestore(&intf->watch_lock, iflags);
   1010}
   1011
   1012static void smi_remove_watch(struct ipmi_smi *intf, unsigned int flags)
   1013{
   1014	unsigned long iflags;
   1015
   1016	if (!intf->handlers->set_need_watch)
   1017		return;
   1018
   1019	spin_lock_irqsave(&intf->watch_lock, iflags);
   1020	if (flags & IPMI_WATCH_MASK_CHECK_MESSAGES)
   1021		intf->response_waiters--;
   1022
   1023	if (flags & IPMI_WATCH_MASK_CHECK_WATCHDOG)
   1024		intf->watchdog_waiters--;
   1025
   1026	if (flags & IPMI_WATCH_MASK_CHECK_COMMANDS)
   1027		intf->command_waiters--;
   1028
   1029	flags = 0;
   1030	if (intf->response_waiters)
   1031		flags |= IPMI_WATCH_MASK_CHECK_MESSAGES;
   1032	if (intf->watchdog_waiters)
   1033		flags |= IPMI_WATCH_MASK_CHECK_WATCHDOG;
   1034	if (intf->command_waiters)
   1035		flags |= IPMI_WATCH_MASK_CHECK_COMMANDS;
   1036
   1037	if (intf->last_watch_mask != flags) {
   1038		intf->last_watch_mask = flags;
   1039		intf->handlers->set_need_watch(intf->send_info,
   1040					       intf->last_watch_mask);
   1041	}
   1042	spin_unlock_irqrestore(&intf->watch_lock, iflags);
   1043}
   1044
   1045/*
   1046 * Find the next sequence number not being used and add the given
   1047 * message with the given timeout to the sequence table.  This must be
   1048 * called with the interface's seq_lock held.
   1049 */
   1050static int intf_next_seq(struct ipmi_smi      *intf,
   1051			 struct ipmi_recv_msg *recv_msg,
   1052			 unsigned long        timeout,
   1053			 int                  retries,
   1054			 int                  broadcast,
   1055			 unsigned char        *seq,
   1056			 long                 *seqid)
   1057{
   1058	int          rv = 0;
   1059	unsigned int i;
   1060
   1061	if (timeout == 0)
   1062		timeout = default_retry_ms;
   1063	if (retries < 0)
   1064		retries = default_max_retries;
   1065
   1066	for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
   1067					i = (i+1)%IPMI_IPMB_NUM_SEQ) {
   1068		if (!intf->seq_table[i].inuse)
   1069			break;
   1070	}
   1071
   1072	if (!intf->seq_table[i].inuse) {
   1073		intf->seq_table[i].recv_msg = recv_msg;
   1074
   1075		/*
   1076		 * Start with the maximum timeout, when the send response
   1077		 * comes in we will start the real timer.
   1078		 */
   1079		intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
   1080		intf->seq_table[i].orig_timeout = timeout;
   1081		intf->seq_table[i].retries_left = retries;
   1082		intf->seq_table[i].broadcast = broadcast;
   1083		intf->seq_table[i].inuse = 1;
   1084		intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
   1085		*seq = i;
   1086		*seqid = intf->seq_table[i].seqid;
   1087		intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
   1088		smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
   1089		need_waiter(intf);
   1090	} else {
   1091		rv = -EAGAIN;
   1092	}
   1093
   1094	return rv;
   1095}
   1096
   1097/*
   1098 * Return the receive message for the given sequence number and
   1099 * release the sequence number so it can be reused.  Some other data
   1100 * is passed in to be sure the message matches up correctly (to help
   1101 * guard against message coming in after their timeout and the
   1102 * sequence number being reused).
   1103 */
   1104static int intf_find_seq(struct ipmi_smi      *intf,
   1105			 unsigned char        seq,
   1106			 short                channel,
   1107			 unsigned char        cmd,
   1108			 unsigned char        netfn,
   1109			 struct ipmi_addr     *addr,
   1110			 struct ipmi_recv_msg **recv_msg)
   1111{
   1112	int           rv = -ENODEV;
   1113	unsigned long flags;
   1114
   1115	if (seq >= IPMI_IPMB_NUM_SEQ)
   1116		return -EINVAL;
   1117
   1118	spin_lock_irqsave(&intf->seq_lock, flags);
   1119	if (intf->seq_table[seq].inuse) {
   1120		struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
   1121
   1122		if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd)
   1123				&& (msg->msg.netfn == netfn)
   1124				&& (ipmi_addr_equal(addr, &msg->addr))) {
   1125			*recv_msg = msg;
   1126			intf->seq_table[seq].inuse = 0;
   1127			smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
   1128			rv = 0;
   1129		}
   1130	}
   1131	spin_unlock_irqrestore(&intf->seq_lock, flags);
   1132
   1133	return rv;
   1134}
   1135
   1136
   1137/* Start the timer for a specific sequence table entry. */
   1138static int intf_start_seq_timer(struct ipmi_smi *intf,
   1139				long       msgid)
   1140{
   1141	int           rv = -ENODEV;
   1142	unsigned long flags;
   1143	unsigned char seq;
   1144	unsigned long seqid;
   1145
   1146
   1147	GET_SEQ_FROM_MSGID(msgid, seq, seqid);
   1148
   1149	spin_lock_irqsave(&intf->seq_lock, flags);
   1150	/*
   1151	 * We do this verification because the user can be deleted
   1152	 * while a message is outstanding.
   1153	 */
   1154	if ((intf->seq_table[seq].inuse)
   1155				&& (intf->seq_table[seq].seqid == seqid)) {
   1156		struct seq_table *ent = &intf->seq_table[seq];
   1157		ent->timeout = ent->orig_timeout;
   1158		rv = 0;
   1159	}
   1160	spin_unlock_irqrestore(&intf->seq_lock, flags);
   1161
   1162	return rv;
   1163}
   1164
   1165/* Got an error for the send message for a specific sequence number. */
   1166static int intf_err_seq(struct ipmi_smi *intf,
   1167			long         msgid,
   1168			unsigned int err)
   1169{
   1170	int                  rv = -ENODEV;
   1171	unsigned long        flags;
   1172	unsigned char        seq;
   1173	unsigned long        seqid;
   1174	struct ipmi_recv_msg *msg = NULL;
   1175
   1176
   1177	GET_SEQ_FROM_MSGID(msgid, seq, seqid);
   1178
   1179	spin_lock_irqsave(&intf->seq_lock, flags);
   1180	/*
   1181	 * We do this verification because the user can be deleted
   1182	 * while a message is outstanding.
   1183	 */
   1184	if ((intf->seq_table[seq].inuse)
   1185				&& (intf->seq_table[seq].seqid == seqid)) {
   1186		struct seq_table *ent = &intf->seq_table[seq];
   1187
   1188		ent->inuse = 0;
   1189		smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
   1190		msg = ent->recv_msg;
   1191		rv = 0;
   1192	}
   1193	spin_unlock_irqrestore(&intf->seq_lock, flags);
   1194
   1195	if (msg)
   1196		deliver_err_response(intf, msg, err);
   1197
   1198	return rv;
   1199}
   1200
   1201static void free_user_work(struct work_struct *work)
   1202{
   1203	struct ipmi_user *user = container_of(work, struct ipmi_user,
   1204					      remove_work);
   1205
   1206	cleanup_srcu_struct(&user->release_barrier);
   1207	vfree(user);
   1208}
   1209
   1210int ipmi_create_user(unsigned int          if_num,
   1211		     const struct ipmi_user_hndl *handler,
   1212		     void                  *handler_data,
   1213		     struct ipmi_user      **user)
   1214{
   1215	unsigned long flags;
   1216	struct ipmi_user *new_user;
   1217	int           rv, index;
   1218	struct ipmi_smi *intf;
   1219
   1220	/*
   1221	 * There is no module usecount here, because it's not
   1222	 * required.  Since this can only be used by and called from
   1223	 * other modules, they will implicitly use this module, and
   1224	 * thus this can't be removed unless the other modules are
   1225	 * removed.
   1226	 */
   1227
   1228	if (handler == NULL)
   1229		return -EINVAL;
   1230
   1231	/*
   1232	 * Make sure the driver is actually initialized, this handles
   1233	 * problems with initialization order.
   1234	 */
   1235	rv = ipmi_init_msghandler();
   1236	if (rv)
   1237		return rv;
   1238
   1239	new_user = vzalloc(sizeof(*new_user));
   1240	if (!new_user)
   1241		return -ENOMEM;
   1242
   1243	index = srcu_read_lock(&ipmi_interfaces_srcu);
   1244	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
   1245		if (intf->intf_num == if_num)
   1246			goto found;
   1247	}
   1248	/* Not found, return an error */
   1249	rv = -EINVAL;
   1250	goto out_kfree;
   1251
   1252 found:
   1253	if (atomic_add_return(1, &intf->nr_users) > max_users) {
   1254		rv = -EBUSY;
   1255		goto out_kfree;
   1256	}
   1257
   1258	INIT_WORK(&new_user->remove_work, free_user_work);
   1259
   1260	rv = init_srcu_struct(&new_user->release_barrier);
   1261	if (rv)
   1262		goto out_kfree;
   1263
   1264	if (!try_module_get(intf->owner)) {
   1265		rv = -ENODEV;
   1266		goto out_kfree;
   1267	}
   1268
   1269	/* Note that each existing user holds a refcount to the interface. */
   1270	kref_get(&intf->refcount);
   1271
   1272	atomic_set(&new_user->nr_msgs, 0);
   1273	kref_init(&new_user->refcount);
   1274	new_user->handler = handler;
   1275	new_user->handler_data = handler_data;
   1276	new_user->intf = intf;
   1277	new_user->gets_events = false;
   1278
   1279	rcu_assign_pointer(new_user->self, new_user);
   1280	spin_lock_irqsave(&intf->seq_lock, flags);
   1281	list_add_rcu(&new_user->link, &intf->users);
   1282	spin_unlock_irqrestore(&intf->seq_lock, flags);
   1283	if (handler->ipmi_watchdog_pretimeout)
   1284		/* User wants pretimeouts, so make sure to watch for them. */
   1285		smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_WATCHDOG);
   1286	srcu_read_unlock(&ipmi_interfaces_srcu, index);
   1287	*user = new_user;
   1288	return 0;
   1289
   1290out_kfree:
   1291	atomic_dec(&intf->nr_users);
   1292	srcu_read_unlock(&ipmi_interfaces_srcu, index);
   1293	vfree(new_user);
   1294	return rv;
   1295}
   1296EXPORT_SYMBOL(ipmi_create_user);
   1297
   1298int ipmi_get_smi_info(int if_num, struct ipmi_smi_info *data)
   1299{
   1300	int rv, index;
   1301	struct ipmi_smi *intf;
   1302
   1303	index = srcu_read_lock(&ipmi_interfaces_srcu);
   1304	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
   1305		if (intf->intf_num == if_num)
   1306			goto found;
   1307	}
   1308	srcu_read_unlock(&ipmi_interfaces_srcu, index);
   1309
   1310	/* Not found, return an error */
   1311	return -EINVAL;
   1312
   1313found:
   1314	if (!intf->handlers->get_smi_info)
   1315		rv = -ENOTTY;
   1316	else
   1317		rv = intf->handlers->get_smi_info(intf->send_info, data);
   1318	srcu_read_unlock(&ipmi_interfaces_srcu, index);
   1319
   1320	return rv;
   1321}
   1322EXPORT_SYMBOL(ipmi_get_smi_info);
   1323
   1324static void free_user(struct kref *ref)
   1325{
   1326	struct ipmi_user *user = container_of(ref, struct ipmi_user, refcount);
   1327
   1328	/* SRCU cleanup must happen in task context. */
   1329	queue_work(remove_work_wq, &user->remove_work);
   1330}
   1331
   1332static void _ipmi_destroy_user(struct ipmi_user *user)
   1333{
   1334	struct ipmi_smi  *intf = user->intf;
   1335	int              i;
   1336	unsigned long    flags;
   1337	struct cmd_rcvr  *rcvr;
   1338	struct cmd_rcvr  *rcvrs = NULL;
   1339
   1340	if (!acquire_ipmi_user(user, &i)) {
   1341		/*
   1342		 * The user has already been cleaned up, just make sure
   1343		 * nothing is using it and return.
   1344		 */
   1345		synchronize_srcu(&user->release_barrier);
   1346		return;
   1347	}
   1348
   1349	rcu_assign_pointer(user->self, NULL);
   1350	release_ipmi_user(user, i);
   1351
   1352	synchronize_srcu(&user->release_barrier);
   1353
   1354	if (user->handler->shutdown)
   1355		user->handler->shutdown(user->handler_data);
   1356
   1357	if (user->handler->ipmi_watchdog_pretimeout)
   1358		smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_WATCHDOG);
   1359
   1360	if (user->gets_events)
   1361		atomic_dec(&intf->event_waiters);
   1362
   1363	/* Remove the user from the interface's sequence table. */
   1364	spin_lock_irqsave(&intf->seq_lock, flags);
   1365	list_del_rcu(&user->link);
   1366	atomic_dec(&intf->nr_users);
   1367
   1368	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
   1369		if (intf->seq_table[i].inuse
   1370		    && (intf->seq_table[i].recv_msg->user == user)) {
   1371			intf->seq_table[i].inuse = 0;
   1372			smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
   1373			ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
   1374		}
   1375	}
   1376	spin_unlock_irqrestore(&intf->seq_lock, flags);
   1377
   1378	/*
   1379	 * Remove the user from the command receiver's table.  First
   1380	 * we build a list of everything (not using the standard link,
   1381	 * since other things may be using it till we do
   1382	 * synchronize_srcu()) then free everything in that list.
   1383	 */
   1384	mutex_lock(&intf->cmd_rcvrs_mutex);
   1385	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
   1386				lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
   1387		if (rcvr->user == user) {
   1388			list_del_rcu(&rcvr->link);
   1389			rcvr->next = rcvrs;
   1390			rcvrs = rcvr;
   1391		}
   1392	}
   1393	mutex_unlock(&intf->cmd_rcvrs_mutex);
   1394	synchronize_rcu();
   1395	while (rcvrs) {
   1396		rcvr = rcvrs;
   1397		rcvrs = rcvr->next;
   1398		kfree(rcvr);
   1399	}
   1400
   1401	kref_put(&intf->refcount, intf_free);
   1402	module_put(intf->owner);
   1403}
   1404
   1405int ipmi_destroy_user(struct ipmi_user *user)
   1406{
   1407	_ipmi_destroy_user(user);
   1408
   1409	kref_put(&user->refcount, free_user);
   1410
   1411	return 0;
   1412}
   1413EXPORT_SYMBOL(ipmi_destroy_user);
   1414
   1415int ipmi_get_version(struct ipmi_user *user,
   1416		     unsigned char *major,
   1417		     unsigned char *minor)
   1418{
   1419	struct ipmi_device_id id;
   1420	int rv, index;
   1421
   1422	user = acquire_ipmi_user(user, &index);
   1423	if (!user)
   1424		return -ENODEV;
   1425
   1426	rv = bmc_get_device_id(user->intf, NULL, &id, NULL, NULL);
   1427	if (!rv) {
   1428		*major = ipmi_version_major(&id);
   1429		*minor = ipmi_version_minor(&id);
   1430	}
   1431	release_ipmi_user(user, index);
   1432
   1433	return rv;
   1434}
   1435EXPORT_SYMBOL(ipmi_get_version);
   1436
   1437int ipmi_set_my_address(struct ipmi_user *user,
   1438			unsigned int  channel,
   1439			unsigned char address)
   1440{
   1441	int index, rv = 0;
   1442
   1443	user = acquire_ipmi_user(user, &index);
   1444	if (!user)
   1445		return -ENODEV;
   1446
   1447	if (channel >= IPMI_MAX_CHANNELS) {
   1448		rv = -EINVAL;
   1449	} else {
   1450		channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
   1451		user->intf->addrinfo[channel].address = address;
   1452	}
   1453	release_ipmi_user(user, index);
   1454
   1455	return rv;
   1456}
   1457EXPORT_SYMBOL(ipmi_set_my_address);
   1458
   1459int ipmi_get_my_address(struct ipmi_user *user,
   1460			unsigned int  channel,
   1461			unsigned char *address)
   1462{
   1463	int index, rv = 0;
   1464
   1465	user = acquire_ipmi_user(user, &index);
   1466	if (!user)
   1467		return -ENODEV;
   1468
   1469	if (channel >= IPMI_MAX_CHANNELS) {
   1470		rv = -EINVAL;
   1471	} else {
   1472		channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
   1473		*address = user->intf->addrinfo[channel].address;
   1474	}
   1475	release_ipmi_user(user, index);
   1476
   1477	return rv;
   1478}
   1479EXPORT_SYMBOL(ipmi_get_my_address);
   1480
   1481int ipmi_set_my_LUN(struct ipmi_user *user,
   1482		    unsigned int  channel,
   1483		    unsigned char LUN)
   1484{
   1485	int index, rv = 0;
   1486
   1487	user = acquire_ipmi_user(user, &index);
   1488	if (!user)
   1489		return -ENODEV;
   1490
   1491	if (channel >= IPMI_MAX_CHANNELS) {
   1492		rv = -EINVAL;
   1493	} else {
   1494		channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
   1495		user->intf->addrinfo[channel].lun = LUN & 0x3;
   1496	}
   1497	release_ipmi_user(user, index);
   1498
   1499	return rv;
   1500}
   1501EXPORT_SYMBOL(ipmi_set_my_LUN);
   1502
   1503int ipmi_get_my_LUN(struct ipmi_user *user,
   1504		    unsigned int  channel,
   1505		    unsigned char *address)
   1506{
   1507	int index, rv = 0;
   1508
   1509	user = acquire_ipmi_user(user, &index);
   1510	if (!user)
   1511		return -ENODEV;
   1512
   1513	if (channel >= IPMI_MAX_CHANNELS) {
   1514		rv = -EINVAL;
   1515	} else {
   1516		channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
   1517		*address = user->intf->addrinfo[channel].lun;
   1518	}
   1519	release_ipmi_user(user, index);
   1520
   1521	return rv;
   1522}
   1523EXPORT_SYMBOL(ipmi_get_my_LUN);
   1524
   1525int ipmi_get_maintenance_mode(struct ipmi_user *user)
   1526{
   1527	int mode, index;
   1528	unsigned long flags;
   1529
   1530	user = acquire_ipmi_user(user, &index);
   1531	if (!user)
   1532		return -ENODEV;
   1533
   1534	spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
   1535	mode = user->intf->maintenance_mode;
   1536	spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
   1537	release_ipmi_user(user, index);
   1538
   1539	return mode;
   1540}
   1541EXPORT_SYMBOL(ipmi_get_maintenance_mode);
   1542
   1543static void maintenance_mode_update(struct ipmi_smi *intf)
   1544{
   1545	if (intf->handlers->set_maintenance_mode)
   1546		intf->handlers->set_maintenance_mode(
   1547			intf->send_info, intf->maintenance_mode_enable);
   1548}
   1549
   1550int ipmi_set_maintenance_mode(struct ipmi_user *user, int mode)
   1551{
   1552	int rv = 0, index;
   1553	unsigned long flags;
   1554	struct ipmi_smi *intf = user->intf;
   1555
   1556	user = acquire_ipmi_user(user, &index);
   1557	if (!user)
   1558		return -ENODEV;
   1559
   1560	spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
   1561	if (intf->maintenance_mode != mode) {
   1562		switch (mode) {
   1563		case IPMI_MAINTENANCE_MODE_AUTO:
   1564			intf->maintenance_mode_enable
   1565				= (intf->auto_maintenance_timeout > 0);
   1566			break;
   1567
   1568		case IPMI_MAINTENANCE_MODE_OFF:
   1569			intf->maintenance_mode_enable = false;
   1570			break;
   1571
   1572		case IPMI_MAINTENANCE_MODE_ON:
   1573			intf->maintenance_mode_enable = true;
   1574			break;
   1575
   1576		default:
   1577			rv = -EINVAL;
   1578			goto out_unlock;
   1579		}
   1580		intf->maintenance_mode = mode;
   1581
   1582		maintenance_mode_update(intf);
   1583	}
   1584 out_unlock:
   1585	spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
   1586	release_ipmi_user(user, index);
   1587
   1588	return rv;
   1589}
   1590EXPORT_SYMBOL(ipmi_set_maintenance_mode);
   1591
   1592int ipmi_set_gets_events(struct ipmi_user *user, bool val)
   1593{
   1594	unsigned long        flags;
   1595	struct ipmi_smi      *intf = user->intf;
   1596	struct ipmi_recv_msg *msg, *msg2;
   1597	struct list_head     msgs;
   1598	int index;
   1599
   1600	user = acquire_ipmi_user(user, &index);
   1601	if (!user)
   1602		return -ENODEV;
   1603
   1604	INIT_LIST_HEAD(&msgs);
   1605
   1606	spin_lock_irqsave(&intf->events_lock, flags);
   1607	if (user->gets_events == val)
   1608		goto out;
   1609
   1610	user->gets_events = val;
   1611
   1612	if (val) {
   1613		if (atomic_inc_return(&intf->event_waiters) == 1)
   1614			need_waiter(intf);
   1615	} else {
   1616		atomic_dec(&intf->event_waiters);
   1617	}
   1618
   1619	if (intf->delivering_events)
   1620		/*
   1621		 * Another thread is delivering events for this, so
   1622		 * let it handle any new events.
   1623		 */
   1624		goto out;
   1625
   1626	/* Deliver any queued events. */
   1627	while (user->gets_events && !list_empty(&intf->waiting_events)) {
   1628		list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
   1629			list_move_tail(&msg->link, &msgs);
   1630		intf->waiting_events_count = 0;
   1631		if (intf->event_msg_printed) {
   1632			dev_warn(intf->si_dev, "Event queue no longer full\n");
   1633			intf->event_msg_printed = 0;
   1634		}
   1635
   1636		intf->delivering_events = 1;
   1637		spin_unlock_irqrestore(&intf->events_lock, flags);
   1638
   1639		list_for_each_entry_safe(msg, msg2, &msgs, link) {
   1640			msg->user = user;
   1641			kref_get(&user->refcount);
   1642			deliver_local_response(intf, msg);
   1643		}
   1644
   1645		spin_lock_irqsave(&intf->events_lock, flags);
   1646		intf->delivering_events = 0;
   1647	}
   1648
   1649 out:
   1650	spin_unlock_irqrestore(&intf->events_lock, flags);
   1651	release_ipmi_user(user, index);
   1652
   1653	return 0;
   1654}
   1655EXPORT_SYMBOL(ipmi_set_gets_events);
   1656
   1657static struct cmd_rcvr *find_cmd_rcvr(struct ipmi_smi *intf,
   1658				      unsigned char netfn,
   1659				      unsigned char cmd,
   1660				      unsigned char chan)
   1661{
   1662	struct cmd_rcvr *rcvr;
   1663
   1664	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
   1665				lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
   1666		if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
   1667					&& (rcvr->chans & (1 << chan)))
   1668			return rcvr;
   1669	}
   1670	return NULL;
   1671}
   1672
   1673static int is_cmd_rcvr_exclusive(struct ipmi_smi *intf,
   1674				 unsigned char netfn,
   1675				 unsigned char cmd,
   1676				 unsigned int  chans)
   1677{
   1678	struct cmd_rcvr *rcvr;
   1679
   1680	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
   1681				lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
   1682		if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
   1683					&& (rcvr->chans & chans))
   1684			return 0;
   1685	}
   1686	return 1;
   1687}
   1688
   1689int ipmi_register_for_cmd(struct ipmi_user *user,
   1690			  unsigned char netfn,
   1691			  unsigned char cmd,
   1692			  unsigned int  chans)
   1693{
   1694	struct ipmi_smi *intf = user->intf;
   1695	struct cmd_rcvr *rcvr;
   1696	int rv = 0, index;
   1697
   1698	user = acquire_ipmi_user(user, &index);
   1699	if (!user)
   1700		return -ENODEV;
   1701
   1702	rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
   1703	if (!rcvr) {
   1704		rv = -ENOMEM;
   1705		goto out_release;
   1706	}
   1707	rcvr->cmd = cmd;
   1708	rcvr->netfn = netfn;
   1709	rcvr->chans = chans;
   1710	rcvr->user = user;
   1711
   1712	mutex_lock(&intf->cmd_rcvrs_mutex);
   1713	/* Make sure the command/netfn is not already registered. */
   1714	if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
   1715		rv = -EBUSY;
   1716		goto out_unlock;
   1717	}
   1718
   1719	smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_COMMANDS);
   1720
   1721	list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
   1722
   1723out_unlock:
   1724	mutex_unlock(&intf->cmd_rcvrs_mutex);
   1725	if (rv)
   1726		kfree(rcvr);
   1727out_release:
   1728	release_ipmi_user(user, index);
   1729
   1730	return rv;
   1731}
   1732EXPORT_SYMBOL(ipmi_register_for_cmd);
   1733
   1734int ipmi_unregister_for_cmd(struct ipmi_user *user,
   1735			    unsigned char netfn,
   1736			    unsigned char cmd,
   1737			    unsigned int  chans)
   1738{
   1739	struct ipmi_smi *intf = user->intf;
   1740	struct cmd_rcvr *rcvr;
   1741	struct cmd_rcvr *rcvrs = NULL;
   1742	int i, rv = -ENOENT, index;
   1743
   1744	user = acquire_ipmi_user(user, &index);
   1745	if (!user)
   1746		return -ENODEV;
   1747
   1748	mutex_lock(&intf->cmd_rcvrs_mutex);
   1749	for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
   1750		if (((1 << i) & chans) == 0)
   1751			continue;
   1752		rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
   1753		if (rcvr == NULL)
   1754			continue;
   1755		if (rcvr->user == user) {
   1756			rv = 0;
   1757			rcvr->chans &= ~chans;
   1758			if (rcvr->chans == 0) {
   1759				list_del_rcu(&rcvr->link);
   1760				rcvr->next = rcvrs;
   1761				rcvrs = rcvr;
   1762			}
   1763		}
   1764	}
   1765	mutex_unlock(&intf->cmd_rcvrs_mutex);
   1766	synchronize_rcu();
   1767	release_ipmi_user(user, index);
   1768	while (rcvrs) {
   1769		smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_COMMANDS);
   1770		rcvr = rcvrs;
   1771		rcvrs = rcvr->next;
   1772		kfree(rcvr);
   1773	}
   1774
   1775	return rv;
   1776}
   1777EXPORT_SYMBOL(ipmi_unregister_for_cmd);
   1778
   1779unsigned char
   1780ipmb_checksum(unsigned char *data, int size)
   1781{
   1782	unsigned char csum = 0;
   1783
   1784	for (; size > 0; size--, data++)
   1785		csum += *data;
   1786
   1787	return -csum;
   1788}
   1789EXPORT_SYMBOL(ipmb_checksum);
   1790
   1791static inline void format_ipmb_msg(struct ipmi_smi_msg   *smi_msg,
   1792				   struct kernel_ipmi_msg *msg,
   1793				   struct ipmi_ipmb_addr *ipmb_addr,
   1794				   long                  msgid,
   1795				   unsigned char         ipmb_seq,
   1796				   int                   broadcast,
   1797				   unsigned char         source_address,
   1798				   unsigned char         source_lun)
   1799{
   1800	int i = broadcast;
   1801
   1802	/* Format the IPMB header data. */
   1803	smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
   1804	smi_msg->data[1] = IPMI_SEND_MSG_CMD;
   1805	smi_msg->data[2] = ipmb_addr->channel;
   1806	if (broadcast)
   1807		smi_msg->data[3] = 0;
   1808	smi_msg->data[i+3] = ipmb_addr->slave_addr;
   1809	smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
   1810	smi_msg->data[i+5] = ipmb_checksum(&smi_msg->data[i + 3], 2);
   1811	smi_msg->data[i+6] = source_address;
   1812	smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
   1813	smi_msg->data[i+8] = msg->cmd;
   1814
   1815	/* Now tack on the data to the message. */
   1816	if (msg->data_len > 0)
   1817		memcpy(&smi_msg->data[i + 9], msg->data, msg->data_len);
   1818	smi_msg->data_size = msg->data_len + 9;
   1819
   1820	/* Now calculate the checksum and tack it on. */
   1821	smi_msg->data[i+smi_msg->data_size]
   1822		= ipmb_checksum(&smi_msg->data[i + 6], smi_msg->data_size - 6);
   1823
   1824	/*
   1825	 * Add on the checksum size and the offset from the
   1826	 * broadcast.
   1827	 */
   1828	smi_msg->data_size += 1 + i;
   1829
   1830	smi_msg->msgid = msgid;
   1831}
   1832
   1833static inline void format_lan_msg(struct ipmi_smi_msg   *smi_msg,
   1834				  struct kernel_ipmi_msg *msg,
   1835				  struct ipmi_lan_addr  *lan_addr,
   1836				  long                  msgid,
   1837				  unsigned char         ipmb_seq,
   1838				  unsigned char         source_lun)
   1839{
   1840	/* Format the IPMB header data. */
   1841	smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
   1842	smi_msg->data[1] = IPMI_SEND_MSG_CMD;
   1843	smi_msg->data[2] = lan_addr->channel;
   1844	smi_msg->data[3] = lan_addr->session_handle;
   1845	smi_msg->data[4] = lan_addr->remote_SWID;
   1846	smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
   1847	smi_msg->data[6] = ipmb_checksum(&smi_msg->data[4], 2);
   1848	smi_msg->data[7] = lan_addr->local_SWID;
   1849	smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
   1850	smi_msg->data[9] = msg->cmd;
   1851
   1852	/* Now tack on the data to the message. */
   1853	if (msg->data_len > 0)
   1854		memcpy(&smi_msg->data[10], msg->data, msg->data_len);
   1855	smi_msg->data_size = msg->data_len + 10;
   1856
   1857	/* Now calculate the checksum and tack it on. */
   1858	smi_msg->data[smi_msg->data_size]
   1859		= ipmb_checksum(&smi_msg->data[7], smi_msg->data_size - 7);
   1860
   1861	/*
   1862	 * Add on the checksum size and the offset from the
   1863	 * broadcast.
   1864	 */
   1865	smi_msg->data_size += 1;
   1866
   1867	smi_msg->msgid = msgid;
   1868}
   1869
   1870static struct ipmi_smi_msg *smi_add_send_msg(struct ipmi_smi *intf,
   1871					     struct ipmi_smi_msg *smi_msg,
   1872					     int priority)
   1873{
   1874	if (intf->curr_msg) {
   1875		if (priority > 0)
   1876			list_add_tail(&smi_msg->link, &intf->hp_xmit_msgs);
   1877		else
   1878			list_add_tail(&smi_msg->link, &intf->xmit_msgs);
   1879		smi_msg = NULL;
   1880	} else {
   1881		intf->curr_msg = smi_msg;
   1882	}
   1883
   1884	return smi_msg;
   1885}
   1886
   1887static void smi_send(struct ipmi_smi *intf,
   1888		     const struct ipmi_smi_handlers *handlers,
   1889		     struct ipmi_smi_msg *smi_msg, int priority)
   1890{
   1891	int run_to_completion = intf->run_to_completion;
   1892	unsigned long flags = 0;
   1893
   1894	if (!run_to_completion)
   1895		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
   1896	smi_msg = smi_add_send_msg(intf, smi_msg, priority);
   1897
   1898	if (!run_to_completion)
   1899		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
   1900
   1901	if (smi_msg)
   1902		handlers->sender(intf->send_info, smi_msg);
   1903}
   1904
   1905static bool is_maintenance_mode_cmd(struct kernel_ipmi_msg *msg)
   1906{
   1907	return (((msg->netfn == IPMI_NETFN_APP_REQUEST)
   1908		 && ((msg->cmd == IPMI_COLD_RESET_CMD)
   1909		     || (msg->cmd == IPMI_WARM_RESET_CMD)))
   1910		|| (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST));
   1911}
   1912
   1913static int i_ipmi_req_sysintf(struct ipmi_smi        *intf,
   1914			      struct ipmi_addr       *addr,
   1915			      long                   msgid,
   1916			      struct kernel_ipmi_msg *msg,
   1917			      struct ipmi_smi_msg    *smi_msg,
   1918			      struct ipmi_recv_msg   *recv_msg,
   1919			      int                    retries,
   1920			      unsigned int           retry_time_ms)
   1921{
   1922	struct ipmi_system_interface_addr *smi_addr;
   1923
   1924	if (msg->netfn & 1)
   1925		/* Responses are not allowed to the SMI. */
   1926		return -EINVAL;
   1927
   1928	smi_addr = (struct ipmi_system_interface_addr *) addr;
   1929	if (smi_addr->lun > 3) {
   1930		ipmi_inc_stat(intf, sent_invalid_commands);
   1931		return -EINVAL;
   1932	}
   1933
   1934	memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
   1935
   1936	if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
   1937	    && ((msg->cmd == IPMI_SEND_MSG_CMD)
   1938		|| (msg->cmd == IPMI_GET_MSG_CMD)
   1939		|| (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) {
   1940		/*
   1941		 * We don't let the user do these, since we manage
   1942		 * the sequence numbers.
   1943		 */
   1944		ipmi_inc_stat(intf, sent_invalid_commands);
   1945		return -EINVAL;
   1946	}
   1947
   1948	if (is_maintenance_mode_cmd(msg)) {
   1949		unsigned long flags;
   1950
   1951		spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
   1952		intf->auto_maintenance_timeout
   1953			= maintenance_mode_timeout_ms;
   1954		if (!intf->maintenance_mode
   1955		    && !intf->maintenance_mode_enable) {
   1956			intf->maintenance_mode_enable = true;
   1957			maintenance_mode_update(intf);
   1958		}
   1959		spin_unlock_irqrestore(&intf->maintenance_mode_lock,
   1960				       flags);
   1961	}
   1962
   1963	if (msg->data_len + 2 > IPMI_MAX_MSG_LENGTH) {
   1964		ipmi_inc_stat(intf, sent_invalid_commands);
   1965		return -EMSGSIZE;
   1966	}
   1967
   1968	smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
   1969	smi_msg->data[1] = msg->cmd;
   1970	smi_msg->msgid = msgid;
   1971	smi_msg->user_data = recv_msg;
   1972	if (msg->data_len > 0)
   1973		memcpy(&smi_msg->data[2], msg->data, msg->data_len);
   1974	smi_msg->data_size = msg->data_len + 2;
   1975	ipmi_inc_stat(intf, sent_local_commands);
   1976
   1977	return 0;
   1978}
   1979
   1980static int i_ipmi_req_ipmb(struct ipmi_smi        *intf,
   1981			   struct ipmi_addr       *addr,
   1982			   long                   msgid,
   1983			   struct kernel_ipmi_msg *msg,
   1984			   struct ipmi_smi_msg    *smi_msg,
   1985			   struct ipmi_recv_msg   *recv_msg,
   1986			   unsigned char          source_address,
   1987			   unsigned char          source_lun,
   1988			   int                    retries,
   1989			   unsigned int           retry_time_ms)
   1990{
   1991	struct ipmi_ipmb_addr *ipmb_addr;
   1992	unsigned char ipmb_seq;
   1993	long seqid;
   1994	int broadcast = 0;
   1995	struct ipmi_channel *chans;
   1996	int rv = 0;
   1997
   1998	if (addr->channel >= IPMI_MAX_CHANNELS) {
   1999		ipmi_inc_stat(intf, sent_invalid_commands);
   2000		return -EINVAL;
   2001	}
   2002
   2003	chans = READ_ONCE(intf->channel_list)->c;
   2004
   2005	if (chans[addr->channel].medium != IPMI_CHANNEL_MEDIUM_IPMB) {
   2006		ipmi_inc_stat(intf, sent_invalid_commands);
   2007		return -EINVAL;
   2008	}
   2009
   2010	if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
   2011		/*
   2012		 * Broadcasts add a zero at the beginning of the
   2013		 * message, but otherwise is the same as an IPMB
   2014		 * address.
   2015		 */
   2016		addr->addr_type = IPMI_IPMB_ADDR_TYPE;
   2017		broadcast = 1;
   2018		retries = 0; /* Don't retry broadcasts. */
   2019	}
   2020
   2021	/*
   2022	 * 9 for the header and 1 for the checksum, plus
   2023	 * possibly one for the broadcast.
   2024	 */
   2025	if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
   2026		ipmi_inc_stat(intf, sent_invalid_commands);
   2027		return -EMSGSIZE;
   2028	}
   2029
   2030	ipmb_addr = (struct ipmi_ipmb_addr *) addr;
   2031	if (ipmb_addr->lun > 3) {
   2032		ipmi_inc_stat(intf, sent_invalid_commands);
   2033		return -EINVAL;
   2034	}
   2035
   2036	memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
   2037
   2038	if (recv_msg->msg.netfn & 0x1) {
   2039		/*
   2040		 * It's a response, so use the user's sequence
   2041		 * from msgid.
   2042		 */
   2043		ipmi_inc_stat(intf, sent_ipmb_responses);
   2044		format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
   2045				msgid, broadcast,
   2046				source_address, source_lun);
   2047
   2048		/*
   2049		 * Save the receive message so we can use it
   2050		 * to deliver the response.
   2051		 */
   2052		smi_msg->user_data = recv_msg;
   2053	} else {
   2054		/* It's a command, so get a sequence for it. */
   2055		unsigned long flags;
   2056
   2057		spin_lock_irqsave(&intf->seq_lock, flags);
   2058
   2059		if (is_maintenance_mode_cmd(msg))
   2060			intf->ipmb_maintenance_mode_timeout =
   2061				maintenance_mode_timeout_ms;
   2062
   2063		if (intf->ipmb_maintenance_mode_timeout && retry_time_ms == 0)
   2064			/* Different default in maintenance mode */
   2065			retry_time_ms = default_maintenance_retry_ms;
   2066
   2067		/*
   2068		 * Create a sequence number with a 1 second
   2069		 * timeout and 4 retries.
   2070		 */
   2071		rv = intf_next_seq(intf,
   2072				   recv_msg,
   2073				   retry_time_ms,
   2074				   retries,
   2075				   broadcast,
   2076				   &ipmb_seq,
   2077				   &seqid);
   2078		if (rv)
   2079			/*
   2080			 * We have used up all the sequence numbers,
   2081			 * probably, so abort.
   2082			 */
   2083			goto out_err;
   2084
   2085		ipmi_inc_stat(intf, sent_ipmb_commands);
   2086
   2087		/*
   2088		 * Store the sequence number in the message,
   2089		 * so that when the send message response
   2090		 * comes back we can start the timer.
   2091		 */
   2092		format_ipmb_msg(smi_msg, msg, ipmb_addr,
   2093				STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
   2094				ipmb_seq, broadcast,
   2095				source_address, source_lun);
   2096
   2097		/*
   2098		 * Copy the message into the recv message data, so we
   2099		 * can retransmit it later if necessary.
   2100		 */
   2101		memcpy(recv_msg->msg_data, smi_msg->data,
   2102		       smi_msg->data_size);
   2103		recv_msg->msg.data = recv_msg->msg_data;
   2104		recv_msg->msg.data_len = smi_msg->data_size;
   2105
   2106		/*
   2107		 * We don't unlock until here, because we need
   2108		 * to copy the completed message into the
   2109		 * recv_msg before we release the lock.
   2110		 * Otherwise, race conditions may bite us.  I
   2111		 * know that's pretty paranoid, but I prefer
   2112		 * to be correct.
   2113		 */
   2114out_err:
   2115		spin_unlock_irqrestore(&intf->seq_lock, flags);
   2116	}
   2117
   2118	return rv;
   2119}
   2120
   2121static int i_ipmi_req_ipmb_direct(struct ipmi_smi        *intf,
   2122				  struct ipmi_addr       *addr,
   2123				  long			 msgid,
   2124				  struct kernel_ipmi_msg *msg,
   2125				  struct ipmi_smi_msg    *smi_msg,
   2126				  struct ipmi_recv_msg   *recv_msg,
   2127				  unsigned char          source_lun)
   2128{
   2129	struct ipmi_ipmb_direct_addr *daddr;
   2130	bool is_cmd = !(recv_msg->msg.netfn & 0x1);
   2131
   2132	if (!(intf->handlers->flags & IPMI_SMI_CAN_HANDLE_IPMB_DIRECT))
   2133		return -EAFNOSUPPORT;
   2134
   2135	/* Responses must have a completion code. */
   2136	if (!is_cmd && msg->data_len < 1) {
   2137		ipmi_inc_stat(intf, sent_invalid_commands);
   2138		return -EINVAL;
   2139	}
   2140
   2141	if ((msg->data_len + 4) > IPMI_MAX_MSG_LENGTH) {
   2142		ipmi_inc_stat(intf, sent_invalid_commands);
   2143		return -EMSGSIZE;
   2144	}
   2145
   2146	daddr = (struct ipmi_ipmb_direct_addr *) addr;
   2147	if (daddr->rq_lun > 3 || daddr->rs_lun > 3) {
   2148		ipmi_inc_stat(intf, sent_invalid_commands);
   2149		return -EINVAL;
   2150	}
   2151
   2152	smi_msg->type = IPMI_SMI_MSG_TYPE_IPMB_DIRECT;
   2153	smi_msg->msgid = msgid;
   2154
   2155	if (is_cmd) {
   2156		smi_msg->data[0] = msg->netfn << 2 | daddr->rs_lun;
   2157		smi_msg->data[2] = recv_msg->msgid << 2 | daddr->rq_lun;
   2158	} else {
   2159		smi_msg->data[0] = msg->netfn << 2 | daddr->rq_lun;
   2160		smi_msg->data[2] = recv_msg->msgid << 2 | daddr->rs_lun;
   2161	}
   2162	smi_msg->data[1] = daddr->slave_addr;
   2163	smi_msg->data[3] = msg->cmd;
   2164
   2165	memcpy(smi_msg->data + 4, msg->data, msg->data_len);
   2166	smi_msg->data_size = msg->data_len + 4;
   2167
   2168	smi_msg->user_data = recv_msg;
   2169
   2170	return 0;
   2171}
   2172
   2173static int i_ipmi_req_lan(struct ipmi_smi        *intf,
   2174			  struct ipmi_addr       *addr,
   2175			  long                   msgid,
   2176			  struct kernel_ipmi_msg *msg,
   2177			  struct ipmi_smi_msg    *smi_msg,
   2178			  struct ipmi_recv_msg   *recv_msg,
   2179			  unsigned char          source_lun,
   2180			  int                    retries,
   2181			  unsigned int           retry_time_ms)
   2182{
   2183	struct ipmi_lan_addr  *lan_addr;
   2184	unsigned char ipmb_seq;
   2185	long seqid;
   2186	struct ipmi_channel *chans;
   2187	int rv = 0;
   2188
   2189	if (addr->channel >= IPMI_MAX_CHANNELS) {
   2190		ipmi_inc_stat(intf, sent_invalid_commands);
   2191		return -EINVAL;
   2192	}
   2193
   2194	chans = READ_ONCE(intf->channel_list)->c;
   2195
   2196	if ((chans[addr->channel].medium
   2197				!= IPMI_CHANNEL_MEDIUM_8023LAN)
   2198			&& (chans[addr->channel].medium
   2199			    != IPMI_CHANNEL_MEDIUM_ASYNC)) {
   2200		ipmi_inc_stat(intf, sent_invalid_commands);
   2201		return -EINVAL;
   2202	}
   2203
   2204	/* 11 for the header and 1 for the checksum. */
   2205	if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
   2206		ipmi_inc_stat(intf, sent_invalid_commands);
   2207		return -EMSGSIZE;
   2208	}
   2209
   2210	lan_addr = (struct ipmi_lan_addr *) addr;
   2211	if (lan_addr->lun > 3) {
   2212		ipmi_inc_stat(intf, sent_invalid_commands);
   2213		return -EINVAL;
   2214	}
   2215
   2216	memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
   2217
   2218	if (recv_msg->msg.netfn & 0x1) {
   2219		/*
   2220		 * It's a response, so use the user's sequence
   2221		 * from msgid.
   2222		 */
   2223		ipmi_inc_stat(intf, sent_lan_responses);
   2224		format_lan_msg(smi_msg, msg, lan_addr, msgid,
   2225			       msgid, source_lun);
   2226
   2227		/*
   2228		 * Save the receive message so we can use it
   2229		 * to deliver the response.
   2230		 */
   2231		smi_msg->user_data = recv_msg;
   2232	} else {
   2233		/* It's a command, so get a sequence for it. */
   2234		unsigned long flags;
   2235
   2236		spin_lock_irqsave(&intf->seq_lock, flags);
   2237
   2238		/*
   2239		 * Create a sequence number with a 1 second
   2240		 * timeout and 4 retries.
   2241		 */
   2242		rv = intf_next_seq(intf,
   2243				   recv_msg,
   2244				   retry_time_ms,
   2245				   retries,
   2246				   0,
   2247				   &ipmb_seq,
   2248				   &seqid);
   2249		if (rv)
   2250			/*
   2251			 * We have used up all the sequence numbers,
   2252			 * probably, so abort.
   2253			 */
   2254			goto out_err;
   2255
   2256		ipmi_inc_stat(intf, sent_lan_commands);
   2257
   2258		/*
   2259		 * Store the sequence number in the message,
   2260		 * so that when the send message response
   2261		 * comes back we can start the timer.
   2262		 */
   2263		format_lan_msg(smi_msg, msg, lan_addr,
   2264			       STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
   2265			       ipmb_seq, source_lun);
   2266
   2267		/*
   2268		 * Copy the message into the recv message data, so we
   2269		 * can retransmit it later if necessary.
   2270		 */
   2271		memcpy(recv_msg->msg_data, smi_msg->data,
   2272		       smi_msg->data_size);
   2273		recv_msg->msg.data = recv_msg->msg_data;
   2274		recv_msg->msg.data_len = smi_msg->data_size;
   2275
   2276		/*
   2277		 * We don't unlock until here, because we need
   2278		 * to copy the completed message into the
   2279		 * recv_msg before we release the lock.
   2280		 * Otherwise, race conditions may bite us.  I
   2281		 * know that's pretty paranoid, but I prefer
   2282		 * to be correct.
   2283		 */
   2284out_err:
   2285		spin_unlock_irqrestore(&intf->seq_lock, flags);
   2286	}
   2287
   2288	return rv;
   2289}
   2290
   2291/*
   2292 * Separate from ipmi_request so that the user does not have to be
   2293 * supplied in certain circumstances (mainly at panic time).  If
   2294 * messages are supplied, they will be freed, even if an error
   2295 * occurs.
   2296 */
   2297static int i_ipmi_request(struct ipmi_user     *user,
   2298			  struct ipmi_smi      *intf,
   2299			  struct ipmi_addr     *addr,
   2300			  long                 msgid,
   2301			  struct kernel_ipmi_msg *msg,
   2302			  void                 *user_msg_data,
   2303			  void                 *supplied_smi,
   2304			  struct ipmi_recv_msg *supplied_recv,
   2305			  int                  priority,
   2306			  unsigned char        source_address,
   2307			  unsigned char        source_lun,
   2308			  int                  retries,
   2309			  unsigned int         retry_time_ms)
   2310{
   2311	struct ipmi_smi_msg *smi_msg;
   2312	struct ipmi_recv_msg *recv_msg;
   2313	int rv = 0;
   2314
   2315	if (user) {
   2316		if (atomic_add_return(1, &user->nr_msgs) > max_msgs_per_user) {
   2317			/* Decrement will happen at the end of the routine. */
   2318			rv = -EBUSY;
   2319			goto out;
   2320		}
   2321	}
   2322
   2323	if (supplied_recv)
   2324		recv_msg = supplied_recv;
   2325	else {
   2326		recv_msg = ipmi_alloc_recv_msg();
   2327		if (recv_msg == NULL) {
   2328			rv = -ENOMEM;
   2329			goto out;
   2330		}
   2331	}
   2332	recv_msg->user_msg_data = user_msg_data;
   2333
   2334	if (supplied_smi)
   2335		smi_msg = supplied_smi;
   2336	else {
   2337		smi_msg = ipmi_alloc_smi_msg();
   2338		if (smi_msg == NULL) {
   2339			if (!supplied_recv)
   2340				ipmi_free_recv_msg(recv_msg);
   2341			rv = -ENOMEM;
   2342			goto out;
   2343		}
   2344	}
   2345
   2346	rcu_read_lock();
   2347	if (intf->in_shutdown) {
   2348		rv = -ENODEV;
   2349		goto out_err;
   2350	}
   2351
   2352	recv_msg->user = user;
   2353	if (user)
   2354		/* The put happens when the message is freed. */
   2355		kref_get(&user->refcount);
   2356	recv_msg->msgid = msgid;
   2357	/*
   2358	 * Store the message to send in the receive message so timeout
   2359	 * responses can get the proper response data.
   2360	 */
   2361	recv_msg->msg = *msg;
   2362
   2363	if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
   2364		rv = i_ipmi_req_sysintf(intf, addr, msgid, msg, smi_msg,
   2365					recv_msg, retries, retry_time_ms);
   2366	} else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
   2367		rv = i_ipmi_req_ipmb(intf, addr, msgid, msg, smi_msg, recv_msg,
   2368				     source_address, source_lun,
   2369				     retries, retry_time_ms);
   2370	} else if (is_ipmb_direct_addr(addr)) {
   2371		rv = i_ipmi_req_ipmb_direct(intf, addr, msgid, msg, smi_msg,
   2372					    recv_msg, source_lun);
   2373	} else if (is_lan_addr(addr)) {
   2374		rv = i_ipmi_req_lan(intf, addr, msgid, msg, smi_msg, recv_msg,
   2375				    source_lun, retries, retry_time_ms);
   2376	} else {
   2377	    /* Unknown address type. */
   2378		ipmi_inc_stat(intf, sent_invalid_commands);
   2379		rv = -EINVAL;
   2380	}
   2381
   2382	if (rv) {
   2383out_err:
   2384		ipmi_free_smi_msg(smi_msg);
   2385		ipmi_free_recv_msg(recv_msg);
   2386	} else {
   2387		dev_dbg(intf->si_dev, "Send: %*ph\n",
   2388			smi_msg->data_size, smi_msg->data);
   2389
   2390		smi_send(intf, intf->handlers, smi_msg, priority);
   2391	}
   2392	rcu_read_unlock();
   2393
   2394out:
   2395	if (rv && user)
   2396		atomic_dec(&user->nr_msgs);
   2397	return rv;
   2398}
   2399
   2400static int check_addr(struct ipmi_smi  *intf,
   2401		      struct ipmi_addr *addr,
   2402		      unsigned char    *saddr,
   2403		      unsigned char    *lun)
   2404{
   2405	if (addr->channel >= IPMI_MAX_CHANNELS)
   2406		return -EINVAL;
   2407	addr->channel = array_index_nospec(addr->channel, IPMI_MAX_CHANNELS);
   2408	*lun = intf->addrinfo[addr->channel].lun;
   2409	*saddr = intf->addrinfo[addr->channel].address;
   2410	return 0;
   2411}
   2412
   2413int ipmi_request_settime(struct ipmi_user *user,
   2414			 struct ipmi_addr *addr,
   2415			 long             msgid,
   2416			 struct kernel_ipmi_msg  *msg,
   2417			 void             *user_msg_data,
   2418			 int              priority,
   2419			 int              retries,
   2420			 unsigned int     retry_time_ms)
   2421{
   2422	unsigned char saddr = 0, lun = 0;
   2423	int rv, index;
   2424
   2425	if (!user)
   2426		return -EINVAL;
   2427
   2428	user = acquire_ipmi_user(user, &index);
   2429	if (!user)
   2430		return -ENODEV;
   2431
   2432	rv = check_addr(user->intf, addr, &saddr, &lun);
   2433	if (!rv)
   2434		rv = i_ipmi_request(user,
   2435				    user->intf,
   2436				    addr,
   2437				    msgid,
   2438				    msg,
   2439				    user_msg_data,
   2440				    NULL, NULL,
   2441				    priority,
   2442				    saddr,
   2443				    lun,
   2444				    retries,
   2445				    retry_time_ms);
   2446
   2447	release_ipmi_user(user, index);
   2448	return rv;
   2449}
   2450EXPORT_SYMBOL(ipmi_request_settime);
   2451
   2452int ipmi_request_supply_msgs(struct ipmi_user     *user,
   2453			     struct ipmi_addr     *addr,
   2454			     long                 msgid,
   2455			     struct kernel_ipmi_msg *msg,
   2456			     void                 *user_msg_data,
   2457			     void                 *supplied_smi,
   2458			     struct ipmi_recv_msg *supplied_recv,
   2459			     int                  priority)
   2460{
   2461	unsigned char saddr = 0, lun = 0;
   2462	int rv, index;
   2463
   2464	if (!user)
   2465		return -EINVAL;
   2466
   2467	user = acquire_ipmi_user(user, &index);
   2468	if (!user)
   2469		return -ENODEV;
   2470
   2471	rv = check_addr(user->intf, addr, &saddr, &lun);
   2472	if (!rv)
   2473		rv = i_ipmi_request(user,
   2474				    user->intf,
   2475				    addr,
   2476				    msgid,
   2477				    msg,
   2478				    user_msg_data,
   2479				    supplied_smi,
   2480				    supplied_recv,
   2481				    priority,
   2482				    saddr,
   2483				    lun,
   2484				    -1, 0);
   2485
   2486	release_ipmi_user(user, index);
   2487	return rv;
   2488}
   2489EXPORT_SYMBOL(ipmi_request_supply_msgs);
   2490
   2491static void bmc_device_id_handler(struct ipmi_smi *intf,
   2492				  struct ipmi_recv_msg *msg)
   2493{
   2494	int rv;
   2495
   2496	if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
   2497			|| (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
   2498			|| (msg->msg.cmd != IPMI_GET_DEVICE_ID_CMD)) {
   2499		dev_warn(intf->si_dev,
   2500			 "invalid device_id msg: addr_type=%d netfn=%x cmd=%x\n",
   2501			 msg->addr.addr_type, msg->msg.netfn, msg->msg.cmd);
   2502		return;
   2503	}
   2504
   2505	if (msg->msg.data[0]) {
   2506		dev_warn(intf->si_dev, "device id fetch failed: 0x%2.2x\n",
   2507			 msg->msg.data[0]);
   2508		intf->bmc->dyn_id_set = 0;
   2509		goto out;
   2510	}
   2511
   2512	rv = ipmi_demangle_device_id(msg->msg.netfn, msg->msg.cmd,
   2513			msg->msg.data, msg->msg.data_len, &intf->bmc->fetch_id);
   2514	if (rv) {
   2515		dev_warn(intf->si_dev, "device id demangle failed: %d\n", rv);
   2516		/* record completion code when error */
   2517		intf->bmc->cc = msg->msg.data[0];
   2518		intf->bmc->dyn_id_set = 0;
   2519	} else {
   2520		/*
   2521		 * Make sure the id data is available before setting
   2522		 * dyn_id_set.
   2523		 */
   2524		smp_wmb();
   2525		intf->bmc->dyn_id_set = 1;
   2526	}
   2527out:
   2528	wake_up(&intf->waitq);
   2529}
   2530
   2531static int
   2532send_get_device_id_cmd(struct ipmi_smi *intf)
   2533{
   2534	struct ipmi_system_interface_addr si;
   2535	struct kernel_ipmi_msg msg;
   2536
   2537	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
   2538	si.channel = IPMI_BMC_CHANNEL;
   2539	si.lun = 0;
   2540
   2541	msg.netfn = IPMI_NETFN_APP_REQUEST;
   2542	msg.cmd = IPMI_GET_DEVICE_ID_CMD;
   2543	msg.data = NULL;
   2544	msg.data_len = 0;
   2545
   2546	return i_ipmi_request(NULL,
   2547			      intf,
   2548			      (struct ipmi_addr *) &si,
   2549			      0,
   2550			      &msg,
   2551			      intf,
   2552			      NULL,
   2553			      NULL,
   2554			      0,
   2555			      intf->addrinfo[0].address,
   2556			      intf->addrinfo[0].lun,
   2557			      -1, 0);
   2558}
   2559
   2560static int __get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc)
   2561{
   2562	int rv;
   2563	unsigned int retry_count = 0;
   2564
   2565	intf->null_user_handler = bmc_device_id_handler;
   2566
   2567retry:
   2568	bmc->cc = 0;
   2569	bmc->dyn_id_set = 2;
   2570
   2571	rv = send_get_device_id_cmd(intf);
   2572	if (rv)
   2573		goto out_reset_handler;
   2574
   2575	wait_event(intf->waitq, bmc->dyn_id_set != 2);
   2576
   2577	if (!bmc->dyn_id_set) {
   2578		if (bmc->cc != IPMI_CC_NO_ERROR &&
   2579		    ++retry_count <= GET_DEVICE_ID_MAX_RETRY) {
   2580			msleep(500);
   2581			dev_warn(intf->si_dev,
   2582			    "BMC returned 0x%2.2x, retry get bmc device id\n",
   2583			    bmc->cc);
   2584			goto retry;
   2585		}
   2586
   2587		rv = -EIO; /* Something went wrong in the fetch. */
   2588	}
   2589
   2590	/* dyn_id_set makes the id data available. */
   2591	smp_rmb();
   2592
   2593out_reset_handler:
   2594	intf->null_user_handler = NULL;
   2595
   2596	return rv;
   2597}
   2598
   2599/*
   2600 * Fetch the device id for the bmc/interface.  You must pass in either
   2601 * bmc or intf, this code will get the other one.  If the data has
   2602 * been recently fetched, this will just use the cached data.  Otherwise
   2603 * it will run a new fetch.
   2604 *
   2605 * Except for the first time this is called (in ipmi_add_smi()),
   2606 * this will always return good data;
   2607 */
   2608static int __bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
   2609			       struct ipmi_device_id *id,
   2610			       bool *guid_set, guid_t *guid, int intf_num)
   2611{
   2612	int rv = 0;
   2613	int prev_dyn_id_set, prev_guid_set;
   2614	bool intf_set = intf != NULL;
   2615
   2616	if (!intf) {
   2617		mutex_lock(&bmc->dyn_mutex);
   2618retry_bmc_lock:
   2619		if (list_empty(&bmc->intfs)) {
   2620			mutex_unlock(&bmc->dyn_mutex);
   2621			return -ENOENT;
   2622		}
   2623		intf = list_first_entry(&bmc->intfs, struct ipmi_smi,
   2624					bmc_link);
   2625		kref_get(&intf->refcount);
   2626		mutex_unlock(&bmc->dyn_mutex);
   2627		mutex_lock(&intf->bmc_reg_mutex);
   2628		mutex_lock(&bmc->dyn_mutex);
   2629		if (intf != list_first_entry(&bmc->intfs, struct ipmi_smi,
   2630					     bmc_link)) {
   2631			mutex_unlock(&intf->bmc_reg_mutex);
   2632			kref_put(&intf->refcount, intf_free);
   2633			goto retry_bmc_lock;
   2634		}
   2635	} else {
   2636		mutex_lock(&intf->bmc_reg_mutex);
   2637		bmc = intf->bmc;
   2638		mutex_lock(&bmc->dyn_mutex);
   2639		kref_get(&intf->refcount);
   2640	}
   2641
   2642	/* If we have a valid and current ID, just return that. */
   2643	if (intf->in_bmc_register ||
   2644	    (bmc->dyn_id_set && time_is_after_jiffies(bmc->dyn_id_expiry)))
   2645		goto out_noprocessing;
   2646
   2647	prev_guid_set = bmc->dyn_guid_set;
   2648	__get_guid(intf);
   2649
   2650	prev_dyn_id_set = bmc->dyn_id_set;
   2651	rv = __get_device_id(intf, bmc);
   2652	if (rv)
   2653		goto out;
   2654
   2655	/*
   2656	 * The guid, device id, manufacturer id, and product id should
   2657	 * not change on a BMC.  If it does we have to do some dancing.
   2658	 */
   2659	if (!intf->bmc_registered
   2660	    || (!prev_guid_set && bmc->dyn_guid_set)
   2661	    || (!prev_dyn_id_set && bmc->dyn_id_set)
   2662	    || (prev_guid_set && bmc->dyn_guid_set
   2663		&& !guid_equal(&bmc->guid, &bmc->fetch_guid))
   2664	    || bmc->id.device_id != bmc->fetch_id.device_id
   2665	    || bmc->id.manufacturer_id != bmc->fetch_id.manufacturer_id
   2666	    || bmc->id.product_id != bmc->fetch_id.product_id) {
   2667		struct ipmi_device_id id = bmc->fetch_id;
   2668		int guid_set = bmc->dyn_guid_set;
   2669		guid_t guid;
   2670
   2671		guid = bmc->fetch_guid;
   2672		mutex_unlock(&bmc->dyn_mutex);
   2673
   2674		__ipmi_bmc_unregister(intf);
   2675		/* Fill in the temporary BMC for good measure. */
   2676		intf->bmc->id = id;
   2677		intf->bmc->dyn_guid_set = guid_set;
   2678		intf->bmc->guid = guid;
   2679		if (__ipmi_bmc_register(intf, &id, guid_set, &guid, intf_num))
   2680			need_waiter(intf); /* Retry later on an error. */
   2681		else
   2682			__scan_channels(intf, &id);
   2683
   2684
   2685		if (!intf_set) {
   2686			/*
   2687			 * We weren't given the interface on the
   2688			 * command line, so restart the operation on
   2689			 * the next interface for the BMC.
   2690			 */
   2691			mutex_unlock(&intf->bmc_reg_mutex);
   2692			mutex_lock(&bmc->dyn_mutex);
   2693			goto retry_bmc_lock;
   2694		}
   2695
   2696		/* We have a new BMC, set it up. */
   2697		bmc = intf->bmc;
   2698		mutex_lock(&bmc->dyn_mutex);
   2699		goto out_noprocessing;
   2700	} else if (memcmp(&bmc->fetch_id, &bmc->id, sizeof(bmc->id)))
   2701		/* Version info changes, scan the channels again. */
   2702		__scan_channels(intf, &bmc->fetch_id);
   2703
   2704	bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY;
   2705
   2706out:
   2707	if (rv && prev_dyn_id_set) {
   2708		rv = 0; /* Ignore failures if we have previous data. */
   2709		bmc->dyn_id_set = prev_dyn_id_set;
   2710	}
   2711	if (!rv) {
   2712		bmc->id = bmc->fetch_id;
   2713		if (bmc->dyn_guid_set)
   2714			bmc->guid = bmc->fetch_guid;
   2715		else if (prev_guid_set)
   2716			/*
   2717			 * The guid used to be valid and it failed to fetch,
   2718			 * just use the cached value.
   2719			 */
   2720			bmc->dyn_guid_set = prev_guid_set;
   2721	}
   2722out_noprocessing:
   2723	if (!rv) {
   2724		if (id)
   2725			*id = bmc->id;
   2726
   2727		if (guid_set)
   2728			*guid_set = bmc->dyn_guid_set;
   2729
   2730		if (guid && bmc->dyn_guid_set)
   2731			*guid =  bmc->guid;
   2732	}
   2733
   2734	mutex_unlock(&bmc->dyn_mutex);
   2735	mutex_unlock(&intf->bmc_reg_mutex);
   2736
   2737	kref_put(&intf->refcount, intf_free);
   2738	return rv;
   2739}
   2740
   2741static int bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
   2742			     struct ipmi_device_id *id,
   2743			     bool *guid_set, guid_t *guid)
   2744{
   2745	return __bmc_get_device_id(intf, bmc, id, guid_set, guid, -1);
   2746}
   2747
   2748static ssize_t device_id_show(struct device *dev,
   2749			      struct device_attribute *attr,
   2750			      char *buf)
   2751{
   2752	struct bmc_device *bmc = to_bmc_device(dev);
   2753	struct ipmi_device_id id;
   2754	int rv;
   2755
   2756	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
   2757	if (rv)
   2758		return rv;
   2759
   2760	return sysfs_emit(buf, "%u\n", id.device_id);
   2761}
   2762static DEVICE_ATTR_RO(device_id);
   2763
   2764static ssize_t provides_device_sdrs_show(struct device *dev,
   2765					 struct device_attribute *attr,
   2766					 char *buf)
   2767{
   2768	struct bmc_device *bmc = to_bmc_device(dev);
   2769	struct ipmi_device_id id;
   2770	int rv;
   2771
   2772	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
   2773	if (rv)
   2774		return rv;
   2775
   2776	return sysfs_emit(buf, "%u\n", (id.device_revision & 0x80) >> 7);
   2777}
   2778static DEVICE_ATTR_RO(provides_device_sdrs);
   2779
   2780static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
   2781			     char *buf)
   2782{
   2783	struct bmc_device *bmc = to_bmc_device(dev);
   2784	struct ipmi_device_id id;
   2785	int rv;
   2786
   2787	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
   2788	if (rv)
   2789		return rv;
   2790
   2791	return sysfs_emit(buf, "%u\n", id.device_revision & 0x0F);
   2792}
   2793static DEVICE_ATTR_RO(revision);
   2794
   2795static ssize_t firmware_revision_show(struct device *dev,
   2796				      struct device_attribute *attr,
   2797				      char *buf)
   2798{
   2799	struct bmc_device *bmc = to_bmc_device(dev);
   2800	struct ipmi_device_id id;
   2801	int rv;
   2802
   2803	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
   2804	if (rv)
   2805		return rv;
   2806
   2807	return sysfs_emit(buf, "%u.%x\n", id.firmware_revision_1,
   2808			id.firmware_revision_2);
   2809}
   2810static DEVICE_ATTR_RO(firmware_revision);
   2811
   2812static ssize_t ipmi_version_show(struct device *dev,
   2813				 struct device_attribute *attr,
   2814				 char *buf)
   2815{
   2816	struct bmc_device *bmc = to_bmc_device(dev);
   2817	struct ipmi_device_id id;
   2818	int rv;
   2819
   2820	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
   2821	if (rv)
   2822		return rv;
   2823
   2824	return sysfs_emit(buf, "%u.%u\n",
   2825			ipmi_version_major(&id),
   2826			ipmi_version_minor(&id));
   2827}
   2828static DEVICE_ATTR_RO(ipmi_version);
   2829
   2830static ssize_t add_dev_support_show(struct device *dev,
   2831				    struct device_attribute *attr,
   2832				    char *buf)
   2833{
   2834	struct bmc_device *bmc = to_bmc_device(dev);
   2835	struct ipmi_device_id id;
   2836	int rv;
   2837
   2838	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
   2839	if (rv)
   2840		return rv;
   2841
   2842	return sysfs_emit(buf, "0x%02x\n", id.additional_device_support);
   2843}
   2844static DEVICE_ATTR(additional_device_support, S_IRUGO, add_dev_support_show,
   2845		   NULL);
   2846
   2847static ssize_t manufacturer_id_show(struct device *dev,
   2848				    struct device_attribute *attr,
   2849				    char *buf)
   2850{
   2851	struct bmc_device *bmc = to_bmc_device(dev);
   2852	struct ipmi_device_id id;
   2853	int rv;
   2854
   2855	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
   2856	if (rv)
   2857		return rv;
   2858
   2859	return sysfs_emit(buf, "0x%6.6x\n", id.manufacturer_id);
   2860}
   2861static DEVICE_ATTR_RO(manufacturer_id);
   2862
   2863static ssize_t product_id_show(struct device *dev,
   2864			       struct device_attribute *attr,
   2865			       char *buf)
   2866{
   2867	struct bmc_device *bmc = to_bmc_device(dev);
   2868	struct ipmi_device_id id;
   2869	int rv;
   2870
   2871	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
   2872	if (rv)
   2873		return rv;
   2874
   2875	return sysfs_emit(buf, "0x%4.4x\n", id.product_id);
   2876}
   2877static DEVICE_ATTR_RO(product_id);
   2878
   2879static ssize_t aux_firmware_rev_show(struct device *dev,
   2880				     struct device_attribute *attr,
   2881				     char *buf)
   2882{
   2883	struct bmc_device *bmc = to_bmc_device(dev);
   2884	struct ipmi_device_id id;
   2885	int rv;
   2886
   2887	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
   2888	if (rv)
   2889		return rv;
   2890
   2891	return sysfs_emit(buf, "0x%02x 0x%02x 0x%02x 0x%02x\n",
   2892			id.aux_firmware_revision[3],
   2893			id.aux_firmware_revision[2],
   2894			id.aux_firmware_revision[1],
   2895			id.aux_firmware_revision[0]);
   2896}
   2897static DEVICE_ATTR(aux_firmware_revision, S_IRUGO, aux_firmware_rev_show, NULL);
   2898
   2899static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
   2900			 char *buf)
   2901{
   2902	struct bmc_device *bmc = to_bmc_device(dev);
   2903	bool guid_set;
   2904	guid_t guid;
   2905	int rv;
   2906
   2907	rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, &guid);
   2908	if (rv)
   2909		return rv;
   2910	if (!guid_set)
   2911		return -ENOENT;
   2912
   2913	return sysfs_emit(buf, "%pUl\n", &guid);
   2914}
   2915static DEVICE_ATTR_RO(guid);
   2916
   2917static struct attribute *bmc_dev_attrs[] = {
   2918	&dev_attr_device_id.attr,
   2919	&dev_attr_provides_device_sdrs.attr,
   2920	&dev_attr_revision.attr,
   2921	&dev_attr_firmware_revision.attr,
   2922	&dev_attr_ipmi_version.attr,
   2923	&dev_attr_additional_device_support.attr,
   2924	&dev_attr_manufacturer_id.attr,
   2925	&dev_attr_product_id.attr,
   2926	&dev_attr_aux_firmware_revision.attr,
   2927	&dev_attr_guid.attr,
   2928	NULL
   2929};
   2930
   2931static umode_t bmc_dev_attr_is_visible(struct kobject *kobj,
   2932				       struct attribute *attr, int idx)
   2933{
   2934	struct device *dev = kobj_to_dev(kobj);
   2935	struct bmc_device *bmc = to_bmc_device(dev);
   2936	umode_t mode = attr->mode;
   2937	int rv;
   2938
   2939	if (attr == &dev_attr_aux_firmware_revision.attr) {
   2940		struct ipmi_device_id id;
   2941
   2942		rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
   2943		return (!rv && id.aux_firmware_revision_set) ? mode : 0;
   2944	}
   2945	if (attr == &dev_attr_guid.attr) {
   2946		bool guid_set;
   2947
   2948		rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, NULL);
   2949		return (!rv && guid_set) ? mode : 0;
   2950	}
   2951	return mode;
   2952}
   2953
   2954static const struct attribute_group bmc_dev_attr_group = {
   2955	.attrs		= bmc_dev_attrs,
   2956	.is_visible	= bmc_dev_attr_is_visible,
   2957};
   2958
   2959static const struct attribute_group *bmc_dev_attr_groups[] = {
   2960	&bmc_dev_attr_group,
   2961	NULL
   2962};
   2963
   2964static const struct device_type bmc_device_type = {
   2965	.groups		= bmc_dev_attr_groups,
   2966};
   2967
   2968static int __find_bmc_guid(struct device *dev, const void *data)
   2969{
   2970	const guid_t *guid = data;
   2971	struct bmc_device *bmc;
   2972	int rv;
   2973
   2974	if (dev->type != &bmc_device_type)
   2975		return 0;
   2976
   2977	bmc = to_bmc_device(dev);
   2978	rv = bmc->dyn_guid_set && guid_equal(&bmc->guid, guid);
   2979	if (rv)
   2980		rv = kref_get_unless_zero(&bmc->usecount);
   2981	return rv;
   2982}
   2983
   2984/*
   2985 * Returns with the bmc's usecount incremented, if it is non-NULL.
   2986 */
   2987static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
   2988					     guid_t *guid)
   2989{
   2990	struct device *dev;
   2991	struct bmc_device *bmc = NULL;
   2992
   2993	dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
   2994	if (dev) {
   2995		bmc = to_bmc_device(dev);
   2996		put_device(dev);
   2997	}
   2998	return bmc;
   2999}
   3000
   3001struct prod_dev_id {
   3002	unsigned int  product_id;
   3003	unsigned char device_id;
   3004};
   3005
   3006static int __find_bmc_prod_dev_id(struct device *dev, const void *data)
   3007{
   3008	const struct prod_dev_id *cid = data;
   3009	struct bmc_device *bmc;
   3010	int rv;
   3011
   3012	if (dev->type != &bmc_device_type)
   3013		return 0;
   3014
   3015	bmc = to_bmc_device(dev);
   3016	rv = (bmc->id.product_id == cid->product_id
   3017	      && bmc->id.device_id == cid->device_id);
   3018	if (rv)
   3019		rv = kref_get_unless_zero(&bmc->usecount);
   3020	return rv;
   3021}
   3022
   3023/*
   3024 * Returns with the bmc's usecount incremented, if it is non-NULL.
   3025 */
   3026static struct bmc_device *ipmi_find_bmc_prod_dev_id(
   3027	struct device_driver *drv,
   3028	unsigned int product_id, unsigned char device_id)
   3029{
   3030	struct prod_dev_id id = {
   3031		.product_id = product_id,
   3032		.device_id = device_id,
   3033	};
   3034	struct device *dev;
   3035	struct bmc_device *bmc = NULL;
   3036
   3037	dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
   3038	if (dev) {
   3039		bmc = to_bmc_device(dev);
   3040		put_device(dev);
   3041	}
   3042	return bmc;
   3043}
   3044
   3045static DEFINE_IDA(ipmi_bmc_ida);
   3046
   3047static void
   3048release_bmc_device(struct device *dev)
   3049{
   3050	kfree(to_bmc_device(dev));
   3051}
   3052
   3053static void cleanup_bmc_work(struct work_struct *work)
   3054{
   3055	struct bmc_device *bmc = container_of(work, struct bmc_device,
   3056					      remove_work);
   3057	int id = bmc->pdev.id; /* Unregister overwrites id */
   3058
   3059	platform_device_unregister(&bmc->pdev);
   3060	ida_simple_remove(&ipmi_bmc_ida, id);
   3061}
   3062
   3063static void
   3064cleanup_bmc_device(struct kref *ref)
   3065{
   3066	struct bmc_device *bmc = container_of(ref, struct bmc_device, usecount);
   3067
   3068	/*
   3069	 * Remove the platform device in a work queue to avoid issues
   3070	 * with removing the device attributes while reading a device
   3071	 * attribute.
   3072	 */
   3073	queue_work(remove_work_wq, &bmc->remove_work);
   3074}
   3075
   3076/*
   3077 * Must be called with intf->bmc_reg_mutex held.
   3078 */
   3079static void __ipmi_bmc_unregister(struct ipmi_smi *intf)
   3080{
   3081	struct bmc_device *bmc = intf->bmc;
   3082
   3083	if (!intf->bmc_registered)
   3084		return;
   3085
   3086	sysfs_remove_link(&intf->si_dev->kobj, "bmc");
   3087	sysfs_remove_link(&bmc->pdev.dev.kobj, intf->my_dev_name);
   3088	kfree(intf->my_dev_name);
   3089	intf->my_dev_name = NULL;
   3090
   3091	mutex_lock(&bmc->dyn_mutex);
   3092	list_del(&intf->bmc_link);
   3093	mutex_unlock(&bmc->dyn_mutex);
   3094	intf->bmc = &intf->tmp_bmc;
   3095	kref_put(&bmc->usecount, cleanup_bmc_device);
   3096	intf->bmc_registered = false;
   3097}
   3098
   3099static void ipmi_bmc_unregister(struct ipmi_smi *intf)
   3100{
   3101	mutex_lock(&intf->bmc_reg_mutex);
   3102	__ipmi_bmc_unregister(intf);
   3103	mutex_unlock(&intf->bmc_reg_mutex);
   3104}
   3105
   3106/*
   3107 * Must be called with intf->bmc_reg_mutex held.
   3108 */
   3109static int __ipmi_bmc_register(struct ipmi_smi *intf,
   3110			       struct ipmi_device_id *id,
   3111			       bool guid_set, guid_t *guid, int intf_num)
   3112{
   3113	int               rv;
   3114	struct bmc_device *bmc;
   3115	struct bmc_device *old_bmc;
   3116
   3117	/*
   3118	 * platform_device_register() can cause bmc_reg_mutex to
   3119	 * be claimed because of the is_visible functions of
   3120	 * the attributes.  Eliminate possible recursion and
   3121	 * release the lock.
   3122	 */
   3123	intf->in_bmc_register = true;
   3124	mutex_unlock(&intf->bmc_reg_mutex);
   3125
   3126	/*
   3127	 * Try to find if there is an bmc_device struct
   3128	 * representing the interfaced BMC already
   3129	 */
   3130	mutex_lock(&ipmidriver_mutex);
   3131	if (guid_set)
   3132		old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, guid);
   3133	else
   3134		old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
   3135						    id->product_id,
   3136						    id->device_id);
   3137
   3138	/*
   3139	 * If there is already an bmc_device, free the new one,
   3140	 * otherwise register the new BMC device
   3141	 */
   3142	if (old_bmc) {
   3143		bmc = old_bmc;
   3144		/*
   3145		 * Note: old_bmc already has usecount incremented by
   3146		 * the BMC find functions.
   3147		 */
   3148		intf->bmc = old_bmc;
   3149		mutex_lock(&bmc->dyn_mutex);
   3150		list_add_tail(&intf->bmc_link, &bmc->intfs);
   3151		mutex_unlock(&bmc->dyn_mutex);
   3152
   3153		dev_info(intf->si_dev,
   3154			 "interfacing existing BMC (man_id: 0x%6.6x, prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
   3155			 bmc->id.manufacturer_id,
   3156			 bmc->id.product_id,
   3157			 bmc->id.device_id);
   3158	} else {
   3159		bmc = kzalloc(sizeof(*bmc), GFP_KERNEL);
   3160		if (!bmc) {
   3161			rv = -ENOMEM;
   3162			goto out;
   3163		}
   3164		INIT_LIST_HEAD(&bmc->intfs);
   3165		mutex_init(&bmc->dyn_mutex);
   3166		INIT_WORK(&bmc->remove_work, cleanup_bmc_work);
   3167
   3168		bmc->id = *id;
   3169		bmc->dyn_id_set = 1;
   3170		bmc->dyn_guid_set = guid_set;
   3171		bmc->guid = *guid;
   3172		bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY;
   3173
   3174		bmc->pdev.name = "ipmi_bmc";
   3175
   3176		rv = ida_simple_get(&ipmi_bmc_ida, 0, 0, GFP_KERNEL);
   3177		if (rv < 0) {
   3178			kfree(bmc);
   3179			goto out;
   3180		}
   3181
   3182		bmc->pdev.dev.driver = &ipmidriver.driver;
   3183		bmc->pdev.id = rv;
   3184		bmc->pdev.dev.release = release_bmc_device;
   3185		bmc->pdev.dev.type = &bmc_device_type;
   3186		kref_init(&bmc->usecount);
   3187
   3188		intf->bmc = bmc;
   3189		mutex_lock(&bmc->dyn_mutex);
   3190		list_add_tail(&intf->bmc_link, &bmc->intfs);
   3191		mutex_unlock(&bmc->dyn_mutex);
   3192
   3193		rv = platform_device_register(&bmc->pdev);
   3194		if (rv) {
   3195			dev_err(intf->si_dev,
   3196				"Unable to register bmc device: %d\n",
   3197				rv);
   3198			goto out_list_del;
   3199		}
   3200
   3201		dev_info(intf->si_dev,
   3202			 "Found new BMC (man_id: 0x%6.6x, prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
   3203			 bmc->id.manufacturer_id,
   3204			 bmc->id.product_id,
   3205			 bmc->id.device_id);
   3206	}
   3207
   3208	/*
   3209	 * create symlink from system interface device to bmc device
   3210	 * and back.
   3211	 */
   3212	rv = sysfs_create_link(&intf->si_dev->kobj, &bmc->pdev.dev.kobj, "bmc");
   3213	if (rv) {
   3214		dev_err(intf->si_dev, "Unable to create bmc symlink: %d\n", rv);
   3215		goto out_put_bmc;
   3216	}
   3217
   3218	if (intf_num == -1)
   3219		intf_num = intf->intf_num;
   3220	intf->my_dev_name = kasprintf(GFP_KERNEL, "ipmi%d", intf_num);
   3221	if (!intf->my_dev_name) {
   3222		rv = -ENOMEM;
   3223		dev_err(intf->si_dev, "Unable to allocate link from BMC: %d\n",
   3224			rv);
   3225		goto out_unlink1;
   3226	}
   3227
   3228	rv = sysfs_create_link(&bmc->pdev.dev.kobj, &intf->si_dev->kobj,
   3229			       intf->my_dev_name);
   3230	if (rv) {
   3231		dev_err(intf->si_dev, "Unable to create symlink to bmc: %d\n",
   3232			rv);
   3233		goto out_free_my_dev_name;
   3234	}
   3235
   3236	intf->bmc_registered = true;
   3237
   3238out:
   3239	mutex_unlock(&ipmidriver_mutex);
   3240	mutex_lock(&intf->bmc_reg_mutex);
   3241	intf->in_bmc_register = false;
   3242	return rv;
   3243
   3244
   3245out_free_my_dev_name:
   3246	kfree(intf->my_dev_name);
   3247	intf->my_dev_name = NULL;
   3248
   3249out_unlink1:
   3250	sysfs_remove_link(&intf->si_dev->kobj, "bmc");
   3251
   3252out_put_bmc:
   3253	mutex_lock(&bmc->dyn_mutex);
   3254	list_del(&intf->bmc_link);
   3255	mutex_unlock(&bmc->dyn_mutex);
   3256	intf->bmc = &intf->tmp_bmc;
   3257	kref_put(&bmc->usecount, cleanup_bmc_device);
   3258	goto out;
   3259
   3260out_list_del:
   3261	mutex_lock(&bmc->dyn_mutex);
   3262	list_del(&intf->bmc_link);
   3263	mutex_unlock(&bmc->dyn_mutex);
   3264	intf->bmc = &intf->tmp_bmc;
   3265	put_device(&bmc->pdev.dev);
   3266	goto out;
   3267}
   3268
   3269static int
   3270send_guid_cmd(struct ipmi_smi *intf, int chan)
   3271{
   3272	struct kernel_ipmi_msg            msg;
   3273	struct ipmi_system_interface_addr si;
   3274
   3275	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
   3276	si.channel = IPMI_BMC_CHANNEL;
   3277	si.lun = 0;
   3278
   3279	msg.netfn = IPMI_NETFN_APP_REQUEST;
   3280	msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
   3281	msg.data = NULL;
   3282	msg.data_len = 0;
   3283	return i_ipmi_request(NULL,
   3284			      intf,
   3285			      (struct ipmi_addr *) &si,
   3286			      0,
   3287			      &msg,
   3288			      intf,
   3289			      NULL,
   3290			      NULL,
   3291			      0,
   3292			      intf->addrinfo[0].address,
   3293			      intf->addrinfo[0].lun,
   3294			      -1, 0);
   3295}
   3296
   3297static void guid_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
   3298{
   3299	struct bmc_device *bmc = intf->bmc;
   3300
   3301	if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
   3302	    || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
   3303	    || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
   3304		/* Not for me */
   3305		return;
   3306
   3307	if (msg->msg.data[0] != 0) {
   3308		/* Error from getting the GUID, the BMC doesn't have one. */
   3309		bmc->dyn_guid_set = 0;
   3310		goto out;
   3311	}
   3312
   3313	if (msg->msg.data_len < UUID_SIZE + 1) {
   3314		bmc->dyn_guid_set = 0;
   3315		dev_warn(intf->si_dev,
   3316			 "The GUID response from the BMC was too short, it was %d but should have been %d.  Assuming GUID is not available.\n",
   3317			 msg->msg.data_len, UUID_SIZE + 1);
   3318		goto out;
   3319	}
   3320
   3321	import_guid(&bmc->fetch_guid, msg->msg.data + 1);
   3322	/*
   3323	 * Make sure the guid data is available before setting
   3324	 * dyn_guid_set.
   3325	 */
   3326	smp_wmb();
   3327	bmc->dyn_guid_set = 1;
   3328 out:
   3329	wake_up(&intf->waitq);
   3330}
   3331
   3332static void __get_guid(struct ipmi_smi *intf)
   3333{
   3334	int rv;
   3335	struct bmc_device *bmc = intf->bmc;
   3336
   3337	bmc->dyn_guid_set = 2;
   3338	intf->null_user_handler = guid_handler;
   3339	rv = send_guid_cmd(intf, 0);
   3340	if (rv)
   3341		/* Send failed, no GUID available. */
   3342		bmc->dyn_guid_set = 0;
   3343	else
   3344		wait_event(intf->waitq, bmc->dyn_guid_set != 2);
   3345
   3346	/* dyn_guid_set makes the guid data available. */
   3347	smp_rmb();
   3348
   3349	intf->null_user_handler = NULL;
   3350}
   3351
   3352static int
   3353send_channel_info_cmd(struct ipmi_smi *intf, int chan)
   3354{
   3355	struct kernel_ipmi_msg            msg;
   3356	unsigned char                     data[1];
   3357	struct ipmi_system_interface_addr si;
   3358
   3359	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
   3360	si.channel = IPMI_BMC_CHANNEL;
   3361	si.lun = 0;
   3362
   3363	msg.netfn = IPMI_NETFN_APP_REQUEST;
   3364	msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
   3365	msg.data = data;
   3366	msg.data_len = 1;
   3367	data[0] = chan;
   3368	return i_ipmi_request(NULL,
   3369			      intf,
   3370			      (struct ipmi_addr *) &si,
   3371			      0,
   3372			      &msg,
   3373			      intf,
   3374			      NULL,
   3375			      NULL,
   3376			      0,
   3377			      intf->addrinfo[0].address,
   3378			      intf->addrinfo[0].lun,
   3379			      -1, 0);
   3380}
   3381
   3382static void
   3383channel_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
   3384{
   3385	int rv = 0;
   3386	int ch;
   3387	unsigned int set = intf->curr_working_cset;
   3388	struct ipmi_channel *chans;
   3389
   3390	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
   3391	    && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
   3392	    && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) {
   3393		/* It's the one we want */
   3394		if (msg->msg.data[0] != 0) {
   3395			/* Got an error from the channel, just go on. */
   3396			if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
   3397				/*
   3398				 * If the MC does not support this
   3399				 * command, that is legal.  We just
   3400				 * assume it has one IPMB at channel
   3401				 * zero.
   3402				 */
   3403				intf->wchannels[set].c[0].medium
   3404					= IPMI_CHANNEL_MEDIUM_IPMB;
   3405				intf->wchannels[set].c[0].protocol
   3406					= IPMI_CHANNEL_PROTOCOL_IPMB;
   3407
   3408				intf->channel_list = intf->wchannels + set;
   3409				intf->channels_ready = true;
   3410				wake_up(&intf->waitq);
   3411				goto out;
   3412			}
   3413			goto next_channel;
   3414		}
   3415		if (msg->msg.data_len < 4) {
   3416			/* Message not big enough, just go on. */
   3417			goto next_channel;
   3418		}
   3419		ch = intf->curr_channel;
   3420		chans = intf->wchannels[set].c;
   3421		chans[ch].medium = msg->msg.data[2] & 0x7f;
   3422		chans[ch].protocol = msg->msg.data[3] & 0x1f;
   3423
   3424 next_channel:
   3425		intf->curr_channel++;
   3426		if (intf->curr_channel >= IPMI_MAX_CHANNELS) {
   3427			intf->channel_list = intf->wchannels + set;
   3428			intf->channels_ready = true;
   3429			wake_up(&intf->waitq);
   3430		} else {
   3431			intf->channel_list = intf->wchannels + set;
   3432			intf->channels_ready = true;
   3433			rv = send_channel_info_cmd(intf, intf->curr_channel);
   3434		}
   3435
   3436		if (rv) {
   3437			/* Got an error somehow, just give up. */
   3438			dev_warn(intf->si_dev,
   3439				 "Error sending channel information for channel %d: %d\n",
   3440				 intf->curr_channel, rv);
   3441
   3442			intf->channel_list = intf->wchannels + set;
   3443			intf->channels_ready = true;
   3444			wake_up(&intf->waitq);
   3445		}
   3446	}
   3447 out:
   3448	return;
   3449}
   3450
   3451/*
   3452 * Must be holding intf->bmc_reg_mutex to call this.
   3453 */
   3454static int __scan_channels(struct ipmi_smi *intf, struct ipmi_device_id *id)
   3455{
   3456	int rv;
   3457
   3458	if (ipmi_version_major(id) > 1
   3459			|| (ipmi_version_major(id) == 1
   3460			    && ipmi_version_minor(id) >= 5)) {
   3461		unsigned int set;
   3462
   3463		/*
   3464		 * Start scanning the channels to see what is
   3465		 * available.
   3466		 */
   3467		set = !intf->curr_working_cset;
   3468		intf->curr_working_cset = set;
   3469		memset(&intf->wchannels[set], 0,
   3470		       sizeof(struct ipmi_channel_set));
   3471
   3472		intf->null_user_handler = channel_handler;
   3473		intf->curr_channel = 0;
   3474		rv = send_channel_info_cmd(intf, 0);
   3475		if (rv) {
   3476			dev_warn(intf->si_dev,
   3477				 "Error sending channel information for channel 0, %d\n",
   3478				 rv);
   3479			intf->null_user_handler = NULL;
   3480			return -EIO;
   3481		}
   3482
   3483		/* Wait for the channel info to be read. */
   3484		wait_event(intf->waitq, intf->channels_ready);
   3485		intf->null_user_handler = NULL;
   3486	} else {
   3487		unsigned int set = intf->curr_working_cset;
   3488
   3489		/* Assume a single IPMB channel at zero. */
   3490		intf->wchannels[set].c[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
   3491		intf->wchannels[set].c[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
   3492		intf->channel_list = intf->wchannels + set;
   3493		intf->channels_ready = true;
   3494	}
   3495
   3496	return 0;
   3497}
   3498
   3499static void ipmi_poll(struct ipmi_smi *intf)
   3500{
   3501	if (intf->handlers->poll)
   3502		intf->handlers->poll(intf->send_info);
   3503	/* In case something came in */
   3504	handle_new_recv_msgs(intf);
   3505}
   3506
   3507void ipmi_poll_interface(struct ipmi_user *user)
   3508{
   3509	ipmi_poll(user->intf);
   3510}
   3511EXPORT_SYMBOL(ipmi_poll_interface);
   3512
   3513static ssize_t nr_users_show(struct device *dev,
   3514			     struct device_attribute *attr,
   3515			     char *buf)
   3516{
   3517	struct ipmi_smi *intf = container_of(attr,
   3518			 struct ipmi_smi, nr_users_devattr);
   3519
   3520	return sysfs_emit(buf, "%d\n", atomic_read(&intf->nr_users));
   3521}
   3522static DEVICE_ATTR_RO(nr_users);
   3523
   3524static ssize_t nr_msgs_show(struct device *dev,
   3525			    struct device_attribute *attr,
   3526			    char *buf)
   3527{
   3528	struct ipmi_smi *intf = container_of(attr,
   3529			 struct ipmi_smi, nr_msgs_devattr);
   3530	struct ipmi_user *user;
   3531	int index;
   3532	unsigned int count = 0;
   3533
   3534	index = srcu_read_lock(&intf->users_srcu);
   3535	list_for_each_entry_rcu(user, &intf->users, link)
   3536		count += atomic_read(&user->nr_msgs);
   3537	srcu_read_unlock(&intf->users_srcu, index);
   3538
   3539	return sysfs_emit(buf, "%u\n", count);
   3540}
   3541static DEVICE_ATTR_RO(nr_msgs);
   3542
   3543static void redo_bmc_reg(struct work_struct *work)
   3544{
   3545	struct ipmi_smi *intf = container_of(work, struct ipmi_smi,
   3546					     bmc_reg_work);
   3547
   3548	if (!intf->in_shutdown)
   3549		bmc_get_device_id(intf, NULL, NULL, NULL, NULL);
   3550
   3551	kref_put(&intf->refcount, intf_free);
   3552}
   3553
   3554int ipmi_add_smi(struct module         *owner,
   3555		 const struct ipmi_smi_handlers *handlers,
   3556		 void		       *send_info,
   3557		 struct device         *si_dev,
   3558		 unsigned char         slave_addr)
   3559{
   3560	int              i, j;
   3561	int              rv;
   3562	struct ipmi_smi *intf, *tintf;
   3563	struct list_head *link;
   3564	struct ipmi_device_id id;
   3565
   3566	/*
   3567	 * Make sure the driver is actually initialized, this handles
   3568	 * problems with initialization order.
   3569	 */
   3570	rv = ipmi_init_msghandler();
   3571	if (rv)
   3572		return rv;
   3573
   3574	intf = kzalloc(sizeof(*intf), GFP_KERNEL);
   3575	if (!intf)
   3576		return -ENOMEM;
   3577
   3578	rv = init_srcu_struct(&intf->users_srcu);
   3579	if (rv) {
   3580		kfree(intf);
   3581		return rv;
   3582	}
   3583
   3584	intf->owner = owner;
   3585	intf->bmc = &intf->tmp_bmc;
   3586	INIT_LIST_HEAD(&intf->bmc->intfs);
   3587	mutex_init(&intf->bmc->dyn_mutex);
   3588	INIT_LIST_HEAD(&intf->bmc_link);
   3589	mutex_init(&intf->bmc_reg_mutex);
   3590	intf->intf_num = -1; /* Mark it invalid for now. */
   3591	kref_init(&intf->refcount);
   3592	INIT_WORK(&intf->bmc_reg_work, redo_bmc_reg);
   3593	intf->si_dev = si_dev;
   3594	for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
   3595		intf->addrinfo[j].address = IPMI_BMC_SLAVE_ADDR;
   3596		intf->addrinfo[j].lun = 2;
   3597	}
   3598	if (slave_addr != 0)
   3599		intf->addrinfo[0].address = slave_addr;
   3600	INIT_LIST_HEAD(&intf->users);
   3601	atomic_set(&intf->nr_users, 0);
   3602	intf->handlers = handlers;
   3603	intf->send_info = send_info;
   3604	spin_lock_init(&intf->seq_lock);
   3605	for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
   3606		intf->seq_table[j].inuse = 0;
   3607		intf->seq_table[j].seqid = 0;
   3608	}
   3609	intf->curr_seq = 0;
   3610	spin_lock_init(&intf->waiting_rcv_msgs_lock);
   3611	INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
   3612	tasklet_setup(&intf->recv_tasklet,
   3613		     smi_recv_tasklet);
   3614	atomic_set(&intf->watchdog_pretimeouts_to_deliver, 0);
   3615	spin_lock_init(&intf->xmit_msgs_lock);
   3616	INIT_LIST_HEAD(&intf->xmit_msgs);
   3617	INIT_LIST_HEAD(&intf->hp_xmit_msgs);
   3618	spin_lock_init(&intf->events_lock);
   3619	spin_lock_init(&intf->watch_lock);
   3620	atomic_set(&intf->event_waiters, 0);
   3621	intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
   3622	INIT_LIST_HEAD(&intf->waiting_events);
   3623	intf->waiting_events_count = 0;
   3624	mutex_init(&intf->cmd_rcvrs_mutex);
   3625	spin_lock_init(&intf->maintenance_mode_lock);
   3626	INIT_LIST_HEAD(&intf->cmd_rcvrs);
   3627	init_waitqueue_head(&intf->waitq);
   3628	for (i = 0; i < IPMI_NUM_STATS; i++)
   3629		atomic_set(&intf->stats[i], 0);
   3630
   3631	mutex_lock(&ipmi_interfaces_mutex);
   3632	/* Look for a hole in the numbers. */
   3633	i = 0;
   3634	link = &ipmi_interfaces;
   3635	list_for_each_entry_rcu(tintf, &ipmi_interfaces, link,
   3636				ipmi_interfaces_mutex_held()) {
   3637		if (tintf->intf_num != i) {
   3638			link = &tintf->link;
   3639			break;
   3640		}
   3641		i++;
   3642	}
   3643	/* Add the new interface in numeric order. */
   3644	if (i == 0)
   3645		list_add_rcu(&intf->link, &ipmi_interfaces);
   3646	else
   3647		list_add_tail_rcu(&intf->link, link);
   3648
   3649	rv = handlers->start_processing(send_info, intf);
   3650	if (rv)
   3651		goto out_err;
   3652
   3653	rv = __bmc_get_device_id(intf, NULL, &id, NULL, NULL, i);
   3654	if (rv) {
   3655		dev_err(si_dev, "Unable to get the device id: %d\n", rv);
   3656		goto out_err_started;
   3657	}
   3658
   3659	mutex_lock(&intf->bmc_reg_mutex);
   3660	rv = __scan_channels(intf, &id);
   3661	mutex_unlock(&intf->bmc_reg_mutex);
   3662	if (rv)
   3663		goto out_err_bmc_reg;
   3664
   3665	intf->nr_users_devattr = dev_attr_nr_users;
   3666	sysfs_attr_init(&intf->nr_users_devattr.attr);
   3667	rv = device_create_file(intf->si_dev, &intf->nr_users_devattr);
   3668	if (rv)
   3669		goto out_err_bmc_reg;
   3670
   3671	intf->nr_msgs_devattr = dev_attr_nr_msgs;
   3672	sysfs_attr_init(&intf->nr_msgs_devattr.attr);
   3673	rv = device_create_file(intf->si_dev, &intf->nr_msgs_devattr);
   3674	if (rv) {
   3675		device_remove_file(intf->si_dev, &intf->nr_users_devattr);
   3676		goto out_err_bmc_reg;
   3677	}
   3678
   3679	/*
   3680	 * Keep memory order straight for RCU readers.  Make
   3681	 * sure everything else is committed to memory before
   3682	 * setting intf_num to mark the interface valid.
   3683	 */
   3684	smp_wmb();
   3685	intf->intf_num = i;
   3686	mutex_unlock(&ipmi_interfaces_mutex);
   3687
   3688	/* After this point the interface is legal to use. */
   3689	call_smi_watchers(i, intf->si_dev);
   3690
   3691	return 0;
   3692
   3693 out_err_bmc_reg:
   3694	ipmi_bmc_unregister(intf);
   3695 out_err_started:
   3696	if (intf->handlers->shutdown)
   3697		intf->handlers->shutdown(intf->send_info);
   3698 out_err:
   3699	list_del_rcu(&intf->link);
   3700	mutex_unlock(&ipmi_interfaces_mutex);
   3701	synchronize_srcu(&ipmi_interfaces_srcu);
   3702	cleanup_srcu_struct(&intf->users_srcu);
   3703	kref_put(&intf->refcount, intf_free);
   3704
   3705	return rv;
   3706}
   3707EXPORT_SYMBOL(ipmi_add_smi);
   3708
   3709static void deliver_smi_err_response(struct ipmi_smi *intf,
   3710				     struct ipmi_smi_msg *msg,
   3711				     unsigned char err)
   3712{
   3713	msg->rsp[0] = msg->data[0] | 4;
   3714	msg->rsp[1] = msg->data[1];
   3715	msg->rsp[2] = err;
   3716	msg->rsp_size = 3;
   3717	/* It's an error, so it will never requeue, no need to check return. */
   3718	handle_one_recv_msg(intf, msg);
   3719}
   3720
   3721static void cleanup_smi_msgs(struct ipmi_smi *intf)
   3722{
   3723	int              i;
   3724	struct seq_table *ent;
   3725	struct ipmi_smi_msg *msg;
   3726	struct list_head *entry;
   3727	struct list_head tmplist;
   3728
   3729	/* Clear out our transmit queues and hold the messages. */
   3730	INIT_LIST_HEAD(&tmplist);
   3731	list_splice_tail(&intf->hp_xmit_msgs, &tmplist);
   3732	list_splice_tail(&intf->xmit_msgs, &tmplist);
   3733
   3734	/* Current message first, to preserve order */
   3735	while (intf->curr_msg && !list_empty(&intf->waiting_rcv_msgs)) {
   3736		/* Wait for the message to clear out. */
   3737		schedule_timeout(1);
   3738	}
   3739
   3740	/* No need for locks, the interface is down. */
   3741
   3742	/*
   3743	 * Return errors for all pending messages in queue and in the
   3744	 * tables waiting for remote responses.
   3745	 */
   3746	while (!list_empty(&tmplist)) {
   3747		entry = tmplist.next;
   3748		list_del(entry);
   3749		msg = list_entry(entry, struct ipmi_smi_msg, link);
   3750		deliver_smi_err_response(intf, msg, IPMI_ERR_UNSPECIFIED);
   3751	}
   3752
   3753	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
   3754		ent = &intf->seq_table[i];
   3755		if (!ent->inuse)
   3756			continue;
   3757		deliver_err_response(intf, ent->recv_msg, IPMI_ERR_UNSPECIFIED);
   3758	}
   3759}
   3760
   3761void ipmi_unregister_smi(struct ipmi_smi *intf)
   3762{
   3763	struct ipmi_smi_watcher *w;
   3764	int intf_num, index;
   3765
   3766	if (!intf)
   3767		return;
   3768	intf_num = intf->intf_num;
   3769	mutex_lock(&ipmi_interfaces_mutex);
   3770	intf->intf_num = -1;
   3771	intf->in_shutdown = true;
   3772	list_del_rcu(&intf->link);
   3773	mutex_unlock(&ipmi_interfaces_mutex);
   3774	synchronize_srcu(&ipmi_interfaces_srcu);
   3775
   3776	/* At this point no users can be added to the interface. */
   3777
   3778	device_remove_file(intf->si_dev, &intf->nr_msgs_devattr);
   3779	device_remove_file(intf->si_dev, &intf->nr_users_devattr);
   3780
   3781	/*
   3782	 * Call all the watcher interfaces to tell them that
   3783	 * an interface is going away.
   3784	 */
   3785	mutex_lock(&smi_watchers_mutex);
   3786	list_for_each_entry(w, &smi_watchers, link)
   3787		w->smi_gone(intf_num);
   3788	mutex_unlock(&smi_watchers_mutex);
   3789
   3790	index = srcu_read_lock(&intf->users_srcu);
   3791	while (!list_empty(&intf->users)) {
   3792		struct ipmi_user *user =
   3793			container_of(list_next_rcu(&intf->users),
   3794				     struct ipmi_user, link);
   3795
   3796		_ipmi_destroy_user(user);
   3797	}
   3798	srcu_read_unlock(&intf->users_srcu, index);
   3799
   3800	if (intf->handlers->shutdown)
   3801		intf->handlers->shutdown(intf->send_info);
   3802
   3803	cleanup_smi_msgs(intf);
   3804
   3805	ipmi_bmc_unregister(intf);
   3806
   3807	cleanup_srcu_struct(&intf->users_srcu);
   3808	kref_put(&intf->refcount, intf_free);
   3809}
   3810EXPORT_SYMBOL(ipmi_unregister_smi);
   3811
   3812static int handle_ipmb_get_msg_rsp(struct ipmi_smi *intf,
   3813				   struct ipmi_smi_msg *msg)
   3814{
   3815	struct ipmi_ipmb_addr ipmb_addr;
   3816	struct ipmi_recv_msg  *recv_msg;
   3817
   3818	/*
   3819	 * This is 11, not 10, because the response must contain a
   3820	 * completion code.
   3821	 */
   3822	if (msg->rsp_size < 11) {
   3823		/* Message not big enough, just ignore it. */
   3824		ipmi_inc_stat(intf, invalid_ipmb_responses);
   3825		return 0;
   3826	}
   3827
   3828	if (msg->rsp[2] != 0) {
   3829		/* An error getting the response, just ignore it. */
   3830		return 0;
   3831	}
   3832
   3833	ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
   3834	ipmb_addr.slave_addr = msg->rsp[6];
   3835	ipmb_addr.channel = msg->rsp[3] & 0x0f;
   3836	ipmb_addr.lun = msg->rsp[7] & 3;
   3837
   3838	/*
   3839	 * It's a response from a remote entity.  Look up the sequence
   3840	 * number and handle the response.
   3841	 */
   3842	if (intf_find_seq(intf,
   3843			  msg->rsp[7] >> 2,
   3844			  msg->rsp[3] & 0x0f,
   3845			  msg->rsp[8],
   3846			  (msg->rsp[4] >> 2) & (~1),
   3847			  (struct ipmi_addr *) &ipmb_addr,
   3848			  &recv_msg)) {
   3849		/*
   3850		 * We were unable to find the sequence number,
   3851		 * so just nuke the message.
   3852		 */
   3853		ipmi_inc_stat(intf, unhandled_ipmb_responses);
   3854		return 0;
   3855	}
   3856
   3857	memcpy(recv_msg->msg_data, &msg->rsp[9], msg->rsp_size - 9);
   3858	/*
   3859	 * The other fields matched, so no need to set them, except
   3860	 * for netfn, which needs to be the response that was
   3861	 * returned, not the request value.
   3862	 */
   3863	recv_msg->msg.netfn = msg->rsp[4] >> 2;
   3864	recv_msg->msg.data = recv_msg->msg_data;
   3865	recv_msg->msg.data_len = msg->rsp_size - 10;
   3866	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
   3867	if (deliver_response(intf, recv_msg))
   3868		ipmi_inc_stat(intf, unhandled_ipmb_responses);
   3869	else
   3870		ipmi_inc_stat(intf, handled_ipmb_responses);
   3871
   3872	return 0;
   3873}
   3874
   3875static int handle_ipmb_get_msg_cmd(struct ipmi_smi *intf,
   3876				   struct ipmi_smi_msg *msg)
   3877{
   3878	struct cmd_rcvr          *rcvr;
   3879	int                      rv = 0;
   3880	unsigned char            netfn;
   3881	unsigned char            cmd;
   3882	unsigned char            chan;
   3883	struct ipmi_user         *user = NULL;
   3884	struct ipmi_ipmb_addr    *ipmb_addr;
   3885	struct ipmi_recv_msg     *recv_msg;
   3886
   3887	if (msg->rsp_size < 10) {
   3888		/* Message not big enough, just ignore it. */
   3889		ipmi_inc_stat(intf, invalid_commands);
   3890		return 0;
   3891	}
   3892
   3893	if (msg->rsp[2] != 0) {
   3894		/* An error getting the response, just ignore it. */
   3895		return 0;
   3896	}
   3897
   3898	netfn = msg->rsp[4] >> 2;
   3899	cmd = msg->rsp[8];
   3900	chan = msg->rsp[3] & 0xf;
   3901
   3902	rcu_read_lock();
   3903	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
   3904	if (rcvr) {
   3905		user = rcvr->user;
   3906		kref_get(&user->refcount);
   3907	} else
   3908		user = NULL;
   3909	rcu_read_unlock();
   3910
   3911	if (user == NULL) {
   3912		/* We didn't find a user, deliver an error response. */
   3913		ipmi_inc_stat(intf, unhandled_commands);
   3914
   3915		msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
   3916		msg->data[1] = IPMI_SEND_MSG_CMD;
   3917		msg->data[2] = msg->rsp[3];
   3918		msg->data[3] = msg->rsp[6];
   3919		msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
   3920		msg->data[5] = ipmb_checksum(&msg->data[3], 2);
   3921		msg->data[6] = intf->addrinfo[msg->rsp[3] & 0xf].address;
   3922		/* rqseq/lun */
   3923		msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
   3924		msg->data[8] = msg->rsp[8]; /* cmd */
   3925		msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
   3926		msg->data[10] = ipmb_checksum(&msg->data[6], 4);
   3927		msg->data_size = 11;
   3928
   3929		dev_dbg(intf->si_dev, "Invalid command: %*ph\n",
   3930			msg->data_size, msg->data);
   3931
   3932		rcu_read_lock();
   3933		if (!intf->in_shutdown) {
   3934			smi_send(intf, intf->handlers, msg, 0);
   3935			/*
   3936			 * We used the message, so return the value
   3937			 * that causes it to not be freed or
   3938			 * queued.
   3939			 */
   3940			rv = -1;
   3941		}
   3942		rcu_read_unlock();
   3943	} else {
   3944		recv_msg = ipmi_alloc_recv_msg();
   3945		if (!recv_msg) {
   3946			/*
   3947			 * We couldn't allocate memory for the
   3948			 * message, so requeue it for handling
   3949			 * later.
   3950			 */
   3951			rv = 1;
   3952			kref_put(&user->refcount, free_user);
   3953		} else {
   3954			/* Extract the source address from the data. */
   3955			ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
   3956			ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
   3957			ipmb_addr->slave_addr = msg->rsp[6];
   3958			ipmb_addr->lun = msg->rsp[7] & 3;
   3959			ipmb_addr->channel = msg->rsp[3] & 0xf;
   3960
   3961			/*
   3962			 * Extract the rest of the message information
   3963			 * from the IPMB header.
   3964			 */
   3965			recv_msg->user = user;
   3966			recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
   3967			recv_msg->msgid = msg->rsp[7] >> 2;
   3968			recv_msg->msg.netfn = msg->rsp[4] >> 2;
   3969			recv_msg->msg.cmd = msg->rsp[8];
   3970			recv_msg->msg.data = recv_msg->msg_data;
   3971
   3972			/*
   3973			 * We chop off 10, not 9 bytes because the checksum
   3974			 * at the end also needs to be removed.
   3975			 */
   3976			recv_msg->msg.data_len = msg->rsp_size - 10;
   3977			memcpy(recv_msg->msg_data, &msg->rsp[9],
   3978			       msg->rsp_size - 10);
   3979			if (deliver_response(intf, recv_msg))
   3980				ipmi_inc_stat(intf, unhandled_commands);
   3981			else
   3982				ipmi_inc_stat(intf, handled_commands);
   3983		}
   3984	}
   3985
   3986	return rv;
   3987}
   3988
   3989static int handle_ipmb_direct_rcv_cmd(struct ipmi_smi *intf,
   3990				      struct ipmi_smi_msg *msg)
   3991{
   3992	struct cmd_rcvr          *rcvr;
   3993	int                      rv = 0;
   3994	struct ipmi_user         *user = NULL;
   3995	struct ipmi_ipmb_direct_addr *daddr;
   3996	struct ipmi_recv_msg     *recv_msg;
   3997	unsigned char netfn = msg->rsp[0] >> 2;
   3998	unsigned char cmd = msg->rsp[3];
   3999
   4000	rcu_read_lock();
   4001	/* We always use channel 0 for direct messages. */
   4002	rcvr = find_cmd_rcvr(intf, netfn, cmd, 0);
   4003	if (rcvr) {
   4004		user = rcvr->user;
   4005		kref_get(&user->refcount);
   4006	} else
   4007		user = NULL;
   4008	rcu_read_unlock();
   4009
   4010	if (user == NULL) {
   4011		/* We didn't find a user, deliver an error response. */
   4012		ipmi_inc_stat(intf, unhandled_commands);
   4013
   4014		msg->data[0] = (netfn + 1) << 2;
   4015		msg->data[0] |= msg->rsp[2] & 0x3; /* rqLUN */
   4016		msg->data[1] = msg->rsp[1]; /* Addr */
   4017		msg->data[2] = msg->rsp[2] & ~0x3; /* rqSeq */
   4018		msg->data[2] |= msg->rsp[0] & 0x3; /* rsLUN */
   4019		msg->data[3] = cmd;
   4020		msg->data[4] = IPMI_INVALID_CMD_COMPLETION_CODE;
   4021		msg->data_size = 5;
   4022
   4023		rcu_read_lock();
   4024		if (!intf->in_shutdown) {
   4025			smi_send(intf, intf->handlers, msg, 0);
   4026			/*
   4027			 * We used the message, so return the value
   4028			 * that causes it to not be freed or
   4029			 * queued.
   4030			 */
   4031			rv = -1;
   4032		}
   4033		rcu_read_unlock();
   4034	} else {
   4035		recv_msg = ipmi_alloc_recv_msg();
   4036		if (!recv_msg) {
   4037			/*
   4038			 * We couldn't allocate memory for the
   4039			 * message, so requeue it for handling
   4040			 * later.
   4041			 */
   4042			rv = 1;
   4043			kref_put(&user->refcount, free_user);
   4044		} else {
   4045			/* Extract the source address from the data. */
   4046			daddr = (struct ipmi_ipmb_direct_addr *)&recv_msg->addr;
   4047			daddr->addr_type = IPMI_IPMB_DIRECT_ADDR_TYPE;
   4048			daddr->channel = 0;
   4049			daddr->slave_addr = msg->rsp[1];
   4050			daddr->rs_lun = msg->rsp[0] & 3;
   4051			daddr->rq_lun = msg->rsp[2] & 3;
   4052
   4053			/*
   4054			 * Extract the rest of the message information
   4055			 * from the IPMB header.
   4056			 */
   4057			recv_msg->user = user;
   4058			recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
   4059			recv_msg->msgid = (msg->rsp[2] >> 2);
   4060			recv_msg->msg.netfn = msg->rsp[0] >> 2;
   4061			recv_msg->msg.cmd = msg->rsp[3];
   4062			recv_msg->msg.data = recv_msg->msg_data;
   4063
   4064			recv_msg->msg.data_len = msg->rsp_size - 4;
   4065			memcpy(recv_msg->msg_data, msg->rsp + 4,
   4066			       msg->rsp_size - 4);
   4067			if (deliver_response(intf, recv_msg))
   4068				ipmi_inc_stat(intf, unhandled_commands);
   4069			else
   4070				ipmi_inc_stat(intf, handled_commands);
   4071		}
   4072	}
   4073
   4074	return rv;
   4075}
   4076
   4077static int handle_ipmb_direct_rcv_rsp(struct ipmi_smi *intf,
   4078				      struct ipmi_smi_msg *msg)
   4079{
   4080	struct ipmi_recv_msg *recv_msg;
   4081	struct ipmi_ipmb_direct_addr *daddr;
   4082
   4083	recv_msg = msg->user_data;
   4084	if (recv_msg == NULL) {
   4085		dev_warn(intf->si_dev,
   4086			 "IPMI direct message received with no owner. This could be because of a malformed message, or because of a hardware error.  Contact your hardware vendor for assistance.\n");
   4087		return 0;
   4088	}
   4089
   4090	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
   4091	recv_msg->msgid = msg->msgid;
   4092	daddr = (struct ipmi_ipmb_direct_addr *) &recv_msg->addr;
   4093	daddr->addr_type = IPMI_IPMB_DIRECT_ADDR_TYPE;
   4094	daddr->channel = 0;
   4095	daddr->slave_addr = msg->rsp[1];
   4096	daddr->rq_lun = msg->rsp[0] & 3;
   4097	daddr->rs_lun = msg->rsp[2] & 3;
   4098	recv_msg->msg.netfn = msg->rsp[0] >> 2;
   4099	recv_msg->msg.cmd = msg->rsp[3];
   4100	memcpy(recv_msg->msg_data, &msg->rsp[4], msg->rsp_size - 4);
   4101	recv_msg->msg.data = recv_msg->msg_data;
   4102	recv_msg->msg.data_len = msg->rsp_size - 4;
   4103	deliver_local_response(intf, recv_msg);
   4104
   4105	return 0;
   4106}
   4107
   4108static int handle_lan_get_msg_rsp(struct ipmi_smi *intf,
   4109				  struct ipmi_smi_msg *msg)
   4110{
   4111	struct ipmi_lan_addr  lan_addr;
   4112	struct ipmi_recv_msg  *recv_msg;
   4113
   4114
   4115	/*
   4116	 * This is 13, not 12, because the response must contain a
   4117	 * completion code.
   4118	 */
   4119	if (msg->rsp_size < 13) {
   4120		/* Message not big enough, just ignore it. */
   4121		ipmi_inc_stat(intf, invalid_lan_responses);
   4122		return 0;
   4123	}
   4124
   4125	if (msg->rsp[2] != 0) {
   4126		/* An error getting the response, just ignore it. */
   4127		return 0;
   4128	}
   4129
   4130	lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
   4131	lan_addr.session_handle = msg->rsp[4];
   4132	lan_addr.remote_SWID = msg->rsp[8];
   4133	lan_addr.local_SWID = msg->rsp[5];
   4134	lan_addr.channel = msg->rsp[3] & 0x0f;
   4135	lan_addr.privilege = msg->rsp[3] >> 4;
   4136	lan_addr.lun = msg->rsp[9] & 3;
   4137
   4138	/*
   4139	 * It's a response from a remote entity.  Look up the sequence
   4140	 * number and handle the response.
   4141	 */
   4142	if (intf_find_seq(intf,
   4143			  msg->rsp[9] >> 2,
   4144			  msg->rsp[3] & 0x0f,
   4145			  msg->rsp[10],
   4146			  (msg->rsp[6] >> 2) & (~1),
   4147			  (struct ipmi_addr *) &lan_addr,
   4148			  &recv_msg)) {
   4149		/*
   4150		 * We were unable to find the sequence number,
   4151		 * so just nuke the message.
   4152		 */
   4153		ipmi_inc_stat(intf, unhandled_lan_responses);
   4154		return 0;
   4155	}
   4156
   4157	memcpy(recv_msg->msg_data, &msg->rsp[11], msg->rsp_size - 11);
   4158	/*
   4159	 * The other fields matched, so no need to set them, except
   4160	 * for netfn, which needs to be the response that was
   4161	 * returned, not the request value.
   4162	 */
   4163	recv_msg->msg.netfn = msg->rsp[6] >> 2;
   4164	recv_msg->msg.data = recv_msg->msg_data;
   4165	recv_msg->msg.data_len = msg->rsp_size - 12;
   4166	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
   4167	if (deliver_response(intf, recv_msg))
   4168		ipmi_inc_stat(intf, unhandled_lan_responses);
   4169	else
   4170		ipmi_inc_stat(intf, handled_lan_responses);
   4171
   4172	return 0;
   4173}
   4174
   4175static int handle_lan_get_msg_cmd(struct ipmi_smi *intf,
   4176				  struct ipmi_smi_msg *msg)
   4177{
   4178	struct cmd_rcvr          *rcvr;
   4179	int                      rv = 0;
   4180	unsigned char            netfn;
   4181	unsigned char            cmd;
   4182	unsigned char            chan;
   4183	struct ipmi_user         *user = NULL;
   4184	struct ipmi_lan_addr     *lan_addr;
   4185	struct ipmi_recv_msg     *recv_msg;
   4186
   4187	if (msg->rsp_size < 12) {
   4188		/* Message not big enough, just ignore it. */
   4189		ipmi_inc_stat(intf, invalid_commands);
   4190		return 0;
   4191	}
   4192
   4193	if (msg->rsp[2] != 0) {
   4194		/* An error getting the response, just ignore it. */
   4195		return 0;
   4196	}
   4197
   4198	netfn = msg->rsp[6] >> 2;
   4199	cmd = msg->rsp[10];
   4200	chan = msg->rsp[3] & 0xf;
   4201
   4202	rcu_read_lock();
   4203	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
   4204	if (rcvr) {
   4205		user = rcvr->user;
   4206		kref_get(&user->refcount);
   4207	} else
   4208		user = NULL;
   4209	rcu_read_unlock();
   4210
   4211	if (user == NULL) {
   4212		/* We didn't find a user, just give up. */
   4213		ipmi_inc_stat(intf, unhandled_commands);
   4214
   4215		/*
   4216		 * Don't do anything with these messages, just allow
   4217		 * them to be freed.
   4218		 */
   4219		rv = 0;
   4220	} else {
   4221		recv_msg = ipmi_alloc_recv_msg();
   4222		if (!recv_msg) {
   4223			/*
   4224			 * We couldn't allocate memory for the
   4225			 * message, so requeue it for handling later.
   4226			 */
   4227			rv = 1;
   4228			kref_put(&user->refcount, free_user);
   4229		} else {
   4230			/* Extract the source address from the data. */
   4231			lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
   4232			lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
   4233			lan_addr->session_handle = msg->rsp[4];
   4234			lan_addr->remote_SWID = msg->rsp[8];
   4235			lan_addr->local_SWID = msg->rsp[5];
   4236			lan_addr->lun = msg->rsp[9] & 3;
   4237			lan_addr->channel = msg->rsp[3] & 0xf;
   4238			lan_addr->privilege = msg->rsp[3] >> 4;
   4239
   4240			/*
   4241			 * Extract the rest of the message information
   4242			 * from the IPMB header.
   4243			 */
   4244			recv_msg->user = user;
   4245			recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
   4246			recv_msg->msgid = msg->rsp[9] >> 2;
   4247			recv_msg->msg.netfn = msg->rsp[6] >> 2;
   4248			recv_msg->msg.cmd = msg->rsp[10];
   4249			recv_msg->msg.data = recv_msg->msg_data;
   4250
   4251			/*
   4252			 * We chop off 12, not 11 bytes because the checksum
   4253			 * at the end also needs to be removed.
   4254			 */
   4255			recv_msg->msg.data_len = msg->rsp_size - 12;
   4256			memcpy(recv_msg->msg_data, &msg->rsp[11],
   4257			       msg->rsp_size - 12);
   4258			if (deliver_response(intf, recv_msg))
   4259				ipmi_inc_stat(intf, unhandled_commands);
   4260			else
   4261				ipmi_inc_stat(intf, handled_commands);
   4262		}
   4263	}
   4264
   4265	return rv;
   4266}
   4267
   4268/*
   4269 * This routine will handle "Get Message" command responses with
   4270 * channels that use an OEM Medium. The message format belongs to
   4271 * the OEM.  See IPMI 2.0 specification, Chapter 6 and
   4272 * Chapter 22, sections 22.6 and 22.24 for more details.
   4273 */
   4274static int handle_oem_get_msg_cmd(struct ipmi_smi *intf,
   4275				  struct ipmi_smi_msg *msg)
   4276{
   4277	struct cmd_rcvr       *rcvr;
   4278	int                   rv = 0;
   4279	unsigned char         netfn;
   4280	unsigned char         cmd;
   4281	unsigned char         chan;
   4282	struct ipmi_user *user = NULL;
   4283	struct ipmi_system_interface_addr *smi_addr;
   4284	struct ipmi_recv_msg  *recv_msg;
   4285
   4286	/*
   4287	 * We expect the OEM SW to perform error checking
   4288	 * so we just do some basic sanity checks
   4289	 */
   4290	if (msg->rsp_size < 4) {
   4291		/* Message not big enough, just ignore it. */
   4292		ipmi_inc_stat(intf, invalid_commands);
   4293		return 0;
   4294	}
   4295
   4296	if (msg->rsp[2] != 0) {
   4297		/* An error getting the response, just ignore it. */
   4298		return 0;
   4299	}
   4300
   4301	/*
   4302	 * This is an OEM Message so the OEM needs to know how
   4303	 * handle the message. We do no interpretation.
   4304	 */
   4305	netfn = msg->rsp[0] >> 2;
   4306	cmd = msg->rsp[1];
   4307	chan = msg->rsp[3] & 0xf;
   4308
   4309	rcu_read_lock();
   4310	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
   4311	if (rcvr) {
   4312		user = rcvr->user;
   4313		kref_get(&user->refcount);
   4314	} else
   4315		user = NULL;
   4316	rcu_read_unlock();
   4317
   4318	if (user == NULL) {
   4319		/* We didn't find a user, just give up. */
   4320		ipmi_inc_stat(intf, unhandled_commands);
   4321
   4322		/*
   4323		 * Don't do anything with these messages, just allow
   4324		 * them to be freed.
   4325		 */
   4326
   4327		rv = 0;
   4328	} else {
   4329		recv_msg = ipmi_alloc_recv_msg();
   4330		if (!recv_msg) {
   4331			/*
   4332			 * We couldn't allocate memory for the
   4333			 * message, so requeue it for handling
   4334			 * later.
   4335			 */
   4336			rv = 1;
   4337			kref_put(&user->refcount, free_user);
   4338		} else {
   4339			/*
   4340			 * OEM Messages are expected to be delivered via
   4341			 * the system interface to SMS software.  We might
   4342			 * need to visit this again depending on OEM
   4343			 * requirements
   4344			 */
   4345			smi_addr = ((struct ipmi_system_interface_addr *)
   4346				    &recv_msg->addr);
   4347			smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
   4348			smi_addr->channel = IPMI_BMC_CHANNEL;
   4349			smi_addr->lun = msg->rsp[0] & 3;
   4350
   4351			recv_msg->user = user;
   4352			recv_msg->user_msg_data = NULL;
   4353			recv_msg->recv_type = IPMI_OEM_RECV_TYPE;
   4354			recv_msg->msg.netfn = msg->rsp[0] >> 2;
   4355			recv_msg->msg.cmd = msg->rsp[1];
   4356			recv_msg->msg.data = recv_msg->msg_data;
   4357
   4358			/*
   4359			 * The message starts at byte 4 which follows the
   4360			 * the Channel Byte in the "GET MESSAGE" command
   4361			 */
   4362			recv_msg->msg.data_len = msg->rsp_size - 4;
   4363			memcpy(recv_msg->msg_data, &msg->rsp[4],
   4364			       msg->rsp_size - 4);
   4365			if (deliver_response(intf, recv_msg))
   4366				ipmi_inc_stat(intf, unhandled_commands);
   4367			else
   4368				ipmi_inc_stat(intf, handled_commands);
   4369		}
   4370	}
   4371
   4372	return rv;
   4373}
   4374
   4375static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
   4376				     struct ipmi_smi_msg  *msg)
   4377{
   4378	struct ipmi_system_interface_addr *smi_addr;
   4379
   4380	recv_msg->msgid = 0;
   4381	smi_addr = (struct ipmi_system_interface_addr *) &recv_msg->addr;
   4382	smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
   4383	smi_addr->channel = IPMI_BMC_CHANNEL;
   4384	smi_addr->lun = msg->rsp[0] & 3;
   4385	recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
   4386	recv_msg->msg.netfn = msg->rsp[0] >> 2;
   4387	recv_msg->msg.cmd = msg->rsp[1];
   4388	memcpy(recv_msg->msg_data, &msg->rsp[3], msg->rsp_size - 3);
   4389	recv_msg->msg.data = recv_msg->msg_data;
   4390	recv_msg->msg.data_len = msg->rsp_size - 3;
   4391}
   4392
   4393static int handle_read_event_rsp(struct ipmi_smi *intf,
   4394				 struct ipmi_smi_msg *msg)
   4395{
   4396	struct ipmi_recv_msg *recv_msg, *recv_msg2;
   4397	struct list_head     msgs;
   4398	struct ipmi_user     *user;
   4399	int rv = 0, deliver_count = 0, index;
   4400	unsigned long        flags;
   4401
   4402	if (msg->rsp_size < 19) {
   4403		/* Message is too small to be an IPMB event. */
   4404		ipmi_inc_stat(intf, invalid_events);
   4405		return 0;
   4406	}
   4407
   4408	if (msg->rsp[2] != 0) {
   4409		/* An error getting the event, just ignore it. */
   4410		return 0;
   4411	}
   4412
   4413	INIT_LIST_HEAD(&msgs);
   4414
   4415	spin_lock_irqsave(&intf->events_lock, flags);
   4416
   4417	ipmi_inc_stat(intf, events);
   4418
   4419	/*
   4420	 * Allocate and fill in one message for every user that is
   4421	 * getting events.
   4422	 */
   4423	index = srcu_read_lock(&intf->users_srcu);
   4424	list_for_each_entry_rcu(user, &intf->users, link) {
   4425		if (!user->gets_events)
   4426			continue;
   4427
   4428		recv_msg = ipmi_alloc_recv_msg();
   4429		if (!recv_msg) {
   4430			rcu_read_unlock();
   4431			list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
   4432						 link) {
   4433				list_del(&recv_msg->link);
   4434				ipmi_free_recv_msg(recv_msg);
   4435			}
   4436			/*
   4437			 * We couldn't allocate memory for the
   4438			 * message, so requeue it for handling
   4439			 * later.
   4440			 */
   4441			rv = 1;
   4442			goto out;
   4443		}
   4444
   4445		deliver_count++;
   4446
   4447		copy_event_into_recv_msg(recv_msg, msg);
   4448		recv_msg->user = user;
   4449		kref_get(&user->refcount);
   4450		list_add_tail(&recv_msg->link, &msgs);
   4451	}
   4452	srcu_read_unlock(&intf->users_srcu, index);
   4453
   4454	if (deliver_count) {
   4455		/* Now deliver all the messages. */
   4456		list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
   4457			list_del(&recv_msg->link);
   4458			deliver_local_response(intf, recv_msg);
   4459		}
   4460	} else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
   4461		/*
   4462		 * No one to receive the message, put it in queue if there's
   4463		 * not already too many things in the queue.
   4464		 */
   4465		recv_msg = ipmi_alloc_recv_msg();
   4466		if (!recv_msg) {
   4467			/*
   4468			 * We couldn't allocate memory for the
   4469			 * message, so requeue it for handling
   4470			 * later.
   4471			 */
   4472			rv = 1;
   4473			goto out;
   4474		}
   4475
   4476		copy_event_into_recv_msg(recv_msg, msg);
   4477		list_add_tail(&recv_msg->link, &intf->waiting_events);
   4478		intf->waiting_events_count++;
   4479	} else if (!intf->event_msg_printed) {
   4480		/*
   4481		 * There's too many things in the queue, discard this
   4482		 * message.
   4483		 */
   4484		dev_warn(intf->si_dev,
   4485			 "Event queue full, discarding incoming events\n");
   4486		intf->event_msg_printed = 1;
   4487	}
   4488
   4489 out:
   4490	spin_unlock_irqrestore(&intf->events_lock, flags);
   4491
   4492	return rv;
   4493}
   4494
   4495static int handle_bmc_rsp(struct ipmi_smi *intf,
   4496			  struct ipmi_smi_msg *msg)
   4497{
   4498	struct ipmi_recv_msg *recv_msg;
   4499	struct ipmi_system_interface_addr *smi_addr;
   4500
   4501	recv_msg = msg->user_data;
   4502	if (recv_msg == NULL) {
   4503		dev_warn(intf->si_dev,
   4504			 "IPMI SMI message received with no owner. This could be because of a malformed message, or because of a hardware error.  Contact your hardware vendor for assistance.\n");
   4505		return 0;
   4506	}
   4507
   4508	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
   4509	recv_msg->msgid = msg->msgid;
   4510	smi_addr = ((struct ipmi_system_interface_addr *)
   4511		    &recv_msg->addr);
   4512	smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
   4513	smi_addr->channel = IPMI_BMC_CHANNEL;
   4514	smi_addr->lun = msg->rsp[0] & 3;
   4515	recv_msg->msg.netfn = msg->rsp[0] >> 2;
   4516	recv_msg->msg.cmd = msg->rsp[1];
   4517	memcpy(recv_msg->msg_data, &msg->rsp[2], msg->rsp_size - 2);
   4518	recv_msg->msg.data = recv_msg->msg_data;
   4519	recv_msg->msg.data_len = msg->rsp_size - 2;
   4520	deliver_local_response(intf, recv_msg);
   4521
   4522	return 0;
   4523}
   4524
   4525/*
   4526 * Handle a received message.  Return 1 if the message should be requeued,
   4527 * 0 if the message should be freed, or -1 if the message should not
   4528 * be freed or requeued.
   4529 */
   4530static int handle_one_recv_msg(struct ipmi_smi *intf,
   4531			       struct ipmi_smi_msg *msg)
   4532{
   4533	int requeue = 0;
   4534	int chan;
   4535	unsigned char cc;
   4536	bool is_cmd = !((msg->rsp[0] >> 2) & 1);
   4537
   4538	dev_dbg(intf->si_dev, "Recv: %*ph\n", msg->rsp_size, msg->rsp);
   4539
   4540	if (msg->rsp_size < 2) {
   4541		/* Message is too small to be correct. */
   4542		dev_warn(intf->si_dev,
   4543			 "BMC returned too small a message for netfn %x cmd %x, got %d bytes\n",
   4544			 (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size);
   4545
   4546return_unspecified:
   4547		/* Generate an error response for the message. */
   4548		msg->rsp[0] = msg->data[0] | (1 << 2);
   4549		msg->rsp[1] = msg->data[1];
   4550		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
   4551		msg->rsp_size = 3;
   4552	} else if (msg->type == IPMI_SMI_MSG_TYPE_IPMB_DIRECT) {
   4553		/* commands must have at least 4 bytes, responses 5. */
   4554		if (is_cmd && (msg->rsp_size < 4)) {
   4555			ipmi_inc_stat(intf, invalid_commands);
   4556			goto out;
   4557		}
   4558		if (!is_cmd && (msg->rsp_size < 5)) {
   4559			ipmi_inc_stat(intf, invalid_ipmb_responses);
   4560			/* Construct a valid error response. */
   4561			msg->rsp[0] = msg->data[0] & 0xfc; /* NetFN */
   4562			msg->rsp[0] |= (1 << 2); /* Make it a response */
   4563			msg->rsp[0] |= msg->data[2] & 3; /* rqLUN */
   4564			msg->rsp[1] = msg->data[1]; /* Addr */
   4565			msg->rsp[2] = msg->data[2] & 0xfc; /* rqSeq */
   4566			msg->rsp[2] |= msg->data[0] & 0x3; /* rsLUN */
   4567			msg->rsp[3] = msg->data[3]; /* Cmd */
   4568			msg->rsp[4] = IPMI_ERR_UNSPECIFIED;
   4569			msg->rsp_size = 5;
   4570		}
   4571	} else if ((msg->data_size >= 2)
   4572	    && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
   4573	    && (msg->data[1] == IPMI_SEND_MSG_CMD)
   4574	    && (msg->user_data == NULL)) {
   4575
   4576		if (intf->in_shutdown)
   4577			goto out;
   4578
   4579		/*
   4580		 * This is the local response to a command send, start
   4581		 * the timer for these.  The user_data will not be
   4582		 * NULL if this is a response send, and we will let
   4583		 * response sends just go through.
   4584		 */
   4585
   4586		/*
   4587		 * Check for errors, if we get certain errors (ones
   4588		 * that mean basically we can try again later), we
   4589		 * ignore them and start the timer.  Otherwise we
   4590		 * report the error immediately.
   4591		 */
   4592		if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
   4593		    && (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
   4594		    && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
   4595		    && (msg->rsp[2] != IPMI_BUS_ERR)
   4596		    && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) {
   4597			int ch = msg->rsp[3] & 0xf;
   4598			struct ipmi_channel *chans;
   4599
   4600			/* Got an error sending the message, handle it. */
   4601
   4602			chans = READ_ONCE(intf->channel_list)->c;
   4603			if ((chans[ch].medium == IPMI_CHANNEL_MEDIUM_8023LAN)
   4604			    || (chans[ch].medium == IPMI_CHANNEL_MEDIUM_ASYNC))
   4605				ipmi_inc_stat(intf, sent_lan_command_errs);
   4606			else
   4607				ipmi_inc_stat(intf, sent_ipmb_command_errs);
   4608			intf_err_seq(intf, msg->msgid, msg->rsp[2]);
   4609		} else
   4610			/* The message was sent, start the timer. */
   4611			intf_start_seq_timer(intf, msg->msgid);
   4612		requeue = 0;
   4613		goto out;
   4614	} else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))
   4615		   || (msg->rsp[1] != msg->data[1])) {
   4616		/*
   4617		 * The NetFN and Command in the response is not even
   4618		 * marginally correct.
   4619		 */
   4620		dev_warn(intf->si_dev,
   4621			 "BMC returned incorrect response, expected netfn %x cmd %x, got netfn %x cmd %x\n",
   4622			 (msg->data[0] >> 2) | 1, msg->data[1],
   4623			 msg->rsp[0] >> 2, msg->rsp[1]);
   4624
   4625		goto return_unspecified;
   4626	}
   4627
   4628	if (msg->type == IPMI_SMI_MSG_TYPE_IPMB_DIRECT) {
   4629		if ((msg->data[0] >> 2) & 1) {
   4630			/* It's a response to a sent response. */
   4631			chan = 0;
   4632			cc = msg->rsp[4];
   4633			goto process_response_response;
   4634		}
   4635		if (is_cmd)
   4636			requeue = handle_ipmb_direct_rcv_cmd(intf, msg);
   4637		else
   4638			requeue = handle_ipmb_direct_rcv_rsp(intf, msg);
   4639	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
   4640		   && (msg->rsp[1] == IPMI_SEND_MSG_CMD)
   4641		   && (msg->user_data != NULL)) {
   4642		/*
   4643		 * It's a response to a response we sent.  For this we
   4644		 * deliver a send message response to the user.
   4645		 */
   4646		struct ipmi_recv_msg *recv_msg;
   4647
   4648		chan = msg->data[2] & 0x0f;
   4649		if (chan >= IPMI_MAX_CHANNELS)
   4650			/* Invalid channel number */
   4651			goto out;
   4652		cc = msg->rsp[2];
   4653
   4654process_response_response:
   4655		recv_msg = msg->user_data;
   4656
   4657		requeue = 0;
   4658		if (!recv_msg)
   4659			goto out;
   4660
   4661		recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
   4662		recv_msg->msg.data = recv_msg->msg_data;
   4663		recv_msg->msg_data[0] = cc;
   4664		recv_msg->msg.data_len = 1;
   4665		deliver_local_response(intf, recv_msg);
   4666	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
   4667		   && (msg->rsp[1] == IPMI_GET_MSG_CMD)) {
   4668		struct ipmi_channel   *chans;
   4669
   4670		/* It's from the receive queue. */
   4671		chan = msg->rsp[3] & 0xf;
   4672		if (chan >= IPMI_MAX_CHANNELS) {
   4673			/* Invalid channel number */
   4674			requeue = 0;
   4675			goto out;
   4676		}
   4677
   4678		/*
   4679		 * We need to make sure the channels have been initialized.
   4680		 * The channel_handler routine will set the "curr_channel"
   4681		 * equal to or greater than IPMI_MAX_CHANNELS when all the
   4682		 * channels for this interface have been initialized.
   4683		 */
   4684		if (!intf->channels_ready) {
   4685			requeue = 0; /* Throw the message away */
   4686			goto out;
   4687		}
   4688
   4689		chans = READ_ONCE(intf->channel_list)->c;
   4690
   4691		switch (chans[chan].medium) {
   4692		case IPMI_CHANNEL_MEDIUM_IPMB:
   4693			if (msg->rsp[4] & 0x04) {
   4694				/*
   4695				 * It's a response, so find the
   4696				 * requesting message and send it up.
   4697				 */
   4698				requeue = handle_ipmb_get_msg_rsp(intf, msg);
   4699			} else {
   4700				/*
   4701				 * It's a command to the SMS from some other
   4702				 * entity.  Handle that.
   4703				 */
   4704				requeue = handle_ipmb_get_msg_cmd(intf, msg);
   4705			}
   4706			break;
   4707
   4708		case IPMI_CHANNEL_MEDIUM_8023LAN:
   4709		case IPMI_CHANNEL_MEDIUM_ASYNC:
   4710			if (msg->rsp[6] & 0x04) {
   4711				/*
   4712				 * It's a response, so find the
   4713				 * requesting message and send it up.
   4714				 */
   4715				requeue = handle_lan_get_msg_rsp(intf, msg);
   4716			} else {
   4717				/*
   4718				 * It's a command to the SMS from some other
   4719				 * entity.  Handle that.
   4720				 */
   4721				requeue = handle_lan_get_msg_cmd(intf, msg);
   4722			}
   4723			break;
   4724
   4725		default:
   4726			/* Check for OEM Channels.  Clients had better
   4727			   register for these commands. */
   4728			if ((chans[chan].medium >= IPMI_CHANNEL_MEDIUM_OEM_MIN)
   4729			    && (chans[chan].medium
   4730				<= IPMI_CHANNEL_MEDIUM_OEM_MAX)) {
   4731				requeue = handle_oem_get_msg_cmd(intf, msg);
   4732			} else {
   4733				/*
   4734				 * We don't handle the channel type, so just
   4735				 * free the message.
   4736				 */
   4737				requeue = 0;
   4738			}
   4739		}
   4740
   4741	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
   4742		   && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) {
   4743		/* It's an asynchronous event. */
   4744		requeue = handle_read_event_rsp(intf, msg);
   4745	} else {
   4746		/* It's a response from the local BMC. */
   4747		requeue = handle_bmc_rsp(intf, msg);
   4748	}
   4749
   4750 out:
   4751	return requeue;
   4752}
   4753
   4754/*
   4755 * If there are messages in the queue or pretimeouts, handle them.
   4756 */
   4757static void handle_new_recv_msgs(struct ipmi_smi *intf)
   4758{
   4759	struct ipmi_smi_msg  *smi_msg;
   4760	unsigned long        flags = 0;
   4761	int                  rv;
   4762	int                  run_to_completion = intf->run_to_completion;
   4763
   4764	/* See if any waiting messages need to be processed. */
   4765	if (!run_to_completion)
   4766		spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
   4767	while (!list_empty(&intf->waiting_rcv_msgs)) {
   4768		smi_msg = list_entry(intf->waiting_rcv_msgs.next,
   4769				     struct ipmi_smi_msg, link);
   4770		list_del(&smi_msg->link);
   4771		if (!run_to_completion)
   4772			spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
   4773					       flags);
   4774		rv = handle_one_recv_msg(intf, smi_msg);
   4775		if (!run_to_completion)
   4776			spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
   4777		if (rv > 0) {
   4778			/*
   4779			 * To preserve message order, quit if we
   4780			 * can't handle a message.  Add the message
   4781			 * back at the head, this is safe because this
   4782			 * tasklet is the only thing that pulls the
   4783			 * messages.
   4784			 */
   4785			list_add(&smi_msg->link, &intf->waiting_rcv_msgs);
   4786			break;
   4787		} else {
   4788			if (rv == 0)
   4789				/* Message handled */
   4790				ipmi_free_smi_msg(smi_msg);
   4791			/* If rv < 0, fatal error, del but don't free. */
   4792		}
   4793	}
   4794	if (!run_to_completion)
   4795		spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock, flags);
   4796
   4797	/*
   4798	 * If the pretimout count is non-zero, decrement one from it and
   4799	 * deliver pretimeouts to all the users.
   4800	 */
   4801	if (atomic_add_unless(&intf->watchdog_pretimeouts_to_deliver, -1, 0)) {
   4802		struct ipmi_user *user;
   4803		int index;
   4804
   4805		index = srcu_read_lock(&intf->users_srcu);
   4806		list_for_each_entry_rcu(user, &intf->users, link) {
   4807			if (user->handler->ipmi_watchdog_pretimeout)
   4808				user->handler->ipmi_watchdog_pretimeout(
   4809					user->handler_data);
   4810		}
   4811		srcu_read_unlock(&intf->users_srcu, index);
   4812	}
   4813}
   4814
   4815static void smi_recv_tasklet(struct tasklet_struct *t)
   4816{
   4817	unsigned long flags = 0; /* keep us warning-free. */
   4818	struct ipmi_smi *intf = from_tasklet(intf, t, recv_tasklet);
   4819	int run_to_completion = intf->run_to_completion;
   4820	struct ipmi_smi_msg *newmsg = NULL;
   4821
   4822	/*
   4823	 * Start the next message if available.
   4824	 *
   4825	 * Do this here, not in the actual receiver, because we may deadlock
   4826	 * because the lower layer is allowed to hold locks while calling
   4827	 * message delivery.
   4828	 */
   4829
   4830	rcu_read_lock();
   4831
   4832	if (!run_to_completion)
   4833		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
   4834	if (intf->curr_msg == NULL && !intf->in_shutdown) {
   4835		struct list_head *entry = NULL;
   4836
   4837		/* Pick the high priority queue first. */
   4838		if (!list_empty(&intf->hp_xmit_msgs))
   4839			entry = intf->hp_xmit_msgs.next;
   4840		else if (!list_empty(&intf->xmit_msgs))
   4841			entry = intf->xmit_msgs.next;
   4842
   4843		if (entry) {
   4844			list_del(entry);
   4845			newmsg = list_entry(entry, struct ipmi_smi_msg, link);
   4846			intf->curr_msg = newmsg;
   4847		}
   4848	}
   4849
   4850	if (!run_to_completion)
   4851		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
   4852	if (newmsg)
   4853		intf->handlers->sender(intf->send_info, newmsg);
   4854
   4855	rcu_read_unlock();
   4856
   4857	handle_new_recv_msgs(intf);
   4858}
   4859
   4860/* Handle a new message from the lower layer. */
   4861void ipmi_smi_msg_received(struct ipmi_smi *intf,
   4862			   struct ipmi_smi_msg *msg)
   4863{
   4864	unsigned long flags = 0; /* keep us warning-free. */
   4865	int run_to_completion = intf->run_to_completion;
   4866
   4867	/*
   4868	 * To preserve message order, we keep a queue and deliver from
   4869	 * a tasklet.
   4870	 */
   4871	if (!run_to_completion)
   4872		spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
   4873	list_add_tail(&msg->link, &intf->waiting_rcv_msgs);
   4874	if (!run_to_completion)
   4875		spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
   4876				       flags);
   4877
   4878	if (!run_to_completion)
   4879		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
   4880	/*
   4881	 * We can get an asynchronous event or receive message in addition
   4882	 * to commands we send.
   4883	 */
   4884	if (msg == intf->curr_msg)
   4885		intf->curr_msg = NULL;
   4886	if (!run_to_completion)
   4887		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
   4888
   4889	if (run_to_completion)
   4890		smi_recv_tasklet(&intf->recv_tasklet);
   4891	else
   4892		tasklet_schedule(&intf->recv_tasklet);
   4893}
   4894EXPORT_SYMBOL(ipmi_smi_msg_received);
   4895
   4896void ipmi_smi_watchdog_pretimeout(struct ipmi_smi *intf)
   4897{
   4898	if (intf->in_shutdown)
   4899		return;
   4900
   4901	atomic_set(&intf->watchdog_pretimeouts_to_deliver, 1);
   4902	tasklet_schedule(&intf->recv_tasklet);
   4903}
   4904EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
   4905
   4906static struct ipmi_smi_msg *
   4907smi_from_recv_msg(struct ipmi_smi *intf, struct ipmi_recv_msg *recv_msg,
   4908		  unsigned char seq, long seqid)
   4909{
   4910	struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
   4911	if (!smi_msg)
   4912		/*
   4913		 * If we can't allocate the message, then just return, we
   4914		 * get 4 retries, so this should be ok.
   4915		 */
   4916		return NULL;
   4917
   4918	memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
   4919	smi_msg->data_size = recv_msg->msg.data_len;
   4920	smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);
   4921
   4922	dev_dbg(intf->si_dev, "Resend: %*ph\n",
   4923		smi_msg->data_size, smi_msg->data);
   4924
   4925	return smi_msg;
   4926}
   4927
   4928static void check_msg_timeout(struct ipmi_smi *intf, struct seq_table *ent,
   4929			      struct list_head *timeouts,
   4930			      unsigned long timeout_period,
   4931			      int slot, unsigned long *flags,
   4932			      bool *need_timer)
   4933{
   4934	struct ipmi_recv_msg *msg;
   4935
   4936	if (intf->in_shutdown)
   4937		return;
   4938
   4939	if (!ent->inuse)
   4940		return;
   4941
   4942	if (timeout_period < ent->timeout) {
   4943		ent->timeout -= timeout_period;
   4944		*need_timer = true;
   4945		return;
   4946	}
   4947
   4948	if (ent->retries_left == 0) {
   4949		/* The message has used all its retries. */
   4950		ent->inuse = 0;
   4951		smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
   4952		msg = ent->recv_msg;
   4953		list_add_tail(&msg->link, timeouts);
   4954		if (ent->broadcast)
   4955			ipmi_inc_stat(intf, timed_out_ipmb_broadcasts);
   4956		else if (is_lan_addr(&ent->recv_msg->addr))
   4957			ipmi_inc_stat(intf, timed_out_lan_commands);
   4958		else
   4959			ipmi_inc_stat(intf, timed_out_ipmb_commands);
   4960	} else {
   4961		struct ipmi_smi_msg *smi_msg;
   4962		/* More retries, send again. */
   4963
   4964		*need_timer = true;
   4965
   4966		/*
   4967		 * Start with the max timer, set to normal timer after
   4968		 * the message is sent.
   4969		 */
   4970		ent->timeout = MAX_MSG_TIMEOUT;
   4971		ent->retries_left--;
   4972		smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
   4973					    ent->seqid);
   4974		if (!smi_msg) {
   4975			if (is_lan_addr(&ent->recv_msg->addr))
   4976				ipmi_inc_stat(intf,
   4977					      dropped_rexmit_lan_commands);
   4978			else
   4979				ipmi_inc_stat(intf,
   4980					      dropped_rexmit_ipmb_commands);
   4981			return;
   4982		}
   4983
   4984		spin_unlock_irqrestore(&intf->seq_lock, *flags);
   4985
   4986		/*
   4987		 * Send the new message.  We send with a zero
   4988		 * priority.  It timed out, I doubt time is that
   4989		 * critical now, and high priority messages are really
   4990		 * only for messages to the local MC, which don't get
   4991		 * resent.
   4992		 */
   4993		if (intf->handlers) {
   4994			if (is_lan_addr(&ent->recv_msg->addr))
   4995				ipmi_inc_stat(intf,
   4996					      retransmitted_lan_commands);
   4997			else
   4998				ipmi_inc_stat(intf,
   4999					      retransmitted_ipmb_commands);
   5000
   5001			smi_send(intf, intf->handlers, smi_msg, 0);
   5002		} else
   5003			ipmi_free_smi_msg(smi_msg);
   5004
   5005		spin_lock_irqsave(&intf->seq_lock, *flags);
   5006	}
   5007}
   5008
   5009static bool ipmi_timeout_handler(struct ipmi_smi *intf,
   5010				 unsigned long timeout_period)
   5011{
   5012	struct list_head     timeouts;
   5013	struct ipmi_recv_msg *msg, *msg2;
   5014	unsigned long        flags;
   5015	int                  i;
   5016	bool                 need_timer = false;
   5017
   5018	if (!intf->bmc_registered) {
   5019		kref_get(&intf->refcount);
   5020		if (!schedule_work(&intf->bmc_reg_work)) {
   5021			kref_put(&intf->refcount, intf_free);
   5022			need_timer = true;
   5023		}
   5024	}
   5025
   5026	/*
   5027	 * Go through the seq table and find any messages that
   5028	 * have timed out, putting them in the timeouts
   5029	 * list.
   5030	 */
   5031	INIT_LIST_HEAD(&timeouts);
   5032	spin_lock_irqsave(&intf->seq_lock, flags);
   5033	if (intf->ipmb_maintenance_mode_timeout) {
   5034		if (intf->ipmb_maintenance_mode_timeout <= timeout_period)
   5035			intf->ipmb_maintenance_mode_timeout = 0;
   5036		else
   5037			intf->ipmb_maintenance_mode_timeout -= timeout_period;
   5038	}
   5039	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
   5040		check_msg_timeout(intf, &intf->seq_table[i],
   5041				  &timeouts, timeout_period, i,
   5042				  &flags, &need_timer);
   5043	spin_unlock_irqrestore(&intf->seq_lock, flags);
   5044
   5045	list_for_each_entry_safe(msg, msg2, &timeouts, link)
   5046		deliver_err_response(intf, msg, IPMI_TIMEOUT_COMPLETION_CODE);
   5047
   5048	/*
   5049	 * Maintenance mode handling.  Check the timeout
   5050	 * optimistically before we claim the lock.  It may
   5051	 * mean a timeout gets missed occasionally, but that
   5052	 * only means the timeout gets extended by one period
   5053	 * in that case.  No big deal, and it avoids the lock
   5054	 * most of the time.
   5055	 */
   5056	if (intf->auto_maintenance_timeout > 0) {
   5057		spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
   5058		if (intf->auto_maintenance_timeout > 0) {
   5059			intf->auto_maintenance_timeout
   5060				-= timeout_period;
   5061			if (!intf->maintenance_mode
   5062			    && (intf->auto_maintenance_timeout <= 0)) {
   5063				intf->maintenance_mode_enable = false;
   5064				maintenance_mode_update(intf);
   5065			}
   5066		}
   5067		spin_unlock_irqrestore(&intf->maintenance_mode_lock,
   5068				       flags);
   5069	}
   5070
   5071	tasklet_schedule(&intf->recv_tasklet);
   5072
   5073	return need_timer;
   5074}
   5075
   5076static void ipmi_request_event(struct ipmi_smi *intf)
   5077{
   5078	/* No event requests when in maintenance mode. */
   5079	if (intf->maintenance_mode_enable)
   5080		return;
   5081
   5082	if (!intf->in_shutdown)
   5083		intf->handlers->request_events(intf->send_info);
   5084}
   5085
   5086static struct timer_list ipmi_timer;
   5087
   5088static atomic_t stop_operation;
   5089
   5090static void ipmi_timeout(struct timer_list *unused)
   5091{
   5092	struct ipmi_smi *intf;
   5093	bool need_timer = false;
   5094	int index;
   5095
   5096	if (atomic_read(&stop_operation))
   5097		return;
   5098
   5099	index = srcu_read_lock(&ipmi_interfaces_srcu);
   5100	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
   5101		if (atomic_read(&intf->event_waiters)) {
   5102			intf->ticks_to_req_ev--;
   5103			if (intf->ticks_to_req_ev == 0) {
   5104				ipmi_request_event(intf);
   5105				intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
   5106			}
   5107			need_timer = true;
   5108		}
   5109
   5110		need_timer |= ipmi_timeout_handler(intf, IPMI_TIMEOUT_TIME);
   5111	}
   5112	srcu_read_unlock(&ipmi_interfaces_srcu, index);
   5113
   5114	if (need_timer)
   5115		mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
   5116}
   5117
   5118static void need_waiter(struct ipmi_smi *intf)
   5119{
   5120	/* Racy, but worst case we start the timer twice. */
   5121	if (!timer_pending(&ipmi_timer))
   5122		mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
   5123}
   5124
   5125static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
   5126static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
   5127
   5128static void free_smi_msg(struct ipmi_smi_msg *msg)
   5129{
   5130	atomic_dec(&smi_msg_inuse_count);
   5131	/* Try to keep as much stuff out of the panic path as possible. */
   5132	if (!oops_in_progress)
   5133		kfree(msg);
   5134}
   5135
   5136struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
   5137{
   5138	struct ipmi_smi_msg *rv;
   5139	rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
   5140	if (rv) {
   5141		rv->done = free_smi_msg;
   5142		rv->user_data = NULL;
   5143		rv->type = IPMI_SMI_MSG_TYPE_NORMAL;
   5144		atomic_inc(&smi_msg_inuse_count);
   5145	}
   5146	return rv;
   5147}
   5148EXPORT_SYMBOL(ipmi_alloc_smi_msg);
   5149
   5150static void free_recv_msg(struct ipmi_recv_msg *msg)
   5151{
   5152	atomic_dec(&recv_msg_inuse_count);
   5153	/* Try to keep as much stuff out of the panic path as possible. */
   5154	if (!oops_in_progress)
   5155		kfree(msg);
   5156}
   5157
   5158static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void)
   5159{
   5160	struct ipmi_recv_msg *rv;
   5161
   5162	rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
   5163	if (rv) {
   5164		rv->user = NULL;
   5165		rv->done = free_recv_msg;
   5166		atomic_inc(&recv_msg_inuse_count);
   5167	}
   5168	return rv;
   5169}
   5170
   5171void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
   5172{
   5173	if (msg->user && !oops_in_progress)
   5174		kref_put(&msg->user->refcount, free_user);
   5175	msg->done(msg);
   5176}
   5177EXPORT_SYMBOL(ipmi_free_recv_msg);
   5178
   5179static atomic_t panic_done_count = ATOMIC_INIT(0);
   5180
   5181static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
   5182{
   5183	atomic_dec(&panic_done_count);
   5184}
   5185
   5186static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
   5187{
   5188	atomic_dec(&panic_done_count);
   5189}
   5190
   5191/*
   5192 * Inside a panic, send a message and wait for a response.
   5193 */
   5194static void ipmi_panic_request_and_wait(struct ipmi_smi *intf,
   5195					struct ipmi_addr *addr,
   5196					struct kernel_ipmi_msg *msg)
   5197{
   5198	struct ipmi_smi_msg  smi_msg;
   5199	struct ipmi_recv_msg recv_msg;
   5200	int rv;
   5201
   5202	smi_msg.done = dummy_smi_done_handler;
   5203	recv_msg.done = dummy_recv_done_handler;
   5204	atomic_add(2, &panic_done_count);
   5205	rv = i_ipmi_request(NULL,
   5206			    intf,
   5207			    addr,
   5208			    0,
   5209			    msg,
   5210			    intf,
   5211			    &smi_msg,
   5212			    &recv_msg,
   5213			    0,
   5214			    intf->addrinfo[0].address,
   5215			    intf->addrinfo[0].lun,
   5216			    0, 1); /* Don't retry, and don't wait. */
   5217	if (rv)
   5218		atomic_sub(2, &panic_done_count);
   5219	else if (intf->handlers->flush_messages)
   5220		intf->handlers->flush_messages(intf->send_info);
   5221
   5222	while (atomic_read(&panic_done_count) != 0)
   5223		ipmi_poll(intf);
   5224}
   5225
   5226static void event_receiver_fetcher(struct ipmi_smi *intf,
   5227				   struct ipmi_recv_msg *msg)
   5228{
   5229	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
   5230	    && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
   5231	    && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
   5232	    && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
   5233		/* A get event receiver command, save it. */
   5234		intf->event_receiver = msg->msg.data[1];
   5235		intf->event_receiver_lun = msg->msg.data[2] & 0x3;
   5236	}
   5237}
   5238
   5239static void device_id_fetcher(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
   5240{
   5241	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
   5242	    && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
   5243	    && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
   5244	    && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
   5245		/*
   5246		 * A get device id command, save if we are an event
   5247		 * receiver or generator.
   5248		 */
   5249		intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
   5250		intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
   5251	}
   5252}
   5253
   5254static void send_panic_events(struct ipmi_smi *intf, char *str)
   5255{
   5256	struct kernel_ipmi_msg msg;
   5257	unsigned char data[16];
   5258	struct ipmi_system_interface_addr *si;
   5259	struct ipmi_addr addr;
   5260	char *p = str;
   5261	struct ipmi_ipmb_addr *ipmb;
   5262	int j;
   5263
   5264	if (ipmi_send_panic_event == IPMI_SEND_PANIC_EVENT_NONE)
   5265		return;
   5266
   5267	si = (struct ipmi_system_interface_addr *) &addr;
   5268	si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
   5269	si->channel = IPMI_BMC_CHANNEL;
   5270	si->lun = 0;
   5271
   5272	/* Fill in an event telling that we have failed. */
   5273	msg.netfn = 0x04; /* Sensor or Event. */
   5274	msg.cmd = 2; /* Platform event command. */
   5275	msg.data = data;
   5276	msg.data_len = 8;
   5277	data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
   5278	data[1] = 0x03; /* This is for IPMI 1.0. */
   5279	data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
   5280	data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
   5281	data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
   5282
   5283	/*
   5284	 * Put a few breadcrumbs in.  Hopefully later we can add more things
   5285	 * to make the panic events more useful.
   5286	 */
   5287	if (str) {
   5288		data[3] = str[0];
   5289		data[6] = str[1];
   5290		data[7] = str[2];
   5291	}
   5292
   5293	/* Send the event announcing the panic. */
   5294	ipmi_panic_request_and_wait(intf, &addr, &msg);
   5295
   5296	/*
   5297	 * On every interface, dump a bunch of OEM event holding the
   5298	 * string.
   5299	 */
   5300	if (ipmi_send_panic_event != IPMI_SEND_PANIC_EVENT_STRING || !str)
   5301		return;
   5302
   5303	/*
   5304	 * intf_num is used as an marker to tell if the
   5305	 * interface is valid.  Thus we need a read barrier to
   5306	 * make sure data fetched before checking intf_num
   5307	 * won't be used.
   5308	 */
   5309	smp_rmb();
   5310
   5311	/*
   5312	 * First job here is to figure out where to send the
   5313	 * OEM events.  There's no way in IPMI to send OEM
   5314	 * events using an event send command, so we have to
   5315	 * find the SEL to put them in and stick them in
   5316	 * there.
   5317	 */
   5318
   5319	/* Get capabilities from the get device id. */
   5320	intf->local_sel_device = 0;
   5321	intf->local_event_generator = 0;
   5322	intf->event_receiver = 0;
   5323
   5324	/* Request the device info from the local MC. */
   5325	msg.netfn = IPMI_NETFN_APP_REQUEST;
   5326	msg.cmd = IPMI_GET_DEVICE_ID_CMD;
   5327	msg.data = NULL;
   5328	msg.data_len = 0;
   5329	intf->null_user_handler = device_id_fetcher;
   5330	ipmi_panic_request_and_wait(intf, &addr, &msg);
   5331
   5332	if (intf->local_event_generator) {
   5333		/* Request the event receiver from the local MC. */
   5334		msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
   5335		msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
   5336		msg.data = NULL;
   5337		msg.data_len = 0;
   5338		intf->null_user_handler = event_receiver_fetcher;
   5339		ipmi_panic_request_and_wait(intf, &addr, &msg);
   5340	}
   5341	intf->null_user_handler = NULL;
   5342
   5343	/*
   5344	 * Validate the event receiver.  The low bit must not
   5345	 * be 1 (it must be a valid IPMB address), it cannot
   5346	 * be zero, and it must not be my address.
   5347	 */
   5348	if (((intf->event_receiver & 1) == 0)
   5349	    && (intf->event_receiver != 0)
   5350	    && (intf->event_receiver != intf->addrinfo[0].address)) {
   5351		/*
   5352		 * The event receiver is valid, send an IPMB
   5353		 * message.
   5354		 */
   5355		ipmb = (struct ipmi_ipmb_addr *) &addr;
   5356		ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
   5357		ipmb->channel = 0; /* FIXME - is this right? */
   5358		ipmb->lun = intf->event_receiver_lun;
   5359		ipmb->slave_addr = intf->event_receiver;
   5360	} else if (intf->local_sel_device) {
   5361		/*
   5362		 * The event receiver was not valid (or was
   5363		 * me), but I am an SEL device, just dump it
   5364		 * in my SEL.
   5365		 */
   5366		si = (struct ipmi_system_interface_addr *) &addr;
   5367		si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
   5368		si->channel = IPMI_BMC_CHANNEL;
   5369		si->lun = 0;
   5370	} else
   5371		return; /* No where to send the event. */
   5372
   5373	msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
   5374	msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
   5375	msg.data = data;
   5376	msg.data_len = 16;
   5377
   5378	j = 0;
   5379	while (*p) {
   5380		int size = strlen(p);
   5381
   5382		if (size > 11)
   5383			size = 11;
   5384		data[0] = 0;
   5385		data[1] = 0;
   5386		data[2] = 0xf0; /* OEM event without timestamp. */
   5387		data[3] = intf->addrinfo[0].address;
   5388		data[4] = j++; /* sequence # */
   5389		/*
   5390		 * Always give 11 bytes, so strncpy will fill
   5391		 * it with zeroes for me.
   5392		 */
   5393		strncpy(data+5, p, 11);
   5394		p += size;
   5395
   5396		ipmi_panic_request_and_wait(intf, &addr, &msg);
   5397	}
   5398}
   5399
   5400static int has_panicked;
   5401
   5402static int panic_event(struct notifier_block *this,
   5403		       unsigned long         event,
   5404		       void                  *ptr)
   5405{
   5406	struct ipmi_smi *intf;
   5407	struct ipmi_user *user;
   5408
   5409	if (has_panicked)
   5410		return NOTIFY_DONE;
   5411	has_panicked = 1;
   5412
   5413	/* For every registered interface, set it to run to completion. */
   5414	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
   5415		if (!intf->handlers || intf->intf_num == -1)
   5416			/* Interface is not ready. */
   5417			continue;
   5418
   5419		if (!intf->handlers->poll)
   5420			continue;
   5421
   5422		/*
   5423		 * If we were interrupted while locking xmit_msgs_lock or
   5424		 * waiting_rcv_msgs_lock, the corresponding list may be
   5425		 * corrupted.  In this case, drop items on the list for
   5426		 * the safety.
   5427		 */
   5428		if (!spin_trylock(&intf->xmit_msgs_lock)) {
   5429			INIT_LIST_HEAD(&intf->xmit_msgs);
   5430			INIT_LIST_HEAD(&intf->hp_xmit_msgs);
   5431		} else
   5432			spin_unlock(&intf->xmit_msgs_lock);
   5433
   5434		if (!spin_trylock(&intf->waiting_rcv_msgs_lock))
   5435			INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
   5436		else
   5437			spin_unlock(&intf->waiting_rcv_msgs_lock);
   5438
   5439		intf->run_to_completion = 1;
   5440		if (intf->handlers->set_run_to_completion)
   5441			intf->handlers->set_run_to_completion(intf->send_info,
   5442							      1);
   5443
   5444		list_for_each_entry_rcu(user, &intf->users, link) {
   5445			if (user->handler->ipmi_panic_handler)
   5446				user->handler->ipmi_panic_handler(
   5447					user->handler_data);
   5448		}
   5449
   5450		send_panic_events(intf, ptr);
   5451	}
   5452
   5453	return NOTIFY_DONE;
   5454}
   5455
   5456/* Must be called with ipmi_interfaces_mutex held. */
   5457static int ipmi_register_driver(void)
   5458{
   5459	int rv;
   5460
   5461	if (drvregistered)
   5462		return 0;
   5463
   5464	rv = driver_register(&ipmidriver.driver);
   5465	if (rv)
   5466		pr_err("Could not register IPMI driver\n");
   5467	else
   5468		drvregistered = true;
   5469	return rv;
   5470}
   5471
   5472static struct notifier_block panic_block = {
   5473	.notifier_call	= panic_event,
   5474	.next		= NULL,
   5475	.priority	= 200	/* priority: INT_MAX >= x >= 0 */
   5476};
   5477
   5478static int ipmi_init_msghandler(void)
   5479{
   5480	int rv;
   5481
   5482	mutex_lock(&ipmi_interfaces_mutex);
   5483	rv = ipmi_register_driver();
   5484	if (rv)
   5485		goto out;
   5486	if (initialized)
   5487		goto out;
   5488
   5489	rv = init_srcu_struct(&ipmi_interfaces_srcu);
   5490	if (rv)
   5491		goto out;
   5492
   5493	remove_work_wq = create_singlethread_workqueue("ipmi-msghandler-remove-wq");
   5494	if (!remove_work_wq) {
   5495		pr_err("unable to create ipmi-msghandler-remove-wq workqueue");
   5496		rv = -ENOMEM;
   5497		goto out_wq;
   5498	}
   5499
   5500	timer_setup(&ipmi_timer, ipmi_timeout, 0);
   5501	mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
   5502
   5503	atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
   5504
   5505	initialized = true;
   5506
   5507out_wq:
   5508	if (rv)
   5509		cleanup_srcu_struct(&ipmi_interfaces_srcu);
   5510out:
   5511	mutex_unlock(&ipmi_interfaces_mutex);
   5512	return rv;
   5513}
   5514
   5515static int __init ipmi_init_msghandler_mod(void)
   5516{
   5517	int rv;
   5518
   5519	pr_info("version " IPMI_DRIVER_VERSION "\n");
   5520
   5521	mutex_lock(&ipmi_interfaces_mutex);
   5522	rv = ipmi_register_driver();
   5523	mutex_unlock(&ipmi_interfaces_mutex);
   5524
   5525	return rv;
   5526}
   5527
   5528static void __exit cleanup_ipmi(void)
   5529{
   5530	int count;
   5531
   5532	if (initialized) {
   5533		destroy_workqueue(remove_work_wq);
   5534
   5535		atomic_notifier_chain_unregister(&panic_notifier_list,
   5536						 &panic_block);
   5537
   5538		/*
   5539		 * This can't be called if any interfaces exist, so no worry
   5540		 * about shutting down the interfaces.
   5541		 */
   5542
   5543		/*
   5544		 * Tell the timer to stop, then wait for it to stop.  This
   5545		 * avoids problems with race conditions removing the timer
   5546		 * here.
   5547		 */
   5548		atomic_set(&stop_operation, 1);
   5549		del_timer_sync(&ipmi_timer);
   5550
   5551		initialized = false;
   5552
   5553		/* Check for buffer leaks. */
   5554		count = atomic_read(&smi_msg_inuse_count);
   5555		if (count != 0)
   5556			pr_warn("SMI message count %d at exit\n", count);
   5557		count = atomic_read(&recv_msg_inuse_count);
   5558		if (count != 0)
   5559			pr_warn("recv message count %d at exit\n", count);
   5560
   5561		cleanup_srcu_struct(&ipmi_interfaces_srcu);
   5562	}
   5563	if (drvregistered)
   5564		driver_unregister(&ipmidriver.driver);
   5565}
   5566module_exit(cleanup_ipmi);
   5567
   5568module_init(ipmi_init_msghandler_mod);
   5569MODULE_LICENSE("GPL");
   5570MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
   5571MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI interface.");
   5572MODULE_VERSION(IPMI_DRIVER_VERSION);
   5573MODULE_SOFTDEP("post: ipmi_devintf");